5尘
 (0)\$2.95usa
 New Zoaisna
 NE 56.50
 Hong Kiong
 H. 323.50 Malaysia S $\$ 9.45$ M $\$ 9.48$ Swadet
 30-SEK MICRO JOURNAL

VOLUME VII ISSUE IV • Devoted to the 68XX User • April 1985

 'Small Computers Doing Big Things"

WE

X-12*

A SERIOUS COMPUTER IN A DESKTOP PACKAGE

Multiprocessor Technology - Combination of 8,16 and 32 bit types 1.0 Megabyte Memory - Insures no limitation on programs
"Winchester"Disk System - Fast response, large storage capacity UniFlex Operating System-The standard of comparison Hardware Floating Point - Unmatched speed in a small system Up to Three Terminals = Instant expansion

- Tpademaph of Technical Systems Consultants

Only Microware's OS-9 Operating System Covers the Entire 68000 Spectrum

MICROWARE'S OS-9

UNIX

ROM-BASED CONTROL SYSTEMS	R.DPPY-OISK BASED PERSONAL COMPUTERS	DISK-BASED industrial SYSTEMS	SMALLSCALE TIMESHARING SYSIEMS	LARGE-SCALE
				TIMESHARING
				SYSTEMS
	hand-helo COMPUTERS	HCROWARESOFTWARE DEVEIDPMENT SYSTEMS	SINGLE USER MULTH-TASKING SYSTEMS	
SMALL SYSTEMS				TEMS

Is complicated software and expensive hardware keeping you back from Unix? Look into OS.9, the operating system from Microware that gives 08000 systems a Unix-style environment with much less overhead and complexity.

OS-9 is versatile. inexpensive, and delivers outstanding performance on any size system. The OS 9 executive is much sinaller and far more efficient than Unix because it's written in fast, compact assembly language. making it ideal tur critical real-time applications. OS. 9 can run on a hroad range of 8 to 32 bit sys ems based on the 08000 or 0809 fannily MPUs fnom ROM-based industrial controllers up to large naultiuser systens.

OS.9'S OUTSTANDING C COMPILER IS YOUR BRIDGE TO UNIX

Key OS-9 Features At A Glance

- Compact (16K) ROMable executive written in assembly language
- User "shell" and complete utility set written in C
- C-source code level compatibility with Unix
- Full Multitasking/multiuser capabiilities
- Modular design - extiemely easy to adapt, modify, or expand
- Unix-type tree stuctured file system
- Rugged "crash-proof" file structure with record locking
- Works well with floppy disk or ROM-based systems
- Uses hardware or software memory management
- High performance C, Pascal، Basic and Cobol compilers

VAX and PDP. 11 make coordinated Unix/OS 9 soflware developinent a pleasure.

SUPPORT FOR MODULAR SOFTWARE - AN OS-9 EXCLUSIVE

Comprehensive support for modular soflware puts OS. 9 a generation ahead of other operating systems. It multiplies programiner productivity and inemory efficiency. Applica tion software can be built from individually testable software modules including standard "library" modules. The modular structure lets you customize and reconfigure OS: 9 for specific hardware easily and quickly.

A SYSTEM WITH
 A PROVEN

TRACK RECORD
Once an underground classic. OS. 9 is now a solid hit. Since 1980 OS. 9 has been ported to over a hundred 6809 and 68000 nolugy is another OS 9 advanta e. The compiler produces extremely fast, compact, and ROMable code You can easily develop and port system or application software back and forth to standard Unix systems. Cross-compiler versions for
systems under license to some of the bigge.t names in the business. OS. 9 has been imbedded in numernus consumer. industrial, and OEM products, and is supperted by many independent soltware suppliers.

MICROWARE SYSTEMS CORPORATION
1866 NW 11sth Street
Des Muines. Jowa 50322
Phone 515-22+1929
Telex 910-520-2535

Misroware Japan, Lid
3-8.9 Baraki, Ichikawa City
Chiba 272-01, Japan
Phone 04742814493
Telex 299.3122

OSu is a tratemark of Mictoware ant Mutombla, tloma is a trakernark of Beif Lath

Por tlons of the text for '68' Mlero Journal were prepared using the following furnished ford/Softwore:

```
            CiNTESS - MCBNEE
Southwest Techlncal Products
219 W. Rhapsody
S09 - 5/B DMF Olsk - COSI - 8212W - Sprlnt 3 Ainter
GImIX Inc.
1337 West 37th Place
Chicago IL 60609
Super Mainfr ame - OS9 - FLEX - Assorted Hordware
    EDITURS - VOR RROCESSORS
Technical Yystems Consultants, Inc.
111 Provldence Road
Chapel Hil NC 27514
FLEX - Edtor - Text Processor
Greet Palns Computer Co., Inc.
PO 80x 916
Idaho Falls, 1083401
Stylograph - Mall Merge - Spell
```



```
Contrlbuting Edi tors
Ron Anderson
Morim \(0_{0}\) mo
Aotor Dibile
Wlillam E. Fisher
Dr. Theo Eibert Carl Mann
Dr: E. M. Pass Aon Volghts
Phillp Likido
Spelal Technical Projects
Clay Abrams KGAEP
Tom Hunt
```


CONTENTS

FLEX USER Notes7 Anderson
OSS USER Notes. 12
C USER Notes. 14
68000 USER Notes 18 Lucido
CoCo USER Notes 21 Mann
Basic OS-9. 23 Voights
0S-9 Applications HELP Is Here. 27
Hacking On The Macintosh 28
Macintosh Author Applications. 28
FLEX Routines, More Applications 29
More on the 512 K Mac. 30
Bit Slicer. 31
Software Exchange System. 42
Diskette Inventory 45
Pleasant PL/9. 46
68' Micro Articles 1984 Index 48
CMJ CoCo Index Of Articles. 49
Bit Bucket 51
Classified Advertising 59

MICRO

Send All Correspondence To:

Ca puter Publshing Conter 66° Moro Journel
5900 Cassandra Salth Rd. Hixson, Th. 37343
Phone (615) 842-4600 or Telex 558414 PVT BTH

Copprighted 1985 by Canputer Publlshing Inc.
68' Mlero Journal is publl shed 12 tlmes a year by Computer Publlshing Inc. Second Class Aostage Pold ISSN 0194-5025 at Hixson, Tn. and additlonal entrles. Postmaster: send form 3597 to 68 Mlero Journal, PO日 849 Hlxson, Tn. 37343.

Sebscription Ratos

1 Year \$24.50 U.S.A., Canada \& Moxico Add $\$ 5.50$ a Year. Other Forelgn Add $\$ 12$ - Yoar for sifleco, Alreall Add $\$ 36$ a Yoer. Must be in U.S. curroncya

Itgins or Artictes For Publication

Artlcles submitted for publlcation should Include a uthors name, address. telephone number and date. Articles should be on elther 5 or 8 Inch disk In STYLOGRAPH or TSC Edltor format with 3.5 Inch Oolitn -Idth. NI disks wlll be returned. Artleles submitted on paper should be 4.5 inches In ridth (Including Source Llstings) for proper reductlons. Proase lva A Dark Ribbonll No BI ue InkfII SIngle space on BXII bond or better grade paper. No hand written artleles accepted. Dlsks should be In FLEX2 6800 or FLEX9 6809 any version or OS-9 any verslon.

The following TSC Text Processor commonds OM.Y should be used: isp space, .pp paragraph, efl flll and -nf no flll. Nso please do not foreat within the text with nultlple speces. We wlll enter the rest at tlme of edlting.

All STYLOGPAPH commonds ore occeptable except dip page commend. We print edited text flles in continous text form.

Latters To The Edltor

All letters to the editor should comply with the ebove requlrements and must be slgned. Letters of "grlpes" as well as "pralse" are sollcited. We resorve the right to reject any submisslon for lack of "good taste" and we reserve the rlght to deflne "good taste".

M.rising Ratos

Commerclal advertislers please contact 68' Mlero Journal advertising department for current rate sheet and requlre n ts.

Classifled Adwartising

All classifled ads must be non-cormerclal. Minlmum of 57. 50 for first 20 mords and . 35 per word after 20. All classifleds must be pald In octanco. No classifled ads accepted over the phone.

GIMIX STATE OF THE ART 6809 SYSTEMS FOR THE SERIOUS USER.

GIMIX has 19MB or high performance 47MB Winchester Drive Systems and/or Moppy Disk Drive Systems.

For the user who appreciates the need for a bus structured system using STATIC RAM and powered by a ferro resonant constant voltage translormer

GIMDX has single user systems that cam run both FLEX and OS-9 or Multi user systems for use with UniF

GIMDX versions of OS9 and UniFUEX in clude maintenance and support by Microware (90 days) and TSC (1 year). Maintenance and support adter this period are available at extra cost.
NOTE: this support and maintenance is only for use with approved GIMDX hardware)
For the ultimate in performance, the Unique GNDX 6809 CPUIII using either OS-9-GMXII or UniFLEX GMDXII (available shortly), gives protection to the system and other users from crashes coused by defective user programs. e.g. During program development, a programmer who crashes goes back to the shell or the debugger. while the other users are not even aware anything occurred.

The intelligent senal I/O processor לoards significanty reduce system overhead by handling rou-

BaSIC-09 and OS-9 are tromentes of Mierosers Sysems Cord. and MOJDROLA. Inc FuEX and Uniffex are irademants of wichnirad Systems Consultants. Ine. GYMIX, GMOSE GMX CIASSY CHACSIS, an incomant of GIMIX, ine ions, thereby freeing up he host CPU for running user programs. This speeds up system performance and allows multiple terminals to be used at 19.2 K baud.

Get the most out of

 the BASICO9

 the BASICO9 Tour Guide Tour Guide
 Art Proction to BASIC09, a
 State-Or-The-Art Programming Language FII MICROWARE

The OFFICIAL BASIC09 TOUR GUIDE is skillfully written in a friendly and easy-to-read style. Just perfect for those new to computers and to BASIC09. It's also a valuable reference book for programmers, engineers, students and hobbyists, providing an in-depth look at BASIC09 plus an overview of the OS-9 operating system. Comprehensive reference sections on BASIC09 and OS-9 commands are also included.
The book "maps" out your route through the Mercedes of Basics . . . BASIC09 and puts you in the driver's seat in no time. Fasten your seatbelt, sit back and enjoy the ride to perfecting your programming skills.

MICROWARE . . .
The OFFICIAL BASIC09 TOUR GUIDE COmes from the people who wrote BASIC09. As the leader in 6809 system software, we at MICROWARE care about our users and want to help you get the most from our products.

It's Easy to Order.

Phone orders are accepted from MasterCard or VISA cardholders or for COD shipment. You can also order by mail using the coupon below. Quantity discounts are available to educational organizations and dealers. For further information contact Microware.

Specisdists in sysilem software for 08 -family microprocessors since 1977.
OS. 9 and 8ASIC09 are Irademarks of Microware and Motorcla

Microware Systems Corporation IB66 NW. 114th Stree:
Des Moines, Iowa 50322
Telephone 515:224-1929
Telex 910.520-2535

Please send \qquad copies ol the Baslc09 Tour Guide book at \$18.95 each. Add $\$ 2.00$ for UPS shipping in the U.S. or $\$ 5.00$ for oversoes air mail per book lowa residenls add 4% sales ta

Name \qquad
Address \qquad
Cily \qquad
State \qquad OR

I have enclosed a check
Charge to my bank card:
MasterCaro \square VISA
Card Number \qquad
Expiration

FLEX ${ }^{\text {™ }}$ USER NOTES THE 6800-6809 вооK

The publishers of 68 MICRO JOURNAL are proud to announce the publication of Ron Anderson's FLEX USER NOTES, in book form. This popular monthly column has been a regular feature in 68 MICRO JOURNAL SINCE 1979. It has earned the respect of thousands of 68 MICRO JOURNAL readers over the years. In fact. Ron's column has been described as the 'Bible' for 68XX users, by some of the world's leading microprocessor professionals. Now all his columns are being published, in whole, as the most needed and popular 68XX book available. Over the years Ron's column has been one of the most popular in 68 MICRO JOURNAL. And of course 68 MICRO JOURNAL is the most popular 68XX magazine published.

As a SPECIAL BONUS all the source listing in the book will be available on disk for the low price of: FLEX' ${ }^{\prime \prime}$ format only -5" $\$ 12.95$ - 8" $\$ 16.95$ pius $\$ 2.50$ shipping and handling, if ordered with the book. If ordered separately the price of the disks will be: $5^{\prime \prime} \$ 17.95-8^{\prime \prime} \$ 19.95$ plus $\$ 2.50$ shipping and handling.

Listed below are a few of the TEXT files included in the book and on diskette.
All TEXT files in the book are on the disks.

LOGO.C1
MEMOVE.C1
DUMP.C1
SUBTEST.C1
TERMEM.C2
M.C2

PRINT.C3
MODEM.C2
SCIPKG.C1
U.C4

PRINT.C4
SET.C5
SETBAS1.C5

File toad program to offset memory - ASM PIC
Memory move program - ASM PIC
Printer dump program - uses LOGO - ASM PIC
Simulation of 6800 code to 6809, show differences - ASM
Modem input to disk (or other port input to disk) - ASM
Output a file to modem (or another port) - ASM
Parallel (enhanced) printer driver - ASM
TTL output to CRT and modem (or other port) - ASM
Scientific math routines - PASCAL
Mini-monitor, disk resident, many useful functions - ASM
Parallel printer driver, without PFLAG - ASM
Set printer modes - ASM
Set printer modes - A-BASIC
(And many more)
-•Over 30 TEXT files included in ASM (assembler) - PASCAL - PIC (position independent code) TSC BASIC-C, etc.
NOTE: C1, C2, etc. $=$ Chapter 1, Chapter 2, etc.
This will be a limited run and we cannol guarantee that supplies will last long. Order now for early delivery.

See your local S50 dealer/bookstore or order direct from:
Computer Publishing Inc.
5900 Cassandra Smith Rd.
Hixson, TN 37343
(615) 842-4601

TELEX 558414 PVT BTH
Softcover - Large Format
Book only: $\$ 7.95+\$ 2.50 \mathrm{~S} / \mathrm{H}$
With disk: $5^{\prime \prime} \$ 20.90+\$ 2.50 \mathrm{~S} /$ With disk: $8^{n \prime} \$ 22.90+\$ 2.50 \mathrm{~S} / \mathrm{H}$

SOFTWARE DEVELOPERS!

YOU'VE JUST BEEN GIVEN THE BEST REASON YET TO GET OUR 68000/UNIX ${ }^{\oplus}$ DEVELOPMENT SYSTEM

THE VAR/68K ${ }^{(2)}$ SERIES

VK-5KW20 (List price siot
Includes: Terminal, 20 Mb hard disk. 512 K RAM. 8 ports and REGULUS ${ }^{\circledR}$

VK-5XW20T20 (List price $\$ 12,900$. . $\$ 6,500$. Includes: all of above. plus 20 Mb tape streamer

RESELLERS!

Even more altractive specials are available to qualified resellers!

Smoke Signal has been designing. developing and manufacturing microcomputers based on the Motorola family of processors for the past six years. The VAR/68K is the most recent addition to our family of multi-user computers.

VAR 68 k Is a registered trademark of Smoke Signal REGULUS is a registered trademark of Alcyon Corp. UNIX Is a reglstered trademark of Bell laboratortes

Due to the extremely tow prices being offered. we can onlyaccept cash or C.O.D. orders. and we must limit purchases to one per customer. This is a limited time offer.

TO OBTAIN YOUR VAR/68K AT THESE LOW PRICES, CONTACT:

SMOKE SIGNAL

31:3:36 VIN COI.INAS
WESTI.AKE VII.J.AGE. CA 91362
(818) 889-9340 / Telex 910-494-4965

Flex User Notes

Ronald W. Anderson
3540 Sturbridge Court
Ann Arbor. MI 48105

Disk Compatibility

I just received another letter from Kent Meyers and it contains some interesting information regarding our disk format compatibility problems. Kent has found one problem and then has discovered the actual difference between the GIMIX (and Frank Hogg COCO) FLEX and the SHTPc (and Data Comp and STAR-DOS) FLEX disk formats for double sided and double density disks. I suppose the folks at GIMIX and at SWTPc have known this forever but purposely not issued changes that would make our disks compatible.

Kent outlines two problems that exist. I have known about both problems for some time, but until now have not had a real clue as to the causes. Kent explains it quite well. Let me quote his letter.
"In my previous letter I stated that the only real problem that I had with FLEX on the COCO was that some SS-50 bus systems seemed to put a large part of the track header in the disk's index hole, causing my hardware to be unable to read Sector 1 on random tracks. This became so annoying in exchanges with a friend that I finally had him send me copies of his NEWDISK utilities. Disassembly of the two revealed immediately that the problem lay not with the hardware, but with the format program itself. In single density both of them laid down a track header of exactly EIGHT bytes before the first Address Mark on the track. This is patently ridiculous. The FHL formatter and Leo Taylor's both have a header in the range of 5 to 6 times that long. In addition, no Address Index Mark is written in either single or double density.
"But the most interesting part of the disassembly was finally discovering what the actual difference was between the Gimix and SWTPC double density disk formats. I don't remember ever seeing anything about it in '63 Micro except for the bald statement that the two formats were mutually incompatible. Because of a hardware decision, all of the SHTPC single density sectors have the side byte in the id. field set to zero, and all of the double density sectors have it set to one. So running a disk test program on a SHTPC disk with a GIMIX system will show all
the single density sectors on side one as bad, and all the double density sectors on side zero as bad.
"I have a complete disassembly of my current version of FLEX, so I did a little digging and discovered that the everflexible COCO could handle both formats (at least with FHL FLEX). The key is simply disabling the side compare during any sector read or write. This function is completely redundant on FLEX systems anyway. Each sector on a track in FLEX has its own unique number. If the side select on a drive should fail the system would still not be able to locate a sector for read or write even with the side compare not disabled. In addition, the modifications are completely transparent to the system, not affecting operation with the normal format. Formatting the disk in the SWTPC format turns out to be just as easy, requiring only two bytes to be changed.
"Here are the changes involved to FHL version 5.0:4:

> \$E11A Change $\$ 86$ to $\$ 84$
> $\$ E 1 A 9$ change $\$ A 6$ to $\$$ SA
> $\$ E 204$ change $\$ 86$ to $\$ 84$
"The changes to NEWDISK or NEWDISKA (FHL) are:
$\$ 03 C D$ change $\$ 06$ to $\$ 12$
$\$ 03 C E$ change $\$ 24$ to $\$ 12$
"This has been tested. I formatted a double sided, double density SWTPC compatible disk on my system and it worked without a hitch on a standard SHTPC system.... One more note of caution: the modifications to FLEX must be made to allow the format programs to work."

First let me be quick to say here that having a complete disassembly of FLEX is not illegal if you disassembled it yourself, which Kent did. Few of us have the time or the patience for such a project, however. Thanks Kent for unraveling the two problems all at once. I guess what we need is a universal formatter program and enough detective work to be able to patch the other versions of FLEX as well. Several people have reported the "can't read the first sector on some tracks" problem to me, and I encountered it myself once. The disk format compatibility problem has been a headache. I've had to move a pair of disk
drives between systems and boot a different FLEX now and then to read a disk sent to me by a reader. Now, GIMIX, SWTPC, TSC, can't you all get together and issue a new common standard for disk formats? I know, TSC will say "We were first.", SUTPc will say "We just did it the way TSC did." and GIMIX will say "We did it right." In the end it will be up to Leo Taylor and Bruno Puglia to come up with a universal formatter and "hackers" (that is what Kent calls himself, and it is not meant in any critical sense of the word) like Kent Meyers to suggest patches to FLEX for each version that is floating around out there.

User's Group Has Formed

I received a letter recently from Honolulu from Dr. John Current, describing his attempt to start a FLEX user's group along the lines of the "CPMUG". Their purpose is simply to collect and distribute user contributed software in an economical manner. Dr. Current is smart enough to realize that the job will be overwhelming for volunteer help and he has formed a company whose purpose is NOT to make money, but simply to run on a non-profit basis. The company is called Aloha Software. They will have paid help, and therefore must charge enough for each disk full of software to cover cost of disks, mailing, and copying. Of course there is work involved in cataloging and testing of software.

If you are interested, write them a letter at:

Aloha Software

P.O. Box 30107

Honolulu, HI 96820
They will send you their "Interim Guidelines" and a software submission form. I've just put a couple of my utilities on a disk and sent it off to them. One good function of a user's group such as this that comes to my mind instantly, is the project mentioned above of finding the proper places to patch all the versions of FLEX for the disk compatibility problems. Maybe between all of us we could find the proper places in all the versions and arrive at a "universal disk format" and uniform handling of side and density select so that our disks would truly be interchangeable.

I suggested that it might be worthwhile to poll interested people as to what kinds
of software they would be interested in obtaining. The "want list" could be published so that those of us who want to submit software could have some idea of what the others are looking for. (User's groups inevitably consist of "givers" and "takers".) In this case, those who donate software that is accepted, will be given their choice of one free disk (one volume) of software in exchange for their contribution.

Sorts on the Half Shell

Catchy title, don't you think? What brought this subject up was a problem I had the other day of sorting some data in a reasonable time. I think probably all of you have programmed a bubble sort at one time or another. The basic idea is that you can sort a list (an array) of items in order of increasing value (alphabetically if string comparisons are used, numerically if number comparisons are used), by starting at the top of the list and comparing the first two items. If the first is larger than the second (for sorting in ascending order), swap them and then compare the second and third items, etc. The process is repeated until the list has been "passed through" once with no swaps having taken place, at which point the list is sorted. If you think about it a little, the effect of a pass is to "sweep" the largest item to the bottom of the list. On the second pass, we can stop one item short of the bottom, etc. That little refinement cuts the sorting time in half.

The problem with the bubble sort is that it is what is called an n squared process. That is, the time it takes to sort a list is proportional to the square of the number of items in the list. Double the number of items, and it takes four times as long to run. There are considerably more complex sorting methods that run much faster. The next "least complex" one that runs considerably better than the bubble sort is known as the Shell Metzner sort after the people who "invented" it. This sort starts by comparing items that are far apart in the list. It swaps items for ary case in which the larger item is above the smaller in the comparison. The reasoning was that the largest item would quickly find its way to the bottom, and the smallest to the top. It works rather astonishingly better than the bubble sort as the list gets large.

One of the problems with the Shell-

Metzner sort (usually called the "Shell Sort" by way of abbreviation and not to omit credit to Metzner) is that when it swaps a pair of items, it saves the current item pointers and backs up one "sort interval" if the first pointer doesn't back up beyond the start of the list, and it again compares and swaps if necessary. While this extra step surely must reduce the number of passes through the list required, it also adds to the complexity of the program. Normally one makes passes through the list with the initial sorting interval until no swaps are made, and then divides the interval in half, repeating until the interval reaches zero, at which point the sort must be done. (Note that the sorting interval is an integer value so that $3 / 2=1$ and $1 / 2=0$. If you must use a "real" number, than you must use the INT function after performing the division.)

I decided to implement only the first half of the sort (hence the title Half Shell). The length of the list to be sorted is divided by 2 and the value obtained is used as the first sort interval. When no swaps are made on a pass, the interval is divided by two and the process repeated. It is informative to print the sort interval and the number of passes (indicated by asterisks) to the terminal as the sort progresses. Adding the sorting interval complication to the bubble sort is easy, and adds only a few lines to the sort portion of the program. I wrote the programs in BASIC and timed them for lists of 200, 400, and 800 items. Later I decided to see what would happen if the sort interval were reduced by less than a factor of 2 , and changed the reduction factor to 0.7 (easy in BASIC but perhaps more complicated in other languages). The resulting program was again a significant improvement over the previous a ttempt.

After obtaining timing information, I added code to the programs to count the number of comparisons and number of swaps for the sorts, and obtained that information by rerunning the programs. Counting comparisons, particularly for the bubble sort, slows the program down considerably. (I was able to use integer variables to hold the comparison count for the other programs, but had to use a floating point variable in the bubble version since even at 400 items the number of comparisons greatly overflowed integer arithmetic. The results were as follows:

Sort	Time	Swaps	Compares
Bubble $\begin{array}{r}200 \\ 400 \\ 800\end{array}{ }^{\text {a }}$ (87	10396	19795
	338	40008	78474
	1313	151312	317455
H. Sh. 200	18	937	6603
	49	2322	18744
	124	6233	47000
(approx.)			
0.7	17	585	6473
	40	1383	16032
	104	3504	43000

(approx.)
The compare count for the partial Shell sorts also overflowed the integer arithmetic, but didn't wrap around all the way so I was able to figure them out.

Sorting programs are somewhat sensitive to the data that is input, so I seeded the random number generator in TSC Extended BASIC by the statement $X=$ RND (-700) in each case so the three sort programs would work on the same data and I could make small changes and have meaningful comparisons. The variable SW\% is used to keep track of whether there were any swaps made on a given pass. It is set to zero at the beginning of the pass, and set to 1 if the swap subroutine is used once or more during the pass. One thing that strikes me as inefficient about the shell sort is that one pass is made at each sorting interval during which no sorting takes place. That is, the pass in which there are no swaps, which signals decreasing the sorting interval to its next value. It would seem in spite of this, that the partial Shell sort would be a much better choice than the Bubble sort for lists of any length over a few dozen items.

I have found some of no old test results on various sorts, and I find that the full Shell sort reduces the number of comparisons for a list of 1000 items to about $1 / 3$ of those for the partial Shell sorts. I have run some of the data for 1000 items, and I find the following approximate times to hold:

Bubble	3200
H. Sheconds	
O.7 Sh.	155
Shell	122
Quick	94
	46

All times reported above are for a 2 MHz 6809 system running in TSC Extended BASIC. Some of the times in the table immediately above are extrapolated from other data. You can see clearly that the first major improvement is made by using "anything but the Bubble sort". The full Shell sort runs in about $2 / 3$ the time of the simplified version. Quicksort is a considerably more complex sorting method that uses stacks to hold partially sorted fragments of the list (or pointers to them). However, as you can see, it is about three times as fast as the "Half Shell" version and twice as fast as the full Shell-Metzner version. I note here that the 0.7 ratio simplified Shell sort made just over half as many swaps as the full Shell sort for 1000 items. It made 3.5 times as many comparisons, and therefore ran more slowly. In some applications and with some languages comparisons are very fast and swaps are very slow, so that the "0.7 Half Shell" version might look more favorable.

If some of you express further interest in sorting methods, $I^{\text {t }} 11$ include BASIC implementations of the full Shell sort and the Quicksort in a later column, along with results on the same lists of random numbers.
Another 0.S.

Well, the company has just bought an IBM "look alike" and some software for P.C. board layout and artwork generation (Wintek's SmArtwork software). We've just gotten the system up and running, and I will therefore be learning about MS DOS. I suspect a few of you might be interested in ny impressions, so I will present them here briefly after I've had a chance to try the system out for a while. First impressions of the system are that it is simple to operate. The software has just about the right level of "automatic". That is, it is not too manual to be useful nor too automatic to be understood without a very long learning time.

K-BASIC Again

Having some little interest in the first BASIC compiler to be usable to compile TSC Extended BASIC programs rather directly, I receive almost weekly progress reports from Frank Hoffman at Lloyd I/O in Portland OR. Frank tells me that he has eliminated the requirement of no spaces in an arithmetic expression, gotten random files implemented, and pretty well debugged the full implementation of PRINT USING. The compiler
has gotten easier to use and considerably more efficient than the first versions in the process. Frank is planning to offer the user a choice of two floating point math packages. Presently he has a 15 digit $B C D$ math package that is superb for financial calculations, but a little on the slow side for serious scientific number crunching applications. He plans to offer a 9 digit binary math package that should run considerably faster and have more than sufficient accuracy for scientific applications.

Editor's Note: We here at CPI feel that KBASIC could be a milestone for our group. However, there are a couple of small items that MUST be taken of first. Mainly free of 'bugs' and capable of compiling rather large programs with moderate amounts of RAM available.

There is a wealth of software running under the TSC XBASIC format. The primary problem was after loading in the BASIC program it's self, then the BASIC source program, then reserving RAM space for the stack, tables, etc., not much space left for 'scratch' RAM. Therefore, the application program is limited in many ways due to time consuming system functions, such as chaining, loading additional source, etc. This heavy operational overhead is vastly reduced if the code is reduced to binary object only!

Thus a BASIC compiler - source to pure object - is the perfect solution. Provided it compiled good code. Right off the bat the doing-away-with of the BASIC program saves about 79 sectors, and the source compiled is a '.CMD' file, running like any other command file under FLEX or OS-9.

Speaking of OS-9, K-BASIC, with a FLEX to OS-9 porting program (S.E. Media, 'OF') will allow a FLEX XBASIC program to be compiled and run in the $0 S-9$ system. This ports over most of that FLEX applications base that before could not be run under OS-9. KBASIC solves a lot of problems for those OS9 users needing business and other applications software.

I also am following this development with MUCH interest, IT MEANS THAT ALL THOSE OLDER SHTPC, GIMIX, SSB, HELIX and any other system capable of running FLEX and/or OS-9 has a whole new ballgame to play - lots more
useable RAM，faster execution and all the other better things brought on by no intermediate，inefficient，cumbersome interpreter．

DMW

10 REM BUBBLE SORT
12 REK MOTE THAT THIS PROGRAM COMTAINS THE INSTRUCTION：
14 REM EXEC，＂TIME ${ }^{\circ}$ IN FMO PLACES．TKIS CAUSES HY SYStEM
16 REN TO PRINT THE CURRENT TIAE ON THE SCREEN．If YOU have
IS REM A CLOCK CHIP YOU CAN SUBST！TUTE YOUR INSTRUCTION，
19 REF OTHER MISE DELETE IHESE TWO LINES OF EACH PROGRAM．
20 IMPUT＇how many numbers＇，MXI
30 DIM ARZ（mXX）
35 I＝RND（－700）：RER SEED GENERATDR
40 FOR NZ $=1$ TO MXZ

60 MEXT NZ
70 Print＇sortimg＇：rem start sort
75 EXEC，＇TJME＇

90 SKE＝ 0
100 FOR NZ $=1$ TO LZ
110 IF ARZ（NZ））ARZ\｛NZ＋1）THEN GOSUB 200：REM SWAP
120 MEXT NZ
$130 L \%=L \%-1$
140 IF SWZく＞O THEN 90
145 EXEC，＂TIME＂
147 INPUT＇SORTED LIST＇，Rs ：IF RSくン＇Y＇THEN 175
150 FOR NE＝！TO MRY
160 PRINT ARZ（NI），
170 MEXT NZ
175 PRIMT
180 END
190 REM SMAP SUBROU：INE
200 TK＝ARZ（NZ）
210 ARZ（NZ）＝ARZ（NZ＋1）
220 ARZ（NZ +1 ）$=$ F\％
$230 \mathrm{SWZ}=1$
240 RETURN
10 REM Partlal shell sort
20 IMPUT＇HOW MANY NUMBERS＇，MXI
30 DIM ARZ（HXX）
35 IzAND（－700）：REM SEEO RANDOM
40 FOR NZ＝1 TO MXZ
SO ARZ（NZ）＝INT（RND（O）OnXZ）
60 NEXT NZ
70 print sorting＇：REM start sort
30 EXEC，＂TIME＂
90 LZEKXZ
$10018= \pm 7 /$ ？
110 PRINT IK；
$120 \mathrm{SMZ}=0$
130 FOR NZ $=1$ TO LY－1\％
140 LF ARz（Mz）$>$ ARz（ $\mathrm{N} \%+1 \%$ ）THEN GOSUB 290

150 NEXT MZ
160 PRINT＇${ }^{\prime}$＇；
170 IF 5WZく＞0 THEN 120
180 1\％＝1\％／2
190 PRINT：PRINT IZ_{i}
200 IF IK＜＞O THEN 120
210 EXEC，＂TIME＂
220 PRINT ：IMPUT＇SORTED LIST＂；RS
230 IF RES＇N＇THEN 265
240 FOR NK＝1 TO M1\％
250 PRINT ARZ（MY），
260 NEXT NZ
265 PRINT
270 END
290 REM SMAP SUBROUTIME
290 TZ＝ARZ（NZ）
300 ARz（NZ）＝ARZ（NZ＋I 7 ）
310 Anz（NZ + ［z）$=5 \%$
$320 \mathrm{SMZ}=1$
330 RETURN

10 REM PARTIAL SHELL SORT
20 INPUT＇HOW MANY MUMBERS＇，HI\％
30 DIM ARL（nxus）
$35 X=$ RND（－7001：REM SEED RANDOA
40 FOR NZ $=1$ TO MXZ
SO ARZ（NZ）$=\operatorname{INT}(R M D(0)+n X Z)$
60 MEXT MZ
70 PRINT＇SORTIN\＆• ：REM START SORT
80 EXEC，＇TIME•
$90 L 2=n \times 2$
$100 \quad 18=1780.7$
110 PRINT JX；
120 SWZ $=0$
130 FOR NZ $=1$ TO $1 \%-1 \%$
140 IF ARZ（NZ）DARZ（MZ＋1\％）THEN GOSUB 290
150 MEXT WZ
160 PRINT＇\ddagger＇；
170 IF SUL＜＜＞O THEN 120
180 ：\％＝1\％＊0．7
190 PRINT：PRINT IK；
200 IF IK＜＞O THEN 120
210 EXEC，${ }^{\text {＇TILE }}$ ．
220 PRINT ：INPUT ${ }^{\circ}$ SORTED IIST ${ }^{\circ}$ ；Gs
230 IF Rs＝＇N• THEN 265
240 FOR NZ＝1 10 \＃ 12%
250 PRINT ARZ（NZ），
260 MEXT NZ
265 PRINT
270 End
2 20 REM SMAP SUbroutine
290 TZ＝ARZ（NZ）
300 ARZ（NZ）＝ARZ（NZ +1 IZ
310 ARZ（HZ $+1 \%$ ）$=1 \%$
320 SMZ＝1
3.30 RETURN

OS9 USER NOTES

By: Poter Dibble 517 Galer Houso Rochester, NY 14620

64 Thousand Bytes Inside the Computer
Before I get into the meat of this column I want to mention the name of the file this text is stored in, Column24. It's hard to believe I've been at this that long!

The folks at '68 Micro Journal sent me a letter from a CoCo owner who had upgraded to version 1.1 of Radio Shack OS-9. For some reason, when he used OSSGEN to put the OSgBoot file on a new disk, the new boot file booted up a system that used more memory than the master disk's. He had the same problem with version 1.0, but it was worse with 1.1. There wasn't enough free memory left to run C. That's not too surprising. The C compiler uses a LOT of memory. It took some powerful shoehorning to wedge it into the memory available on a CoCo. Take a little memory away and you just squeeze it out.

I tried to solve the problem for him, but I couldn't get my system to reproduce it. He sent me convincing documentation; I'm sure he wasn't imagining things. I was interested enough that I had it in mind as a good subject for this month's column. Stubbornly, I'm going to write about it anyhow.

The obvious tools to attack a memory allocation problem with are mdir, mfree, and procs. Each of these commands give some information about memory usage. No commands give you all the gossip about your memory without sone work on your part. Even with work, debug is your best tool. If you're ready to write a short program, a program that copies most of memory to disk is useful. With everything in a file you can use dump to get a hard copy. I'm old-fashion enough to like paper I can mark on when I'm tearing a system apart. A warning: If you dump all your system's memory (like I did) we're talking about a big pile of paper.

The place to start finding out where your memory has gone is the system direct page. This is located at address $\$ 0000$. When I dumped my CoCo's memory it looked like this:

		200		007	004		A901	
0010	2329	3 COO		00	2A	01	3329	
022	0200	0220	BEOO	0300	0400	FD46	F1C	
30	108	C26F	F1DD	F1D8	F215	D028	FlEA	
0040	298	F2C2	0292	0222	02EF	OOEF		
0050	4000		OAls	304	2938	C0		
	BD6C	00	BC	BEOO	32	O		
	0055		12					

If you want to follow this tour in your own machine (Level One only for this month, sorry) note the numbers at:

$$
\begin{array}{ll}
\$ 0020-0023 & \text { (} \$ 0200 \text { \$0220 in this dump) } \\
\$ 0049-004 \mathrm{~A} & \text { (} \$ E F 00 \text { in this dump) } \\
\$ 0060-0061 & \text { (} \$ 806 \mathrm{C} \text { in this dump) } \\
\$ 0064-0065 & \text { (} \$ 8 C 00 \text { in this dump) }
\end{array}
$$

These numbers are the addresses of the free memory bit map, the process descriptor table, the device table, and the path descriptor table respectively. Each of these tables contains information about memory. All but the free memory bit map contain memory that's hard to get without digging.

The free memory bit map looked like this:
 0200 FF80 000000000000000000000000 000F 0210 fFFF fifff ffff ffff ffff ffff ffff ffff

The system direct page gave both the beginning and the end of the map. Each bit that's off indicates a free page. Thirty-two bytes at eight bits each gives a map of 256 pages. At 256 bytes per page that's 64k. In this map the first nine pages are allocated as are the last 132. That left me with 115 contiguous free pages.

The process descriptor table can tell you about the data memory allocated for each process. You can find out how much memory is allocated to each process from the procs command. The process descriptors can tell you the address of each process's memory as well as its size.

This table, like most others in OS-9 Level One, is managed with the FSAll64 family of system calls. The first 64 bytes of the first 256-byte block are a list of the high-order bytes of the
addresses of other blocks in the table. In this case, there is only one 256-byte block so only the first byte in is non-zero. The next 64 bytes (starting at \$EF40) contain the first process descriptor. Check in your DEFS directory for information about all the fields in it. The page number of the beginning of a process's memory can be found seven bytes from the beginning of the descriptor. For process one, that's at \$EF47. The value is $\$ 04$ so process one's data memory starts at $\$ 0400$. The next byte in the process descriptor gives the number of pages allocated, in this case, one. Process two has three pages allocated to it starting at $\$ 0500$.

Addr $\begin{array}{lllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \text { B } & 9 & \text { A } & \text { B } & C & D & E\end{array}$
EFOO EFOO 0000000000000000000000000000
EF10 00000000000000000000000000000000
EF20 00000000000000000000000000000000
EF30 00000000000000000000000000000000
EF40 01000002 04E2 00040100000000800000
EF50 0000 E2AC F29B F29B F29B BD6C 00000002
EF60 B06C 0000 003C 01010100000000000000
EF70 000000000000 OOE4 1E04 000000000000
EFBO $02010003070000050300000000 B 00000$
EF90 0000 E4CD F29B F29B F29B B06C 00000002
EFAO BO6C 0000002001020101000000000000
EFBO 000000000000 OOE5 0705000000000000
EFCO 03020000 OBF3 OOOB 01000000 01AO EF8O
EFDO 0000 7C00 F29B F29B F29B BD6C 00000002
EFEO B06C 0000002001020100000000000000
EFFO 00000000000000000000000000000000
Memory that mysteriously vanishes has generally been used for some kind of $1 / 0$ buffer. The last two control blocks I'll show you point to I/O buffers.

When a device is opened for the first time some memory called device static storage is allocated for it. That memory will generally stay allocated until you reboot. The address of each device's device static storage can be found in the device table. It should look something like:

Addr $\begin{array}{lllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \text { B } & 9 & \text { A B } & \text { C } & D & E & F\end{array}$
B060 000000000000000000000000 BEOO BBOO B070 ClOB DiAl 03C1 C7B9 OOCA B2DE 93020000

This device table starts at \$806C (remember the pointers from the system diract page). Each entry is nine bytes long. The static storage address is two
bytes in. For the first device in the table that's $\$ 8 B 00$, for the second, $\$ 8900$. To find out the size of these areas check the device descriptor module pointed to by the sixth and seventh bytes in each entry.

If some device static storage gets allocated in the middle of memory you'll wish it hadn't. If the device descriptor isn't in your boot, try unlinking it. You may be able to remove the device descriptor and its static storage from memory.

You can prevent the problem by opening any devices you intend to use before you start running programs. You don't need to do anything with them; just open and close.

If you want to be elegant, write a program that just does an I\$ATTACH for the device; that's the part of open that allocates the storage and puts a device in the device table.

The last table in this tour is the path descriptor table. These are system paths not user path numbers. You'll see their numbers in the "paths" area of each process descriptor. Don't think that these path numbers are arranged standard in, standard out, The table looks like:
(path one has a buffer at 58800 , path two at $\$ 8500$). Bytes ten and eleven are the address of the file manager's static storage (if any). The first path has some allocated at \$BD75. It appears that the file manager for the second path (SCF) doesn't need any static storage.

You can poke around in these control blocks with debug. If crashes disturb you don't change anything in these tables. OS-9 will notice a change and expire. plunk.

I copied memory to disk with a dumb program that pointed X at the memory I wanted to dump, put the length in Y and wrote it to standard output. I used $X=0$ and $Y=$ SFFFF to dump everything. You'll probably be clever and only dump what you need.

First Aid

If you always need a little more memory the best solution is to move to Level Two (even better, $05-9$ 68K). You'll still have memory problems, but they will be more tractable. While you're saving up, try this trick for temporary help: build a new smaller boot file. The boot file must contain IOMan, RBF, SCF, CCIO. CCDisk, DO, TERM, Shell. Clock, and SYSGO. The other modules are optional. If you have two disk drives, you need DO and 01, 02 and D3 are wasted space. If you don't have a printer, terminal, or modem; PRINTER, RS232, P and Tl are useless.

Don't remove the pipe modules except in desperation. Many people don't use pipes. If you don't use them and don't intend to, they can go. All the OS-9 programs from Microware (or Tandy) that I know of can be used without pipes. You can certainly compile C programs and run Basic09 without pipes. If you take all those modules out of the boot file, you will have decreased the its size by 1225 bytes. That translates into at least four more pages of memory for your programs

A Preview

I have a pile of programs from the JBM Group for review. My first impression of them is that programmers who want to create business software would be fools not to look at it. Other groups will find at least some of JBM's stuff interesting. More on this software over the next months.

"C" User Notes

Edgar M. (eud) pass, ph.o.
1454 Latta Lane
congers, GA 30207
This month's column discusses several problems in the C compilers available on the 6809. provides another list of references on the C language, and comments on the availability of the Apple MacIntosh C compiler.

Next month's column will begin a multi-column tutorial on the C language, due to popular demand. It is based upon short C courses I have presented and upon tutorials 1 have developed in the past, in addition to some new material developed for it.

C PROBLEMS

My primary intention in presenting these problems is not to criticize the developers, but to publicize the problems so that other users will not fall into the same traps. Of course, I would be pleased if the developers of the various packages would fix the problems documented in this column. If a user encounters a problem not previously documented here, I would appreciate receiving a copy of a test program, on disk if possible.

In attempting to complete a project involving the use of the C language, I recently encountered several problems with the Microware/Tandy C compiler and the Windrush C compiler. Both of these compilers are based upon compilers developed by James HcCosh. I also had a problem with the Introl C compiler, and have a problem with the Dyna-C compiler to report.

The most immediate problem, which threatened the viability of the entire project, was that the Microware C compiler is so large that it cannot compile a very large C module on a standard level 1 system. Even generating a bare-bones OS/9 system did not quite provide enough free memory to use the C compiler to compile several of the program modules.

I solved this problem, as far as the Microware C compiler is concerned, by using a Color Computer, which provides more free memory than a standard level 1 system. It is also considerably slower
than my other system, requiring about one hour to compile a program which the other system will compile in about twenty minutes (in FLEX).

The Microware/Tandy assembler which comes with the C compiler can handle only about 600 labels for each generated assembler module on an OS/g level 1 system. Since each string in an initializer requires a label, this restricts the size of initialized tables, even if each table is compiled separately from all other code. Remember that the McCosh family of C compilers always generates string pointers, not the string contents, in initialized tables, and this process requires a label for each string in the tables.

The Introl C compiler has somewhat similar size problems on an OS/9 level 1 system. It has a command-line option which reduces the memory requirements by eliminating the use of initializers. Since most large C modules with which I work have initializers, this is only marginally acceptable.

The obvious solution to this problem is to increase the number of C compiler and assembler phases, in order to reduce the size of each phase. Since this would be such a major change, I do not anticipate actually seeing it, however.

A serious bug which I encountered in the Microware C compiler relates to strings containing an octal constant generating a characters with the high-order bit set. The compilation seems to proceed normally, but the linker generates a large number of undefined variable names of the form "_nnn".

When I initially talked to Kim Kempf at Microware about this problem, he thought it might be due to the size of the module. Eventually, I sent a copy of the C program to him, and continued to attempt to get the program to compile and link properly. I determined that the bug was as described above at about the same time that Kim did. The assembler was quitting upon encountering an octal 377 (hex FF) value in the intermediate assembler-language file. The compiler attempted to generate FCB constants for characters not representable in FCC strings, but neglected to check for
characters with values larger than hex $7 E$. The Windrush C compiler avoids this problem by coding all strings as the cquivalent $F C B$ decimal constants.

Kim was very helpful to me in this matter, and has corrected the bug in the current release of the Microware C compiler. However, older versions of the Microware and Tandy C compilers still have the bug, so octal constants in strings must be used carefully with these compilers.

The use of both the Microware and Tandy C comptlers is made somewhat inconvenient by their insistence on correct case in some command-line options. This is especially inconvenient on the Color Computer, in which the shell converts lower case to upper case on the command line, by default. The manuals compound the inconsistency by documenting the use of all options in upper case, whereas the compilers insist on the use of lower case for some of the options. Hopefully, the compiler, not the manuals, will be corrected to eliminate this inconvenience.

I also had several problems with the Windrush C compiler, which runs under Flex.

One minor problem concerns the use of command-line arguments in the compiled program. The Windrush C manual states on page 6 that arguments on the command line are normally delimited by spaces or commas, but may enclosed be in double quotes, in which case they may contain spaces or commas. This is not true, as may be verified by running the "echo" program on page 111 of the K and R book. Double quotes have no special meaning in Windrush C. No other known Full C compiler on the 6809 has this problem.

A more serious situation exists in the Windrush C compiler with respect to reading and writing arbitrary data values from and to disk files. Although most other implementations treat "open" and "creat" as low-level functions, Windrush C treats them almost the same as "fopen". without the binary option. Thus, "fopen" must be used, with the binary option, when reading and writing disk data files, since "open" and "creat" ignore the mode parameter, which is normally used to indicate the difference between text and executable files.

Note that the only safe, general manner in which to read and write arbitrary data values in Windrush C is with the "fread", "fwrite". "putc", "putchar". and "putw" functions. None of the input functions based upon "getc" may be used, since "getc" cannot distinguish between reading a character with value hex FF and encountering end-of-file. None of the string I/O functions may be used, since they normally assume null-terminated strings. None of the standard C I/0 functions distinguish between end-of-file and logical or physical I/O errors, such as insufficient disk space. These last three situations describe a problem with the definition of the C language, not with the Hindrush C compiler alone.

The Hindrush C manual is somewhat misleading in its heading of the "fread" and "fwrite" functions as "read/write binary data", in that they do so only if the file was opened with the binary option of the "fopen" function.

The Windrush C compiler does not check file names for invalid characters. This can lead to some rather strange circumstances in which the output file of a program overwrites the input file, assuming they differ only in the suffix. This is because only the part of the file name up to but not including the first invalid character is used, possibly causing the suffix to be ignored.

I have had one report of a verified bug in Dyna-C. If a function has no code-generating statements in its body (between "\{" and "\}" characters), a call to that function falls through to the next function, or to whatever code follows.

C REFERENCES

I have had several requests for more information on references to learning and using the C language. Following is a list of the titles, authors, and suggested retail prices of all of the major books on the C language now known. If anyone knows of other references or has comments on any of these, please let me know.

A Book on C, Pohl, \$23.50
C Notes, Zahn, \$21.50
The C Programming Handbook. Plum, $\$ 21.50$
The C Programming Tutor, Plum, $\$ 19.50$
The C Primer, Hancock, $\$ 18.50$

C Programmer's Library, Purdum, $\$ 21.50$
C Programming Guide, Purdum, $\$ 19.50$
C Programming Guidelines, Plum, \$27.50
The C Programming Language,
Kernighan and Plauger, \$21.50
The C Puzzle Book, Feuer, $\$ 16.50$
C User's Handbook, Weber, $\$ 16.50$
Learning to Program in C, Plum, \$26.50
Programming in C, Kochan, $\$ 20.50$
Programming in C for Micro Users,
Traister, \$19.50
Small-C Handbook, Hendrix, $\$ 16.50$
Dr. Dobb's Journal has published a significant number of lengthy articles on C programming and applications over the past few years. Bound reference volumes and back issues are avallable.
'68' Micro Journal has published a number of articles on C programming and applications, especially as they relate to the 6809 implementations of the C language.

In addition, I have a small number of copies of my tutorial on C which I will send to anyone in the US or Canada for $\$ 2$ for shipping.

C FOR THE MACINTOSH

In April 1984, Apple announced that it would produce a Full C compiler for the Macintosh which would have access to all facilities of the machine, would require two disk drives, and would be available in December 1984. I inquired about the availability of it recently, since I wanted to use it for developing MacIntosh software, and received a telephone call from an Apple representative. She told me that Apple had significantly reduced the priority of the development of the C language for the MacIntosh in favor of the development of their own version of a BASIC interpreter. She could give me no date for when an Apple C compller might be available. In fact, she suggested that I investigate one of the other C compllers already implemented on the MacIntosh by third-party developers. These range from Small-C ported implementations to complete C development package systems. I will report on them as I receive more information.

I also inquired about Apple's assembler-language development system. It is available, but it requires two

MacIntoshes (connected together by a common external bus) or a Lisa and a MacIntosh in order to operate. However, several third-party developers have announced similar development systems which will run on one 128K MacIntosh with one disk drive.

C PROBLEM
Last month's problem was to write a C version of the BASIC "instr" function. This may be accomplished as follows:

```
/*
```

 instr (fir, pat, src) searches "src", searching for the first instance of "pat" in "str" starting with position "fir" (base 1), returning the position of the first character of the matching string or zero; both strings are null-delimited.
 */
instr (fir, pat, src)
int fir;
char *pat, *src;
1
char $x,{ }^{*} p,{ }^{*} t,{ }^{*} s=(s r c+f i r-1) ;$
while (*(t = s++))
1
for ($\mathrm{p}=\mathrm{pat}$;
$\left.\left(\left((x=* p++)={ }^{*} t++\right) \& \& x\right) ;\right)$; if (! x)
return (s - src);
\} return (0);
)

Write a complete program which replaces one string of characters with another in text copied from one file to another. Take the command-line problem reported in Windrush C into account, if you can. A sample command line for such a program might be as follows:
replace filel file2 stringl string2

EXAMPLE C PROGRAM

Following is this month's example C program; it removes tabs and other undesirable control characters from a text
file. This could be useful when attempting to use files transmitted from a CP/M system. Since Flex uses the tab character as a leadin for space compression, tabs in flex files are particularly undesirable, but they are also undesirable in 0S/9 files. The program actually replaces each tab with a space, rather than removing it entirely.

```
/*
    untab.c - removes tabs and other
        controls from text file
*/
#include "stdio.h"
#include "ctype.h"
#define MODE "rb"
    /* MODE "rb" for FLEX
    MODE "r" for OS/9 */
main(argc,argv)
int argc;
char **argv;
{
    char *input,*output;
    int c;
    input = stdin;
    output = stdout;
    if (argc > 1)
    l
        if ((input = fopen(*+targv, MODE))
        == NULL)
        l
        fputs ("can't open input\n",
            stderr);
        exit(1);
    }
    }
    if (argc > 2)
        if ((output = fopen(*+targv, "w"))
        == NULL)
        l
        fputs ("can't open output\n",
            stderr);
        exit (1);
}
    }
```

```
    while ((c = getc (input)) != EOF)
        if ((c<0xB0) && ((c>0x1f) i:
        (c == 0x0d)))
        putc (c, output);
    else
    if (c == 0x09)
        putc (0x20, output);
    exit (0);
```

\}

Editor's Note: It might be fair to point out that the Microware $0 \mathrm{~S}-9$ version of the McCosh C compiler is supported solely by Microware and there will be some differences between it and the several other McCosh C compilers.

In the long haul I believe that will be a better situation for 0 S-9 users of this version of C. OS-9 is growing in use to the point that it's version of C will be widely distributed worldwide. And used on many different types of systems, from various manufacturers. The resources necessary to maintain such a network seem to be in place, however it will require a reasonable length of time to get things running smoothly.

All of the compiler developers, I have talked to are more than willing to set things right, it may take some time but I have faith in our suppliers. They have too much at stake. I know Some fine software developers (and hardware) who let their S50 Bus commitment go slack in order to attempt a try at other non-S50 markets. And lost all around. A reputation of support is one of the MOST IMPORTANT assets a manufacturer must develop and maintain! He have never had the most of anything, but in some areas we sure have had as good or BETTER!

You should see some of the 'better' C compilers running on some other systems (non-68xX). Go down to your local 'other' store and ask to see their C compiler documentation. It may look prettier but the scope of many 'other' C compiles borders on junk. I guess that is the proof of the pudding - or some thing.

DMW

68000 USER NOTES

Phillp lueido
2320 Saratoga or 150
Sherpvilie, PA 16150
68020
As mentioned last month, I have acquired Motorola's user's manual for the 68020, the mC68020 32-Bit Microprocessor User's Manual, Motorola part number MC68020UM(ADI). The book is actually published by Prentice-Hall, ISBN 0-13-541418-0. That should enable you to find it, should you be so inclined. This month's column is mainly a distillation of this book, covering the new features in the 68020.

Before I get started, though, I have a few thoughts on the whole idea of 32 bit microprocessors and the advancing state of the art, prompted in part by Ron Anderson's column in the February 1985 issue. According to his column, he has yet to come across an application where a 68000 is really preferable to a 6809 . I wholeheartedly agree, since very few applications need huge amounts of RAM or great speed. So why do I use a 68000, and why am I now studying the 68020 ?
I suppose that I am guilty of being a gadget freak when it comes to computers, especially in regards to the software. I am a systems programmer, and enjoy playing around with large programs, such as editors or compilers. Most of my interest in new microprocessors, then, derives from their use in software development systems and general purpose computers. This is quite divorced from the use of microprocessors in dedicated designs, such as system controllers or limited purpose computers like word processors.
Still, why should I need a 68000 at the heart of a general purpose computer? Isn't a 6809 powerful enough? In most respects, a 6809 provides all the power I need. After all, the microprocessor used in a computer is only one factor in its speed. A much better way to improve a computer system might be to install a hard disk drive or more RAM memory. For instance, at the OS-9 seminar, I saw a 68000 computer running OS9/68K which was performing C compilations in something like 10 or 15 seconds. My current system takes more like 60 to 90 seconds, even with a hard disk. At first, I thought this speed was due to the power of the 68000. While the 68000 probably helped, the speed was really due to the 2 megabytes of

RAM installed in the machine! All of the program phases in the C compiler were preloaded into memory, and all files, including temporaries, used a RAM disk, so that an entire compilation could be performed without once using a floppy disk or hard disk. The same trick could have been performed using a 6809, though maximum memory would likely have been 1 megabyte instead.
I still haven't said why a 68000 is a good idea. There are some valid reasons. Even using a 68008, it is possible to write programs which run faster than the same program with a 6809, because of the greater number of registers and the more powerful instructions. The removal of the 64 K limit on program size is very important, allowing huge, complex programs to be written without worrying about most memory limits. This alone means that programs will be developed for the 68000 which will be difficult or impossible to port back to the 6809.

Unfor tunately, the overriding reason for my having a 68000 may simply be that 'gadget freak' tendency I mentioned before. There is always the inclination to have the latest and the best equipment possible. This is not entirely bad, as I am sure that readers of this magazine understand the 'toy' aspect of having a computer. After all, they are fun, and it's always nicest to have the newest, shiniest toy on the block. So, in that spirit, let me get on with talking about the 68020, the newest of the new toys around. While 1 am unlikely to have one anytime soon, it is still useful to see what the future holds.

New and Improved! 68020 Instructions

As mentioned last month, there are two major groups of new instructions, bit field operations and coprocessor operations. The bit fields operations deal with a variable length bit field, from 1 to 32 bits long, without respect to byte or word boundaries. A bit field is specified with three numbers: the base address, the bit offset, and the bit field width. The base address is specified using the normal effective address calculations applicable to most 68020 instructions. The offset is either an immediate value, from 0 to 31 , or a value from $-2^{\wedge} 31$ to $\left(2^{*} 31\right)-1$, held in a data register. Finally, the field width is either an immediate value or a value in a data register. In either case the field width is from 1 to 32 bits.

There are 8 different bit field opcodes. BFINS is used to transfer a bit field from a data register to its position in memory. BFEXTS and BFEXTU are used to retrieve a bit field from memory, placing the result right justified in a data register. BFEXTS performs sign extension on the field, while BFEXTU performs zero extension. BFCLR clears a field to all O's, while BFSET sets a field to all l's. BFCHG complements each bit within a field. BFTST checks if a bit field is all o's, as well as if the most significant bit in the field is a 1 . Finally, BFFFO scans through a bit field, looking for the first 1 bit. If a l bit is found, then the offset of that bit from the base address is stored in a data register. If no bits in the field are set, then the value of the field offset plus the field width is stored in the data register.

The coprocessor instructions are too complicated to discuss in any detail here. Basically, though, the coprocessor interface depends upon a satellite chip which follows a very strict protocol for communicating with the 68020. The 68020, in return, implements 7 different opcodes dedicated to the use of coprocessors. The cPGEN opcode is the general function code, used to request most operations from the coprocessor. The actual format of this instruction is determined by the coprocessor, with extension words specifying the actual operation to be performed. There are 4 conditional opcodes used to test conditions within the coprocessor. These are cpBcc, cpDBcc, cpScc, and cpTRAPcc, each of which functions analogously to the normal 68020 instructions $\mathrm{BCC}, \mathrm{DBCC}, \mathrm{Scc}$, and TRAPcc. The meaning of the condition codes depends entirely upon the coprocessor. These are not necessarily the same condition codes which can be internally tested in the 68020. Finally, there are 2 opcodes, cPSAVE and cPRESTORE, which are used to save the internal state of a coprocessor in memory and restore that state at a later time.

There are new forms of the multiply opcodes in the 68020. The normal 68000 MULS/MULU opcodes performed 16 bit by 16 bit multiplication, yielding a 32 bit result. These are now the NULS.W/MULU.W opcodes. The 68020 adds two new long forms (e.g. MULS.L). One of these performs 32 bit by 32 bit multiplication, giving a 32 bit result with possible overflow. The other does 32 x 32 bit, with a 64 bit result. The result is
left in two different data registers, which are not necessarily adjacent. For instance, MULU.L (A4),DO:D3 would multiply the 32 bit value at (A4) by the 32 bit value in D3, with the high order 32 bits of the result stored in DO and the low order 32 bits in D3.

In the same way, there are new forms of the divide opcodes. In the 68000, the DIVS/DIVU opcodes performed 32 bit by 16 bit division, giving a 16 bit remainder and 16 bit quotient, both of which were packed into a single result data register as high and low word. In the 68020, these are the DIVS.W and DIVU.W opcodes. There are three new long forms. The first long form performs 32 bit by 32 bit division, resulting in a 32 bit quotient. The remainder is discarded. In the second long form, a 64 bit value, in two data registers, is divided by a 32 bit value, giving a 32 bit remainder and a 32 bit quotient. The remainder is loaded in the data register which held the high 32 bits of the 64 bit value, while the quotient is loaded into the other data register. The final long form uses a new opcode. DIVSL.L/DIVUL.L, to perform 32 bit by 32 bit division, giving a 32 bit remainder and 32 bit quotient. For instance, DIVSL.L (A4), DO:D3 divides the value in D3 by the value at (A4), with the resultant remainder stored in DO and the quotient in D3.

There are many miscellaneous new instructions. EXTB sign extends a byte value in a data register to a long value, using one operation instead of EXT.W followed by EXT.L. PACK and UNPK are used to pack and unpack BCD values. I think that these two instructions were originally planned for the 68000, though they make their first appearance here. There are two new instructions for checking a value against an upper and lower bound, CMP2 and CHK2. CMP2 compares a value (byte, word, or long) in a data or address register against two values stored in memory. If the register value is less than the first value, the lower bound, or greater than the second value, the upper bound, then the carry flag is set. There are not separate opcodes for signed and unsigned compares. Instead, the type of compare is determined by the bound values themselves. For a signed compare, the arithmetically smaller value should be first, while for unsigned compare, the logically smaller value should be first. The CHK2 performs in the same way, except that an out of bound comparison results in a TRAP to the CHK instruction exception
vector. As the final new instructions, there are CALLM and RTM, call module and return from module. Like the coprocessor instructions, these are too complicated for this current column. Suffice it to say that these instructions allow the use of external hardware to control prioritized access to various independent program modules. This is an extension of the system state/user state of the 68000, allowing finer control and better memory and execution protection.

New Addressing Modes

In addition to the new instructions, the 68020 has added some powerful new addressing modes. In the 68000, there are addressing modes such as (d16,An) and (d8,An,Xn). The first allows a 16 bit signed value to be added to the contents of an address register, giving an effective address. The second allows an 8 bit signed value to be added to the contents of an address register and a word- or long-sized general register, giving an effective address. Nowhere is there the ability to use 32 bit offsets, though. Not surprisingly, that ability is found in the 68020.

What the 68020 has implemented is one new catch-all addressing mode, which covers just about every possibility. Start with a long value, either in an address register or the program counter. Now, add a constant value, called the base displacement, which is either a sign-extended word value or a long value. Next, an index register is specified. The index register is found in DO to D7 or AO to A7, and is either a sign extended word or a long value. The resultant index register value is multiplied by a scale factor of 1, 2, 4, or 8 (with no clock cycle penalties), and added to the address register plus optional base address. In most cases, this gives a final effective address. The assembler syntax for all of this is (bd,An,Xn.SIZE*SCALE). Using the scale factor, it is now possible to access arrays of integers, pointers, and the like without using any shift instructions.

There are further extensions to this basic format, having to do with memory indirection. Yes, the indirect memory addressing modes which were so useful in the 6809 , but were left out of the 68000 , are back. There are two forms of indirection, called memory indirect post-indexed and memory indirect pre-indexed. Post-indexed,
with assembler syntax ([bd,An],Xn.SIZE*SCALE,od), involves adding the base displacement to the base address register. The result is used as an address to fetch a long word, which is added to the scaled index register, and finally, added to an outer displacement 'od'. Pre-indexed, ([bd,An,Xn.SIZE*SCALE],od), is similar, with the memory indirection taking place after the index register is added. In both cases, the outer displacement, like the base displacement. is either 0,1 , or 2 words long.

There is yet a further extension. While performing the effective address calculation. any of the various values involved (base register, base displacement, index register, and outer displacement) may be optionally omitted. This gives rise to a ridiculous number of possibilities. For instance, omitting everything but the base displacement results in efther a new way to specify absolute long or short, or with indirection, a way to specify absolute indirect, ([bd]). As another example, the base register and indirection may be omitted, and a long base displacement may be used as the actual address in memory of an array. Loading the index register with the array index, then, allows imnediate access to an array element:

$$
\begin{array}{ll}
\text { MOVE.W } & \text { INDEX,DO } \\
\text { MOVE.L } & \text { (TABLE,DO.W*4),D1 }
\end{array}
$$

TABLE: DOS.L 100
As a final exercise, it is always interesting to determine the maximum length of any instruction in a computer. For the 68020, this requires a MOVE, since two complete effective addresses are needed. The longest effective address takes 1 word for the extension, 2 words for a long base displacement, and 2 words for a long outer displacement, giving 5 words. Two effective addresses take 10 words, so the MOVE takes one word more, or 11 words total. The longest 68020 instruction, then, is 22 byte long!

As Ever. To Be Continued

As normally happens, there is still more to be said. l'll finish this up next month, with some attention to the hardware aspects of the 68020 .

CoCo User Notes

by Carl Mann
COCO PLAYS FRONT-OFFICE HARDBALL or, How the Micro Stole the Christmas Bonus

Editors Note: Carl was our first "regular" Columnist with Color Micro Journal, and redily agreed to continue his Column in '68' Micro. Even if you have NO interest in the Color Computer. I think you will look foreward to reading this Column each month (its a standing joke here in the Office; if someone busts out laughing while working at a Computer, we know that they are working on Carl's Column). As those of you who have not seen his Column before can see from this first 'installment', "CoCo Users Notes" comes from a CoCo User, and ANYTHING is fair game. We hope that you enjoy it as much as we have, and feel free to drop him a note on anything relevant to the CoCo (and I mean ANYTHING!). Anyway, as they say on TV. "H-e-r-e-'-s Carl... -RLN-

It isn't easy to design a single computer system to satisfy everybody's needs. The human imagination is such a fertile breeding ground for new ideas, motivations, and techniques that no sooner does the "Ultimate Machine" arrive than some innocent soul asks in all seriousness, "Yes, and can it also...?".

That's the situation I walked into when I took a full-time job as a Technical Writer in a company not far from Route 128. (The signs used to read, "128: AMERICA'S TECHNOLOGY HIGHWAY". But the traffic along 128 is Snall City from about 8:00 AM on to past suppertime. Local folks started to make jokes about the state of the traffic. the technology, and American Industry in general. Now there are obvious "fixes" applied to the signs; they now read "128: AMERICA'S TECHNOLOGY [REGION]". The word "REGION" is tacked over the old wording with sheet metal screws. Guess you can't please everybody.)

I was eager to start work, so I (characteristically) tackled the situation on two simultaneous fronts. First. I let it be known that l felt the need to be hooked up to the company's mainframe as soon as possible. Then I got serious. I
dismantled my computer room and packed CoCo, printer, disk drives, and all in to work the very next day. Two hours later I was up and running, with hardcopy rolling off the assembly line at a heartwarming rate. Within a week CoCo was churning out the first computer-generated engineering drawings ever seen within company walls. Within a month the Interface Manual that had been forthcoming for many moons was in the hands of the review committee. The boss was impressed. The workers were impressed. The company president was NOT impressed. He did NOT care for the idea of a "toy computer" in the operation. (Everybody knows that "Real Men" don't own Toy Computers, right?)

Within two weeks the proper arrangements had been made to complete mo hookup to the mainframe. (It's an IBC Super Cadet, running the OASIS operating system with Spellbinder, Userbase, and some other stuff.) No sooner did I start to learn the wordprocessing software than I knew I was in trouble.

The first sign of trouble was when the boss (a charming Swiss-German fellow with a laugh that has been known to uproot even the most entrenched employee on contact) told me he had a favor to ask. "I vant you to, you know, help out za gurls vith zis Spellbinder ting", he said. "None of zem realy know how to use it, and ve don't haf za time, but vith your computer backgrrownd..." He stood in the classic "Who Knows?2" posture.

What the heck. I'm a sucker for Waifs, Orphans, and the like anyway. Besides, I was itching to give that IBC a run for its money. I perched myself on a moribund Back Chayr I had found in the coffee room and set to work. The reward for mo impetuosity was not long in arriving.

You know, I really don't think I fully apreciated CoCo until that day. Don't get me wrong. The IBC is a mighty fine machine. So was the Steam Drill that old John Henry won his final race against. Just one difference. This time, it was the Steam Drill that lost - but the challenger is still alive and kicking.

Just for starters, consider user space. Spellbinder on a multi-user IBC allows about 12 K for text. A 64 K CoCo running, say, VIP Writer, has at least 40.6K of empty space for text. (You can get a wee bit over 48 K if you "DUMP" the high-resolution display.) Then there's ease of use. VIP Writer allows the user to program file chaining, printer commands,
and suchlike with maybe four or five keystrokes per requirement. Spellbinder demands at least twice that many to accomplish the same jobs - and its own internal codes are in gross conflict with the most-often-needed printer codes. (That's why Margaret refuses to use SB. Everytime she wants to get a circle-R "Registered" symbol out of the Qume printer, she ends up with continuous underlining. I tried it too. I got it to go, but I had to stand on my head to make it happen.)

Disk handifing proved to be Spellbinder's most disastrous pitfall. Three times I filled up that dinky buffer. Three times I issued the appropriate "Save To Disk" commands. (SB uses "GO" as its command for "Get Done". I interpreted it another way by the time I had finished.) Three times the SB software ate my text, refused to tell me where it had put my text, and at last refused to accept any more text. Or anything else. (At least SB isn't as bad as Userbase. I crashed the whole darn machine trying to get out of a corner I had painted myself into with the "FORMS" option from that package.) Maybe "Real Men" don't own Good Software, either!

Then there's graphics. The IBC doesn't do them. We have a Hewlett-Packard that WILL do graphics. But the software costs $\$ 10,000.00$. Yup. Ten Thousand clams. It's enough to choke a Missouri hawg. Besides, we don't have it. Not the software, anyway. And probably not the money, either - at least, not for that. For my money, we'll do just fine with my CoCo, a couple of excellent printers, and the old standbys: Stylograph (which I just got) and VIP Writer (with an occasional bow to Telewriter, although VIP works better) for text, and the amazing SDP and Graphicom for all those wonderful engineering drawings that the Engineering Department (bless its overloaded little soul) might get done "Any Month Now". Not to mention the budding little Forth Interest Group that's springing up around that EXCELLENT FORTH that Hoyt Stearns Electronics markets to CoCousers (much more to follow on this later). Can't beat it - its lexicon is full-featured, and its Semigraphic-8 editor is the best of ANY package. (Does FORTH even run at all on Z-80 systems?) Move over, you makers of musclebound micros. Stand back, you purveyors of pot-bellied minis. CoCo's still in town. (Catch one if you can.)
'Till next month,

BASIC OS－9

by Ron Voigts

Editors Note：Ron has been writing the＂Basic09 BASIC＂Column in the Color Micro Journal on programming with Basic09 since last summer．Since there is very little difference between CoCo OS－9 and the SS－50 Bus System＇s OS－9，and because OS－9 is still a relatively new Operating System，we have renamed Ron＇s Column to＂BASIC OS－ 9＂to allow him to cover OS－9 IN GENERAL．This will allow Ron to broaden his coverage to anything pertaining to OS－g for the newer Users，including how to use OS－9 and many of its features，introductions to Pascal and C along with continued coverage of Basic09，etc．We also feel that this kind of information will be of help to those that have not yet taken the＂plunge＂into $0 S-9$ in that they can get a better feel for the fundamentals of this excellent Operating System．It has been interesting to note that the large majority of the＂ex－FLEX＂Users that have taken the time to really LEARN how to use OS－9 prefer it over FLEX land those that are using OS－9 Level II are almost UNANIMOUS in their preference for OS－9），which is saying a lot considering that FLEX is such a flexible and easy－to－use Disk Operating System．We hope that the addition of Ron＇s Column，along with the excellent ＂OS－9 Users Notes＂Column from Peter Dibble，will provide a broad coverage that will be of interest to all of the Readers of the＇ 68 ＇Micro Journal． －RLN－

Sorting Things Out

Besides being able to crunch numbers and play games the computer has the ability to store data．It can store tremendous amounts of information．I don＇t think there is anyone in this country who has not been touched by the computer．If you carry credits cards，you＇re in a computer somewhere．The Gas，Phone and Electric companies have you in their computers．If you own or drive a car，you＇re in a computer．If you work or are in school． probably some computer knows about you． Not only you，but records are kept on everyone．There are millions and millions of records．

If the computer was only capable of keeping records，that would not be a great feat．Records have been kept for centuries，although i have to admit the computer does a more accurate job．The greater contribution is that the computer helps us to understand what we have stored in it．It puts the data in order．It sorts things out．Imagine trying to look up a phone number in a phone book that was not listed alphabetically．I dare say finding a particular name and number would be impossible．Thank goodness things are listed in alphabetical order．Looking for the phone number takes no more then a minute or two．

The OS－9 system is ideal for record keeping．It permits you make directories on a disk for specific purposes．Under these directories you can have more directories or actual data file．（The OS－9 Commands Manual，chapter 2 contain a detailed description．）In the files you can keep track of many things．They may contain addresses，checking account，home finances，income tax records and almost anything else you can think of．Being able to sort the record in your files can save a lot time and help to better understand them．

With Basic09 you can write procedures to sort your files．Addresses can be put in alphabetical order，check numbers in numerical order and your income tax can be sorted by category．Going through your files can be much easier once they have been put in order．

The simplest sort is the＂selection sort＂．Here two arrays are used．The first holds the unsorted list．The other receives the items from the list as they are sorted．Also two variables are used． One is a temporary holder for the item and the other its place in the array．An array of 6 numbers to be sorted may look like：

```
S: 14 23 39 10 45 19
T:
M=14 F=\Gamma 一一一
```

Here S is the unsorted array．T receives the sorted items．M is the first i tem in the array S and P is its position． Our sort goes down S until we find a number smaller．When 10 is found：
$M=10$ and $P=4$
Since no smaller numbers are found， 10 is put into array T and its position in S is flagged．Our sort now looks like：

S： 142339 XX 4519
T： 10
$M=14 \quad P=1$

XX marks 10's original place in S so we don't use it again. 14 is again tested against every number in the array. This time at the end, $M=14$, so it occupies the second position in T. Next 23 is tested, but at the end 19 is smaller, so it gets the 3 rd position in T. This continues until all numbers have been tested. The final outcome looks like:

$$
\begin{array}{lllllll}
\mathrm{S}: & x \times & x x & x x & x \times & x x & x x \\
\mathrm{~T} & 10 & 14 & 19 & 23 & 39 & 45
\end{array}
$$

All the numbers have been checked. T now holds the sorted array and S has 6 XX's indicating that the all numbers have been sorted. The biggest problem is that this method is wasteful. Whatever the size of the data to be sorted is, at least twice as much memory must be allocated. I have never seen anyone use this sort since it is memory hungry. If you're running Basic09 on a 64 K CoCo, you have to be a little frugal with memory.

The next type of sort is called the "selections and exchange", better know as the "bubble sort". This sort needs only on array to hold the data and two variabies. In this sort we start with the first item looking for something smaller. Here is a new set of numbers to be sorted:

$$
\begin{array}{lllllll}
\mathrm{S}: 12 & 22 \\
M=12 & 7 & 19 & 25 & 30
\end{array}
$$

M is the temporary holder for the smallest number and P is its position in the array. Comparisons are made going through the list looking for something smaller. Eventually we get

$$
M=7 \quad P=3
$$

The selection part has been completed and now for the exchange. 7 is put into the first position and 12 into the 3rd position. We now start with the second item and a go through the list again. This time the 12 ends up in the 2 nd position. We keep doing this until all the items have been done. Eventually our list of numbers will be sorted and look like:

$$
\text { S: } 71219 \times 222530
$$

The bubble sort gets its name from the way the smaller items rise to the top and heavier ones sink down. It is like bubbles in water; they rise to the surface.

Listing 1 is a short BasicO9 demo program that lets you input in any 6 integers. The actual sort uses two FOR...NEXT loops. The "i" loop insures that each number in the array gets checked. The " $j^{\prime \prime}$ loop starts with whatever value "i" is and sorts from there. The workings of this little program is exactly the way I described before. You can use
this as a model for future bubble sorts. Its very easy to implement.

The "selection" sort takes the most number of comparisons to run. If you were to sort 100 items, it takes 10,000 comparisons (that's 100*2). The "bubble sort" for 100 items needs a 5050 comparisons $(100+99+98+\ldots+1=5050)$. If you can cut down the number of comparisons then the sort will go faster. This brings us to the third type of sort. It is called the "partition sort" or better known as the "quick sort". To sort 100 items it needs only 200 comparisons ($100 * \log 100$ a 200). That is quite a savings in time.

Here is a list of 6 numbers to be sorted by the quick sort method. They are:

$$
\text { S: } 25 \quad 5 \quad 50 \quad 74832
$$

The trick in this method is to find where the first item falls in the array and at the same time to sort items by greater or lesser then the first item. 25 is the first number in the array. Comparisons are made starting a the bottom of the list. When we get to 7 we see that it is smaller, so an exchange is made. The new list looks like:

$$
\mathrm{s}: 7 \quad 5 \quad 502548 \quad 32
$$

Now comparisons are made starting at the top of the list looking for anything larger. We stop at 50 and an exchange is made: The new list looks like:

S: 7525504832
This sorting continues until the numbers below the number are larger and the ones above are smaller. In our list we have already achieved this. The 25 is at its correct position in the list.

Now comes the tricky part. We really have two new lists. There it the one above the 25 and the one below it. They are respectively:

75
and
504832
Why not use the same sorting system on them? They can be treated as two separate list. Each one smaller than the previous list and therefore requiring fewer comparison. This method can be carried out until the list is down to one item. The 7 and 5 would be sorted:

57
and any further lists would be "one" long so no further sorting is necessary. The 50,48 and 32 would find the 50 at the bottom. The new list would be:

483250
This would leave 48 and 32 to be sorted.

One more pass would leave it sorted: 3248
Even though the list is being subdivided and sorted the actual members are still in the original array so the outcome would look like:

$$
\text { S: } 5725324850
$$

Does this all seem a little confusing? Just remember that we are seeking to subdivide the list into smaller units. This is why it is called the "partition sort". The savings in time is because the resulting lists from the original become smaller and smaller at a rapid pace. Less and less time is spent in sorting.

a general. all purpose sort

I thought this month I would give you a sort using the "quick sort" technique. This months program consists of 3 procedures, shown in listing 2. There is "sort", which is the main procedure that Goes all the management work. Next is "qsort" which does the actual sorting. And finally there is "swap" which switches two data fields. This sort will take a file of up to 100 lines, at 80 characters or less per line, and sort them in ascending order. Let's say your file is "myfile". You would enter:

sort("natle")

As long as "sort" is packed in the commands directory, it would load "myfile" (up to 100 lines) and began sorting it. If you appended a ":d" to the file name it would also print statistics while it sorted. So you could enter:

sort("rofle:d")

Either way it eventually prints a sorted file called, "myfile SRT". The original file is left intact. You can do whatever you want with the files. Perhaps you want to delete the original and rename the sorted file. Or maybe just leave them the way they are. This sort will take less then 100 lines and the line length can be 80 characters or less. You can change these parameters if you like. The only constraint you have is memory, as 1 will explain in a moment.

The first procedure is "sort". It will accept a file of up to 100 lines, each being a maximum of 80 characters. This procedure reads in a file, sorts its lines in ascending order and writes a new file with the old name and a "SRT" added on. If a ": 0 " is added on to the file name, a boolean variable, "dflag" is set true. This tells "sort" to print documentation about
the sort like starting time, ending time, and whether the file is longer then 100 lines.

The next sort is "qsort". The LOOP...ENDLOOP sorts the first item in the list and puts it in the proper place. The first REPEAT...UNTIL searches from the bottom of the list. If it finds the top item is larger, it swaps the two lines around and begins another search in the next REPEAT...UNTIL searching from the top of the list. The search continues until a larger top item is found. Two variables insure that we do not cover the sam territory. They are "ttop" and "tbot". These are temporary top and bottom markers that are readjusted after every swap. Finally, if "p", which is our movable marker, ever equals the "ttop" or "tbot " than we have reached the end of the list.

We now have two lists. The smaller above " p " and the larger below. As long as the list are at least two lines in size we can run "qsort" on them again. This brings up an interesting technique. It is called recursion. Recursion is an interesting concept. To put it simply, "recursion" is where a procedure "runs" itself. In "qsort", it calls itself to sort the two sublists it has created. Those two running "qsorts" may call "qsort" again. This could be almost endless, but the last two IF...THEN statements prevent this from happening by insuring that our lists are at least two lines long. "Qsort" does not have to reload since the same code is reused, but a separate data area is necessary for each incarnation of "qsort". The "s" array was dimensioned elsewhere so it does not add any extra overhead, but the other variables require a new data area for every call to "qsort". It requires a little over 30 bytes of data area. If it is called 100 times in the sort that is 30×100 or 3000 bytes. Add in the original 8000 bytes for the file, plus the procedures and RUNB, and you are looking at a lot of memory tied up. This is one reason why I limited the sort 100 lines. If you feel ambitious you might try to increase this amount. I think it may be possible to get up to perhaps 200 lines.

The little procedure "swap" simply swaps two lines around. Once you've entered the procedures, you are ready to pack them. You have two choices on how to PACK them. You can pack them under one file name by entering:

8:pack sort
and they will be packed together in the

CMDS directory under the name sort. Having them under one name makes it easier to transfer them to another disk. Just copy one file. The disadvantage is that if you wrote another procedure and wanted to use "swap" or "qsort". the new procedure would have to have a separate copy of them to use. So the alternate plan is to pack them separately by entering:

B:pack sort
B:pack qsort
B:pack swap
Now when you run "sort", "qsort" and "swap" will be loaded when needed. If you transfer "sort" to another disk, you will have to remember to copy its companions too. But then again "swap" and "qsort" can be used by other procedures. Either method works since, in a Basic09 procedure, when a RUN is encountered, memory is searched first for the module, and then the execution directory.

I think you'll be surprised with the quick sort method. Some years ago I wrote a bubble sort in basic. Whenever I used it, I found it was a good time to go and raid the refrigerator, watch a little TV or do something while it ran. You won't find this the case here. I ran "sort" and on a 100 line file it took about 30 seconds to run. Keep in mind some of that time was devoted to reading and writing the files.
play around with some of these sorts. Devise some of your own. If you develop one you're rather proud of, send it in, and we'll share it with the other readers of this column. Kernighan and Plauger's "Software Tools in Pascal" (Addison-Wesley Publishing Co.. 1981) contains an excellent Chapter on Sorting (and is one of the "bibles" on HOW to Program -- also, Pascal is fairly easy to convert to Basic09), and THE bible on Sorting is Donald Knuth's "The Art of Computer Programming; Volume 3: Sorting and Searching" (Addison-Wesley, 1973). Whether you try some sorts, or work on something else, the more you program the more you'll understand. See ya next time!

```
PROCEDURE OSORT
(* Bubble sort demonstration *)
(* Enter any 6 integers and *)
(* 1t m1ll sort them in *)
(* ascending order *)
DIM I,J,M,D,D(6):INTEGER
(* input 6 integers *)
FOR {=1 TO 6
    IMPUT "EMTER INTEGER>> ",b(l)
NEXT f
(* do a bubble sort *)
FOR {=1 TO 6
    m:-b(1)
    p:=1
```

```
    FOR J=1 TO 6
        IF m>b(j) THEN
        m:口b(j)
        p:-j
        ENDIF
    NEXT J
    b(p):=b(1)
    b(1):=m
NEXT }
(* print the sorted intgers *)
FOR I=1 TO 6
    PRINT b(i)
NEXT {
END
```

PROCEDURE sort
(* This program will sort a file in ascending order -)
(* it allows a line to be 80 characters long
(* And will sort up to 100 lines
-)
(* file to be sorted *)
PARAM file:STRING[32]
(* other varlables used *)
DIM 1, J.path: INTEGER
DIM line(100):STRing (80)
DIM dflag: BOOLEAN
(* find out if dflag is TRUE or FALSE *)
file:-TRIMs(file)
dflag: *FALSE
If RIGNTs(file, 2)=": 0^{*} OR RIGHTs(file,2)**: d^{*} THEN
dflag:-TRUE
flle:-LEFTS(file,LEN(file)-2)
ENDIF
(* print start message *)
IF dflagetrue ThEn
PRINT
PRINT "SORTING FILE: ": file
PRINT "START TIME: ": RIGHTS(OATES,8)
PRINT
EMDIF
(* read in file. up to 100 lines *)
OPEN Opathifile:REAO
1: =0
WHILE NOT(EOF(fpath)) DO
1: $\bullet 1+1$
EXITIF $1>100$ THEN $\{* 100$
ENDEXIT
READ Ipath,line(i)
ENOWHILE
(* middle message *)
If dflageTRUE AND f=100 THEM
PRINT "MAXIMUM NUMBER OF ENTRIES READ"
PRINT "SORT MAY NOT REFLECT TOTAL FILE"
PRINT
ENOIF
(* SORT FILE *)
RUN asort(1,1,11ne)
(* write sorted flle *)
CREATE Opath,file+"_SRT":WRITE
FOR $f=1$ TO 1
PRINT Ipath.line(1)
NEXT J
CLOSE Ipath
(* print find message *)
If dflag=TRUE THEN
PRINT "SORT COMPLETE"
PRINT "SORTED NANE: ": filet" SRT"
PRINT "ENO TIME: ": RIGHTS(OATES, 8)
PRINT
ENDIF
END

```
PROCEDURE qsort
PARAM top,bot:INTEGER; s(100):STRING[80]
DIM test: BOOLEAN
DIM ttop, tbot, D: INTEGER
ttop: = top
tbot:=bot
p:= tbot
(* fiRST ITEM IS SORTD TO FIND ITS POSITION *)
(* IN THE LIST.
LOOP
    REPEAT \REM sort from bottom
        test:=s(ttop)>s(p) OR \(p=t\) top
        \(p:=p-1\)
    UNTIL test
    \(p:=p+1\)
EXITIF p=ttop THEN ENDEXIT \REM no more to sort
    RUN swap(s(ttop), s(D))
    tbot:=p
    p:=t top
    REPEAT \REM sort from top
        test:=s(tbot)<s(D) OR p=tbot
        p: \(=p+1\)
    UNTIL test
    \(p:=p-1\)
EXITIF p=tbOt THEN ENDEXIT
    RUN \(\operatorname{swap}(s(t b o t), s(p))\)
    ttop: =p
    \(p:=\) tbot
ENDLOOP
(* At this point p divides the list into *)
(* lesser and greater 1 tems. Now Osort )
(* is run on the two sublists *)
IF top<p-1 THEN
    RUN qsort (top, p-1,s)
ENDIF
IF p+lsbot THEN
    RUN qsort ( \(p+1, b 0 t, s\) )
ENDIF
END
PROCEDURE swap
PARAM \{,j:STRING[80]
DIM k:STRING[80]
k: \(=\{\)
f:=\}
j: =k
END
```


0S-9 - Need Applications? HELP is HERE k-BASIC

Ever since Microware released their fine OS-9 disk operating system, and that was some years back, I have been asked maybe a thousands times or better, "When are we going to start seeing more real and serious 'applications' software7" Well here it is, a way to run most all serious applications software ever written for the S 50 bus systems or the 68Xx! With BASICO9 and now K-BASIC, you have the best of both.

K-BASIC, in it's latest form, is the OS-9 version of a directly compatible TSC XBASIC (eXtended BASIC) programming language, and as you should know, there has been more 68XX serious (business, educational,
scientific, etc.) software written for the TSC XBASIC version than ANY other programming language - including assembler. Therefore, it stands to reason that K-BASIC is the most efficient way (actually -ONLY way) to 'port' all that sof tware from FLEX to OS-9. Finally the $0 S-9$ user has a greatly expanded source of software to choose from. (See all those pages of XBASIC software advertised in 68 MICRO JOURNAL over the years).

We hope to have a complete review of this version of K-BASIC soon, however, because we have received so many calls, from OS-9 users wanting to know when this particular version will be available, we use this means to let you know - K-BASIC the TSC XBASIC OS-9 Version is NOW being shipped by S.E. MEDIA and other distributors - see Press Release this issue, and other advertising.

The FLEX version will be following soon. Watch these columns and advertising, press releases, etc., for additional info. Reserved orders (for FLEX version) and OS-9 immediate orders may be placed through the toll FREE WATTS line 1-800-339-6800, S.E. Media - See advertising this issue.

You might note the generous update policy for K-BASIC. Now there is no excuse for complaining about applications software' for OS-9, or any other reason to wait!

Editor's Note: The folks over at S.E. MEDIA have informed us that in order to make it easier for you OS-3 users to get started, they pass along the following limited tive offer:

Special - Complete Package

The only thing additionally needed, assuming you have an OS-9 computer system and some XBASIC FLEX software, is a porting program, such as S.E. Media's OF - FLEX to OS-9 to FLEX software porting or transfer program and K-BASIC.

K-BASIC \& OF both for the normal price of K-BASIC alone:
$\$ 199.95$
So you save about $\$ 80.00$, and that is a bargain! This offer is not retroactive, and will conclude April 15, 1985, so I am told by the folks at S.E. Media and Lloyd I/O.

Masking on the Mas

by
Mike Wolf
3195 Arizone
Los Alemos. MM 87544

Replace the MOUSE with a TAAK-BALL

If your desk is like mine it often gets so full of stuff (cluttered with junk) thet it's hard to find enough room to manouver the mouse. I solved that problem by adapting a Ateri trak-ball to the Mac. The Mod is quile simple and is reversible so when the kids want to use it on their Atari you cen restore it in a fow minutes. It consists of replacing 2 ICs inside the case with jumper heeders and building an adapter plug to get the connections to the correct pins. All in all ebout - 30 minute job. The TRAK-BALL costs $\$ 49.95$ retail and less of discount stores so is a prolly good deal.

HARO DISK

I have had a Davong 10 M byte herd disc for a couple of months. This is a nice add on for the Misc. It comects to the modem port. It is a lot fester than the noppy (sbout 4-5 times) and really cuts down on the wait times to load files. Hie best part is the little message on the right side of the top line lhat soys "8675K susilable" after loading system files Macwrite, MacPaint. Besic, Multíplan. all font files, and a bunch of date files onto the disc. It requires booting off the supplied noppy, but once booted the noppy cen be ejected and the disc aperates with the same ease as the flogpy. only fester and bigger. It costs bbout $\$ 1600$. If you need more space you can get up to 40 M bytes. The worst part is it does tie up the port. This makes it hard to use a modem or second printer. Another problem is that same softwere doesnt ellow you to copy it to the hard dise and run from the copy. If you should get a herd disc be sure to check with soft were vandors to be sure you can load it onto the hard disc before you buy.

Macintosh

 Authors WantedComputer Publishing Inc. is presently investigating the possibilities of Publishing a "Pure Macintosh" Magazine. We are, therefore, requesting that offering our '68' Micro Journal Readership "first shot" at becoming Contributing Editors to the new Mac Journal Magazine.

The Macintosh will, quite obviously, become a real force in the low priced, 68000-Based, Personal Computer arena. Apple says that they sold "over $250,000^{\prime \prime}$ Macs the first year, and that there is "more than 300 Software Products" available NOW. We feel that with the number of Mac Users and Advertisers, we can put together an excellent Magazine and PAY the Authors of the Articles and Reviews that we accept for Publication. The payment will be consistent with the Industry.

Mac Journal will be primarily oriented towards "How to USE the Mac and the Products that are available for it". While we hope to be able to devote a small section of Mac Journal to "advanced" topics such as Programming, we realize the the "normal" Mac User is more interested in "How do you USE a specific Data Base Management Package?", or "how to use it more efficiently?", or "What does this particular Program or Product provide, and what can be done with it?". In other words, the material should somewhat instructional in nature.

If you feel that you would be interested in writing about the Mac and its Products, and get PAID for it, send for a

Mac Authors Application to

Mac Journal
 5900 Cassandra Saith Road Hixson, TN 37343

DON'T LET THIS GOLDEN OPPORTUNTY PASS YOU BY --
Contact us $\mathrm{N}-\mathrm{O}-\mathrm{W}$! !
P.S. -- If you think you could do a good job writing Articles for Kac Journal, but don't HAVE a Mac yet, go ahead and get in touch with us. We are working on the possibilities of being able to provide a few Macs for the specific purpose of supporting the Rac Journal.

FLEX Routines

General Applications

mare on the 512X Mac

by
Frenk Henriquez
500 Landfair AVe.
LA. CA. 90024

The Apple Macintosh was originally introduced with only 128 K of memory (remamber when you could impress your friends by showing them your 6800 computer with 32 K of RAM?). Some argued that this wasn't enough memory for some of the more sophisticated programs that they were hoping to use or write. Still others thought that limiting a 68000 CPU (with a 16 megabyte adoress range) to only 128K was... well, obscene. While 128K of RAM may seem like a great deal of memory to those of us accustomed to only 64 K , it is certainly not enough for the Macintosh. The Mac's high resolution screen takes up almost 20K of memory and the icon/mouse driven operating system (with all its bells and whistles installed) con take up another 20 to 40 K chunk of memory. This leaves you with less than 80K for your applications and data ("application" is the chic new wey to refer to a program). Of course, many programs won't take up 80K, but there are quite a few Macintosh programs that will gladly eat up 30 or 40 K of RAM, and since the "System Language" is Apple's UCSD Pascal, most "applications" tend to be BIO.

The solution to the Mac's memory crunch is simply to 800 more memory. By replacing the 16 64K memory IC's with their 256K counterparts, Apple was able to quadruple the Mac's memory capacity. However, to cut manufacturing costs and increase reliability, Apple soldered all the IC's to the main logic board. This means that, if you are not an expert with Soldering Tools, you will have to buy a new main logic board with the 256K memory chips already installed to upgrade to 512 K (of course, this will also get you the latest ROM Version at the same time).

A 512K Mac acts much like a 128 K Mac; you won't notice much of a difference until you try some memory intensive programs. If you're planning on doing any extensive programming, the extra memory will make your life a lot easier (some Mac assemblers will leave you with less than 47 K of memory for your program on a 128 K Mac, and the Compilers are worse). Also, there are new versions of MacWr ite and MacPaint that make good use of the extra memory (you can now hold a complete MacPaint page in memory, which makes moving
through the picture almost instantaneous). However, don't assume that a 128 K Macintosh is useless; it's just that the extra memory adds so much more potential to an already powerful computer.

As a UCLA employee, I was able to get my Macintosh at a considerable discount through the University. I originally bought a 128 K Mac, but I upgraded it to 512 K as soon as the new boards became available. The upgrade is usually done at an Apple dealer, but I decided to do it myself when I heard that the dealer would keep the old board.

Taking the Mac apart was a bit more difficult than I had expected. After setting aside a clean workspace and covering it with a rubber mat to protect the Mac's exter ior and screen, I located all the screws that hold the Mac together. The back sheil of the Macintosh is attached by five * 10 Allen-type screws (you can use a $3 / 32$ " Allen Wrench to remove them). Two of the screws are visible on the back, two are recessed betow the handle, and the last is inside the battery compartment. The two exposed screws and the one inside the battery compartment were easy to remove, but the two screws below the handle were extremely difficult to reach. I made a special tool by cutting the Allen wrench off right below the bend. Then I glued end crimped the straight plece of the wrench into a 7 inch long tube to make it long enough to reech the two screws under the handle. You don't have to make your own tools, though. A screwdr iver with a Torx T-15 tip and a 6 inch (or longer) shaft should do the job. As a last resort, you may try borrowing the tools from an Apple dealer; some dealers are quite friendly and will gladly lend you the tools.

After all the work I went through to remove the screws, I was surprised and frustrated to find that the back shell was still firmly attached to the rest of the computer. After much head scratching, I figured out that the shell was a tight friction fit, so with some gentle prodding and pulling (pushing on the output port connectors, ond meybe use a ruler in the crack back of the Front Face of the Mac), I managed to get the shell off.
inside, I saw the back of the CRT tube with the Video and Power Board ts one side. Below the CRT, inside a small metal shield, is the internal disk drive ,and below that, inside it's own protective shield, is the main Logic Board. There are only two connections to the main logic board; a ribbon cable from the internal disk drive that attaches to a plug right behind the external disk orive connector, and a molex connector from the power and video board which powers the main board and takes the video and sound
signals from the main logic brard to the video and power board. Once these two cables are removed, the logic board slid out freely. Before I touched any of the boards though, I made sure that I was grounded (to keep static discharge from dameging the computer). Now comes the eesy part: I pulled out the old 128 K board, slid in the 512 K board. reconnected both cebles, squeezed the beck shell on and repleced the screws.

All told it took me about an hour to build the tool, remove the screws, pry off the back shell and replece the logic board; if I had to do it again it would probably take less then 15 minutes.

I examined my old 128 K board and found it to be quite different from the new 512 K board. This moy no longer be true with more recent 128K Mecs; Apple is using the same 512 K board for both the 128 K and 512 K versions of the computer. The only difference is in the memory IC's, a jumper and some resistors. In fact, there are markings on the PC board showing which components have to be added or deleted to make either version.

You may be asking yourself "lee, if I have the new version of the board, all I heve to do to upgrede is unsoider the 64K IC's and replece them with the 256 K". Well, I hate to be a party pooper, but it's not that simple. The main logic boerd is a four loyer PC board. This means that there are actually four copper loyers running through the boord carrying signals. Unsolder ing a multilayered board is very tricky and difficult; if you don't have an excellent soldering iron and the proper tools (and the experience). you will probably damage a trace or two (soy, in the second leyer) and you'll ruin your computer. If you are exper ienced with solder ing and unsoldering multiliyered boerds, then you moy be able to save a bundle on the upgrade (at about $\$ 15$ a chip. the sixteen 256 K IC's would cost you about $\$ 240$; that's less than a third of the cost of the upgrede).

You're probably wondering what the risks are in doing your own upgrade. Well, Apple is extending the werranty on every upgrede, so if 90 deys of extra warranty are worth more to you than a spare board, then hove a Dealer do it. If you've been dying for on excuse to peek into the Mac (like me) and would like to have a spare board, then get the proper tools and do it! But what about the spare board? Well, you could keep it in storage. in case the main board fails, or you could try upgrading it, or use it es the basis for a portable Mec, or you could explore the possibilities of adding an expansion bus, or even frame it and hang it on the wall next to your new, fetter Mec...

BIT Slicer

ADVENTURES OF THE BIT SLICER

by
Frank L. Hoffman
LLOYD I/O
19535 NE Glisan
Portland, OR 97230
USA
(503) 666-1097

I've been sitting at my keyboard slicing bytes into bits, killing bugs, and otherwise spending a lot of time chewing code. It has occurred to me that some of this "raw data" might be suitable for "entry" into the thought processes of other "68 Micro Journal" readers. Some of you will recall the mildly humorous articles in 'Forum 68' (a magazine now in the buggy hereafter) dealing with the inner workings of computers and assembly language. In this column, I am picking up where l left off (to the best of my recollection).

First, permit me to review a little of who am I and where I came from. I own a software house (Lloy $1 / 0$) here in Portland Oregon, which has been doing business in the S50 market for three and a half years. I started out with the CRASMB(tm) cross assembler (supports 13 CPU 's), ED/ASM(tm) (which was licensed by Frank Hogg Laboratory for their version of FLEX(tm) for the COCO), $00(\mathrm{em}$) (a SHELL control language, or pica-BASIC which was licensed by GIMIX for their OS9(tm) systems), and CRASMB $16.32(\mathrm{tm})$ (a 68000 CPU cross assembler). More recent developments include the Search and Rescue Utilities(tm) (for 0S9, free with most of our software). PATCH (tm) (a modem program for OS9), and K-BASIC(tm) (an XBASIC compatible BASIC compiler for OS9 and FLEX.)

I am your basic computer hacker, having recognized early on the computer's ability to save time by programming as opposed to building logic board ad infinitum. Frankly, I'd rather be here at the terminal than almost any other place on earth. I have a Televideo 924 connected to a GIMIX III system running OS9 and FLEX with a 19 Mb hard disk. This has been my basic development system for over a year. Previously I used GIMIX boards in a hollowed out SWTP box using the old mother board and power supply (which hick-ups and
resets the computer at the most inconvenient times.) At the ends of the peripheral I/O lines are a modem, plotter, and two printers.

During the course of generating these products and some vertical market software/hardware items, I have developed some unique solutions for some sticky problems. In this article, and others to follow, I will be sharing some of these solutions with you. I hope you'll be better informed, and to some extent entertained, as you tune in periodically for -- ADVENTURES OF THE BIT SLICER.

It is a very curious thing, how OS9 has existed for some 5 or 6 years (?) now, yet during most of that time a serious set of file manipulation utilities has not existed. Today there are about four sets of utilities available: Microware's, D.P. Johnson's, Frank Hogg's, and LLOYD I/O's. One of the biggest problems with OS9 was the necessity to type command lines over and over again to take some kind of action on different files. The solution to this problem has at last been implemented in OS9 for the 68,000 . This is wild card/field file name search in SHELL. I believe most of the utility packages for 6809 0S9 provide a similar file name search program that sends matching file names to standard output. The other utility programs are connected to the search program using a pipe in order to receive the file names. (GIMIX includes our utility package with each of their OS9 systems.)

I honestly don't know why no one came out with utilities like these before. But, once the leak started to trickle, the dam broke. It's something to wonder about! Perhaps it was the lack of information about the inner workings of OS9.

Putting that aside for the moment, any OS9 user who is not using one of the available file-name match-list search programs is living in the dark ages. OS9 becomes much friendlier, speedier, and less prone to error.

For example, suppose you want to delete only the files ending in ".asm", ". r ", and ".con". The following line does it for you.
SDIR. *.asm *.r *.con ! idel -i

This example assumes you are using our Search and Rescue Utilities package. "SDIR" is the search program. It will search the directory "." (the current data directory) for all files ending in ".asm", ". r ", and ".con". The asterisk character is used to denote a wild field of any number of characters. SDIR sends the file names found to standard output which has been piped to the program "idel". "Idel" is a file delete program that can optionally get file names from standard input. Hence, the option "-i" causes it to do so. The whole intent of these utilities is to facilitate file manipulation. The list of possibilities includes:

```
* deletes
* copies
* moves
* lists with pagination
* searching for specific strings in a file
* filtering (removing or adding extra
    characters)
* comparing the file's last modified date
    to a specific time or to another file
    and if true send the file name to
    another utility through a pipe.
```

These are just a few examples. Filtering files is the most cormon use for these utilities. The reason lies in the fact that every programmer in existence has his own unique approach to filtering. For example, our K-BASIC run-time package is supplied in assembly source code. The main file is over 8,000 lines long. This file has been filtered to remove all comments, and extra spaces enabling us to supply it on one or two disks. I use a program called PACK to do it. It was developed for use with my OSM(tm) assembler, because it has the complete mnemonic look up table built in and knows how to handle the comments after an operand. Some mnemonics have no operand. PACK looks up each mnemonic to check if an operand follows and removes the comments. Mnemonics not found are considered to be macro calls and are handled as such. It works very well, and reduces a well commented source file by as much as 50\%. The side benefit of a PACKed source file is quicker assembly because the assembler doesn't have to wade through the blank and comment lines and extra spaces.

UNIX has a utility program called MAKE which manages the compilation of a program. Its basic function is to compare the last modified date of a source code file to the

FINALLY!!

Now you can run TSC XBBSIC Programs, COMPILED to Asmb. Lang., under DS-9․ CoCo 05-9, or FLEX ${ }^{\text {TM }}$ with

K-BASIC"

K-BASIC under 05-9 AND FLEX will now compile TSC BBSIC, XBBSIC, and XPC Source Code Files

 K-BASIC now makes the multitude of Isc anasic software avallable for use under ©S-9. Iransfer your favorite BASIC Progranes to ©S-9, compile them, Assemble them, and BINSD -- usable, multi-precision, familiar Software is running under your favorite Operating System! -08-, get FASTED operation with LESS Program Space under FLEA.
K-BASIC (es-9 or rien) including the ISM Assomebler

Limited time SPREDAL offer! Until BPBIL 15, 1985

South East media and Llogd I/O is offering 05-9
K-BASIC Compiler w/ OSM Assembler BID

$$
\begin{gathered}
\text { O-F FFLEX }\langle->\text { OS-9- Transfer Program } \\
\text { BOTH for } \$ \mathbf{1 9 9 . 9 5}
\end{gathered}
$$

Offer ONLY valid when ordered as a Package from South East Media
Free Disk offer does not apply to this Special Package Price OS-9 is a Trademark of Miernure Syatoen Cerp. FLEX is a Trademart of Terleical Syatera Comeltane. Inc. E-DASIC is a Trademart of Lleyd b/O

[^0]

!!! SPECIALS !!!

"fear End clearnor" --- Maile imey last FLEX Softore

TSC FLEX Uelifeles*
ISC "Sort Merge"
TSS "6809 bas JC-
TSC "Extended \quad AASIC"
isC =DeBug-
TSC FEEX Olagnostics ${ }^{-}$
TSC Trext Processing systen
isc - 68000 Cross Assenier
 of the iektronla 40 zz Terainal control system, dith pascal sonnce. The manual includes alscussion of now to utilize this package in the graphical library in raplementing vector Drawing. Point Dlotsing, eic.. up inrough Windowing and Cllpping concepls.

Mormel Drice, 8100.00 ; mad only $\$ \$ 5.00$

OS-9 Softome --o-e-
MJCROWARE "OS-9 File Kandier Joclbox": WOM only 870.00 MICRONARE Aelocating Mocro Assebler": WM only 8170.00

!!! NEW NEW NEW !!!

 Computer systeas Consultants, Inc.OLDEN TELECE UNICATIOMS MDEAN
Menu-Driven: supports Duab-Terainal Mode, upload and Domiload in non-drotocol mode, and the CP/M "MOOEMフ" Christensen propocol mode to enable comeuntication capabilities for almost any requirament. Wpitien in " C ".

FLEX. CCF. OS-9. UnifLEX: with camlete Source - 8100.00 -1thout Source - 850.00

Use your $6809-9 a s e d$ computer systen for developing softemare for 1802/5, 6800/0V/03/11, 6800, 6805, 6809. 6502/3, 8080/5, 8048 . 8051, $z-80$, and 68000 systens. Provides the assecoler Language and Listings normotly used on the target Systems. Writien in "C": produces Motorole s-Text for machine independence.

FLEX. CCF. OS-9. UnIFLEX
each - 850.00
any 3-8100.00 the complete ser (facluaing the C sourco) - 8200.00

4-Basic -- a "marive cose ensic cozalier Level 1 R-DASIC supporis sequential files. fioa ting point, 3 sfzes of integers, string variables, and arrays. The single-pass compller compsies to Assembly Languge source code (which may be assesilid by ine fincluded OSM Assadier. or by ehe Crasme cross Assemblers). Conditionel assefoly or by the Chasme Cross Assemblers). Conditionel assefoly Revier in Oct. 'Be lissue of 'co' Wispo doumpl. 1
FLEX, CCF, OS-9 Compiler with OSM Assembler - $\mathbf{\$ 1 9 9 . 0 0}$
OSn -- Extended 6909 macro Assembler
provides local labels, Motorola s-records, and Intel Hex records. Also generates OS-9 Necory modules under FLEX. allowing the adintenance of source code progrtas for both DOS's on one system.

FLEX. CCF. OS-9 599.00
Cens -. 8-8it macro Cross Assembler
Same festures as OSM, cross-assembles to 6800/2/8. 6801/3,
6804,6805 , 6809. 681\%. 6502, 1802. 8048, 8080/5, 2-8, 2-80. fully supports the target chlp's standard memonics and adaressing modes.

FLEX. CCF, OS-9
full peckege -- 8339.00
cracme 16.32 -- Cross Assentier for the 88000
Same fectures as B-8it Cross Asseablers above $\$ 249.00$

Consense L*.

CRUWCH COCOL -- COBOA Conpller
This cosol conpiler supporis a large subset of amsil level COOOL with many of the useful Level 2 features. Full support of the FLEX File Seructures is Implemented including Random files and the billty to process keyed files. Large programs can be segmented and linked at puntiae, or ieplemented as set of overlays. The systea requires 56k and CAN be run ofth single 0ist system.

FLEX, CCF
Normally $\$ 199.00$
Special Introductory Price (while they last) -- $\$ 99.95$

ASSEMBLERS

Southeast Media

A "Structured Assembier for the 6809" which raquires the TSC Macro Assectler. Allows direct use of structured schtemens Such as IF, ELSE, OO, REPEAT, etc., And prowdes indented level formating of the listing so that the structure is apparent. Re. ' 68 ' Micro Joumal. sapt. 'R3 fprogran was called "STASMO9": has been rensed due io conflices).
A User reports
*... J'm very pleased and as now uriting almost exclusively in (ASjRUKO9). l've selected it over -.- for all fulure systems development... As fonel of my early evaluations, I rewrote a rather elaborate routine originally done in assembly. Out of the 1000 bytes of code generated, the (ASTAukOg) version used only 20 are bytes than the original..-- could not handle ints prograt since it uses irfpie-precision fined poine arithmetic... 1 have a large body of code already written that is incompitible uith …consirucis. No problem yith (ASTAUK09) and the structure sure nelps in understonding the loglel"
F. CCF -399.95

ISC
The FLEx STADMED Macro dssouler
miocaling asse-tier w/LInking Loocer
Use with eany of the C and Pascal Compllers. F.CCF sis0.00

ereat plaias Comp. Co.

OeseaSoft
n.ier and Lintim losker. F,CCF \$120.00; w/Source $\$ 240.00$

F.CCF 8125.00 ; for One Year Moine., add 850.00

Momirush Mlero Systens
Wice, oy Graham Troit. F.CCF - 3se. 00

mollundity lepede -
 0 - OS-9, Col Color computer os-9 0 - Unificx
COD Color Computer Disk as - Color comauter Top

DISASSEMBLERS

Computer systens consultents
SUPER gequim
Computer Systems Consultants smetr Shovet is a "T1me Tested". rellable. PROVEN Oisasseabler that has galned acceptance through out the $S S-50$ Bus Comunity is in extremely POWERFUL, (BTERACTIVE, Sof tware Tool. The Supap Steath Software Package consists of 3 Prograns; SLEUTM (the Oisassendier). Cuenm tused to globally Change Labels to a meaningful Kame), and diff (a Cross Reference Generator for Source Code Filest. SLEUTII will Oisassente Memory Resident 6809 Code and 6800, 6801, 6802, 6803 (the "Baby CoCo"). 6805, 6808, 6809. and 6502 (Apple, Aiari, Comodore, eic.) Binary Oist Flles. (See Aug. 'a3 "Ge' Whro dousmel "Color Users Motes" Colum for a full Review.)
Colon cepetier ss-s0 bus (all w/ source)
CCD (32k Rea'd)
F. 899.00

CCF, 00 J. Only $\$ 50.00 \quad$ U. $\$ 100.00$

CCF. | /Source $\$ 99.00$ |
| :--- |
| 0. |
| 101.00 |

CCO. © $\$$. Only $\$ 50.00$

All Computer Systems Consultants Software
runs on the Color FEX Systems
$31 /$ in stock
call 800-338-6800
for INEDIATE DELIVERY

Computer Systens Center

DYM MITE *
An "easy to ase". poweriul Oisassembler for OIsk Resident 6809 and 6800 Binary files. Allows the developmert of "Control File" of yarlous progran "Boundaries" during successive disassemblies; can use Label file which autometically replaces - Hex Location with a Label Name; includes an XuFF Utility; etc. t abel Files prowided for Mini-FLEX, FLEX2. FEFX9. Color Computer (for use with Color FLEX Systens). eic. OS-9 Version includes special OS-9 options.
CCF. ODJ. Only $\$ 100.00$
0, obj. orly \$ 59.95
300.00

COMPILERS and DECOMPILERS

6809 "Structured" Assembly Lang. Compilers

Minorush Ricro zosters

PL/9
By Craham Trotz. A comolnation Editor/Comiller/Debugger, all in OME PACRMEE; proyides a totally IRTERACIIVE Progran Developaent Cycle. The Singte-pass Conpller supports large symol 火ames: yariable Types: Pointers: Control Structures (similar to ' C ' or Pascal'): Stack, A-. 8~, and O-Reglster manipulation: eic. The Source-Oriented Trace/Debugger provides Síngle Stepping. Breakpofnting. etc. An excellent Software Development Tool which provides for the matmum uillization of the power of the co09.

Minissical Developments

ymbical
(Ver. 1.6, All Real No. support)
 Anderson, Sept. '83 Issue of 'ce' Mcro doernol.

Meed the Ease of Design and Maintainability of "structured Programing" UITMOUT losing the speed and Control of Assenty Language? Then UMimsical was designed for you! This single Pass, Recursive Descent Complier provsdes the tool for developing sofivare Prom simple Uilitites to MAJOR Systems. Easy to deveiop prograiss can be targeted for other 6809 Machines. Features uniffed, user-defined $1 / 0$; produces 2 mble, relocatable, recursive, retentrant Code; structured style and statements uith Procedures and Modules (Modules can be precomplled for inclusion efter verification); supporis byte and Double-byte prinitives with 3 types of Integers (up to 32 bl), G-digit leal mbers. Char and Boolean. And unliwited sized Arrays (vectors only): Interrupt hendiling: unlialted iengen Variable mames; Yariable intitalization (depaulis to s00); Include "Source File" directive: Conditional complling; direct Code insertion: control of the Seack Pointer: etc. No separate Run-Time peck required (Mun-Time subroutines inserted as called during compilation). It is a FAST Coapller uhich produces FAST Code inorelly produces 108 less code than $9 \mathrm{~L} / 9$).

'TFLEX is a trademark of Technical Systems Consultants
"OS9 is a tradernark of Microware \qquad

TOLL FAEE $1-800-338 \cdot 6800$

5900 Cassandra Smith Ro. Mixson. TN 37343
for information call (615) 842-4801

'C' COMPILERS

Modrush Micro Systans
By James McCosh. Full featured C Compller for the flyX Operating system (lacking ONLY "tit-flelds"), including on Asseabler. Requires the TSC Relocating Assembler if the user wisites to implement his own librartes.

5 and CCF - $\$ 295.00$
Introl
C Copiler
A full-featured C. streamlined for the 6809. Generates very efficient object code. Output "benchmerks" close to IONHz 68000 in 8 Bit Operations; 1.5 tiales faster than a 4 MHz 280 when using a 2 MHIz 6809 System (Re. p 43. ${ }^{\circ} 68^{\circ}$ Micro Journal. May '83). Floass. etc.
F. CCF , and $0=\$ 375.00$

U - \$425.00
One Year Maint. - $\$ 100.00$

PASCAECOMPILERS

ISC
pascal cosfler
Ha tive Code Compller IUCSO Oriented).
F and CCF - $\$ 200.00$
Lucidata
P-Code Compller (iso Siandard). Designed especially for Microcomputer Systens: Run-tine System checks avallable resources for each task, allowing operation on even alnimat computer systems. Allows inntige to Assembler Code for antaum flextblll \&y.

$$
F \text { and CCF } 5^{4}=5190.00
$$

OmegaSoft

nseal conther
For the PROFESSIOMAL: ISO Based, Netive Eode Complier. Prinarily for Real-Time and Process Contro? applications. Use custom $1 / 0$ devices in place of the Pascal IhPUT and OUTPUT: Long Int. (32 0it): Dynantc length strings: Interrupi processing. ROM-able, PIC. Re-Entrint Code, etc. POKEHUN.! includes Source for the Sybolic Debugger. Runtime, and several Utilities. Requires "Motorola Compatible" Relocating Assembier and Linking Loader.

F and CCF - 8425.00

One rear Malne. - $\$ 100.00$

DECOMPILERS

Southeast Media
(A Uniflex "basic" De-Compller)
Re-Create © Source ifsting from UnffiEx Conplled bisic Progrsons. Casy to use; works W/ ML Versions of UniFLEX oasic; Output to Disk or Terainal. Tfime TESTEO and PROYEN; SOLJO:

Anambley legads -
F - FLEx, CO - Cniar rompiter FLEX - OS-9, COO = Cilme Computer OS-9 u- Uníflix
COD Color Computer Orsk
at. Colot Computer Tape

UTILITIES

Southeast redia

Bastc09 XRef

This Basic09 Cross Referance Utilioy is Basicog Program unich will produce a "preity printed" listing vith each line ambered. followed by acoplete cross referenced listing of all varlables, external procedures, and line numbers called. Also included is - Progras List utility which outputs the ilsting without the overhead of bullaing the cross reference Lable, which allows it to run considerably faster uhen only a "preteg printed" listing -ith line numbers is desired. Requires basicas or Runf for operstion.

Southeast Media

OS-9 Voist
Give your 05-9 Level I System the qued of men access that can be several orders of megnltude over your present hoppy disk drive. Use ehot Exiended meeory capabllity of your SHTPC or 61alx CPU card (or any other that has the same formot Dat). The size of the virtual oisk is completely variable in whole Increcents of 4 K up to 960 K , which is all trot these systeos can address beyond the base page that $05-9$ Lewl i uses. By putifing all of your CMOS Directory on your Virtual Oisk, you can puting all of your CuOS directory on your virtual orsti, you can have the rastest execution speed possible (next to eating up
system Memory with all of thea). You can tiso set up high Systen Memory vith all of then). you can tiso ser up high
speed inter-process coennications wis randow virtual disk files speed inter-process counnications wia randow virtual disk flles
and not eat up valuable system meary with prpe buffers. Some assedoly Required - Lewl i on.r.
0. obj. only - 879.95 $*$ Source - $\$ 149.95$

Southeast Media

… 0e/s co fIE ${ }^{\text {of }}$
$0-f$
…- OU/S eo FLEX - FLEX to OS/S --s.
Finally; the barrier has been removed between OS/9 and FLEX formatied disksl Mow you can REAO frae, and HRIJE To, single sided 5° or g° FLEX distetite from OS-9 yith of. OF is a nev and unlque progran, uritien in tisicos (with Source), that performs the following functions:
REFORMAT: A BASICO9 Progran that reform is a chosen amount of ELEXS Oisx to FLEX format so it can be used normelly by FLEX.
FLEX: A BASICOS Progran that does the actual read or med funttion to the special 0 -franstit Oist. \quad til selected Prom a
user-friendly eenu. functions provided include resding the FLEX birectory, Detering FLEX Files, Copying both directions. etc. All selections are interactive and coplete. Including 4 necessary proopes to the operator.
FLEX users can read, write and use the special dist as any other FLEX disk, provid d the FLEX directory is not alloned to continue beyond track zero (soo eany Ples).

$$
0-\$ 79.95
$$

Southeast Media

copmext

The follo- Copy LARGE Disks to several sioller disks --
o any smatirn size Uillites allow the backup of ary size ilst tony SMALLER size distettes (HIncnester to $\mathrm{g}^{\prime} \mathrm{s}$ or $\mathrm{S}^{\prime} \mathrm{s}, \mathrm{f}^{\circ}$ to S's.etc.). By siaply inserting distetes is requested by COPJWLT, large disk systen may be domiloaded to your present lloppy disk system, aty size. Ho n ed to Mddle with directory deletions or any of the other tedlous operations thet aust be done using the norall copy routines.
COPYMULT. CRD understands nomal "copy" syntax and alvays teeps up ulit flies ilready copled by maineining directories for both host and recelving disk systea, ellainating hours of tedious teyboard entries and other time consting cleanup edious
ChCKUP.CMO is a speciel progran thet downionds "randon" type flles, ony stze.
RESYOAC.CMO a spectal program to restructure copled "randon" flles for copying, or recopying back to the host systen.
FREELIGK. CWO "bonus" utillty tha it "relinks" the pree chein of
คloppy or hard disk thereby elfalnating Pragzentation.
Caletely docmenced conce fies iscluced.

soucheest nedil

zoata

A COMuIcation pactage
for the Valfiex Operating System Allous Uniflex Based Systams to Transmit and Receive files to
and frow other Computer Systems via Modem. Use with CP/M. Matn and from other Computer Systems via
rame , other biflez Systens, eic.
-- Verifies Transalssion Integrity using
checksum or CRC
-- Auton tically Re-Transal is bad blocks
-- Transalts data in 128 byte blocks
$U-5299.99$

ucidata

PASCAL HTILITIES

Requires LUCIDATA Paseal ver 3.
XREF -- produce a Cross Reference listing of any text; orfenced to Pascal Source.

5 and CCF - $\$ 25.00$
ImCluoc -- allows the inclusion of other files in a source Tent: has unliatted nisting capabillities. Also allous Binapy flie has unifal

5 and CCF - 825.00 PROFILEM -- produces an indented, Mumbered. "Siructogran" of a Pascal Source Text File. Allows vieving the overals structure of large progras, and pro id s clues as to the integrity of the progrin. Supplied as Source Code; requires complation.
F and CCF - 825.00

coprcat

Pescal Het required
Allows reading TSC Mini-FLEX, SSB DOS6B, and Oigital Research CP/M Oisks whlle operating under FLEX 1.0, FLEX 2.0. or FLEX 9.0 with 6800 or 6809 systems. COpricar ull not perform Miracles, but, bebueen the progran and the manual, you stand a good chance of accapilishing atransfer. Includes Uxillities to List Directories. Copy Flles, and convert Text flles when required. Also Includes a Uellity for Investigazing Ptysical Compacibility probleas. Programs supplied in mocylar saro Code (Asseably Language) to ate it easter to solve unuscal problees. F and CCF $5^{\circ}-850.00$
$F 8^{\circ}-855.00$

Computer Systees Consultants

FLIE DISK UTLIITIES
Elghe (o) different FLEX Usilleles that should be a pert of event FLEX Users Toolbon; Assewoly Language (Source Cooe): COPY a fille with CRC ETHEs, so it can posslbly be saiveged; Test Olsk for errors: Copere wo ofetsi a fast of at bictio Prograe; Cait olsk secters: Limosilze Fro-cule on the Disk: print Dist doentiptasion; and Sart and aoplace the Disk Diractory (in sorted order).

Ten BASIC Programs to: nus

A BASIC Resequencer with EXTRAs over "RENLN"; works with ALL versions of flex aASIC AMD the Precompller. checks for elssing label definitions, processes Disk to Olsk instead of in Memory.
Compare. Merge, or Gecerate Updetes betveen two basic progrins. check BASIC Sequance Dumbers, compere teo wasequenced plles, and 5 Prograns for establishing a Raseor Directory of several olsks, and soriing. selecting, updeting. and printing paginated listings of these files.
A BASIC Cross-minereat Progran, wititen in Assembly language. which provides on x-Rep Listing of the raplables and Reserved yords in ric usic, yMSIC, and paicle Ile ansic progrsas.
ALL Utilities (inclub source leither BASIC or source code). an EXCELLENT Yaluel

BUSINESS WORD PROCESSING

Windrush Wicro Systeas

ExTRENELY Poverful Screen-Oriented Edtor/Word Processor. Aleost 50 different comands: EXCELLEMT Docmenthtion \{over 300 pages). Including "full futortal Section to help you learn how to use the system. Fettures Cursor-besed edrting. dynemic jocreen Formating (what you see is what you get), Nulti-Columen display and edifing, "deciaal allgn" colums (AND add them up autonitically. if wanted), define multiple keystroke amcros, even and odd page number headers and footers. inted printer control codes in reve, full juselfication series of comm nds, full olielpo support, store comon comand series on dist for Puture use, etc. Easy "Spt-Up" (for example, you Just hit the key you want to use for a specipic function. such as "cursor up". and the System reads an stores that key - no digging into cech manuals for codes, etc.); use supplied "set-ups". or reapp the keyboard to that you are used too. Encept for proportionot printing, this package all do if alll!

6800 or 6809 FLEX or 5S日 DOS. OS-9 - \$175.00
Southeast Media

SPELLE "COmputer Dicetonary"

OVER L20,000 words!
wo more "Let your Pingers do the walking through the Olctionary" whlle you ore entering Text with your pavapite Editor or Mord Processor. SPELLE is more then just another Spelling Checker': it allous you 20 look up ayord from within your Eodzor or Word Processor so that you kMow it is right WHEN YOU TYPE IT IN with the SEM. ODO UEIll (which operates in ene FLEX Uitlity Spacel. Yes, it Also allows you to check and update the Text after you are pinished; along alth allowing you to aso YORDS to the Dictionary. "rlag" questlonable words in the rext for evaluation later. View a word in conceas" before changing or ignoring. etc. SPELLE Pirst checks © Conmon Yord Dictlonary". then the norel olctlonary, then a "Personst Mord List". and Plnally, any "Special Yord Llst" you may have specified. SPELLD also allous the use of Smill ofst Starage

Southeast Media

whst

ext formeter
JUST, © Text Formatier developed by Ron Anderson. provides numerous feetures which ante it valuable addition to any FLEX Users Softvire Library. JUST is designed for formeting Text Output for Dot Matria printers and provides many unlque features:
-Outpul the "Formeted" Text to the Display for formet analysts and change.

- Output the "Formatied Text to Pent flle for use ulth the supplied FPRIMT. On for producing miliple coples of che Text on the Printer IKCLUDIMG IMEEODEO PRINFER COMMANDS (this Utillity is very useful it other tlaes also, and worth the price of the progran by itself).
- "User Conffipurable" for adapting to other Printers (coees set up for Epson Mx-80 uth Greftras); provides for up to ten (l0 imbedded Printer Control Comands*. such as italics on and off. boldface on end off. elc.
Autonelc comensetion Por a oontle Yidin princed line.
-Includes the normil line vidth. eargin. Indent. peragraph. space, vertical stip llnes, page length, page numbering. centering. flll. Justiflcation, etc.
-Use ulith An Edisor.
- Supplled with "structured Soupce" (Mindrush PL/9): easy to see the flow of the prograe.

F and CCF - 849.95
 - OS9 es a tiedemaik of Microwere
moundivey Linde-

- Flex. Co Colna Compiter plax $0=0 S-9,000=$ Colnt Conauter α S. 9 - UnsFLEX
∞ - Colos Conguter Dask CTS Color computer tape

FREF NSNETTE WITM EUCRY SSO DURCMASE

5900 Cassandra Smith Rd. Hixson. TN 37343 for information call (015) 042-4801
CoCo OS-9'0 FLEX'

DATA BASE
 MANAGEMENT SYSTEMS

Mestecrester Applifed ousimess systegs

Possibly one of the most powerful Oatabase Management Systems available, this anchine language prograe is small enough to operate on a single sided 5° distr. yet provides the speed of M.L. and pover lialted only by the user's tagination. This OMS supporis Relational, Sequential, Kierarchical, and Randon Access File structures. ind has yirtual Mewory capabilities for those Gient Deta Besis. YDNS Level 1 provides a Punctional entry level' systea ahich provides for deflaing a Data Base, entering end changing the Data. and producing Repopis. yous lewi If and changing the Data, and producing Reporis. K
English Language comand Structure in malpulating the daca so create new File structures, Sort, Select, Calculate, etc. ubs Level 11d dos several spectil Utilities Enich provide additional ease of morking with the various structures, changing Systea Parameters, etc.

XOWS LVI 1 - F \& CCF - $\$ 129.95$ yo. LUN LV1 III - F8 ECF - 3269.95 xONS Systew Mamal only - $\$ 24.95$

The Yirginia Company
 precasting can then be used for plenning, budgeting. recasting, andlyting, eic. While "Electronic spreadsieets businesses where there are numerous expense columns, revenue sources, significant business indice tors, large numers, erraifc weet-io-meek and month-io-monih fluctuetions, eic. sfzamex helps deteralne statistical relatiooships. establish trend lines. "seooths" do w vil poving overages. arelyze seasomal dota, adjusts for infiation, lags data ín statistics or Colum functions, plots deta, etc. eizpact is orfented toward time series andysis of businesses. ithe Progrie displays information series andysis of businesses. ine Progratisplays information conforaing to defined Perlod of time iweeks, months, years, etc.), and is very easy to use (data is easy to enter, change, and eodify: comands can be renaeed to sult the users requirements: unliefted abllity to creqte spectalized comands using common BASIC Stateents: eic.1. D gulres TSC's fremind assic.

$$
F \text { and CCF }=\$ 135.00
$$

$$
\text { vith Source - } 8250.00
$$

Computer Systens Consultants

TABUCX RASA SPREADSHEET
TABULA RASA is sfallar to DESKTOP/PLAN and prowdes for the generation and afintenance of tabular cpaputation schemes often used for angiysis of business, sales, and economic scenarlos. its menu-driven user interface provides these capobilities even to those users yith no programing experfence. Its eatensive report-generation capabllities illoy the user to generate professional results with alnicum effort. It requires tses Exteect BASIC.
F and CCF $=\$ 100.00$, U $=\$ \mathbf{3 1 0} 00$

Computer Systems Center

THE Electronte Spread Sweet for 6809 Comouter Systems. An extremely POUERFUL Business Tool, this Progran wlll find on untifited number of "non-business" epplicetions, also ffor example. Full Junior College Electronics Cupriculua was set up using ormacalc). Advanced features like "Table Lookup" atke fncone fax yort easy: Coluen or Row Sorting for numerous tncone tax yort easy: Coluan or Row soring for, numerous applications: etc. Cocpletely Hemory Resident", Machine Language. inis Progrse is FAST. Provides STAMDARO FLEX Tezt
flle output for use with BASIC. Mord Processors, Pascal, "C". etc. Also avallable for Deta-Com and FKL FLEX systess using the 50×24 Oisplays.

F and seECIAL CCF - $\$ 200.00$
$v-8385.00$

ODDS AND ENDS

Computer Systems Consultants
FULL SCREEM FORMS DISPLAY
This packege supports any Serlal Terwinal ulth cursor control of Memory-Mapped Video Displays. The package substantially extends the screen Inputloutout capabilities of TSC's Extond AASIC progres by providing sfaple, table-driven method of describing and using full screen displays. These table entries are easy to set up and alinealn, and are normally stored on disk and read os required. A sinple, interactive aeans of generating the forms and the data fleld definitions is provided. F and CCF $-\$ 50.00, U=\$ 75.00$

Coeputer Systees Consultants

FULL SCREEM MOLImS LIST
The Full Screen Mabling List Syste provides a means of eaintaining siaple molling lists. Using a random fill structure based on the first character of the name fleld, it mintains the pile in alphabetical order for easter inquiry. Wieh the FIMD comesond. the user may locate all records mitching on partial or conplete naee. city. state, zip. or atiributes. Printed listings and output to labeis ay also be produced on the same selecilve basis. It requires ricts Extand ensic.
F and CCF - $\$ 100.00 . U-\$ 110.00$

FULL SCREECM IWYEWTORY/WRP

The Full Screen Jnventory Systew provides a means of mointaining sadll inventorles. Using ifnked, keyed random ifle structure besed upon the itee fleld, it keeps the file in olphabetical order for easter inquity. with the Fimo comend, the user may liceme descripilon, vendor, or eteributes. iteas in onctarder or tien. description, vendor, or attributes. tiens in betrorder or the same process. Printed output may be produced in tien or vendor order. A on serials requirement planning (MRP) capability for eanufacturing environments is included to alloy the ealntenance and analysis of Mierarchical assemolies of itees in the inventory ille. it requires TSC's Extenche BASIC.
F and CCF - $\$ 100.00$. iV $-\$ 150.00$

- FLEX is a liaoonart of Teatroced Srabms Consurianis "O59 is a uxdemen of Moomere

Ill Pieaso Specify Your Operoting Systec \& Disk Size ilf

nolumily Lipade -

- FLEx, CO Color Compurer FUx 0 - CS.9, COO - Color Compıter OS-9 U - Uniflex
CD = Color Conputer Disk Col = Color conputer disk

FREE DISNETTE WYTN EVCRYSSO PURCMASE

Southeast media RAPIER
Requires FLEX and OISPLAYS on hou Type Terminal Festures:
crour levels of play. -Swap side. point scoring system. -Two display boards. Change skill level.
-Solve Chectande problens in 1-2-3-4 moves.
Hake move and SWap sides. eplay white or black, This is one of the strongest CBESS prograns running on ony a icrocomputer, estimated USCF Rating 1600 (better than most 'club' players at higher levels).

G and CCF - 579.95

Southeast Media

DIET-TRAC Forecaster

DLET-TRAC Forecaster is an XBASIC progran that pians a diet In terms of efther calories and percentage of carboinyorates, proteins and fats (C P Cf) or grans of Carbohydrate. Protein and fat food exchanges of each of the stabasic food groups (regetabie, tread, wat, stim milk, frutt and fat) for a specific individual.

Sex. Age, Heighe, Present weight. Frame Size. Activity Level and 8asal Metabolic Rate for normal Individual are taken into account. Ideal veight and sustaining calories for any weight of the above individual are calculated. When a weight goal is given (efther gain or loss). and a calorie plan is agreed upon given (efther gain or loss). and a calorie plan is agreed upon between the computer and the individual, the nawier of days to reach the welght goal is projected. The starting and ending rate of weight loss is calculated, and dail
each day's weight for a 30 -day period is printed.
$F-\$ 59.95$
v - 589.95

COLOR COMPUTER

SOFTWARE

Stearns Electronics

Intrigued by Fortint Here is a FORTH package tuflored to the Color Computer! This package is supplied on Tape, with instractions for transferring it to dist if you wish. Written priaarily in machine Janguage, it's speed is ungoralleled. A full Sealgraphices Editor is provided, along with "goodies" ilke Graphics and Sound Corvands. Printer Comenands, Auto-Repeat and Graphics and Sound Comands. Printer Comands, Auto-Repedi and
Control xeys, efc. If you are interested in Learning FORTH, a Irace feature is provided which is invaluable. If you are a FORTH Pro. This package provides CPU carry Flag accessibillty. Fsse Task Nuttiplexing. Clean Interrupe Handiling, etc. (Dr: you won't "out grow" the Basic capabilities of this implersentationt. Combine this package with Leo Orodie's EXCELZENT Book "staring FORTH* and you will be a FORTH Eapert before you know it land have a lot of fun doing ft!).

Color Computer TapE - \$58.95

Wston Softere Engineering, Inc

Color Computer GRAPHIC SCREEM PRIWT Prograns
Oumps any "PMOOE" Screen to the Printer uith the BASIC USR Ounds any "PMOOE" SCreen to the Printer uith the BASIC USR
Sunction. Shift the Printout left or Right or Reverse Print (Dark for tight Screen and Vice Versa). All Programs on Tape. CSPR for R.S. LP-vil/vill \& 0MP 100/200/400
GSPRE for Epson w/ Graftrax and Graftrax.
cspas for cemint 10 and is
$\$ 7.95$

GSPRP for the Prowriter Printers
89.95
$\$ 9.95$

Custo softeare Engineering, Inc.
OATE-0-BISE CALEMDAR Prograe
A Menu oriven Extembed ansic program which allows the entry of up ta 12 Memos per Day, each of which may contain up to 28 Characters, for any day of the Month betmeen the years 1700 and 2099. A Graphic Calender shows which days conteln Hewos. and a "Key Word" Search is provided which can be output to the Screen or Printer.

TAPE DATE=0-BASE CALENDAR
(Each Tape file will hold up to 400 Memos)
OISK DATE-O-BASE CALENDAR
(4.000 Memos at $300 /$ Month per Olsk)

5900 Cassandra Smith Rd. Hixson. TN 37343
for information call (815) 842-4801

CoCo OS-9'" FlEX' SOFTWARE

Cusma Softrare Engineering, Inc.

That's IVTEREST-ing
(nterested in ImTEREST (the Honey kind)? An EXTENOCO BASIC Progran that will help you deal with numerous problems requiring Inferest calculations. Present Yaive, Rate of Return. Current Bond Yield and Rate of Return to eaturity, Loan Repaynent A ortization Schedules.etc

$$
\text { TAPE - } \$ 29.95
$$

Custon Softrane Engineering, Jac.
 DISK OATR HAMDLER GAK

An EXIENOEO BASIC Data Management Systen w/ Mach. Lang. Routines. Allows max of 246 Chars, and 14 Fieids per Record, and another Record can be linked to the first: 6 Char. Field Names, up to 99 Chars. per Fleld. powerful On-Screen editor for input and updace, llexible Ourput capabilities including output to Oisk Files for use by other Programs. Change File Definition without re-entering the Dato. Split files, etc. Allows Multipie Field Sorts. Seiect on any combination of Fields. etc. An extremely POMERFJL TOOL; instructions provide examples of Mailing Lists and a Financial Stock Profit and Loss Tracking Sys iem.

OISK - $\$ 54.95$

Custon Softaner Engineering, Inc.

DISK EXTENOED BASIC ACCOUREÍng Progran w/ Mach. Lang. Routines. A "Iradieionals Accounting Package for Small gusiness, Clubs, Churches, Personal lise. etc. Up to four levels of subtotals with Tríal Balance. Incore statement, and Balance Sheet Reports. DOE allows up io 300 accounts and a Trial
 long, and comments and explanations may be freeiy used. Accounts are iraceable to the journal iransaction, which my include comments, Screen reporis allow reviem of past transactions and current balances.

This Months STAR SPECIAL

K-BASIC \& OF both for the normal price of K-BASIC alone:

$\$ 199.95$
So you save about $\$ 80.00$, and that is a bargain! This offer is not retroactive, and will conclude April 15, 1985, so I am told by the folks at S.E. Media and Lloyd I/O.

object code file. If the object code file is older than the source, MAKE forces the compiler to re-compile. It assumes you have changed the source code and it needs to be re-compiled. In a recent issue of 68' MJ, Peter Dibble (OSS USER NOTES) wrote about his version of MAKE. It's a good idea. I have implemented two utilities that compare a file's last modified date, one to another file, and the other to a specific date or "today's" date, by default. These work very well in managing file updates or backups. The utility YOUNGER compares two file dates. The first file name is sent to standard output when it is younger than the second file. The utility DRAFT compares a single file name to a specific date, older date, or newer date. If a date is not given, the current system date (hours and seconds deleted) is used for an exact match. DRAFT sends the file name to standard output when a true condition is met. Both of these utilities can get file names from standard input for use with pipes and a file search utility like SDIR.

Many of these utilities can be connected with a series of pipes to form a very complex file manipulation procedure. Another benefit is the ability of SDIR to use any OS9 command. One such use is with the ATTR utility. ATTR is used to examine and change a file's attributes. Unfortunately, it can handle only one file at a time. SDIR has an option to generate SHELL commands that can be piped to SHELL for execution. The following example enables the public read attribute for all the files in the current data directory:
SDIR . -scp 'ATTR' 'pr' ! (x -p)

SDIR's output is piped to SHELL using (x -p) which causes shell to abort on errors and suppress the "OS9:" prompt. If the current data directory only contained two files, one named 'hello' and the other 'prime', the following lines would be sent to SHELL:

```
t
tmode . 1 -pause
load ATTR
ATTR hello pr
ATTR prime pr
unlink ATTR
tmode .l pause
-t
```

SHELL would then call ATTR which in turn would enable the public read attributes of the files 'hello' and 'prime'. The option 's' tells SDIR to include the ' t ' and 'tmode' commands. The ' c ' option says to generate commands using the command parameter. The 'p' option makes SDIR put the command parameter 'pr' after the file name.

SDIR sells for $\$ 35$ and comes free with all LLOYD I/O products for OSS (those selling for $\$ 100$ or more.) Following is a complete description of the SDIR utility:

SYNTAX: SDIR [-cdempst?] <directory>
[<'p1'><'p2'><'p3'><'p4'>]
[<match list>]
FUNCTION: SDIR is used to generate pathlists to standard output. In its simplest form, SDIR can list all the files in a directory, one file name per line. The only parameter given in this case would be the directory name to search, such as the current directory '.' (dot). Example:

SDIR .

The next simplest would be a search for one or more files using their exact names. Example:

SDIR . myfile mynames
The next type of search would use wild cards in the match list. Wild cards replace parts of file names. SDIR has two types of wild cards:
? is the wild card character which is used to replace any single character in the match.

* is the wild card field which is used to replace any group of characters with limited use.

There are four general types of match lists:
c an exact match
*c wild card field ending in an exact match
c* exact match ending with a wild card field
c floating exact match any where in the names
where＇c＇is one or more characters including the wild card character＇？＇．If no match lists are given，all files will be listed．Examples：
SDIR．MY＊find files beginning with＇MY＇
SDIR．＊ME find files ending with＇ME＇
SDIR．？？？find files that are

This is how SDIR searches using the match lists．SDIR reads each entry in the directory specified，and compares it to the first match in the match list．If the match is true，the file name is listed to standard output．SDIR continues through the directory until the end，then repeats the process starting on the next match in the match lists．This process continues until all matches have been searched．

If the option－c is used，＜＇pl＇＞must be used．＜＇pl＇＞becomes the name of a command written before the file name．〈＇pl＇＞may include command options．This is useful with all OS－9 commands that do file manipulation．The output stream includes a ＂load＜＇pl＇＞＂at the beginning and a ＂unlink＜＇pl＇＞＂at the end．This means the command won＇t have to be loaded each time it is used when the output of SDIR is piped to SHELL using＇！（x x ）＇．

Examples：＇attr＇＇ilist－mn＇
If the option－d is used，＜＇p2＇＞must be used．〈＇p2＇＞becomes a directory name that is used with each file name found，to make up a second path name listed to the right of the file name．It can then be utilized with commands requiring two path names such as COPY，ICOPY，and PACK．

Examples：＇／do／cmds＇
＇files／names／customers／products＇
SDIR－cd ．＇copy＇＇／do／cmds＇myprogram
gives：load copy
copy myprogram／d0／cmds／myprogram unlink copy

If the option－e is used，all files found will be listed unless it matches with the
match list．This is useful when it is desired to operate on most files in a directory except for a few．This option compliments the search logic；meaning that each entry in the directory is checked against the matches，and if a match is made，the file name is not listed．

If the option－m is used，option－c and ＜＇p3＇＞must be used．＜＇p3＇＞is a set of options used to generate the shell 1／0 redirection and memory size modifiers for the commonds generated when the－c option is used．〈＇p3＇＞consists of up to four sub－options as follows：

```
i=<path> generates '<path' for input
    examples: i=/dl/names i=files
o=<path> generates '>path' for output
    examples: o-datafile 0=newnames
e=<path> generates '>>path' for error
    examples: exerrorfile e=/p
s=<size> generates '|size>' for the memory
    examples: s=64 s=31k s=14k
```

Example：＇i＝／dl／names $0=/ P$ e＝errfile $s=64$＇
If the option－p is used，＜＇p4＇＞must be used．＜＇p4＇＞becomes a list of parameters written out following all other parameters and path names．It is written out exactly as it appears in the string．

Example：＇pe e pr rw＇
If the option－s is used，the option－c should be used．It writes out the following：

t

tmode ． 1 －pause
．．．．．．．．．．．．．．．．．．．．．．．．．．．．rmal output
tmode ． 1 pause
－t
This is useful when the output of SDIR is piped to SHELL using the format：

SDIR＜options and parameters＞！（ x－p）
If the option $-t$ is used，the files matching the match lists will NOT be opened to check the user＇s ability to access a file．Normally，SDIR opens the files it finds matching，and immediately closes them as a general check to see if they can really be accessed．Note that this is a good check，but in some cases not a complete check．

If the option－？is used，SDIR will list its command syntax and options．

This command is intended for use with pipes and the commands: IDEL, ILIST, ICOPY, PACK, and any other command that can take its pathlists from standard input.

Last notes: SDIR will not search any directory other than that specified in the command line parameters. This means sub-directories will not be searched. Although the options can be given in any order, the parameters $\left\langle ' \mathrm{pl}{ }^{\prime}\right\rangle,\left\langle ' \mathrm{p} 2^{\prime}\right\rangle$. <'p3'>, and <'p4'> must be given in the proper order if they are used. Missing or improper termination of the parameters causes SDIR to display an error message and its command syntax.

EXAMPLES:
sdir.
lists all files in the current data directory

sdir test/cc hello

checks for the existence of the file 'hello' in the directory test/cc
sdir -t /ho/cmds if?* >myfiles
writes the names of all files and directories to the file 'myfiles' that begin with 'f' and are at least 3 characters long including the 'i'
sdir -d. '/d3/text' ! icopy -i
copies all files in the current data directory to the directory /d3/text
sdir. ! ilist -ipnt >/p
print all files in the current data directory using the pagination mode
sdir. -scp 'attr' 'pr' ! (x-p)
enables the public read attributes on all files in the current data directory.
sdir . -scdm 'copy'

$$
' / d 3^{\prime} ' s=31 k ' m y *!(x-p)
$$

copies all files in the current data directory that begin with 'my' to the device /d3 using 31 k of memory on each copy.

The above SDIR description was transcribed
directly from the manual for the LLOYD I/O Search and Rescue Utilities Package. I have a two-fold motive for publishing it here: first, to shed a little light on the resources available to OS9 users, and second, (in all honesty) to whet your appetite for our products.

In a future article the BIT SLICER will be delving into the design philosophy of k -BASIC. The research and development of K-BASIC was an adventure in learning and design.

K-BASIC, PATCH, CRASMB 16.32, CRASMB, DO, ED/ASM, and SEARCH and RESCUE UTILITIES are trademarks of LLOYD I/O. OS9 is a trademark of Microware. FLEX is a trademark of TSC.

NOTE: All products listed are available thru:
S.E. MEDIA (see ad this issue) or LLOYD I/O (see Lloyd I/O ad also).

Software
 c.0ragon Exchange System

Tom Gilchrist
Brad Taylor
1450 N. Clarence "108
Wichita, Kansas
Every group around seems to have a Bulletin Board System (BBS) or Remote Computer System (like RCPM). The CoCo users have a number of systems they can call and OS-9 users even have their own SIG on Compuserve. But how about those of us who still cling to FLEX. Who has a system with software and information we can use? Well. I have put together the "C.Dragon" software exchange system. It's not a BBS (although there is a private mail system). It's for the exchange of public domain software.

I put the system on the air in December and I have been working the bugs out ever since. The system is for UNIX and FLEX users interested in C code. lhere are quite a few assembly language FLEX programs as well as C programs which are designed for FLEX. A number of these programs are being written up
for 68 incro Journal so those of you who don't have modems will be able to get them if they are published.

To use C.Dragon, you need a modem (300 or 1200 baud) and modem software for your computer. There are a number of commercially available programs I have seen advertised in 68MJ. You can also use any of the programs which have been published including MODEM9(+).

You can download source files two ways. fortune
First, you can use the "list" command to simply help Lsubject] list the desired file. If you have a "capture" list <file name> mode in your modem program, you can capture and save the source to disk. If you want to make sure you get error free source, you can use the XMODEM protocol transfer of C.Dragon Is Ldrive] (the UCF program on C.Dragon).

There are a number of data bases on the mail [login_name] system for help and general information. The ones which are active as of this date are... name for subject in help)

COMMAND
bye
cat 〈file name〉
drive LDrive_Number]
flex Lsubject]
lls <lbr_name>
more <file_name>
news Lsubject]
sale [item]
topic [subject]
ucf
unix [subject]
who
whois Lstring]

Data Base
HELP
TOPIC
NEHS
FLEX
UNIX
SALE
Description
Help with C.Dragon commands. General information about Dragon.
Information about new time features, etc. General FLEX information. General UNIX information. Items for sale, trade, or wanted.

Anyone can call the system and there are no membership dues. As long as people behave themselves, the system will remain open to everyone. The phone number is:
C.Dragon

316-943-9716
24 hours a day
1200/300 baud
New users will need to "sign in". This is done by entering a "7" <CR> at the login prompt. You are asked for your name, city/state, and a password (real names please!). You are then allowed access to the system. Below is a listing of the subjects found in the "HELP" data base:

Current C. Dragon commands (use command

DESCRIPTION

Ends a C.Dragon session
List a text file (same as llst) Display and change work drive.
FLEX information, hints, ideas, etc. A UNIX favorite! This program. List a text file (same as cat). List the contents of a disk library.
List root files and directories of given disk.
Send and receive mail.
Like list, but controls screen. Short term information and bulletins. Items for sale or trade by users. Show the time, date, and a calendar of the month.
Long term information and topics.
XMODEM protocol
transfer menu driven.
Unix information, topics, hints, news, etc.
Who you are (your login name).
List the users of c.dragon.:

When you log in, you are given a "message of the day" which tells you about the system and current information. To learn how to use the C.Dragon system, you simply read the help, top1c, and news data bases. For instance, to find out how to use the "LS" command, type "HELP LS <CR>".

When using C.Dragon please follow the following rules:

1) Try to limit your sessions to no longer than 1 hour.
2) Don't abuse the "mail" system. Send mail only to those you know. There are plenty of public BBS systems around and there is limited mail space on the system.
3) Remember that CTRL S and CTRL Q will turn on and oft the scroll (as well as the standard FLEX ESC toggle). If the system seems to hang up, try ESC or a CTRL C.
4) 1200 baud is a little tricky long distance. If you have trouble, try 300 baud.
5) Type "BYE" when you are ready to quit.

Thanks to all those who have donated your software. Thanks to Brad Taylor for all the help with the code and to Kent Meyers for all his helpful feedback. Have fun!

Editor's Note: This arrived about two week after we quietly removed our BBS. We gained a lot of insight into BBS operations. Unfortunately, the stupid and thoughtless actions of a very few, caused the loss of this service for over 5,000 persons who had logged on while it was operational.

The control person/persons who look after the day to day operation of a BBS are to be congratulated! We spent hours, many hours each week, sometimes each day, screening files for garbage, profanity, filth, etc.

When we started it we knew that there would be some younger ($7-12$ years of age) logging in. For you older types I guess it would have not been all that much of a thing. For them we tried to keep it clean. Finally, it just became too much - we pulled the plug!

Many nights Bob Nay, or some of the others would sit by the system until the wee hours of the morning, watching incoming files. We were able to trace (or trick) a few in to revealing who and where they were lina Bell STILL does cooperate, given the right circumstances). One particular nasty fellow lived in Atlanta, but signed in with a fictitious name and a New York address. We actually got a trace on him - he sent loo00000ng flles. Fact is, he was using the company WATTS line. Well, a reader in Atlanta made a personal and somewhat impressive visit to this fellows house. He was running a TRS80-1. No color computer, no

68XX anything, just a modem and the bosses WATTS line. I understand he was over ó months finding decent employment again. Also he donated his TRS-1 to a charity organization, all on the recomendation of the 68 Micro Journal reader and BBS user (his small daughter also used our system and had ask her Dad what one of those files meant). This was not the only one, others we figured out by various methods and contacted them direct - However, it just became too much.

A couple of old hands at the BBS thing suggested that we just ignore them and they would go away. Long distance and all cost, you know. Well, for some of the lesser ones we did, and they did, but for the more vile ones we could not condone the watting period - so the 68 Micro Journal BBS is gone!

In looking back 1 can say that it was a good thing. Most all, 99\% of the offenders we could identify were NOT 68 Micro Journal readers. Some were local CoCo users, most of them were never any problem, and in fact contributed some good material to the system. However, for the problems we had, over 80% or so were non-68XX or S50 bus types, as best we could determine. Oh well, I guess it takes all kinds.

So for all of you out there I want to thank you for the material you supplied via our BBS. We placed some there, you did the rest. It was 95\% a pleasure to operate and maintain the system, the other 5% made it impossible to continue. But, I guess that is the way of a lot of things in this worid.

We still have the hardware, the phone number and tine are still there, maybe someday we can get it going again, if and when we can figure out some way to prevent it from being as before.

Just thought some of you might like to know.

DMW

P.S. 68 Micro Journal will be happy to publish programs from the system - provided they do not infringe on someone elses rights. So if you contribute to the system, let us have a copy (media FLEX or $0 S-9$) and we will attempt to let all 68xx users know.

Might just make you world famous!

Diskette Inventory

Francis MASSEN
8 Cite Strauss
L-9357 BETTENDORF/ Luxembourg, Europe tel: 808021

DISKETTE INYENTORY: THE BARE-BONES SOLUTION
$==$ Until today, I always used the price-winner program FILESORT, by Brian BAILY, published in the May 1981 issue of 68 MICRO JOURNAL to make a disk inventory. (hey DON, no next GREAT CONTEST looming around?). ** Maybe soon - anyone have anything for a GOOOD contest????
This marvelous program makes a complete inventory of the catalogues, and gives a lot of options to rearrange, delete or sort the resulting file. Alas, all that work is done in RAM-area, and with over 250 diskettes to look after, you will soon crash into a 'buffer overflow'!
In November 1984 Tom Weaver published another inventory program, doing essentially the same job, albeit offering not many (in fact none) options.
Here I want to suggest a bare bones method, enabling you to create an unlimited file of your catalogues, in a standard FLEX. TXT format, so you can easy edit and sort it later on.
You have to use 4 programs:

1. the LOG utility by N.Yssel, published in the November 1984 issue of 68 MICRO JOURNAL
2. the standard FLEX DIR.CMD
3.a little BASIC program from myself, named BUILDCAT
3. the standard FLEX SORT/MERGE program Now here is what you have to do to create that complete inventory of your disks:
1.load and run the LOG.CMD typing for instance

H+LOG 1.CAT84

2.using the DIR.CMD, look at every diskette you wish to inventiorate; all these DIR's will be logged into the file CAT84.LOG
3. having finished quit the logging action by typing

++ LOG OFF

4. You now have on disk a catalog file, containing many lines with unwanted and unnecessary informations; run the basic program BUILDCAT to strip these off and create a catalog file containing only the file-name, disk-name-number, date of creation. I kept this little basic program intentially very primitive, to make it transparent and allow easy modifications.
5.Order the resulting .TXT file with the

SORT/MERGE program.
That's all! Really, not a strike of genius, but a very simple and reliable method, and a demonstration of the usefullness of the LOG.CMD !

Here is that basic progran illllocat:
5 REmoe francis Massen dec. 1984
10 REMO MAKE a CATALOG FILE USING THE .LOG-
FILE
$20 \mathrm{REM}=\mathrm{B}$
22 REMO THIS PROGRAM IS TO OE USEO TO OUILO
A FILE COMTAJNIMG ALL 22
aEN-E: THE FILE-WAMES OF THE YARIOUS
catalogues
23 RE 40 REM
90 cosul 2000
100 IMPUT"REAO FROM FILE -RS
110 IMPUT"WRITE TO FILE.......................ES
120 PRIMT:PRIAT:PRIMT
200 OPEN OLD RS AS
210 OPEN HEM IS AS 2
220 OH ERROR GOTO 10000
300 (MPUTLIMEDI.AS
310 (F (AS-"') OR (AS-- -) TMEM 300
320 JF LEFTS(AS,3) ${ }^{\circ} 0$ OtR ${ }^{-}$THEN 300
330 IF LEFTS(A8,3)0"or" THEN 300
340 IF LEFTS(AS,S) SOFAED TMEN 300
350 IF MIOS(AS,S.S) -FILES THEN 300
360 (F LEFTS(AS,4) OOOISR ${ }^{-0}$ THEN GOSUS 700:
GOTO 100
360 ms-mios(as, B,12) :RGB name of fite
370 TS=M1OS(A§, 44, 10) :R\{M-* date of
creation
379 rimoo 28 contalns Mane.ext - disk-name .
dece
380 18-K50" "-08*-"+18
390 PRINT 28
400 PRTMTE2,28
410 COTO 300
100 RCM-.....
710 REM extract dist-neme and disk
120 08-M10s(As.7.8)
730 I=INSTR(2,05," ")
740 IF I=0 THEM 800 :REK dist-nage is 8
ceracters long, so ok...
750 Remoo pad with spaces unell 8
760 OS-MIDS(0s.1,1-1): RENene this is name
770 FOR JoI 10 8
780 DSoDS**
190 mext J
800 REM** look for dist number (beains with
41

820 018-M10S(AS, 1,6)
030 08-05* "+015
890 RE fuRK
2000 REN $=$
2001 PRIMT CHRS(27):CHRS(69): :REMG CLS OM 1119

2020PRJWT"C ATALOG BUILDER -

2040 PRIM
2050 PRJWT'This progran takes tOG-file containing the OtR of the diskettes ${ }^{-}$
2060 PRIMTHE strids the meaningless informotions, and oullds for each file-

nUMBER - DATE-
2080 PRINTThe resulting file ay then be sorted by SORT. ${ }^{\text {REREN }}$
20% PRIMT
2100 RETURM
3000 REM - -
10000 REMNAO ERROR KANDLING
10010 TF ERR-8 TMEN 10100
10020 PRIWTCHRS(T);-FATAL ERRORCCくecececr<<<-
10030 STOP
10100 REM--
10IIO PRIMTCHKS(7)::PRIWT:PRIWT
10120 PRIMT ${ }^{-C a t a l o g-f i l e ~ f i n t s h e d i l}{ }^{-}$
10130 PRTWT
10140 CLOSE J:CLOSE 2
10200 © MO
10210 REM--

Pleasant PL/9

By: Lane Lester

In comparing FLEX to the other operating systems available for 6809 -based computers, it seems that "Friendly FLEX" sums up pretty well the differences. The English-1ike and uncluttered nature of its command ines appeal to all but professional cryptographers and those who yearn for the days when the use of computers was a secret art available only to the few. As you can see from the title of this column, PL/9 is a language that provides a similar attraction. I'd like to introduce you to some of the features that make PL/9 so pleasant to use.

PL/9 is a procedural language like C and pascal. In fact, the easiest way to describe PL/9 is to say that it's a cross between those two languages. The programmer has the same freedom that Cocrovides, plus the of Pascal. To put it in a negative way, PL/9 does not impose on the programmer the heavy constraints of pascal. nor does it have the cryptic appearance of C' code. About the only thing I don't like about PL/g is its name. When you tell somene about it they say "Oh yes like PL/I. Troit whatever that is ile or something else that doesn't generate preconceived notions.

My first micro was a Color Computer, and I've been spoiled by the interpreted, ROM-based BASIC. For me one of PL/9 s best features is that its compiler and excellent line editor are in inemory at the same time. I'm too sloppy a programmer to put up with separate editing, compilation, and in some cases, assembly for every undeclared variable missing ";" and typographical error. When compiling á β L/9 program and an error is encountered, the offending line is displayed with an arrow pointing to the place where the compiler ran into trouble, and an error message is displayed. The editor can imm diately be used to correct the problem and the compile command re-issued. For a more complex problem, a debugger program can be loaded from disk and the program run withjn its very powerful facilities. wasn t always this slowpy and lazy. When I was learning FORTRAN in the late 60^{\prime} s by keypunching the programs and submitting the card decks to the high priests in purdue's computer center. I tended to be much more careful.

One feature of PL/9 that really appreciate is in the area of variable names. Meaningful names do a lot to make programs easier to read and early BASICs with their one and two letter restrictions were most Unhelpful in this regard. Microsoft's Color BASIC at least allows long variable nam s, but difficulties arise from the fact that the interpreter considers only the first two characters A gasoline mileage program I wrote originally had PRICE and PRESENT as variables. which did not work well at all. Microsoft did upgrade their BASIC for the IBM $P C$ by increasing the name size to 16 . PL/9 allows names up to 127 () characters long and all are actually part of the nam. Case
is ignored, so this gives you the freedom to use all upper all lower, or a mixture the underline character encourages multi-word names for added readability, e.g., LOAD_DATA.

If you're starting out to learn a language like BASIC, there are all sorts of help available for beginners. Radio Shacks Color BASIC manuals border on the infantile. CoCo magazines provide a continual supply of tutorialarticles in the language. And in most towns there will be a group of CoConuts who help each other master the capabilities of the language. But the situation changes drastically if you move to something like Pascal. C Forth, or PL/9. Then you're pretty much on your own. Most manuals that come with these languges have little or no tutorial mat rial, so you have to head off to B. Dalton's to'get some help. You'll find books written for beginners for all of the languages... except $\mathrm{PL} / 9$!

Not very encouraging, you say. That would indeed be the case. were it not for the excellent manuals and sample programs that come with the package. Graham Trott has done an outstanding job of providing an introduction to the language for the beqinner, plus a useful collection of 231-page users guide is "aimed at the complete newcomer "and provides quite an education in structured programming. Sample program fragments illustrate the explanations of each feature of the language. At the end of the users guide are 40 pages of example programs which provide further illustration of the way that PL/9 programs are constructed. The 193-page technical reference manual provides convenlent access to information on the editor, compiler debugger, and PL/9 language. At the end of the reference manual are the descriptions and listings of the library programs, which are also included on the PL/9 disk. These are included, as needed, in PL/9 programs to provide I/O with the keyboard, screen. printer and disk. Also included are programs for string functions, real number manlpulation, scientific funćtions, and a Shell sort.

There is plenty more that I could tell you about this fine system, but lets look at an actual PL/9 program, since that's one of the best ways to see what a language is like. About 803 of my computing involves word processing, so an initial project has been to convert my Color Disk BASIC Telewriter files to the FLEX ASCII format. Telewriter stores text in binary so two types of conversion are necessary: binary to ASCII code and Disk BASIC to FLEX file formats. There were a number of ways this could be accomplished, but I ended up using a program I already had to move the binary file to FLEX, and then I wrote the following program to convert from binary to ASCII. CONVERT.CMD does two things that make it easier for me to edit the files with my current editor. DynaStar. First. of course, is the binary to ASCII conversion. but also helpful is that whereever a Telewriter control character is encountered it is replaced by a character used by JUST. the text processor I'm now using.

This program comes under the the heading of "quick and dirty" It's certainly no thing of beauty, just some thing thrown together to get a one-time job done. In fact most of the code is from a program in the PL/9 manual that converts upper case text files to lower case. I just added the neessary stuff to convert Telewriter code to ASCII. As is true of Pascal and C, variables in PL/9 have to be declared as to type; byte (8 bits), integer 16 bitss), or real ($8-b i t$ exponent and 24-blt mantissa). In Lines 5-6 a number of single variables and vectors (single-dimension arrays) are declared at specific locations in RAM. From Line 5 we see that the $16-b i t$ integer POINTER is at $\$ 0000$ and LAST is at $\$ 0002$. Following that is the byte vector NAME at $\$ 0004$, and the large text buffer BUFFER (how appropriate!) at $\$ 0018$.
 Line 24, and Lines 25-29 get everything ready for reading a text file. Lines $31-40$ read the file into the vector BUFFER. YOU'll notice what may be a strange lOOD: REPEAT... FOREVER! This construction is primarily designed for control applications where a routine is repeated as long as the machine is on. But BASIC progranmers are no strangers to this sort of thing, as in:

10 IF NOT EOF (1) THEN 1NPUT1. AS(I): $1=1+1:$ GOTO 10
Lines 34-38 serve the same purpose of breaking out of the REPEAT-FOREVER when the end-of-file or some other error condition occurs.

The Telewriter file has the extension .BIN, so Lines 44-46 open a new file, with the same name and the extension. TXT. In Lines 49-58 We have the REPEAT-UNTIL, a construction found in other languages. This loop outputs the contents of BUFFER to the new disk file after converting each byte from Telewriter to ASCII. This is done with an alternatives than the IF-THEN. Notice in Line 54 that this feature also has an ELSE which in this case does the most common job of the conversion: adding 32 to each byte. In Line, 55 the added bell (or is it a symbol to JUST's "" is performed, Then the converted byte is passed in Line 56 to PROCEDURE OU才PUT for writing to the file.

After the whole file is written a final CR is sent (Line 59), the new file is closed Line 60), and the old file is deleted (Lines 61-62). Line 63 is not part of the program and is placed there by the editor.
.1910
1f CONVERT, Converts Telemriter binary files to ASCII il ORIGIN = $\$ 3300$;
STACK = ';
AT s0000: INTEGER POINTER, LAST: BYTE MAKE 201, BUFFER(10000);

AT \$C840: BYTE FCB, ERROR(319); at sccla: INTEGER LINE_POINTER;

INCLUDE IOSUBS;
INCLUDE FLEX;

```
PROCEDURE ABORT;
REFORT_ERRORT.FCB);
FLEX;
ENDPROC;
PROCEDURE OUTPUT (OYTE CHAR);
PUTCHAR (CHAR);
IF CHAR=CR THEN PUTCHARILF!;
MRITEI.FCB,CHARI:
IF ERROR THEN ABORT;
ENDPROC;
PROCEDURE MAIN;
GET_FILENAME(.FCB);
IF ERROR THEN ABORTi
OPEN_FOR_READ(.FCB);
FCB(59) = SFF;
IF ERROR THEN ABORT;
```

```
POINTER \(=0 ;\)
```

POINTER $=0 ;$
REPEAT
REPEAT
BUFFER(POINTER) = REAE(.FCB);
BUFFER(POINTER) = REAE(.FCB);
IF ERROR THEN
IF ERROR THEN
IF ERROR = 8
IF ERROR = 8
THEN BREAK
THEN BREAK
ELSE ABORT;
ELSE ABORT;
IF BUFFER(POINTER) = 92 THEN BREAK;
IF BUFFER(POINTER) = 92 THEN BREAK;
POINTER $=$ POINTER +1 i
POINTER $=$ POINTER +1 i
FOREVER;
FOREVER;
LAST = POINTER;
LAST = POINTER;
CLOSE_FILE(.FCB1;
CLOSE_FILE(.FCB1;
$F C B(12)={ }^{\prime} T ; F C B(13)={ }^{\prime} x_{;} F C B(14)={ }^{\prime} T_{\text {; }}$
$F C B(12)={ }^{\prime} T ; F C B(13)={ }^{\prime} x_{;} F C B(14)={ }^{\prime} T_{\text {; }}$
OPEN_FOR_MRITEL.FCB1;
OPEN_FOR_MRITEL.FCB1;
IF ERROR THEN ABORT;
IF ERROR THEN ABORT;
POINTER $=0$;
POINTER $=0$;
REPEAT
REPEAT
IF BUFFER(POINTER)
IF BUFFER(POINTER)
CASE 0 THEN BUFFER(POINTER) $=S P_{i}$
CASE 0 THEN BUFFER(POINTER) $=S P_{i}$
CASE 9 THEN BUFFER(POINPER) $=1 i$
CASE 9 THEN BUFFER(POINPER) $=1 i$
CASE 94 THEN BUFFER(POINTER) $=C R$;
CASE 94 THEN BUFFER(POINTER) $=C R$;
ELSE BUFFER(POINTER) = BUFFER(POIMTER) + 32;
ELSE BUFFER(POINTER) = BUFFER(POIMTER) + 32;
IF ! BUFFER(POINTER) > \$7D THEN BUFFER(POINTER) $={ }^{\prime} 1 ;$
IF ! BUFFER(POINTER) > \$7D THEN BUFFER(POINTER) $={ }^{\prime} 1 ;$
OUTPUT (BUFFER(POINTERH);
OUTPUT (BUFFER(POINTERH);
POINTER $=$ POINTER +1 ;
POINTER $=$ POINTER +1 ;
UNTIL POINTER $>=$ LAST;
UNTIL POINTER $>=$ LAST;
OUTPUT (CRI;
OUTPUT (CRI;
CLOSE_FILE (.FCB);

```
CLOSE_FILE (.FCB);
```



```
DELETE FILE (.FCB);
```

```
DELETE FILE (.FCB);
```


68' Micro Journal
 1984 Index of Articles

Back Issues May Be Ordered
 $\$ 3.95$ Per Issue By Writing or Colling Toll Free 1-800-338 6800

Jonusry 1984

FLEX USER NOTES, Anderson
OS9 USER NOTES, Dibble
A BASICO9 Financial Modeling Program, Bovet
EPSON HX-20 Review, Stark
ACORN MOTHER BOARD Review, Abrahams
CCSM Standard MUMPS Review, Dibble
Converting FLEX to OS9, Pass
Bit Bucket - Help - Classifieds
February 1984
FLEX USER NOTES, Anderson
OS9 USER NOTES, DIbble
CONVERTING UNIFLEX TO OS9. Pass
1983 68' MICRO INDEX of ARTICLES
DYNAMITE REVIEW, Dibble
PACK, Gottschall
WORD. BAS \& XON.OVL, Robinson
UNIVERSAL SINGLE BOARD, Leverkusen
OS9 SIG on COMPUSERVE, Bellomo DISK \& RAM DISK TESTING, Johnshoy UPPER \& LOWER CASE CONVERSION, Lanpher Bit Bucket - Help - Classifieds

March 1984
FLEX USER NOTES, Anderson
OS9 USER NOTES, Dibble
C USER NOTES, Commo
DATA STRUCTURE, Pass
Using MM58167 Real Time Clock, Gross
UNIFLEX General Ledger Review, Bram
SSB DOS Utilities, Fraser
Review of RMA and RLINK, Dibble
MIKMAN to enter MIKBUG, Trollope
MOTOROLA 68000 Software Support, Motorola
"PK" Programable Keyboards, Condon
OS-9 Users Group News Letter, Part I
Bit Bucket - Help - Classifieds

April 1984

FLEX USER NOTES, Anderson
OS9 USER NOTES, Dibble
C USER NOTES, COmmo
Where is the 68000, Staff
Programming in C: A Review, Foster
The GIMIX III System, Staff
Remote Pulse Width, Craig \& Ziolkowski
James Bellomo Dies
Day Command for FLEX-9, Mills
OS-9 User Group News Continued, Part II
68000 SAGE System, Lord
Budget, Craig
Bit Bucket - Help - Classifieds

May 1984
FLEX USER NOTES, Anderson
OS9 USER NOTES, Dibble
OS9 Users Group, Puckett
Reading Non-Flex Based Disks, Fraser
Modem 68, Moorfoot
Hazelwood DM-256 Review, Staff
Multi-Tasking w/o Interrupts, Troot
Repairing Mini Floopy Drives, Massen
Improvements ? TO TSC "FILES" Utilities, Walters
Bit Bucket - Help - Classifieds
June 1984
FLEX USER NOTES, Anderson
OS9 USER NOTES, Dibble
C USER NOTES, Pass
Rumors \& Such, DMW
Reading Non-Flex Disk Continued, Fraser
Disk Speed Measurement, Johnshoy
PC, Korte
Hacking the MAC, Wolf
Bit Bucket - Help - Classifieds
July 1984
FLEX USER NOTES, Anderson
OS9 USER NOTES, Dibble
C USER NOTES, Pass
Rumors and Such, DMW
68000 User Notes, Lucido
Windrush IEEE-488 Review, McDaniel
VDisk Review, Pass
Disassembler, Stock
Reading Non-Flex Disks, Fraser
Metalab Review, Nunn
ELEKTRA Motherboard Review, Sims
Corrections
Bit Bucket - Help - Classifieds

August/September 1984

FLEX USER NOTES, Anderson
OS9 USER NOTES, Dibble
C USER NOTES, Pass
68000 User Notes, Lucido
Reading Non-Flex Disks, Fraser
Communicating with OS/9. Thompson \& Pass
Review of S Disk, Bootfix \& Filter Kit I. Pass
Disassembler, Stock
SWTPC Prospering Pioneer
Hyperdisk, Hazelwood
Bit Bucket - Help - Classifieds
October 1984
FLEX USER NOTES, Anderson
OS9 USER NOTES, Dibble
C USER NOTES, Pass
CAT Utility for Flex 12 \& 9, Puglia \& Taylor
LETNUM Routine, Gass

Microware Relocatable Assembler \＆Linker． Pass
68K Experiences，Salzwedel
Cyclic Redundancy Check，Magnus
Music on the 68000，Dildy
KBASIC
Corrections
Bit Bucket－Help－Classifieds
Movenber 1984
FLEX USER Notes，Anderson
OS9 USER Notes，Dibble
C USER Notes，Pass
68000 USER Notes，Lucido
Single Board Computers，DMW
Cobol，Anderson
Data Systems 68 Product，Review
6809 FLEX Diskette Inventory，Weaver
LOG，Yssel
General Purpose Interface Bus，Moore
Bit Bucket－Help－Classifieds
December 1984
FLEX USER Notes，Anderson
OS9 USER Notes，Dibble
C USER Notes，Pass
Single Board Computers，DMW
Computer Excellence Memory Bd，Anderson
68000 USER Notes，Lucido
Turtle Graphics in PL／9，Cole
Software Product review，Ward
Extend a FLEX Dictionary，Fraser
Reading Hard Sectors Disks，Warren
US ALL！，DMW
Documentation，The Necessary Evil， Killebrew Jr．
Development Terminal Program，Hausler Bit Bucket－Help－Classifieds

CoCo Users
 Color Micro Journal Index

Send $\$ 1.95$ to cover 1st Class Postage Please Specify Volune and Issue

Or call To Order 1－800－338 6800

Vol． 1 Isaue 1
This＇I That；Introduction－RLN BASIC Dsers Motes；Adv．BASIC－Baker Baby CoCo；Model 10－Beckett
Inalde the Dragon 32；a look－Rosen Commaicatiag vith jour CoCo；Modems etc－ Rosen
Un CoCo Can＇t READ；Disk Problems？－Pass
Computer TAPES7？；Considerations－LaLone
CHECXS／BAS；Home Use Program－Yates
Laser Usra／BAS；Game Program－Rogers
SOPR Lanar Lander／BAS；Game Program－RLN
Doodle Bug；Review－Patrick

Syather 7；Review－Patrick
Rall Ruaner；Review－Patrick
Megapede；Review－Patrick
Vol． 1 Isave 2
This＇g That；CoCo OS－9－RLN
OS－9 on Color Computer－RLN
Microware Selina r－DMW
CoCo 64K RNH Mod－Abrams
Make CoCo Stlver－LaLone
MLERET BBS－Rosen
CoCo 2 64K and Dlak－RLN
Simple nand Prograna；Hints－Brumley
User Def Punctiona；Hints－Brumley
RARSCAT－Lewis
Elteocalc；Review－Lane
Geography Pac－Williams
ROMBACX－Roberts
Ulzard 64－Patrick
Molti－Pak Interface－Patrick
Pastlane－Hifter
SP－1－Willams
Sanda of EOPt－Patrick
Vol． 1 Issue 3
This ${ }^{6}$ Thet；CoCo 2 Disk Controller－RLN
Linking loader for RS \＆CoCo nax（pt． 1 ）－ Waggoner
Some Basic BASICS about Disk Sjetems－ LaLone
MICROBOOKS；A Tape－Based BASIC Program for Small Business Use－LaLone
COPRIEN；A BASIC Disk Utility－Stark
LARDER；A BASIC＂Lunar Lander＂Game for 4 K － Toscani
GRAPHIC LETTARS；Use a BASIC Subroutine to Display Graphic Letters－Stumpf
PRATDUNP；a BASIC Program to Dump Graphics to a Paper Tiger－Euton
Tutor；Review－Wllliams
Vol． 1 Isave 4
This＇a That；OS－9 Users Group－RLN
OS－9 Tipa；Useful Operating Hints－Aker
Computer Operting Systems；Part 1－staff
Linking Loader for RS \＆CoCo MLE（pt．2） Waggoner
CoCo 2 Harduare $⿴ 囗 十$ Computer－Rosen
Where is the Conputer HOU17－Pass
BASLIST／BAS；a BASIC＂Pretty－Printing＂ Program－Deal
OOPS：Clarification of last months MICROBOOKS Discussion－LaLone
X－I Plota with the MXBO；a Basicog Program－Strunk
The Complete Personsl Accomntant；Review－ LaLone
RDC－1；a CoCo Disk Controller－staff

Vol. 1 Lsane 5
This 'W That; Basic09--and the C CompilerRLN
Converting CoCo BASIC to OS-9 BaaicO9-Pass RDC-1 Disk Controller Chip ChetficationWeeks
A TYRO Neeta OS-9-Kahn
Liakiog Loader for RS $\&$ CoCo FLEX (pt. 3)Waggoner
Dae the MICRO HORKS 80C DISASSEADLER with the FLEX DOS; program-Maltby
MsoICAL/BAS; program-Yates
2amion; Review-Roberts
New RS Jojaticka; Review-Roberts
Vol. 1 Isane 6
This. 'N That; Computers, Software \& Assembly Language Programming??-RLN
LEDs-The Readers
OS-9 SIG on Compaerve-Bellomo
Converting CoCo BASIC to OS-9 Basic09 Part II-Pass
Lioking Losder for RS CoCo PLEX (conclusion)-Waggoner
MYDIR, an OS-9 Asmb Lang 'Pipe' ProgramKahn
Copy M/L Tapea; Basic Program-Martinez
4 DRIVES/AAS-Use Double-sided w/RS DOS
Vl.l; program-Yates
FACE; Review-Garrett
Vol. 1 Iasae 7
This 'That; 6883/6847 Chip Problem, "Help Wanted"-RLN
Daing the CoCo; Introduction-Mann
LLDs-The Readers
CoCo 0S-9-Dibble
Converting CoCo DASIC to OS-9 Dasic09 Conclusion-Pass
OS-9 Tipa; "dsave" command-staff
OS-9 Dsera Group HEUSLETTER

Vol. 1 Iasce 8
This 'N That; A 'New CoCo"' Rumor, RS Disk
Controller Suap and Compiler Daing the CoCo; Computer Surplus-Mann
08-9 Deera Wotea; Big Systems and OS-9 on the CoCo-Dibble
Workiog with 64R-Kahn
MORD-PAK-80 Cd. Board; Review
Macro-80C; Review-Pass
Bepate Ke; Review-Mann
Raster Hemory Syater (RMS); Product Announcement-Motorola

Vol. 1 Iasne 9
Thia.'N That; CoCo DYNACALC and "Help Wanted"-RLN
OS-9 Daers Motes; More about the CoCo Disk Driver-Dibble
Daing the CoCo; CoCo Disk Driver-Mann

RON to RAM-Kahn
OS-9 Deera Group newsietter
 BDLBOORS/BAS-LaLone
Cookie Monstera LETTER CRUTCH; Review-Mann
Mastar critis; Review-Mann
GRAPHICOK; Review-Mann
BADYLON; Review-Patrick
Vol. 1 Iasae 10
Thla That; New Columns on the Way-RLN
Uaing the CoCo; Soldering for the NewcomerMann
Adrertiser's Comer
A PRDTR for Baalc09-Volgts
TAPE Pile Tranafera-McGarty
ROM to RAM (update)-Kahn
Hemort1
Helpful Hint; A "PCLEAR 0" for Ext. Basic \& Diak Ext. Baaic-Brumley
MGIGRAPH; Review-Mann
ColorSoft SBA; Review-Perotti
DYPMs; Review-LaLone
TEXTPRO III; Review-Brumley
Vol. 1 Issae 11
This 'R That; Book Reviews, Etc.-RLN Basic09 Basic; IN THE BEGINNING...-Voigts Daing Baaic; Introduction-Brumley DISIDE the CoCo; Keypads \& Such-Chapple Advertiaers Corner
Tape Pile Tranafer (pt. 2)-McGarry
CoCo OS/9 RS232 Hodule-Pass
Vol. 1 Iasae 12
This 'm Thet; a 'NEW GAME' Cl ?-RLN Uaing the CoCo; Function Keys for CoCo-Mann Masme the CoCo, Microprocessor-Chapple
Adnertiser'e Corner
ML Dtilitiea; A Search of the Perfect Utillty-Janecki
Baic09 Baalc; No line Numbers-Voigts Uaing Balc; Corrections to SDPRO-Brumley Pirat Step Into 08-9-Dibble
EDIT/BAS-LaLone
TAPE Pile Tranafera (conclusion)-McGarty Daing the RS DSRCOH Rountine-Mclaughlin The Peeper 2.0; Review-Mann

Vol. 2 Iasce 1
This. 'N That; Dragon Computer Update \& Interpreters and Compilers-RLN
Daing Baalc; Sorting-Brumley
Inaide the CoCo; Memorles-Chapple
Daing the CoCo; Letter Replies-Mann
Basic09 Basc; Packing-Voigts
K Detlities; ORACLE II Cont.-Janecki
HINTIEXT/BAS-Belgard
Plonting-Point Ari thatetic-Pass
Daing the RS DSKCON Routine-Mclaughlin
Color Monitor; Review-Janecki
Star Trap; Review-Mann

Vol. 2 Iasue 2
This 'M Thet; A "Bug" Fix, Computer(s) in the Schools-RLN
Uaing the CoCo; Upgrading CoCo to 64K RAMMann
Baalc09 Baaic; To Eitor is Human To Forgive Sometimes Takes A Computer-Volgts
ML. Utilltiea; Disassemblers-Janecki

Jaing BASIC; Color BASIC-Brumley
Iralde the CoCo; PIA's-Chapple
CP/K on the Color Coaputer-Nygren
BlackJack Rojale; Review-Mann
Basic09 Tour Cuide Book; Review-Volgts
Vol. 2 Iasue 3
This 'N That; "Smoked" CoCo 2's-RLN
Uaing the CoCo; The Magic Pokefile Part IMann
Baalc09 Baalc; Number Crunches-Volgts
Daing Baalc; Tokenizing-Brumley
ML Utilitiea; Disassembler Pt. 2-Janecki
Inalde the CoCo; More on the PIAs-Chapple
Programera Calculator; Asmb Lang ProgramLewis
CP/H on the Color Compoter; Final PartNygren
Fastape; Review-Mann
Vol. 2 Iasue 4
This 'N That; Education and the CoCo-RLN
Oaing Baalc; Looping-Brumley
Iaside the CoCo; The Powerful "SAM"-Chapple
Educetional Porue
Basic09 BASIC; Proceeding w/ ProceduresVolgts
Uaing the CoCo; The Magic Pokefile Part IIMann
ML Utillties; Disassemblers P. 3-Janecki
Read RS D1ak Directoriea from OS-9-McGarty
ADDRESS FLE/BAS-Chapple
Computerized Learning Processor; ReviewMann
Multiple Progran Procesaor; Review-Mann
JBM Thatice Baaic09 Dtilitiea-Voigts
Vol. 2 Iaave 5
Thls. 'M That; Where to from here, Tandy? and a "NEW" CoCo Sorta!!-RLN
Baalc09 Basici Pascal Programming and
Basic09-Voigts
Uaing Baalc; A Question of Output-Brumley
Inalde the CoCo; The Powerful "SaM" Part 2Chapple
Building PROTOTYPE Hardvare for the CoCoHart
LaSER/BAS-LaLone
Taxd; Review-Mann
ADOS; Review-Mann
"Lookup/Slookup" Baaic09 Uellitiea-Voigts
Diak Ueility $2.0 \& 2.1-M a n n$

96RX-M Memort Expander-Mann
Elite Word; Review-LaLone
Elitepile; Review-LaLone
OS-9 Text Tools-Kahn
C000DURI 2.1-Mann
"String Arfthetic" Basic09 Deillties-Voigts

BIT BUCKET

DIC:TAL SPECIALTIES
S124 Raprilode
ST. LOOES
ST. LOots. No, ©
(3i4) 892-03S.
6a viceo sotimvol
SpOO CaBencora Sobsh
A:ce日. IN 37343
Dear Don
 dunter collife. I found that she lech of direri eorsed of piletion

 Coogetsile eleh ihe eeer ceite. Asi have parallel pricter perie at

 ceesobe emeper oersorm.

 eher it sele fer peofle.

- pRIMTEI pass thed upalgti en
- adogess ot primteli pia
- PIA M? EOA 2 OR MP-10 002日D IP

- OTMEINESEPla 15 pa BE Tite

- STSTPM MUST MAVE RAR AT E8OO
- STSTEM 20vates

ecs	c.puyp	ego	sces3
C80)	vaing	L0\%	(cpos
CD12	OUTCH2	100	${ }^{\text {CCD }} 12$
CDIE	psitic	¢00	${ }^{\text {CDDI }}$
CD24	pcaup	Lou	SCD24
0010	POET 7	EOO	170
	- asctr	Coor	EOUntes
0006	LOP	800	304
000A	1.	Et	104
0009	CR	cou	300
608!	C-8:nt	EOJ	111

- reterabl label codates

EAEE COspot sou seste
-DETGOLT PORT GCDEESS
8032 0.7_10 cqo seos:

MORSE SOFTOODE
18871 Roseland Gate
Richmond D.C. Can.
VIA RI

Dear Editor: Re 059 QUS in setting up standard paths

You don't include nearly enough asterial on CS9 in your magazine, so here is my contribution to hell you out.

The following progras shows that the standard 059 paths STBIN and STDERR are not indesencent, and changing options on one will affect the other in the same way. This 15 seldom cesireable.

The program includes a text string "helms" mich contains an ewbeddec carriage return. If this string is printed with the 059 : surittn directive, the text after the CR should not be output IF THE LINE EDITING OPTIONS ON ThE PATH APE SEE.

When the orogras is run the following output results (The line numbers are not printed):

1. options on stdin are standard
2. this is ok
3.
4. options on stein are clear
5. this is ox
6. this should not print
7. ster has been oared to /TEM
Q. stein potions are still clear
8. this is ok
! 0.
This proves that clearing the line editing option on stein also cleared it on ster. Why does this napoen? The last test provides a clue. If ster is opened exalicitely then the problem does not occur. Thus I deduce that when the SML sets up the standard patin, it must use the ISDUP call not the reopen. As a result all three paths share the
sure path descriptor and changing the setting of one changes them all.

ifpl use /de/defs/osydefs use /de/cefs/osstefs ends
\bmod mocsi2, cores, prgrerobjct, pent +1 , xepstr, oaten
soong foes "tsturnns

-

org 0 begin data area
jconoot rub 32
staksot reid chat
catenc equ .
+
helms fec "this is $0 \mathrm{k}^{\circ}$, sen, ser, "this should not print "

Lhelrsg eau n-helen
stdoesg fec "options on stein are standard", sen, sen
lstecosg qu astdousg
clomp feb sen, sid
fcc "options on stein are clear", sen, sol
Lelroesg qu *-clroesg
pthesg fcc "Ster has now been ogeed to /tern", sen, sep
fee "stain options still clear", sen, 900
Lothosg eau -pthesg
conopt fob $0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$
stcpth fees "/ TEMN
t


```
    059 isclose
    leax STDpth, QCr
    :da %NRITE.
    059 Iropen should use path te
    mec tst18
    os9 F&Pent
tsti8 leax pt.usg, pcr
    ldy slpthesg
    os9 ISNrite
    leax neimag, pCr
    ioy timelmog
    059 isuratLn should eno with first or and does
- reset the options on stdin
    102 答
    ldD $ss.opt
    leax :conopt,u
    059 ! Iseistt
    os9 FSexit
    meod
codsiz ecu %
```


0×8 ens.

\qquad
sclapito bll inkas 1.50
spaplice sil tests 1.208

seer mon.

1. Uegade disk ghily for any wingruah prowet $01 . \infty$
 198.00 3. Leerabe diat and aensel tor M/9 or scespition i11 us.00 The abere prices include atr caill pestage.
conn meolen neoc: eos
\qquad
\qquad
agmes 2.50

n.to 0.23
seseatite 111 1.80
To take adventage of this service the user aneti
2. Gerum the picien noisen aitb chat a comp.

 allt oill bo repurmet eltmoul oction.

MOTTOFOLA INC.
Microorocessor Products Division Bot to tweotem Bive
Avatin Toces 7ors.
For further information contact:
Editor Contact: Val Beuer

Press

512 928-6804
Reader Contact: Dean Mosley 512 40-2839

Information

MOTOROLA INTRODOCES M68000 SERIES

DEA COITREOLLERS

Motorole Microproceeeor
Products Group introduces their complete line of bigh-performance
 MC68442, and WC68450. These DHA devices complement the performance end arcbicaceural cepoblltelea of tbe M8000 MPD fanity by providioc
 quick, efficient manner with minituan intervention by the MPU itaelf; thus, these devices aid in high throughpent aintenance.

The NC68440, NCBO442, and MC6A4SO ere direccly comperible with the mso00 bue erchscecture end provide full eupport for all bue exception soadictona defined for the H68000 Fantly. Thean devicee eri eleo compeibla vith the niphe and veasabua asynchronous bus standards.

The mCAS660 to a cro-chaanal high-periorence orn devica that supports a 24 -bit linear address space. The MC68442 is an extended verston of the mctesso, providing tull 32 bics of isnear addrasaing and en addtelonal fuoctoo code ourgur. The MC68sso is a four-channel DMA controller which is upward pin and register coepoesble with the MC6S440.

The progrecoble function code ourpure of these devices can be used co apecity M68000 competsble bus cycle eype toformecton on eech orn bus cycle. These ond devices can chus directy letertace vich mesory menegeont devices such se the MC6B6SL. The addictonal funetion code output of the MC68642 cao be uied co diatinguish becveen omen cpu bue cyclea.

The NC68440, NC68662, and MCB8:50 aldow four differane adan of DMA request senerection. These oden include che erternally-generated cycle oceal and burat modea, es vell act the taternally-generated maicue raca and dimited race auto requeet (Lene) eodes. Is the LaN mode. the amount of the cotal evallabla bua banduideh ueliliad by oren chanal to programable. Thla feature allowa the arn' be utilizacioa co bo callored to the eveilable bus besduideh Ia atran ayetes. Theee ond devicea support a variety of erpltcitly or leplicicly addresead peripherela wich flezibla handshaktog coavanctooe.
both the NCBOS4O and NCBAMS provide two hlgh-perforance. 16-bit men chancels and have the capablicy of opereting an an
-bic deta bue in conjunceion with the MC68008 mpl. Thase devices ull be avallable in 8. 10. and 12.5 mak versions ylelding maximan peripherel-to-mentry ratee of 6. 5. and 6.25 Megebytes/second. ssepoctivaly.

The MC6A450 10 © Cour-channel. 16-bite OHN controiler ehat euppores e 24-bis liaear eddress epace. le is a pin and ragiatar coegetsble eupersac of the mc6saly. In eddition to two more ona chensels, the MC68GSO supporte grester flexibility in the own temester operatione, tr also fully supporto errey chained and linked erray chained OWA eranafer opererions.

The mC68450 elso eupporte peripheral generated channel start pulse and eycle eteal with hold aode. The cyete seeal uith mold feeture cen be ueed co minimize the bue arbitrecion overhead In the limited rate suto requeet eranefer sode. Thio pert can eccomodece byes. word, add alsgaed vord, and long vord opersend erensfers. The MCGB450 will be evallable in and 90 modz verstone providing and S Mbytelece ceximin cranefer retes, reapectively.

The MC68640, YC68442, and YC686SO era svallable in e 68-lesd pin grid errey peckage. The mC68642 10 priced $\$ 99.69$ sa the PeA. The HC68660 10 elso avallable In e 66-pin Dip, end is priced 839.69 for plearic. The mC686SO is eleo avallebie in a 66-pin ceralc Dip and te priced 878.43. dil theee pricee ere for 100 plece quantlelea. saepliat is nov, ville production quantieles ulll be evallable 1985.

MOTOROLA ANNOLNCES
A GAK BIT DYNAMIC RAM
THE MCMOI64BPIS

Reacer Contacr: Beriy Prince 5129286700

Motorola Kemory Products Division
announces avalability of the MCM\&164BPIS, a 64 K Sit HMOS Dynamic Ranoom Access Memory (RAM). This yield-erstaiced high-speed version of the popular MCM6669A, fearures a smaller die size and laser redundancy.

The MC.M416a8PIs incorporates a maximum iso nenoseconds (ns) access cime with low maximurn power dissipations of 302.5 milliwarts (mw) th the ecive mode and 22 mw standby, optimizing its advantage in high oensity mainframe memory systems.

With a 128 -cycle 2 millisecond (ms) Refrech, and fass Page Mode Cycle time of ISSns the MC.Mal6\&BPIS maintains upward pin compatibility from the 16K MCuull6 RAM and MCM4517 RAM, as well as being fully TTL conpatiole. The device, containing RAS-only Retresh mode and CRS controlled ouiput, operaies trom a single +5 volt (v) (: 10%) power supply. By mulet-plexing row-and-column-address inguts, the MC.M4164BPIS can be packaged in a standiard $i 6$-pin dual-in-itne plastic package (DIP).

The MCNil64BPIS is availeble now, and pricing in quantities of 1.24 is 54. "4 each: 53.57 each for 25 - 249i and \$5.18 each tor 250-299. Con race :Nur distributor or local Motorola sales office for further information.

MOTOROLA IMTRODUCES TEE MC68881
 BICR FERYOWUNCE FLOATIGG PROCESSOR...

Producte Croup hae expanded its high performaner tamily of Kleroproceseor Units (MPUs) and perlpheraie with ehe íneroduction of the HCE8881 Floating. Posne Coprocessor (PPCP). The MC68881 is a high parformance. ingle chip ticmos VLSt flootingipoint coproceseor. The PPCP is primarily ineanded co oparate ce e closely-coupled coprocaseor with the full $12-b l e$ ne68020 MPI. but it can also operate as a memory-mapped peripheral in systems based on any other ms8000 faeily MPU.

Gigh performance, broad based funcrioneliey, and flexibility facilitate vee in e vide renge of epplicatione. The MC68881 cev be used in parformance of graphic work etacione. Computer Autoented Dealen (CAD), and Computer Atded Engineerins (CAE) zyotean. High performance uith raduced alzo and cost will enhance scientific analysis systems, medical equipment, and robotic and numprices conerol epplicarione. The mC68881 places che pover of acientific computer vitb coaplex functione on aingle ehip. reaucting the ilae and coar of daskop ayocema.

The NC68881 perfore cloacing poine enth ealculations in etrlet eccordence with the eose recent reviolon of the Ineticute Of Electricel and Electronic Enginaera (IEIE) Floating Polnt Specificetion (P7SG Dreft 10.0). Thly conformace guerentean the suppore of all required operations, dete typas, rounding sodey, and roundine preclelons. The MC68881 la the only floeting point chip on the market today that can make this guarantee.

The HC68881 calculetee bsole meth funceione (add, suberect, muleipiy, and divide) culce ae fact an other elnele-chip eath procsesor. To addition to the opersesone definad by llet, the yc68881 perform a full eateccion of crenscendencal and nonetrenceandentel functions. These opersetione inctude. but ere not liafted co, root viluis, erigonometic functions. exponentisle, hyperbollce, and logerithalce. All functione ara celculeted co 80 bite of preciaion in herdware. The deasp of the FPCP elfmidetes Ineffletenctes sesocisted with execucing coftuera "esualopea" vie herdvare implamentation.

In 32-81t mC68020 baned eyatean. the MPU and the PPCP comeancate vie the Coproceseor Incerface, wich le e etenderd Geeture of the MC68020 srchscectura. The MPU and che PPCP ohere the task of interconnect. The MPU peses coprocessor inetructions to the me68as. Thie flexible intarconnect echeed is a coublinetion of etenderd elgail linea and coproceseor inetructions. Mo apeciel sfgele are required. The Coproceseor Interface to eransparent to the syate programior, et coprocesiot inetructions era vileten
 can operace concurcencly with che eala proceasor, charaby fraeing the CPU (Centrel Procesaine Unit) for other teate. The MC68881 will suppore furura seneracione of M68000 fomily processors by utilizing the standard Coprocessor Interface.

Floating point functiona can be added is masory oupped pertphersle zo other M6s000 MPUe Including the Reduced Sus rC60008 the $16 / 32$－bic mct8000，the Viftual Mamory mc68010，and their Expanded Virtual MCB8O1？．Thle te aceoaplished by providine Instruction equencer that emulate the protocol of the Coprocestor Interface．

The ncbsad archicecture includee a 67－blt Aritheetic linit Berrel Shifter，and aighe so－ble general purpoae regiaters． Uaing the 2 eicron gCHOS proceas，this high deraity device containe An effective tranaistor count of epproximately 155,000 on chip of 270×330 millisetera，and lov power diesipation of less than
 （Mas）and 16.07 ghz．it to packaged in a 60－lead Pin Grld array with 1 inch square footprint．

Samplaf to Alpha and Beta alte cuttomert to enaure complete eperationa！Integrity began in December，298t，and will continue through february，1985．General samples of the Me68ast at 12.5 gots vill be available beginning In March，1985，liatted quality production scheduled to begin 1π July．1985．Sample piece price 15 5375.00 ．

```
Ltgrom
```



```
OOntLand, Oी 872JO
Wank L．Morrman
OntLand，Oी g72コO
5031686．1097
```


Press Release！

 trper of functioas，precoflaed variabies，end cogatants．lacluded op Cbe flek

frentow cuszomert showid eepd in their dipze for ifpdere．laclude
 daye atine purehise of previous uptate．

 diatributoris．

	7．5x	059
North Amerticai	8．8，M01s	B．z．Eman
	spon carnanars salra Ro．	
Phone：	$\begin{aligned} & \text { H1ksec; TN } 37363 \\ & 1-600 \text {; } 28-6800 \end{aligned}$	
Loslasa，	ytrpausu	TBYAMAY LTD LOSOM，imetomoshias DC以 2012π
	Hontew wroutourss	
	¢0ese mismy	
	Conrols．एculd	
	mis 95d	
reoos：	（652） 400086	（0sa2）A2s825
Germany：		ail sormuer
	Io semarseserole 36	forphrsatyale is 0－6903 Bebr：esbet Wat Caspeng
	D－5321 ITT1	
	Veat cermay	
Pboner	$06523-297$	（0 62 03） 6741
3 Pectess	raks moto ncragess	Fanst mozo
	F．0． 608380	
	Derilinghurat， 5 SW	
	2010 Australia	
Proae：	（612） 3449111	

ZRELEvRITTEX EnTERPRISES
 Nor neman
 product ansouncerems

Wellviticten Enterpriese ia pleased to announce che avallabilicy of our diek aubayorem for 6809 computers usang the 55－50 bus．The oubsyatem includee cop－queticy 27 ME （formeted）bard disk drive，bard disk controlder，interface card（requicea 5S－30 slor），ald cablea，and a minifloppy diaketce of cource asteabler languege interface progreas for your choice of FLEX $9^{\circ}, 059 / 1 \%$ or OS $9 / 111^{\circ}$ ．The drive and controller ay be mounced inside a computer chessis（dike Saoke Signa！Chiefean＂）or in eeporate cabinet with power upply（like the ELEXTRA HD－5W from MAA Chicago for \＄199）． The introduceosy price is $\$ 2850$（check or money order）．For chose viohins co ousply cheir ow 5ifl0 or ST506 hard disk drive，che above deacribed aubayaten ainus the 27 MB drive is available for $\$ 600$ ．The $5 S-30$ incerface card and －oftuare ere available for $\$ 200$ ．Onlahoma reaidents aune add cales cax．Please describe your hardvare，port size． and veraion of operating bystem vhen ordering．Call \｛ius） 30i－bi56 for sore derailed information．

Dear Don，
 purchase troe him of a Gisis Box24 video bourd to po with the smipc beot oystee I xust bought fros Mon Anderson of Am Arbor，Michigan The DC－4 diak drive controller mas purchased troe Joe Aulicino of Brookiln，Men York The SWTPC began life in 1976 as a 6800 oystee，afuch must quality it as one of

 oope a

Center ar crivition studla
worly Ropliet Coltorn
linetorna va 2430\％

頻 Micromorion
ler werne no esos

50R TMEDUATE RELENSE
 Febeuery E ．lsas
 ATM：EXY PRODNET EPITRS
 LInea gant－Publicist （233）बतا

LDS Angeles，CA．Bot．©－－Micranotion is plenser to anmounce the release of miterforth for chineinto a cooputer．Micepforth is a state－of－therert

 coolbor．Aalacetalale utiltites and trantient deftilitions anye il posside eo
 and rasfoent debugper are clancord peaturis．maste－foren aasctly atcies ene Forthres itemard dialect de eribed in Mastering Forth（bady．Isen）．Antch is incluan in the pactepo．

Materfores nerstion 1.0 alto is avaitable for Use tan M，ene Apole it

 axtenstons oralleale．

 （213］221－040．
（213）ET－4．

EAS|
for dempint rezease - Edicor: Cownct Dr. b. Louts ind at 415/563-9335 for more information.

PUBLICATION - "CASE ONE"

CAEE ONE is a blumethy reasletter on the ucage and understanding of coupcer applicatlone ungat civil engineers, cancraceors, of arcilitects. CASE OC features Infonmtive articles on how co hay sofnere and hardinere, prectical tipe on effectively using computers, and valuable information on current trends in computer technology. CASE ONE also oqphasizes the utilization of the seate-of-cheart ind crocomputer software such as spreadsheets and database narnagovent prograte for cectolcal applications. Price: $\$ 30.00 /$ year. Fori somple coples are available for interested redors. Send inquities an comparty letterteads to: EASI Inc.. 2030 Undon Street, Sidite 380, San Fratcisco, CA 24123. 415/563-9335. 1985. 1SSN: 0743-1732.

RRLLCATICR/COPPANK UTERATURE - "BITS"
Business, inchustrial \& Tecinical Softurare catalog \& Oyyer's Gilde
BITS is a catalog and hyer's gulde of compurer softare for the construction lixtistiy. The 44-page catalog is puiblisied by Enginecting 8 Achitectural Systeras Irternational inc. (EASII. BIIS fencures prectical areicles of interest to coquirertising construction professionals, in eddition to conpreterosive deactiptions of over one-hactred couplet prograns in the areas of general tusineas and ecientific applicatlars, catpeer alded desigi and deftirg, englneतing graphics, critical path
atrailing, estlmating, eonstriction reragerens, strimcarsl, grotectoical ard azoctritical enginegring, eaveyse and hydraulics/iydrology. Pricod at $\$ 6.00$ per copy, BITS wlll be sent to interested renders TREE. Send inquiries an compary lettertieds to: ENSI Inc.. 2030 Unison sereet, Siste 380, Sem francisco, CA 96123. 415/563-9335.

The new St-2800 syalem - a complete Gak tmin bublness of hobb ist computer is only one of its many possible configurations. Among its leatures ace: - Small enough to note in your handl IEurocard aize: $3.9 \times 6.3^{\circ}$) - Iwo doand "eystom" ror greater versatilily inen fingle board computers. - CPU Board - powerful BBOOE processor, 16K or GAK RAM, 2K.BK EPROM, 2 PS232 lelial ports with sollware progeammable boud rates. is bri RS232 intial ports with soilware programmable baud rates, is or counlantimet Run Ihe CPU board alk Dr itself, or
our FDC Doad inio ithe a pansion connector.

- FOC BOUd - double-sided/double-density lloper disk controller with adjuatment tree digilal deta soparator and wrise precompensation, 2.8 but adjuatmoni free digilal data soparator and wrise precon
Avaliable an Dare PC Doards or huly ascembled end tasted boands, All have solder mash boin aroes plus allkscieened comoonent overlay.

05-9 for only $349 ?$

Well, not quite Bui thate all you poy for our OS-9 Conversion Package which bels you use the low coal Radio Shack CoCo verision ol OS 9 on our ST. 2900 aystern Save $\$ 131$ ofl the augested list price of OS. 91 Wo programming is Invetved. Supporla COCO OS 9 and slendard OS 9 format diske.
CPU bare board plus EDROM S5 FLEX Conversoon Package $\$ 29$ FOC Dove Doird Sus OS9 Conversion Pachage 5199
CFU. FDC board cet assambled and iested CPU - FDC boord cet assombled and tested 2328 - Add $\$ 5$ shippinglianding is 10 overseesh. Theso pnces are in u S funds Cens dian ordess call on write lor pricea Terms; money order, cerlisied checm. VISA

 complote price list (604) $2554485 \quad 145 \mathrm{pm}$ PST)

2261 E. 11 th Ave. Vancouver, B.C., Canada V5N 127

Give Your O8.8 Systens The Power It Deserves! Total Management Planning Sofware presents

The 7ПППान
 POWER SERIES

New! version! The TMP FREEFORMFILER UNIQUE CAPABILITIES:

- THE: OBNECTIVE: For Chnae whn wan to randomly store informo. tion, but nutieve it quickly, the FREEFORM FIL.ER is desigred to bridge the gap between word praceseing and iraditional dalatraar toanagement proktama
- THE KEYWORD 8 EIEM: Aa you enter er edit your Lext, your can melect any word an a "KEYWORD" ov "KEYPHRASE." Each "CARD" can contain as many an 117 KtYWORDS, and ap to nine pages of rext simitar $\ln \mathrm{n} 3^{\prime \prime} \times 5^{\text {" }}$ card, wish no field restrictions Each "FILE DRAWE:R" can mntain up to 32,767 pered
DRAHE SEARCH: Search for the Card Titise. KEYWORD, or a con
bInatlon of both. Plun "WHRD CARD SEARCKES" bave time?
- THE RESUI:TS: Inst the tites of cards found, print, or write the cards to a disk file for later printing or use with a word procesor. GIVE YOU MORE ABILITIES:
* BUSINESS: Appointmenta office phone and uddress indemea in-
ventorv, mervice calls, wendor lintas and knles ordelk
* WRITERS AND RESEARCHERS: For indezing, croas
referencing or caluloging and legal and medical research.
* PERSONALZ The posabibitios aro endless.... art and coin col
fectinna, bill paying, tax remadk and home inventary.
NOTE: The FREEFORM/FILER intertates data into the "POWER MANAGER;'
'OU'MICRO JOLHNAL Said: 'TMPFREEFORM FILEK LA 日 fex ible P gram that can bu used for emultitude of Lavks without requiring a Compuier Science hackground a very useful Progrom."
Retjuires 128K. OS-9 Verxion, \$195; Uniflex version, $\$ 295$.

The TMP POWER MANAGER

Beat In Its Class

POWERFUL CAPABILITIES:

- More characters per recond (7500) than any ocher protram in itn cloest
in Each database can contain 32.767 neords with up to 150 fields
in rach record and up to 50 eharacere in each field
- Powerful Sort and Report Ceneration capabilities
- SORTING on any field or on a combination of fields
- Iniricate math CAlCULATING butween fielda

GIVE YOU MORE ABILITIES:

- POWER MANAGER can mpate CUYOOMIZED LETVERS, INVOICES COLUMNAR REPORTS OR LAAEL. FORMATS for mailing!
- Our Usera put POWER MANAGER to work for them to do: customer mailinga ... past due notices... invoicing . . salpe analyus inventoriencredit, insuranco and employec neconds client profile reporia tracking stock portfolios and much more
- THE BOTTOM LINE: The POWER MANAGER is the best in ite clnamt liequires t2AK, \$385. (OS.9 Only)

The TMP POWER PLANNER

Unergualled in sipered and Power:

* The POWER PLANNER is an electranic spreadsheet with extrn Speed and Power due to a unique feature called "circular acferencing" that recenlculaten only the related cella in the spreodshect
*Data and formulua can be entered INi ANY ORDER. And, you don't
have to knrp recalculating for the right answer as in other spreadnheets - SPECIALIIZE REPORTS can be easily created by overlaying any number of screona and automatically updating one appeadsteel with number
* Other features include "Snap-Shot" printing, full 13-digit precision standard arithmetic and trig functions and a worksheet that will display up to 2 s rowa by 255 columine
Tor Bud Spead and Power of the POW'ER PLANNER make it a natural for Budgeting Cath Flow Comparicons Sales Fortuara Proriezon Pro eztions and all kinda of Financial Aralyain and "What if" Cabculations Requires EAK 250 (0\$0 ()nly).

The TMP FRONTEND . . . A Powerful Menu Program * The FRONTEND allows the user to call up TMP or other programs such as application programs, editors, shell scripts or commands from a menu system. Capacity is seven menu screens, each with up to 36 menu
options producing 252 options Can be called from nonTMP programs R quires 64 K , OS-9 Version $\mathbf{5 0}$. Unißer Version, $\$ 75$.

e TMP LABELER

- Lels you make large quantities of labola in meconda with uptiona for automatic numbering and zelecting the number of copies of each label Variable pitch and 8-tine acreen, Great for Sarial Numbers, Inventory, or making a quick Shipging Label, \$75, Uniflex Oniy.

- ORDERINC INFORMATION: TMP SOFTWARE 2431 E. Douglas - Wichita, Kansas - 67211

- OR CAL.I. TOLLFREE: $1800-25$. 1382 Ext. 47

We accept VISA, MC. AMEX, money orders and checks.

Classified Advertising

SSB 2 MHz 6809 4Meg Hard, DSDD floppy 96K, OS-9, Introl-C, BASICO9, much more. Beat offer. Also DSDD drive, 16K, SS-50 Chasis, SHTPC boards, Terminals, MX-80. Robert (414)755-6982

SS50 6809 ayatem, includes F\&D BMB1, Data Systema 6809 \& 64K DRAM cards, F\&D floopy disk interface, 2 aerial $1 / 0$ cards, and two 40 track disk drives. All hardware has complete doc. Runs FLEX9 OS. Also includes Screditor III, Spreadsheet program and lots of utilities. Jim (201) 299-9499 or write POB 497 C , Covent Station, N.J. 07961. Any reasonable accepted.

OS-9" SOFTWARE

SDISK—Standard disk driver module allows the use of 35,40 , or 80 track double slded drives with COCO OS.9 plus you can read/writelformat the OS.9 formats used by other OS. 9 systems. $\$ 29.95$
SDISK + BOOTFIX-As above plus boot directly from a double sided diskette $\$ 35.95$
FILTER KIT *1—Eleven OS. 9 utllitles for "wild card" directory lists, copies, moves, deletes, sorts, etc. Now includes disk sector edit utility also. \$29.95 (\$31.95)

FILTER KIT 糸2—Macgen command macro generator builds new commands by comblning old ones with parameter substitution, 10 other utilities. \$29.95 (\$31.95)
HACKER'S KIT \#1—Disassembler and related utilltles allow disassembly from memory, flle. \$24.95 (\$26.95)
PC-XFER UTILITIES - Utilities to read/write and format MS.DOS ${ }^{\text {m }}$ diskettes on CoCo under OS-9. Also transfer files between RS disk basic and OS-9 (requires sdisk). $\$ 45.00$
SS. 50 USERS: Half price closeout of 256K dynamic ram boards, making way for new Megabyte design.

BOLD prices are CoCo OS-9 fommat disk, other formats (in parenthesis) specify fonnat and OS-9 level. All onders prepaid or COD, VISA and MasterCaid accepted. Add $\$ 1.50$ S\&H on prepaid, COD actual charges added.
D.P. Johnson, 7655 S.W. Cedarcrest St.

Portland, OR 97223 (503) 2448152
(For best serv ce coll between 9.11 AM Pacific Time)
OSO it e Irademerk of Microwere end Moiorda Inc.
MS-00s is a Irademark of Miciosort. Ine.

TELETYPE Model 43 PRIETER - with serial (RS232) interface, and full ASCII keyboard. LIRE UEU - New coat \$1295.00-ONLY \$759.00 ready to run.
Call Tom - Bob, CPI (615) 842-4600
**
For Sale: Motorola 128K Memory Boards, removed from SHPTC S/09 \$795.00, SWPTC 8212 Terminals Demoatrators $\$ 795.00$, Hazelwood Dynamic 64 K Memory Boards \$395.00 Call ask for Tom (615) 842-4600 *相
Wanted to Buy: Used $6800 \& 6809$ FLEX software. Commercial and public domain. Send description and asking price to: John Current, P.O. Box 273 Honolulu, HI 96859 -10
Selling GIMIX 6809 computer with clock, DMA disk controller, 56K RAM. FLEX-9, OS-9 software. Only $\$ 1295$.
John Pomeroy (216) 372-4457.
2 Tandon SS/SD or DD drives-15 hrs total time, currently in use. Larty Hughes, Prestona Burg, Ky 41653 (606)886-6049

HARD DISK COMPUTER SYSTEM FEATURES OS-9 AND STAR-DOS

Tlle PJ. 69 computer line is expanding!
The neweat addition fealures:

- 5 M byte $5^{1 / 6^{\circ}}$ WInchester Drive
- 140 track DS/DD drive (For 80TR add SSO)
- Parallel Printer interlace a Cabie
- 2 AS232 Serial Ports
- 6809E 1 MHZ Procearor
- Switching Power Supply
- Seleci OS.9 or STAR.OOS ar no extra cost
- Call lor other configurallons
-PT69XT $\$ 1999.95$
with 10 MEG WIncliester Option • $\$ 200$
-PTBSPC 240 TR drives, no Winctieater or Printer interlace. choice of OS-9 or STAR-DOS $\$ 1295.00$

PERIPHERAL TECHNOLOGY

"Supplying Floppy Disk Controllers Since 1978"
3760 Lower Roswell Road
Marietta, Georgia 30067
404/973-0042
VISA/MASTERCARD/COD
OS-9 is a tugemark of Microwave and Motorola.

Model EP-2B-79 EPROM Programmer

SUPPORTS 2816A, 28664 EEPRONA
 2764. 73664, 27528, 273284, 27296, 27C296, 28364, 2864A, R89C32.

 to load troe dsali, offeet toed, sem to dinh, pragris, vertly, reed to reseiy, erecete Fifi amd momition comendm, operite froo eay

Optimal Technology, Inc.

Phone (804) 973-5482
Blue Wood 127
Earlysville. VA 22936

256K, 512K, 1 MEG MEMORY SYSTEM

 -whow - UMT. 120 K , 258K. 312 K or 3 M byre per capd Field uperadible.
 -kRow CPU chages of coblek I yaer limined vorranky.

 ouenuy dincosis evalidela.

COMPUTER EXCELLENCE INC. P.O. BOX 8442

CORAL SPRINGS, FL 33065
(305) 752-8321

THE 6809 "UNIBOARD"rи

PRICE CUT!!

THE COMPACTA UNIBOARD ${ }^{\text {w": }}$ Through special arrangement with COMPACTA INC., we are proud to have been selected the exclusive U.S. Mig. of their new 6809 UNIBOARD"" COMPUTER KIT. Many software professionals feel that the 6809 features probably the most powerful Instruction set available today on ANY 8 bit micro. Now, at last, all of that immense computing power is available at a truly unbelievably low price.

FEATURES:

* GAK RAM using 4116 RAMS.
* 6809E Motorola CPU.
* Double Densily Floppy Disk Controller for elther 5-1/4 or 8 Inch drives. Uses WD1793.
* On board 80×24 video for a low cost console. Uses 2716 Char. Gen. Programmable Formats. Uses 6845 CRT Controller.
* ASCII keyboard parallel Input Interface. (6522)
* Serial I/O (6551) for RS232C or 20 MA loop.
* Centronics compatible parallel printer Interface. (6522)
* Buss expansion Interface with DMA channel.

YOUR CHOICE OF POPULAR DISK OPERATING SYSTEMS:

FLEX ${ }^{\text {r" }}$ from TSC
OS9'" from Microware
$\$ 199$
Specify 5-1/4 or 8 Inch (6844)

* Dual timer for real time clock application.
* Powerful on board system monitor (2732).

Features commands such as Go To, Alter, Fill, Move, Display, or Test Memory. Also Read and Write Sectors. Boot Normal, Unknown, and General Flex'".

Digital Research Computers
 (OF TEXAS)

TERM8: Shipmenta will be made approximately 3 to 6 weeks after we receive your order VISA, MC, cash accepted. Add $\$ 4.00$ shipping.

USA AND CANADA ONLY

PC BOARD IS

DOUBLE SIDED, PLATED THRU SOLDER MASKED, $11 \times 11-1 / 2 \mathrm{IN}$.

64K SS-50 STATIC RAM

FEATURES:
\star Uses new $2 \mathrm{~K} \times 8$ (TMM 2016 or HM 6116) RAMs.

* Fully supports Extended Addressing.
* 64K draws only approximately 500 MA.
$\star 200$ NS RAMs are standard. (TOSHIBA makes TMM 2016s as fast as 100 NS. FOR YOUR HIGH SPEED APPLICATIONS.)
* Board is configured as 3-16K blocks and 8-2K blocks (within any 64K block) for maximum flexibility.
* 2716 EPROMs may be installed anywhere on Board.
* Top 16K may be disabled in 2K blocks to avoid any $1 / O$ conflicts.
* One Board supports both RAM and EPROM.
* RAM supports $2 M H Z$ operation at no extra charge!
* Board may be partially populated in 16K increments.

16K STATIC RAMS?

CLOSE OUT SPECIAL
WE HAVE DROPPED OUR 32K SS.50 STATIC AAM BOARD WHICH USED 211ALOW POWEA aAms. WE WILL SELL THE REMAINING Stock of blank pce's with data for \$17.SO EA. THESE FORMERLY SOLDFOA 850.

> The new $2 K \times 8,24$ PIN. static RAMs are the next generation of high density, high speed, low power, RAMs Pioneered by such companies as HITACHI and TOSHIBA, and soon to be second sourced by most major US. manufacturers, these ultra low power parts, feature 2716 compatible pin out. Thus fully interchangeable ROM/RAM boards are at tast a reality, and you get BLINDING speed and LOW power thrown in for virtually nothing.

Digital Research Computers

P.O. BOX 461565 • GARLAND, TEXAS 75046 • (214) 225-2309

TERMS: Add $\$ 200$ poslage We pay balance Order under $\$ 15$ add 75 c handing No COD weaccepi Visa and MasterCharge tex Res add S\% Tax. Foreign orders foxcepl Canade) add 20\% P \& H Orders over 550 . add 856 for insurance

DISKETTES AND 680X SOFTWARE

SUPER SLEUTH DISASSEMBLER EACH S99-FLEX, \$101-OS-9, \$100-UNIFLEX
interectivaly generotes sourse on diak with lebals. Includes aief. lebal definition, binery flle editing, ote.
-pecily $6800.1 .2 .3 .5 .8,9 / 6502$ verstion of 2-80/8080.'85 vertion
OS-9 ond UfJIFIEX versions also process FLEX obloct flle formats
O8JECT ONLV vorglons: EACH $\$ 50-F L E X \& ~ O S-9 . \$ 49-C O C O$ DOS COLO DOS avelioble in Bsoo.1.2,3.5.8.9/6502 virsion only
CROSS-ASSEMBLERS EACH \$50-FLEX/UNIFLEX/OS-9, ANY 3 S100, ALL $\$ 200$
specify for 180x, B50x. B80x, 2-80, 8048/55, 8085, 88000
true. modulap, free-standing eroes-ascemblers, writton in C
8-bit source inciuded only with ell eross-iseemblers fior s200s
DEBUGGING SIMULATORS EACH \$75-FLEX, \$100-OS-9, \$80-UNIFLEX spocify 6800/1. (1416805, 6502. 6809 05-8. 2-60 FLEX
OBJECT ONLV vermions: EACH SSO-COCO FLEX A COCO OS~9
6502 TO 6809 ASSEMBLER TRANSLATOR Tronaleses 6502 programs to 6809 . noting inoucct convinaions
6800 TO 6809 \& 6809 PIC TRANSLATORS
\$75-FLEX, \$85-OS-9, \$80-UNIFLEX
tronslatoo 8800 propo oms to 8809 . 880 p procorma to PIC
FULL-SCREEN FLEX AND UNIFLEX TSC XBASIC PROGRAMS FOR 6809
(with eomplete eurcor eontrol)
DISPLAV OENERATOROOCUMENTOA
MAILINC LIST SVSTEM
INVENTORY WITH MRD
TABULA RASA SPREADSHEET
$850 \mathrm{w} / \mathrm{source} .525$ without
$\$ 50 \mathrm{w} / \mathrm{source}$. $\$ 25 \mathrm{without}$
$\$ 100 \mathrm{w} / \mathrm{sou}$. $\$ 50$ without
TABULA RASA SPREADSHEET \$100 w/source. \$50 without
OISK AND XBASIC UTILITY PROGRAM LIBRARY \$50-FLEX \& UNIFLEX edit eectors. cort directory, mointain mastor cotalog. do disk sorta. xrat BASIC, .
CMODEM PROGRAM \$100-FLEX \& OS-9 \& UNIFLEX, OBJECT-ONLY EACH $\$ 50$ peovidas menu-driven telecommunications fecillites, with terminal mode. up/down load. MOOEM7 protocol. ete.
5.25" SOFT-SECTORED DISKS EACH 10-PACK \$13-SSSD \$15-SSDD/DSDD \$25-DSQD Amarican-made. exceltent auelity. with lectete ond hub pingas
SS-50C 256K 1.5MHZ MEMORY BOARDS BLANK \$100 A\&T \$350 with instruction menual, eehemeties, end delay line: all perts reodily ovelioble

Mont programe in source on diak: speetfy eomputer, digh size, opereting oystom Contect CSC lor full cetaloz and dealer Intormetion.
25% diseount for multiple purchases of asme program on seme order.
For VISA ond MASTER CARD, pive sccount, era date. phone. US funds only add GA soles tax ond 5 \% shipping: no shipping for disk in 100 है
IUNBIFLEX iredamark Technical Systems Consul rents. OS-8 trademark Microwere.

Computer Systems Consultants, Inc.
1454 Latta Lane, Conyers, GA 30207 Teiephone Number 404-483-1717/4570

-. FORTH PROGRAMMING TOOLS from the 68XX\&X ..
-. FORTH specialists - gel the best!! ${ }^{\text {• }}$
NOW AVAILABLE - A variely ol rom and disk FORTH systems to run on and/or do TARGET COMPILATION for
6800, 6301/6801، 6809, 68000, 6080. 280
Write or call for information on a special system to fit your requirement.
Standard systems available lor these hardware-
EPSON HX20 rom system and target compiler
6809 rom sysiems for SS-50. EXORCISER, STD. ETC.
COLOR COMPUTER
6800,6809 FLEX or EXORCISER disk systems.
68000 rom based sysiems
68000 CP M-68K disk systems, MODEL IW/12'16
IFORTH is a relined version of FORTH Interest Group standard FORTH, faster than FIG-FORTH. FORTH is both a compiler and an interpreter. It executes orders of magnitudes faster than interpretive BASIC. MORE IMPORTANT, CODE DEVELOPMENT AND TESTING is much, much faster than complied languages such as PASCAL and C. If Soliware DEVELOPMENT COSTS are an important concem lor you, you need FORTH!
firmFORTH2 is for the programmer who needs to squeeze the most inlo roms. It is a professional programmer's toof for compact rommable code lor controlier applications.

- IFORTH and hmFORTH are fademerks of Yalbot Microsyssems
- FLEX in il lreoeriex of Tectincel Sysioms Coraukents inc.
- CPM. 88 K is irecomert of Dighal Reseerch ine
tFORTH
from TALBOT MICROSYSTEMS
NEW SYSTEMS FOR
6301/6801, 6809, and 68000

```
.-> IFORTH SYSTEMS <-..
```

For all FLEX systems: GIMIX, SWTP. SSB. or EXOAcisor Specity 5 or 8 inch diskette, hardware type. and 6800 or 6809 .
-. IFORTH - exlended figg FORTH (1 disk) $\$ 100(\$ 15)$ with fig line editor
\$250 (\$25)
-. IFORTH + - morel (35° or 28° disks) adds screen editor, assembler, exlended dala lypes, utilities. games, and debugging aids.
.. TRS-80 COLORFORTH - available Irom The Micro Works
-. firm FORTH - 6809 oniy.
\$350 (\$10)
For larget compilations to rommable code.
Automatically deletes unused code. Includes HOST system source and largel nucleus source. No royally on largels. Requires but does nol include IFORTH +
.. FORTH PROGRAMMNG AIDS - elaborale decompiler $\$ 150$
-. IFORTH tor HX-20. in 16K roms tor expansion unil or replace BASIC $\$ 170$
-. IFORTH/68K for CP:M 68k 8" disk system \$290 Makes Model 16 a sup , soltware development system.

- Nautilus Systems Cross Compiler
- Requires: IFORTH + HOST + al least one TARGET:
- HOST system code (6809 or 68000)
- TARGET source code: $\quad 6800-\$ 200,6301 / 6801-\$ 200$ same plus HX-20 extensions- \$300 6809 - $\$ 300,8080,280-\$ 200.68000-\$ 350$

Manuals avalable separately - sice in (). Add $\$ 6$ system lor shipping. $\$ 15$ for forevgn alr.

WINDRUSH MICRO SYSTEMS

UPROM II

rackeants and velistes: 12758. 12506, 12716. 12516, $12732 / 2752 \mathrm{~A}$.
 $127128 / 27928$ and 127286 . linitol, Patiene Motorole.
WO PERSONALITY MODULES REQUIRED: TAl-YOLT EPACAS Anf mot SUPROATED INTEL's Inieligmt programeing (190) itolecerited por Intel 2764, 27128 and 27250 devices. ine etllgont progreesing flidutes
 is eecond रunder fiEx) tith grsetty laproved rellseility.

Multy enclosed 000 aith 3 of of flat pricoon caste for connection to the most comutor MCOB21 P1A interfare boopd.
whesos sotivere tor FLEX and OSO (lavel ; or 2 , Version $\mathrm{E}, 2$).
-tmari oisk pile offect tooder supolled ulit PLEx, keos and O59.

Nenu driven software provides the following facilities:

PL/9

Edisorg intoractive oriutromant uliers you hove justan acters to the ehings, cen single itop tho propren soulce line it ithe. You oleo have diract accese to dar flex wetlity and your eystee montior.

Fast stwale pass compler oroduces bx of compact wh fast woos eochine cose output per olnute ulth no run-t lise averriseds or Ticense pese.
fully romptible with ist test edter foreat dak flies.

- Signed and unsigned BYTES and INTEGERS, 32-bit floating point reals.
- Vectors (single dimension arrays) and pointers are supported.

Asthesertical endretalenin: (0), (-), (0), (1), eooublue (1), hesertion (-)
 logicel operators: (.AMD). (.00), (.EOR/XOR)
 UHLIE... REPEAT..UNTLL, MEPEAY.. TOAEYEE, EALL, JCHP, RETURN, BREAK, GOTO. Dirost eccese to cacca), (acca). (accos, \{xREG\}, (cCR) and (siack).
 wettops. Wetting - soly-atertimg (frea pover-up) progran that uses AMr. or alle of the negasp internpte to on cosolute enap!
 anables you to code critisal routines in assombly language and ceeec than In the PL/9 propres (eoe ralet for detallss.
Proceduras may be pessed and eay retuen variables. Tbls ates thet

Several eutity dotcmented tibraty procedure eoculer ore guoplind: josios.

MACE/XMACE/ASM05

odteor and the ensectier reside in oneaystive topether. Cone ore the deys of iedtue disk lasd ond sove cospetions uhile you are deturging your code.
Prisndty intor-active envframent where you heve ingteat accets to the

 -armonite of the 6303.
asmos is e crosi assabler for the 6805

D-BUG

 to wseit look no further, you have tand tt. This pectieger is that for

McCOSH ${ }^{\circ} \mathrm{C}$

This is as complete a ' C ' complier as you will find on any operating system 'bit-fields' (which are of ifttle practicat use in an s-bit vorld!).

Produces very eificant sesembty lanouege sovece output vith the ' C ', source opilonaliy interleoved en soements.

- Buflt-in optififer will shorten object code by about 112 .
- Supports interleaved assenbly language prograns.

IMCLUDES tis oun enseabler. The iSS relocotimp sseander tis onty reculred 19 you want to generate your ont thbrerias.

The opeapobessor, coptter: oplisizer, assombler and looder alt cun indegondansty or under the 'CC' argeutive. 'CC' mates ceolling p progran to esoculable oblect es simplo of Iypling in 'CC, wELCO.e くRETURND'

IEEE-488

- SUPPORTS ALL PMINCIPAL MODES OF THE TEEE-688 (1975/8) BUS SPECIFICATION: - Tolter - Sortal poll - Sinote or aust prfaery addrese - Littener - Darallet polt - Secondary modreas

Pully docunented wita, acomplete rearint of the klu.deatro orticle on the IEEE bus and the notorole Diblicetion 'Getting sbosrd tha tEEE EUS'. Low levet ensembly tenousge drivers eulecole for 6800, 6001, 6802, 6805, b80a and 6809 ate shacolied in the fora of tistingo. A complete besk to back isist progr in also supptiod in the fore of t listing.
simple s-30 bognd (4, for is adidrenees per pert), fulty eotketed, gold olacted bus consectora and LEEE interface sable gigembly.

PRICES

UPROM SRC Alscebty

WORSTEAD LABORATORIES, NOATH WALSHAM,

 NORFOLK, ENGLAND.NR28 9SA
TEL: 44 (692) 404086
TLX: 975548 WMICRO G

Teras: Cvo. Paynent by Int'l Money Order. VISA or MASTER-CARD also accepted.

WE STOCK THE FOLLOWING COMPANIES PRODUCTS: GMOX, SSB, FHL MICAOWARE, TSC, LUCIDATA, LLOYD I/O

FLEX (ta) ts a tradenark of Technical systems Consultants, 05-9 (ta) is a

D)

CoCo's Best \& Fastest Spreadsheet System ACCLAIMED BY THE EXPERTS
 "DYNACALC is my choice for a CoCo spreadsheet." Dan Downard, RAINBOW, September, 1984.

"Eat your heart out, Lotus 1-2-3!" Scott Norman, HOT CoCo, October, 1984. NOW Built-in Features:

- 51×24 Display with Lower Case
- Super-fast Smart Screen Refresh
- Auto Repeat Keyboard Driver
- Keysaver (TM) repeats last command x times
- Disk Operating System (works just like ROM DOS)
- Easy communication with BASICIDOS programs
- Two-way communications with PRO-COLOR-FILE * Enhanced *

- Outputs to ASCII Word Processors like Telewriter-64
- Fast 16-Digit Arithmetic with Scientific Functions
- Summation, Mean, and Standard Deviation Functions
- Logical Functions with String \& Numeric Comparison
- String locate command to navigate large worksheets
- Sort full or partial worksheet by columns or rows
- Line, Bar, Hi/Lo/Ciose, Circle Graphs
- Full Graphics captioning and overlay facility
- Graphics Drivers for all popular Printers
- Joystick/Mouse Driver for Cursor Movement
- Works with any ROM versions, even JDOS
- 33k Available Worksheet Space
- Up to 256 Columns or 256 Rows
- Can use VisiCalc worksheets \& training materials

GRAPHICS!

Jan Fobs har Apr Hav Jun Tol Muv Ser det hov Jec

CANADA. CDN $\$ 129.95$ RGS MICRO INC.
759. VICTORIA SOUARE 405 MONTREAL H2Y $2 \cdot 3$ TEL.: (514) 287-1583 ORDER LINE ONLY * OUEBEC-ONTARIO.MARITIMES 800-361.5338
WESTERN CANADA 600361.5155

FOR 64K DISK SYSTEMS
avallable from
COMPUTER SYSTEMS CENTER
42 Four Seasons Center \$122
Chesterfield, MO 63017
(314) 576-5020

10 to 6 Mon.-Fri.
or your local DYNACALC dealer
Price US\$99.95
Outside North America add \$10 postage
DYNACALC Reg. U. S. Pat. Off.
Lotus and 1-2-3 are trademarks of Lotus Development Corp. PRO-COLOR-FILE is a trademark of Derringer Software

Telewriter-64 is a trademark of Cognitec VIsiCalc is a trademark of VisiCorp.

'68’ MICRO JOURNAL

(2 years)				
Monthly Averages				
		0 A	les	TOTAL
KB	BYTE	CC	DOBB'S ${ }^{\text {- }}$	PAGES
7.8	6.4	2.7	2.2	19.1 ea. mo.

Average cost for all four each month: $\$ 6.53$ (Based on advertised 1-year subscription price)

68 cost per month: $\$ 2.04$
Thats Right! Much. Much More
for About

STAR-DOS LEVEL I

Whenever a new DOS is introduced, there's always the problem of developing software to work with it. So we did it the opposite way - we analyzed the requirements of software that already exists and developed a DOS that met them... and exceeded them! The result is STAR DOS Level I, a new DOS for 6809 systems, ideal for single-user industria!, control, and advanced hobbyist applications. This includes SS-50 systems and single-board computers from a variesy of vendors.

Level I is compatible with most current 6809 hardware and soltwares. On the hardware side, it allows up to ten floppy or Winchester drives with appropriate controllers. On the software side, it runs existing 6809 software from all the major 6809 soltware suppliers, including TSC, StarKits, Introl, and others.

Write or call for more information. STAR KITS Soltware Systems Corporation. P.O. Box 209, Mt. Kisco N.Y. 10549 (914) 241-0287.

NTNNR.KTS

NDERSON OMPVIER CONSULTANTS
 Assoclates

Ron Anderson, respected author and columnist for 68 MICRO JOURNAL announces the Anderson Computer Consultants \& Assoclates, a consulting firm deallng primarlly in $68 x(x)$ software design. Our wide experience In designing 6809 based control systems for machine tools is now available on a consultation basls.

Our expertence Includes programming machine control functions, slgnal analysis, multi-axls servo control (CNC) and general software design and development. We have extensive experience In Instrumentation and analys is of specialized software. We supporf all popular languages pertalning to the 6809 and other 68XX(X) processors.

If you are a manufacturer of a control or measuring package that you believe could benefit from efficient software, write or call Ron Anderson. The fact that any calculation you can do with pencil and paper, can be done much better with a microcomputer. We wlll be happy to revlew your problem and offer a modern, state-of-the-art mlcrocomputer solutlon. We can do the entlre job or work with your software or hardware englneers.

Anderson Coputer Consultiants \& Associates 3540 Sturbridge Court Ann Arbor. MI 481G

COMPARE

 our EPROM PROGRAMMER with the field.

- Nipie moscap - Sppised In	forn	A	8	C	D	E	F
INTERFACE	\$30	PAR	PAR	SER	S30	SER	SER
intelligent	mo	no	NO	YES	NO	YES	YES
PROGRAMS							
$\begin{aligned} & 2704 * \\ & 2500 \end{aligned}$ 2708.			\bullet	-	\bigcirc		-
2758	-	-	-	-		-	-
2510 2716	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-
$\begin{aligned} & 2716 \cdot \\ & 2832 \end{aligned}$	-		\bigcirc	-	\bigcirc	\bigcirc	\bigcirc
2132	-		-	-	-	-	-
$\begin{aligned} & 2732 A \\ & 2564 \end{aligned}$	-		\bigcirc		\bigcirc	\bigcirc	\bullet
2784	-		-		\bigcirc	-	-
$\begin{aligned} & 2528 \\ & 27128 \end{aligned}$	\bigcirc				-		
2818							-
88784			-				
$\begin{aligned} & 8748 \\ & 8740 \end{aligned}$						\bigcirc	
TOTAL	11	3	12	6	11	11	11
PRICE	\$ 125	\$45*	\$169	\$289	\$375	\$489	\$575

UNITEK - P.O. Box 671 - Emporia, VA 23847

K-BASIC for OS9 \& FLEX
 \$499

K-Basic is o complene BASKC complier pockoge inclucting: We com
 Nres $\mathrm{s} \times \mathrm{x}$ Otomic doto thoes including: neal numers; strings: 8 bit, 10 om 32 bi , and 04 of saned integers. All ipes moy be dimensioned with one ar swo sosopA K.BASIC coner's programs to MACHINE Ion. auge code which moy be pul Info EPROMS or ROMS
K.BASIC smidex is very close to ISC's BASIC and XAASC inlempreters Line numbers one nol required (may be 40 to 16 charoclers) varibie nomes moy be vo to 12 chocaters tong. The AT stotement dimensions variables to absolute memory odaresers
The Atuve of K. BASIC will see additionol versions for the aseared interprelers aremlly ovailatle. This meare vau con omplie vaur BASIC pro gronis vou now hove.

Call (503) 868.1097 lor OUR CAIALOG, we have many omer programs including: 00 ... $\$ 09$ OSM ... $\$ 99$ EDASM... SO9

CRASMB for OSS A REX $\$ 399$

CRASMB is ma highly nodatined 000 a.sertle pockoge for OS9 and FEEX spreme ond is me only one of lis Mpe avable. A nere yourcon. puter tito a devetument siction for theae CPU:

0600000168046805680968116502 700018028048605160006085780 (68000 10/32 bH cros cment ior ... \$299)

 totries. Object code in 4 fumots (OS9, FLEX. SI-S9, INTEL HEX), phs mow ofler extended clectives and aplons nof fond on owe axantlas.

LIOVO 1 OO 99535 NE GUSAN. PORTLAND. OR 97230 USA Phana: (503) 666-1097 (Sohwore Consultition Avallable) VISA. MC. COD, CHECK AFMOVEO PO 'S ACCEPTED
Engiond: Vivaway (0582 423425). Windrusih (0692 405189) Germony: Zocher Computer (65 25 299) Aushalla: Porls Rodio Elecfronlcs (ol 2 SC4 9111)

68' MICRO JOURNAL
Disk-1 Filesort, Minicat, Minicopy, Minifms, **Lifetime, **Poetry, **Foodlist, **Diet.
Disk- 2 Diskedit w/ inst.\& fixes, Prime, *Prmod, **Snoopy, **Football, **Hexpawn,**Lifetime
Disk- 3 Cbug09. Sec1, Sec2, Find, Table2, Intext, Disk-exp. *Disksave.
Disk- 4 Mailing Program, *Finddat, *Change, *Testdisk.
DISK- 5 *DISKFIX 1, *DISKFIX 2, **LETTER, **LOVESIGN, **BLACKJAK, **BOWLING.
Disk- 6 **Purchase Order, Index (Disk file indx)
Disk- 7 Linking Loader, Rload, Harkness
Disk-8 Crtest, Lanpher (May 82)
Disk- 9 Datecopy, Diskfix9 (Aug 82)
Disk-10 Home Accounting (July 82)
Disk-11 Dissembler (June 84)
D1sk-12 Modem68 (May 84)
D1sk-13 *Initmf68, Testmf68, *Cleanup, *Dskalign, Help
Disk-14 *Init, *Test, *Terminal, *Find, *Diskedit, Init.Lib
D1sk-15 Modem9 + Updates (Dec. 84 Gilchrist) to Modem9 (April 84 Commo)
Disk-16 Copy.Txt, Copy.Doc, Cat.Txt, Cat.Doc, Date.Txt

MOTE:
This is a reader service OMLY! No Warranty is offered or implied, they are as received by '68' Micro dournal. and are for reader convenience ONLY (some MAY include fixes or patches). Also 6800 and 6809 programs are mixed, as each is fairly simple (mostly) to convert to the other.

```
PRICE: 8" Disk $29.95 - 5" Disk $24.95
                    6B MICRO LOURML
                        POB }79
            Hixson, TN 37343
        615-842-4600 In Tenn.
        1-800-3386800 In U.S.
            * Indicates 6800
        * Indicates BASIC SWTPC or TSC
            6 8 0 9 ~ n o ~ I n d i c a t o r .
    MUSTER CARD - VISA Accepted
    Foreign -- add 108 for Surface
        or 208 for Air!!
```


TRS-80 + MOO I, III, COCO. T199/4a TMAEX 1000, OSBORNE, others
 GOLD PLUG - 80

Eliminate disk reboots and data loss due to oxidized contacts at the card edge connectors. GOLD PLUG 00 solders to the baard edge con. nector. Use your existing cables. (it gold plated)

6809 SYSTEM DEVELOPMENT

xpRDN1"
Thi kPNORI card is derored to pluo into ine CoCo ADon Bapmemen oveles where power the fiBOOt aders es and data burer choces and contrat sighela dre avalabio for vor oreco ype nuvimare You cen sod concciors 100 ADM

 med much more
 sphals are divato to rose ccires aving one voi con ser un fotrieve uer one orre asse
Mase trom double-sded glass/epory with plated thru.
 and 06 unch wide duat arino IC sanclis ber on the

 oversce

SeprGuise'

 Prent in eitn ano support orotor mpe cerce in the coco momp pat wot A
 for poan x PNDPD, ceros

20.53 000』

VYZ

For immedate prepad shipment and techncal intormation cal 4001748-6809 Moreq frest ilem 1 ? wor co men erect money oreor of oreon monotic micaosistims 60× 30001 SEATtLE WA 90103

68' MICRO JOURNAL ADVERTISERS INDEX

'68' MICRO JORNVL 67,68
ACORN COPPUIER SYSIEMS 70
ANDESSON COMPNIER CONSUTANTS 67
COPPILER EVALLUATION SERVICES 59
COPPTER EXCELENCE INC. 60
COPPIER PLBIISHING INC. 5
CDPATER SYSIEMS CENTER 66
CDPNIER SYSTEAS CONSU TANTS. INC. 64
data-cap IBC
DIGITA. RESEAROH COMPUTERS 62,63
D.P. JanNSON 59
EAPCO 69
GIMIX, INC. 3,72
GREAT PIAINS COMPIER CO. 69
HATINTOD COPPUIER SYSTES 08C
INTRA COPP. 61
luov I/0 68
MICROWARE SYSTE'S CORP. 1,4
OPTIMAL TEOAOLOGY INC. 60
PERIPTERAL TECHNOGY 60,71
ROBOTIC MICROSYSIEMS 69
SOOKE SIGNAL BROAOCATIING 6
SOUTH EAST MEDIA ... $33,34,35,36,37,38,39$
SRTMEST TEONNICA PROTUCTS INC. IFC
SAR-KITS 67
TALBOT MICROSYSTENS 64
TMP SOFTHARE 58
LINITEK 68
LETOEETER APPLIED BISINESS SYSTETS 71
WINORISH MICRO SYSTEMS LDMITED 65

[^1]
PT-69 SINGLE BOARD COMPUTER SYSTEM OS-9 OR STAR-DOS NOW INCLUDED

- 1 MHZ 6808E Processo
- 2 AS232 Porls (6850)
- 28 -bit Ports (6821)
- SOK RAM 2K/4K EPROM
- Timeot-Day Clock
- 2797 Froppy Disk Controlter

-PT6852-40
Complete Sy tern with PT-89 Board. 2 DS/DO 5\%-40 TR Orives, Cebinet. Power Supply Your choice of OS. 8 or STAR.OOS
-PT-69S Assembled 8 Tesled Board with
$\$ 399.95$
Power Supply end Cebinet,
-PT-88A
Assembled and Tested Board.
5295.95
-Parallel Prinier Interface with Cables $\$ 49.95$
-OS-9 Level 1
$\$ 200.00$
-STAR-DOS Level
550.00

PERIPHERAL TECHNOLOGY
‘Supplying Your Computer Needs Since 1978
3760 Lower Roswell Road Marietta, Georgia 30067
VISA/MASTERCARD/CHECK/COD
404/973-0042

XDMS

Data Management System

System Architecture
WESTCHEBTER Appised Bueaneen gyet=me
poip Difice Bor 107
Past Orfice Bor 167

XDMS Data Manaqement frestem
The XDKS Data Management System is available in three devele. Each level includes the XDNE nuciocioi vMOER Williy and System Dotumantalion
 weors ere regieterea in our astabese to permit eleterbution of praduct announcemonis ind valstistion of user upgieses ond masniemance requese

XDMG Level I
YDMS Level consint of DEFSnE, UPDATE And REPORT faclitses. Thise level te intantiod os an sentily levalt systom. and parmits entry ond Peporting of date on "Pabuiaf" basis. The REPORT RAcisty oupparie column totate and ieport ilising. Control is vie .inghaplitite language

XRMS LEvEI II
Level 19 edde to level the powerful OEMERATE faciluty. Thi focibsty ctin be inoughe of te egenerol flle processor Which can produre emporis. forms and forn latiere es eill os file oulpur entich any do re-inpui fo
 had to controlled Dy

XDMS Level IXX

 of wier apgicationi and permit medidication of XDMs system garamoters. Imput eme outpur of XDNB files. Sisplay and modifucapion of file format. geaphif diepley of numerical aifa and ofher tunctions. Lovel 181 it

XACC ACROURTina Syntem
噱
 integreses arcounting gunctions and inventory plus thegenoral tedger. acrounts reselvable and payable funclians normalsy sold enparately in

WBETCHESTER APpised BLEAnOE BY=tome

All software is upliten in macra/asseentor and runs under be09 FLEX o/s.

Solas: S. E. MEDIA, 1-800-330-4900. Consult at Ion: 918-948-3352 (emens). FLEX It e tr odemort of Techolcal Systons Consultants, jrf

GIMIX HAS THE 6809 SYSTEM TO SUIT YOUR NEEDS

HARDWARE

All systems feature the GIMIX CLASSY CHASSIS: with a ferro-resonant constant voltege power supply, gold plated bus connectors, and plenty of capacity for future expansion.
Static RAM and double-density DMA floppy disk controllers are used exclusively in all systems.
All systems are guaranteed for 2 MHz operation and include complete hardware and software documentation, necessary cables, filler plates, etc.
Systems are assembled using burned-in and tested boards, and all disk drives are tested and aligned by GIMIX.

You can add additional components to any system when ordering, or expand it in the future by adding RAM, $\mathbf{I} \mathbf{O}$, etc.

GIMIX lets you choose from a wide variety of options to customize your system to your needs.

SOFTWARE

All OS-9/FLEX systems allow you to software select either operating system.
Also included is the GMXBUG monitor and, in systems with 128K or more of RAM, GMX-VDISK for FLEX.
All GIMIX OS-9 systems include Microwaro's Editor, Assamblor, Dabuggar, Basic09, and Runb; and the GMX versions of RMS and DO for OS-9.
All GIMIX versions of OS-9 can read and write RS color computer format OS-9 disks, as well as the Microware/GIMIX standard format.
New and exclusive with OS-9 GMX III systems is the GMX OS-9 Support ROM, a monitor for OS-9 that includes memory diagnostics and allows the system to boot directly from either hard disk or floppy.
A wide variety of languages and other software is available for use with either DS-9 or FLEX.

OS-9 GMX III/FLEX SYSTEMS (179)

The TT8 super systan now Inctudes (In addition to the above): Ine GMX 6809 CPU III, a 256K Cm0s stetc RAM Board (172), and a 3-port Intonyem sewal 1/0 Rucessa (011).
the 6MX 6809 CPU III can Derform high-speed DMA transfers froun menory to memory and uses manory altributes and ulegal instruction frapping to profect the system and users tron progran crasties. If a user program crashes. only tiat user is affected; other users are unaware of the problem.
The 3-Port Intelligenl Serial I/O Board ("'11) significarty reduces system overthear by handing ioutine t/O functions; freeng the host CPU for funning user programs. This improves overall system performance and afows user teminals to be rus at up to 19.2 K daud.
with duat 40 lrack DSDO dives . 85898.79 with dual 80 liack OSDO difves. with 808 dual 10° OSDD dive systan with 090 19MB Winchester subsystan and one 80 track. 56198.79 87688.79 with a 47MB Winchester subsystem and one 80 Irack with a 47MB plus a 6 MB remorate pack Winchester subsystem and one 80 lrack dive

TO DROB BY MAM: SEHD CHECK OR MONEY OROEA OR USE VOUR VISA OR MASTER CHARGE. Fease alow 9 weiks Dor posorel creaks to deas. U.S. orders and $\$ 5$ tandinny it ordee is undeo $\$ 200.00$. Forion orders $2010 \$ 10$ handing it order is under $\$ 200.00$. Foragn artas over $\$ 200.00$ wo be Elippeo ve Erey Ah Frejple couse pote that forion orets neve ing. Al crass must be prepaid in U.S. Winds. wout adiso wiring ropey, or crecks or inn on a bant accurn in the U S Ow Dank is the Corvinencat moty Masond Bank of CNicapo. 231 S. Lasaio Smeen. Cricago. It 60899, wrown 13 -32033.

BASIC-09 and OS-9 are yaderenks ol microware Sysionis Corn, and MOTOROLA. inc. FLEX and UniFLDX are bedorents of Technical Systems Consutants. Inc. GIMIX. GHOST. GMX. CLASSY CHASSIS, are esomants of GIMIX. Inc.

OS-9 GMX I / FLEX SYSTEMS A9

The ang systeris Incude 64KB static RAM. WOS CPU. MA3 2 pori seríal board.

OS-9 GMX II / FLEX SYSTEMS \#39

The 200 systems Include 128 KB stooc RAM, MO5 CPU, wa3 2 poit seríal board.
with dual 40 vack OSDO drives . 81488.39 with dual 80 track OSDD divives . 84688.39 whth Ce8 duad 8" OSOD dive systom H108 39 57388.39

GHMEX DOES NOT OURQNTEE PEAFORMANEE OF ANY GMIX SYSTEMS, BONHOS OR SOFTWARE MHEN USED WTIH DTHER MANUFACTURERS PROOUCT.

EXPNT MDCES: ADO 539 FOR BOHz. FTWER SUFPUES.
GIMIX. inc. Taseves the right to clange picing, terms, and products speciftarions at any time withoul fusther notice.
ALL PRICES ARE F.O.B. CHICAGO
Contact G!MIX for price and availabilily of UnifLEX and UniFLEX GMXIII Systems.

NOTE on all dive systans: Dual 40 Irack drives have aboul 700K8 of tormatied czpacity; dual 80 's about 1.400 KB : dual $8^{\prime \prime}$ about 2.000 KB . The tormaned capacity of hard disks is about 80% of the total capactity.

Want to expand your system to a megabyte of Static RAM and 15 users?

Siniply add acotional memory and I/O boards. Your olwix syslan can grow with your needs. Contact us for a complete list of available boards and optons.

- 72 256KB CMOS STATIC RAM board
with batiery back up................................... . . 81898.72
ese 64KB CMOS STATIC RAM board
with Dathery back up . $8 \mathbf{8 2 8 . 6 4}$
©57 64KP STATIC RAM bcard . 8 . 87.67
113 port Intelligent serial I/O boaid . SAs? 11
U3 2 port seral $1 / 0$ board $\$ 129.43$
N3 2 port sortad 10 boar . s128.43
A2 2 porl parale 110 doard. 888.42
Uss calte sets (1 needed per port). specity board $\$ 24.95$
 \section*{NOW SHIPPING!
 \section*{NOW SHIPPING!

 Uniflex

 Uniflex

 GMX III Systems}

 GMX III Systems}

TSC Editor Res $\$ 50.00$
NOW $\$ 35.00$

ALL VERSIONS OF FLEX \& STAR-DOS* INCLUDE

+ Read-Write-Dir RS Disk
+ Run RS Basic from Both
+ More Free Utilities
+ Super 800 Support
+ Free Color Micro Joumal 1 yr. sub.
+ External Tenninal Program
+ Test Disk Program
+ Disk Examine \& Repair Program
+ Memory Examine Program
+ Many Many More!!!

TSC Assembler Reg \$50.00
NOW $\$ 35.00$

DISK STSTEWS FOR JHE COLON COPUTER
THESE PROXAGES INCLUOE ORIVE, CONTROLLEA, PIMER SUPPLY A CABIMET. CABLE. AND MANUAL:

- specify what controller you want jeh. of raolo smact.

NISC

GAK UPGRADE WMOO. INSTRUCTIONS, C.D.E,F. ANO 00002	\$ 49.9\%
HJL REYBOAROS	\$ 69.95
MICRO TECH LOWER CASE ROM ADAPTER	(74.95
RADIO SHACX BASIC 1.2	- 29.98
RAO 10 SHACK DISK BASIC 1.1	\$ 29.95
RADID SHACX EXT. BASIC	\$ 39.95
SCREEN CLEW CLEARS UP VIDEO DISTORTION	\$ 39.95
MEMOREX DISKS 5" SS,0D	\$ 24.00
SHIPPING IMCLUDED ON DISK PRICES DISK CAIVE CABINET \& POWER SUPPIY	849.99
SINGE SIDED, OOUXAE OENSITY 5" DISK DRIVE	5199.95
OOURLE SIDED, DOUBLE DENSITY 5* DISK DRIVE	5349.95
PRINIERS	
EPSON RX-80	\$325.00
EPSOIN RX-goft	\$375.00
EPSON M \times-100	8650.00
EPSON FX-100	\$799.00
EPSOM Fx-A0	\$549.00
EPSON MX-30	\$200.00
SERIN EONTD FOR FRIWTERS	
MX-SERIES	\$119.95
FX-SERIES	599.95

SPECIAL MX-100 \$550.00

ONCE AGAIN HAZELWOOD COMPUTER SYSTEMS demonsirales ils leadership in compuler lechnology by dellvering the onfy compuler syslem capable of switching between either the 6809 or the 68000 processor． Swilching is easily accompllshed by a simple fronl panel loggle swifch．The reason we can offer this exclusive feature now is that when our proven 6809 processor board was designed several years ago，we had the foresight lo inciude the bus conlrots inal allow processor swifching．
Hazetwood Computer Systams is also proud to be une first S－50／S－64 bus manufacturer to license and deliver the OSS／68k Operaling Syslem from Microware Syslems Corporation．OS9／68K is the 68000 version of the popular and powerful OSS Operaling System．Ulilizing our proven MC－20 disk conlroller，OS9／68K can convenienlly share a Winchester disk wilth OS9．Changing from 6809 to 68000 operation is as simple as swilching processors and booling the new system from the Winchester disk．
The ease of switching processors and operaling syslems makes a HEL ${ }^{\prime \prime}$＂dual processor syslem the nalural choice for sollware development．in addilion．The advanced design of HELIX equipment．emphasking perlormance and reliabilily，makes HELIX＂boards and systems the best value in compuling offered anywhere．

System prices vary with configuration．Call for exact pricing．

THE SWITCH IS ON．．．

processor board utilizes a 68008
The CP－08 processor 10 Mhz clock rate．Using single cycle processor running at 10 mization circuitry and ance increase over proprietary bus synchroniza marked performance with the 68000 DMA．the CP． 08 achieves a marke compatibility will hate of memory－ DMA，we 2 MHz 6809 ．Ofter 68008 addresses up 10 ROM，an interru instruction set，the 68008 ．

with battery backup 50 board，the CP－08 brings PRICE：$\$ 595$
wtandard $S-50$ board
ORDER：$C P-08$
races up to 4 floppy and 8 Winchester The MC－20 Mass Storage Controller board interiaces intelligent controller witin it a disk drives to the $\mathrm{S}-50 / \mathrm{S}-64$ bus．The MC－20 It provides DMA dala lock number， awn 2 Mhz 6809 processor and ration requests are by cor address calculations． tull 24 bit address．All disk operaio necessary track／sector a commodated with all full 24 bir antroller performing the necessarives can be accommmoltriled for each
with the contron with the conation of $51 / 4$ or 8 inch precompensation，soiw arasl bus interface．Block Any combameters，such as write precore connected via a SAA to segmented into drive param rive．Winchester drives are cos a siliows a single drive to be segs
individual diras address mapping is provided which the controller of the MS－20 is trive．

Subsystem MC－20
ORDER：

PRICE：\＄250
ORDER：OS9／68K

An Hems availabla slock to 30 days．

HAZELWOOD COMPUTER SYSTEMS

[^0]: melroulty Lequas -
 F = FLEX. COP Color Computer PUEX 0 - OS-9, COO = Color Conputes OS-9 u - Uniflex
 col = Color computer Disk CT - Color Compater tapo

[^1]: This index is provided as a reader service. The publisher does not assume any llabillity for amissions or errors.

