

Desktop Video Data Handbook

Philips Semiconductors

Cover art by Joe Kelly.

Moby Dick, the tale of a deranged whaling captain's obsessive voyage to find and destroy the great white whale that had ripped off his leg, is at once an exciting sea story, a sociological critique of various American class and racial prejudices, a repository of information about whales and whaling, and a philosophical inquiry into the nature of good and evil, of man and his fate. And it is three pages shorter than the Philips Semiconductors 1994 Desktop Video Data Handbook.

Although it is now considered among the greatest of all novels, Moby Dick was ill-received and poorly understood at the time. Herman Melville, its author, died in poverty and obscurity in 1891.

No endorsement of contemporary whaling practices is intended by the allegorical cover art.

No animals, virtual or otherwise, were injured in the creation of the cover.

Desktop Video Data Handbook

CONTENTS

page
SECTION 1 GENERAL INFORMATION 1-3
SECTION 2 APPLICATION NOTES AND MATERIALS 2-3
SECTION 3 FUNCTIONAL INDEX OF PRODUCTS 3-3
SECTION 4 PACKAGE OUTLINES 4-3
SECTION 5 NORTH AMERICAN SALES OFFICES, REPRESENTATIVES, AND DISTRIBUTORS 5-3
APPENDIX A DATA HANDBOOK SYSTEM A-1

Data Sheet Identification		Product Status
Oblective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes an any time without notice, in order to improve design and supply the best possible product.

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors and Philips Electronics North America Corporation register eligible circuits under the Semiconductor Chip Protection Act.
(c) Copyright Philips Electronics North America Corporation, 1994

Our appreciation is extended to the following persons for their assistance in the publication of the Desktop Video Handbook:

To: all the Philips factory representatives who supplied updated data sheets at short notice. also to:

Herb Kniess	Application notes
Marc Schneider	Application notes
Leo Warmuth	Application notes
Joanne Puma	Layout
Celia Tippit	Compilation and Editing
George Ellis	Compilation, Editing, and Application notes
Steve Solari	Concept
Joe Kelly	Cover Art

Section 1 - General Information
Digital video now, an introduction 1-3
Application configurations 1-6
Pro Electron type designation code for integrated circuits 1-11
Handling MOS devices 1-13
High-performance 8-bit video data converters 1-14
Line-locked digital colour decoding 1-22
AN ETV/IR89126 Digital interfaces for component video signals 1-29
CCIR REC. 601-2 Encoding parameters of digital television for studios 1-39
CCIR 656 RECOMMENDATIONS OF THE CCIR, 1990 1-49
Color space, digital coding, and sampling schemes for video signals 1-63
Video signal bandwidth/resolution 1-67
TV transmission standards; colour systems 1-68
International TV systems and standards 1-69
Contact addresses 1-73
Video glossary 1-74
Alphanumeric index of products 1-76
Section 2
DPC7110 Video capture card (24/16-bit) with display filter 2-3
DPC7116SD Video to PCl demo board 2-17
Clock and synchronization signals of SAA7187 and SAA7188: Application note for digital video encoder 2-30
DTV7188A Evaluation board for SAA7188A encoder 2-48
DTV9051 Digital video evaluation module 2-54
DTV7199 Digital Television Demonstration System 2-68
SAA7199B operational modes 2-93
DTV7194/96 Desktop video demo board 2-103
Crystal specifications 2.139
TDA8708 black level and gain modulation circuit 2-140
TDA9141 analog decoder application 2-143
Digital video evaluation board 2-149
CVBS output filter for SAA7199B encoder 2-157
SAA1101 sync generator application 2-162
The $I^{2} \mathrm{C}$-bus and how to use it (including specification) 2-163
$1^{2} \mathrm{C}$ bus addresses 2-182
${ }^{2} \mathrm{C}$ parallel printer port adaptor 2-183
AN425 Interfacing the PCF8584 $\left.\right|^{2}$ C-bus controller to 80C51 family microcontrollers 2-184
What is Teletext? 2-204
Packet and Page Teletext data reception using the SAA5250 2-213
Section 3
Analog-to-digital conversion
Analog-to-digital converter selection guide 3-3
TDA8703 8-bit high-speed analog-to-digital converter 3-790
TDA8706 6-bit analog-to-digital converter with multiplexer and clamp 3-803
TDA8707 Triple RGB 6-bit video analog-to-digital interface 3-813
TDA8708A Video analog input interface 3-825
TDA8708B Video analog input interface 3-842
TDA8709A Video analog input interface 3-859
TDA8712; TDF8712 8-bit digital-to-analog converters 3-878
TDA8714 8-bit high-speed analog-to-digital converter 3-893
TDA8716 8-bit high-speed analog-to-digital converter 3-908
TDA8718 8-bit high-speed analog-to-digital converter 3-924
TDA8755 YUV 8-bit video low-power analog-to-digital interface 3-933
TDF8704 8-bit high-speed analog-to-digital converter 3-1033
TDA8758 YC 8-bit low-power analog-to-digital video interface 3-948
TDA8760 10-bit high-speed analog-to-digital converter 3-963
Auxiliary functions
PCF8574/PCF8574A Remote 8-bit $1 / \mathrm{O}$ expander for $\mathrm{I}^{2} \mathrm{C}$-bus 3-5
PCF8584 ${ }^{2}$ C C-bus controller 3-16
SAA1101 Universal sync generator (USG) 3-41
SAA5252 Line twenty-one acquisition and display (LITOD) 3-100
TDA2595 Horizontal combination 3-644
TDA4670 Picture signal improvement (PSI) circuit 3-675
TDA4680 Video processor with automatic cut-off and white level control 3-685
TDA4686 Video processor, with automatic cut-off control 3-701
TDA4820T Sync separation circuit for video applications 3.717
TDA8444/AT/T Octuple 6-bit DAC with $\mathrm{I}^{2} \mathrm{C}$-bus 3-722
TDA8446; TDA8446T Fast RGB/YC switch for digital decoding 3-731
TDA8540 4×4 video switch matrix 3.763
Analog color decoding
TDA3566A PAL/NTSC decoder 3-651
TDA4665 Baseband delay line 3-669
TDA8501 PAL/NTSC encoder 3-738
TDA9141 PAL/NTSC/SECAM decoder/sync processor 3-1010
Color decoding, encoding and clock ICs (digital)
SAA7110 One Chip Frontend 1 (OFC1) 3-120
SAA7110 programming example 3-184
SAA7151B Digital multistandard colour decoder with SCART interface (DMSD2-SCART) 3-202
SAA7157 Clock signal generator circuit for digital TV systems (SCGC) 3-252
SAA7183 Digital video encoder (square pixel with Macrovision) 3-302
SAA7187 Digital video encoder (DENC2-SQ) 3-332
SAA7188A Digital video encoder (DENC2-M) 3-359
SAA7188A programming example 3-385
SAA7191B Digital multistandard colour decoder, square pixel (DMSD-SQP) 3-387
SAA7194 Digital video decoder and scaler circuit (DESC) (short-form data sheet) 3-454
SAA7196 Digital video decoder, scaler, and clock generator (DESCPro) 3-457
SAA7197 Clock signal generator circuit for Desktop Video systems (SCGC) 3-511
SAA7199B Digital video encoder, GENLOCK-capable 3-517
SAA9051 Digital multistandard TV decoder 3-575
SAA9057B Clock signal generator circuit for Digital TV systems (CGC) 3-619

Digital-to-analog conversion

Digital-to-analog converter selection guide 3-4
SAA7165 Video enhancementand D/A processor (VEDA2) 3-276
SAA7169 35 MHz triple 9-bit D/A converterfor high-speed video 3-295
SAA9065 Video enhancement and D/A processor (VEDA) 3-626
TDA8702 8-bit video digital-to-analog converter 3.776
TDA8771 Triple 8-bit video digital-to-analog converter 3-984
TDA8772; TDA8772A Triple 8-bit video digital-to-analog converter 3-996
Digital video processing
SAA7116 Digital video to PCI interface 3-185
SAA7152 Digital video comb filter (DCF) 3-243
SAA7164 Video enhancement and D/A processor (VEDA3) 3-258
SAA7186 Digital video scaler 3-303
SAA7192A Digital colour space converter 3-418
Teletext
SAA5191 3-52
SAA5231 Teletext video processor 3-58
SAA5250 interface for data acquisition and control (for multi-standard teletext systems) 3-69
SAA5296 Single chip economy 10 page teletext/TV microcontroller 3-114
SAA9042 Multi-standard Teletext IC for standard and features TV 3-549
Section 4
SOT38-1 Plastic dual in-line package; 16 leads (300 mil) 4-3
SOT96A 8 -Pin Plastic SOL (Small Outline Large) Dual In-Line (D/T) Package 4-4
SOT101 24-Pin Plastic Dual In-Line (N/P) Package with Internal Heatspreader 4-5
SOT102 18-Pin Plastic Dual In-Line (N/P) Package with Internal Heatspreader 4-6
SOT109A 16-Pin Plastic SO (Small Outline) Dual In-Line (DTT) Package 4-7
SOT117-1 Plastic dual in-line package; 28 leads (600 mil) with internal heat spreader 4-8
SOT129 40-Pin Plastic Dual In-Line (N/P) Package 4-9
SOT136-1 Plastic small outline package; 28 leads; large body 4-10
SOT137-1 Plastic small outline package; 24 leads; large body 4-11
SOT146EF4 20-Lead Dual In-Line; Plastic 4-12
SOT158A 40-Pin Plastic VSO (Very Small Outline) Dual In-Line (D/T) Package 4-13
SOT162-1 Plastic small outline package; 16 leads; large body 4-14
SOT163AG7 20-Lead Mini-pack; Plastic 4-15
SOT187 44-Pin Plastic Leaded Chip Carrier; Pocket Version (A) Package 4-16
SOT188AA 68 -Pin Plastic Leaded Chip Carrier; Pocket Version (A) Package 4-17
SOT189CG 84-Pin Plastic Leaded Chip Carrier (A) Package 4-18
SOT225 160-Pin Plastic Quad Flat Pack (H) Package 4-19
SOT232 32-Pin Plastic Shrink Dual In-Line (N/P) Package 4-21
SOT234AG 24-Lead Plastic Shrink Dual In-Line Package 4-22
SOT247-1 52-Pin Shrink Dual In-Line Package; Plastic 4-23
SOT261-2 Plastic leaded chip carrier, 28 leads 4-24
SOT287-1 Plastic small outline package; 32 leads; large body 4-25
SOT307-2 44-Pin Plastic Quad Flat Pack (B) Package 4-26
SOT313-2 Plastic thin quad flat package; 48 leads; $7 \times 7 \times 1.4 \mathrm{~mm}$ 4-27
SOT317 100-Pin Plastic Quad Flat Pack (B) Package 4-28
SOT318 80-Pin Plastic Quad Flat Pack (B) Package 4-29
SOT340-1 Plastic shrink small outline package; 24 leads; medium body 4-30
SOT349 120-Pin Plastic Quad Flat Pack (B) Package 4-31
Section 5
Sales Offices, Representatives \& Distributors 5-3
Appendix A - Data Handbook System A-1

Section 1

General Information

CONTENTS
Digital video now, an introduction 1-3
Application configurations 1-6
Pro Electron type designation code for integrated circuits 1-11
Handling MOS devices 1-13
High-performance 8-bit video data converters 1-14
Line-locked digital colour decoding 1-22
AN ETV/IR89126 Digital interfaces for component video signals 1-29
CCIR REC. 601-2 Encoding parameters of digital television for studios 1-39
CCIR 656 RECOMMENDATIONS OF THE CCIR, 1990 1-49
Color space, digital coding, and sampling schemes for video signals 1-63
Video signal bandwidth/resolution 1-67
TV transmission standards; colour systems 1-68
International TV systems and standards 1-69
Contact addresses $1-73$
Video glossary 1-74
Alphanumeric index of products 1-76

Digital video now, an introduction

In the old days, if you wanted to see video, you turned to your television set. Nowadays, video is popping out all over--on PCs, workstations, teleconferencing gear, and a spate of medical and test equipment.

WHY?

Because humans live in a real-time, natural color world that machines are just catching up with. Video enhances the effectiveness of education, training, medical diagnosis, and just about any attempt to communicate.

HOW?

People are using digital video processing ICs from Philips Semiconductors-Signetics to facilitate the fusion of video and graphics. Look:

Unfortunately, this simple diagram hides a host of difficulties, including differences in scanning schemes, screen refresh rates, resolution, and color encoding. Fortunately, Philips has been into televisions since Felix was a kitten, and knows how to deliver video that looks good, even under adverse conditions.

WHAT DO YOU NEED?

The system that you select to decode and digitize your video signal must meet the following requirements:

- Support for Standards
- Orthogonal Sampling Structure
- Ease of Implementation

SUPPORT FOR STANDARDS

PAL, NTSC, SECAM

Philips digital video can detect which of the three international broadcast standards it is receiving and automatically switch to decode it!

S-VHS

Industrial applications frequently demand the increased performance of Super-VHS. Philips digital video can process S-VHS with the addition of a second analog-to-digital converter to handle the chrominance channel.

CCIR601

CCIR601 is an internationally established standard for digitizing PAL, NTSC, and SECAM. This standard is frequently called D1 in the U.S.

We offer a chip set that is 100% compatible with this standard, as well as other chip sets that address different market requirements.

ORTHOGONAL SAMPLING STRUCTURE

Processing in the horizontal (X), vertical (Y), and time (T) dimensions requires that picture elements are in identical positions in each frame. Philips' unique line-locked-clock implementation satisfies this requirement.
Examples of video processing include:

- Filtering in the X-direction: bandpass filter.
- Filtering in the Y -direction: simple comb filter.
- Filtering in the T-direction: noise reduction.

In the Philips digital video system, the sample clock is synchronized with the input's sync signal. An internal discrete time oscillator is used to demodulate the chroma.

This concept combines quartz stability with adaptive handling of video line frequency, and delivers picture elements in each field in identical positions. After all, nobody wants pixels that deviate.
It guarantees robust recovery of the video signal, without jitter, tearing or loss of color, even under the following adverse conditions:

- Time-base errors from
- VHS or 8 mm tape playback
- Videotape shuttle
- Videodisc freezeframe
- Poor signal-to-noise ratio from
- Low signal strength

Digital video now, an introduction

EASE OF IMPLEMENTATION

The Philips digital video system is simple to use:

- No adjustments.
- All 5 -volt operation.
- Small form-factor--all parts available in surface mount
- Architecture is partitioned to simplify the addition of features.
- Digital circuitry is constant, reproducible, and not subject to manufacturing variations.
- It is not influenced by variations in supply voltage or aging.
- There are no tolerances and therefore no need for circuit adjustments.
- Digital control is readily implemented via $\mathrm{I}^{2} \mathrm{C}^{*}$, without the need for D/As or other interfaces.
- Digital filters are implemented on-chip, and offer linear phase response.
- A single crystal supports different broadcast standards.

THE BUILDING BLOCKS:

INPUT PROCESSING

Analog to Digital Converter (A/D)

We offer a broad range of high performance A/Ds incorporating Philips' unique folding and interpolation architecture (see glossary). Two of these are specially configured for the digital video chip set: the TDA8708 for composite video (CVBS) inputs, and the TDA8709 for chroma inputs in S-VHS applications.

With the TDA8708, one can select one of three composite video signals to input to the system. This IC includes clamping, automatic gain control, and drive for an external low-pass filter. The signal is then fed to an internal eight-bit analog to digital converter, and finally output to the Digital MultiStandard Decoder.

Digital MultiStandard Decoder (DMSD)

The DMSD accepts digitized composite video, performs horizontal and vertical synchronization processing, and outputs Luminance (Y) and Chrominance (U, V) signals. Via $\mathrm{I}^{2} \mathrm{C}$ (see glossary), one can control color hue and luminance frequency response for optimum performance.
Philips offers four DMSDs:

- SAA9051 for consumer applications: 7-bits; Y:U:V 4:1:1; $13.5 \mathrm{MHz}, 720$ pixels/line
- SAA7151 for industrial applications:

8-bits; Y:U:V 4:2:2; 13.5 MHz, 720 pixels/line

- SAA7191 for computer graphics:

8-bits; Y:U:V 4:2:2; NTSC $12.27 \mathrm{MHz}, 640$ pixels/line
PAL/SECAM 14.75 MHz 768 pixels/ine

- SAA7194(6) for computer graphics:

8-bits; Y:U:V 4:2:2; NTSC $12.27 \mathrm{MHz}, 640$ pixels/line
PAL/SECAM 14.75 MHz 768 pixels/line

Clock Generator Circuit (CGC)

This IC works together with the DMSD to lock to the incoming signal's sync and generate the necessary system clocks. Philips offers three CGCs, one for each DMSD.

Digital video now, an introduction

FEATURE PROCESSING

Philips digital video architecture allows the data to be manipulated and freely shifted in time between input and output. Examples of processing which could be implemented here include manipulating the size of the picture, filtering, noise reduction, or data compression.

Digital Color Space Conversion (DCSC)

The SAA7192 digital color space converter connects directly to either the SAA7151 or SAA7191 DMSD. It accepts the Y:U:V data, interpolates samples, digitally converts $Y: U: V$ to $R: G: B$, and performs inverse gamma correction via an on-chip look-up table. it outputs R:G:B 8:8:8, which can then be manipulated as computer graphics, or directly converted into analog red, green, and blue through a D/A, such as the TDA8702 or SAA7169.

Digital Video Scaler (DVS)

The SAA7186 digital video scaler connects directly to all Philips 8-bit decoders (SAA7151 B,SAA7191 B, and SAA7194/6) DMSD. It accepts the YUV data, interpolates samples, scales the video downward to any desired size, filters the scaled video in both the horizontal and vertical domains and performs digital color space conversion of the YUV data into several formats of YUV and RGB video. It also contains an output buffer with handshaking for ease of interface and an anti-gamma ROM (bypassable).

Digital Decoder and Scaler (DESC)

The SAA7194/6 integrates the functionality of the SAA7191 B digital decoder, SAA7197 clock generator (SAA7196 only) and the SAA7186 scaler IC's. Input processing, and feature processing are integrated into one device.

Digital Encoder (DENC)

The SAA7199B (DENC) is a digital video to analog CVBS or S-Video encoders. This device is multistandard. The 7199B accepts digital RGB, YUV, 8-bit Indexed and digitized composite video as inputs. It also features a digital genlock input to aid in synchronizing the encoding system to other reference sources. The SAA7199 will simultaneously output CVBS (composite) and S-Video into 75 ohm loads.

Video Enhancement and D/A processor (VEDA and VEDA2)

The SAA9065 (VEDA) and SAA7165 (VEDA2) accept YUV data input, upsamples and interpolates and converts the data to analog YUV signals. Both 7-bit 4:1:1 and 8-bit 4:2:2 data formats are possible. Both devices can perform aperture correction and the SAA7165 will perform color transient improvement. Both devices will run at 30 MHz so that non-interlaced video can be supported.

Analog Video Processor (AVP)

The TDA4680,4685 and 4686 include an analog matrix which will covert analog YUV to analog RGB. These devices also accept synchronous external analog RGB signals and switch between these sources at a pixel rate thus allowing overlay capabilities. $I^{2} \mathrm{C}$ control of brightness, contrast and saturation is possible. All three devices are pin compatible, the TDA4686 has higher throughput bandwidth.

GLOSSARY

$I^{2} \mathrm{C}$ Bus

The Inter-Integrated Circuit $\left(1^{2} \mathrm{C}\right)$ Bus is a two line, multi-master bus developed by Philips to provide cost-effective control of analog and digital functions among ICs.
$1^{2} \mathrm{C}$ can simplify the manufacturing process by enabling complete calibration and test under computer control. Philips offers a large family of $I^{2} \mathrm{C}$-capable integrated circuits, including microcontrollers, microprocessors, and audio, video, and telephony ICs.

Folding, Interpolating A/Ds

This term describes the unique technology used in Philips' family of high speed analog to digital converters.
Designers are usually forced to choose between the high performance and high power consumption of bipolar flash AVDs or the low power consumption and low performance of CMOS A/Ds. By folding comparator inputs and interpolating the outputs, Philips is able to realize an A/D with one quarter the circuitry of a conventional flash converter. That means high performance A/Ds with power consumption as low as 250 mW . In addition to video, these parts are enabling new test and medical imaging applications.

Figure 1. 7-Bit Low Cost Video Frame Grabber with VGA Out

Application configurations

Pro Electron type designation code for integrated circuits

Basic type number

This type designation applies to semiconductor monolithic, semiconductor multi-chip, thin film, thick-film and hybrid integrated circuits.
A basic type number consists of three letters followed by a serial number.

FIRST AND SECOND LETTER

Digital family circuits
The first two letters identify the family (see note 1).

Solitary circuits

The first letter divides the solitary circuits into:
S : solitary digital circuits
T ; analog circuits
U : mixed analog/digital circuits
The second letter is a serial letter without any further significance except ' H ' which stands for hybrid circuits (see note 2).

Microprocessors

The first two letters identify microprocessors and correlated circuits as follows:
MA : microcomputer central processing unit
MB : slice processor (see note 3)
MD : correlated memories
ME : other correlated circuits (interface, clock, peripheral controller, etc.)

Charge-transfer devices and switched capacitors The first two letters identify the following:
NH : hybrid circuits
NL : logic circuits
NM : memories
NS : analog signal processing, using switched capacitors
NT : analog signal processing, using change-transfer device
NX ; imaging devices
NY : other correlated circuits

THIRD LETTER

The third letter indicates the operating ambient temperature range. The letters A to G give information about the temperature:
A : temperature range not specified below (see note 4)
B : 0 to $+70^{\circ} \mathrm{C}$
C : -55 to $+125^{\circ} \mathrm{C}$
D : -25 to $+70^{\circ} \mathrm{C}$
E : -25 to $+85^{\circ} \mathrm{C}$
F : -40 to $+85^{\circ} \mathrm{C}$
G: -55 to $+85^{\circ} \mathrm{C}$
If a circuit is published for another temperature range, the letter indicating a narrower temperature range may be used or the letter ' A '.

Example: The range 0 to $75^{\circ} \mathrm{C}$ can be indicated by ' B ' or ' A '.

SERIAL NUMBER

This may be either a 4-digit number assigned by Pro Electron, or the serial number (which may be a combination of figures and letters) of an existing company type designation of the manufacturer.
To the basic type number may be added:

Version letter(s)

A single version letter may be added to the basic type number. This indicates a minor variant of the basic type or the package. Except for ' Z ', which means customized wiring, the letter has no fixed meaning. The following letters are recommended for package variants:
C : for cylindrical
D : for ceramic DIL
F : for flat pack (2 leads)
G : for flat pack (4 leads)
H : for quadrature flat pack (QFP)
L : for chip on tape (foil)
P : for plastic DIL
Q : for QIL
T : for miniature plastic (mini-pack)
U : for uncased chip

Pro Electron type designation code for integrated circuits

Alternatively a TWO LETTER SUFFIX may be used instead of a single package version letter, if the manufacturer (sponsor) wishes to give more information.

FIRST LETTER: General shape

C	cylindrical
D	dual-in-line (DIL)
E	power DIL (with external heatsink)
F	flat (leads on 2 sides)
G	flat (leads on 4 sides)
H	quadrature flat pack (QFP)
K	diamond (TO-3 family)
M	multiple-in-line (except dual-, triple-, quadruple-in-line)
Q	quadruple-in-line (QIL)
R	power QIL (with external heatsink)
S	single-in-line
T	triple-in-line
W	lead chip-carrier (LCC)
X	leadless chip-carrier (LLCC)
Y	pin grid array (PGA)

SECOND LETTER: Material

C : metal-ceramic
G : glass-ceramic (cerdip)
M : metal
P : plastic
To avoid confusion when the serial number ends with a letter, a hyphen is used preceding the suffix.

Examples (see note 5)

PCF1105WP	Digital IC, PC family, operational temperature range -40 to $+85^{\circ} \mathrm{C}$, serial number 1105, plastic leaded chip-carrier.
GMB74LS00A-DC	Digital IC, GM family, operational temperature range 0 to $+70^{\circ} \mathrm{C}$, company number 74LSS00A, ceramic DIL package.
TDA1000P	Analog circuit, no standard temperature range, serial number 1000, plastic DIL package.
SAC2000	Solitary digital circuit, operational temperature range -55 to $+125^{\circ} \mathrm{C}$.

Notes

1. A logic family is an assembly of digital circuits designed to be interconnected and defined by its basic electrical characteristics (such as: supply voltage, power consumption, propagation delay, noise immunity).
2. The first letter ' S ' should be used for all solitary memories, to which, in the event of hybrids, the second letter 'H' should be added (e.g., SH for Bubble-memories).
3. By 'slice processor; is meant: a functional slice of microprocessor.
4. In the case of two same types with two different temperature ranges not specified below, one type should use the letter ' A ' as the third letter and the other, the letter ' X '.
5. Some companies have been using version letters and/or two letter-suffix, which differ from the Pro Electron definitions. In case of confusion Pro Electron may be contacted.

Handling MOS devices

HANDLING MOS DEVICES

Though all our MOS integrated circuits incorporate protection against electrostatic discharges, they can nevertheless be damaged by accidental over-voltages. in storing and handling them, the following precautions are recommended.

Caution

Testing or handling and mounting call for special attention to personal safety. Personnel handling MOS devices should normally be connected to ground via a resistor.

Storage and transport

Store and transport the circuits in their original packing. Alternatively, use may be made of a conductive material or special IC carrier that either short-circuits all leads or insulates them from external contact.

Testing or handling

Work on a conductive surface (e.g., metal table top) when testing the circuits or transferring them from one carrier to another. Electrically connect the person doing the testing or handling to the conductive surface, for example by a metal bracelet and a conductive cord or chain. Connect all testing and handling equipment to the same surface.
Signals should not be applied to the inputs while the device power supply if off. All unused input leads should be connected to either the supply voltage or ground.

Mounting

Mount MOS integrated circuits on printed circuit boards after all other components have been
mounted. Take care that the circuits themselves, metal parts of the board, mounting tools, and the person doing the mounting are kept at the same electric (ground) potential. If it is impossible to ground the printed-circuit board, the person mounting the circuits should touch the board before bringing MOS circuits into contact with it.

Soldering

Soldering iron tips, including those of low-voltage irons, or soldering baths should also be kept at the same potential as the MOS circuits and the board.

Static charges

Dress personnel in clothing of non-electrostatic material (no wool, silk or synthetic fibers). After the MOS circuits have been mounted on the board, proper handling precautions should still be observed. Until the sub-assemblies are inserted into a complete system in which the proper voltages are supplied, the board is no more than an extension of the leads of the devices mounted on the board. To prevent static charges from being transmitted through the board wiring to the device, it is recommended that conductive clips or conductive tape be put on the circuit board terminals.

Transient voltages

To prevent permanent damage due to transient voltages, do not insert or remove MOS devices, or printed-circuit boards with MOS devices, from test sockets or systems with power on.

Voltage surges

Beware of voltage surges due to switching electrical equipment on or off, relays and DC lines.

High-performance 8-bit video data converters

Wherever there's a need to display a picture on a video screen, there's an attendant demand to enhance the image. This requires the analog video signals to be converted into digital information before the enhancement techniques can be applied. Unfortunately, although integrated 8-bit full-parallel flash ADCs are available for converting high-frequency video signals, the complex circuitry they contain to achieve the required high level of performance makes them too expensive and power consuming and, paradoxically, even restricts their performance for many applications.
We have overcome this problem by developing our innovative TDAB7xx range of 20 MSPS to 50 MSPS, or even 100 MSPS 8-bit data converters and fabricating them in a standard high-volume bipolar process (SUBILO-N). This advanced process offers high speed, high packing density and excellent element matching, all of which are crucial factors for integrating high-performance data converters.

INNOVATIVE TECHNIQUE REDUCES COST AND POWER CONSUMPTION

The secret of the success of our TDA87xx data converters lies in an innovative folding and interpolating technique which reduces the number of on-chip components to such an extent that cost is reduced by up to 90%, and power consumption cut by up to 70%. A unique added benefit is that the impressive reduction of chip area we have achieved allows us to offer TDA87xx data converters not only in DIL packages but also in SO packages for surface mounting.

PROFESSIONAL PERFORMANCE AT A CONSUMER PRICE

Despite the remarkable reductions of power consumption and price we have achieved for our TDA87xx range, there is no sacrifice of
performance. For example, our 75 MSPS 8 -bit flash ADC type TDA8714 consumes as little as 325 mW , has a minimum differential linearity error of only $1 / 2$ LSB, and a signal-to-noise ratio of 70 dB resulting in a resolution of 7.6 effective bits with an input frequency of 4.43 MHz (75 MHz clock). This compares well with the 6 effective-bit resolution offered by expensive bipolar professional ADCs and far outstrips the 3 or 4 effective-bit resolution obtainable with MOS ADCs for consumer video applications.
The outstanding video frequency performance of our TDA87xx converters, combined with their low cost and power dissipation, makes them ideal for reducing
costs without degrading performance in professional and military applications and, for the first time, brings affordable high-performance data conversion to a host of consumer video applications.

High-performance 8-bit video data converters

A TO D CONVERSION TECHNIQUES

Full-parallel conversion is complex and power-hungry

Most currently available high-performance 8 -bit ADCs use the full-parallel implementation shown in a simplified form in Figure 1. In this configuration, 255 comparators simultaneously compare the level of the applied analog input signal with . 255 different reference levels derived from a resistor ladder. On the occurrence of each sampling clock pulse, 255 latches store the output states of the 255 comparators and a 255 to 8 -line encoder converts the latch outputs into an 8 -bit code. Obviously, this full-parallel system is inefficient because much of the information stored in the latches is redundant. For example, since each sample of a full-scale input voltage ramp falls
within the transition range of only one of the comparators, only one of the latches has to change its output state for each sample. Moreover, the 255 latches at the analog to digital interface cause kick-back noise which disturbs the sensitive analog circuitry.
The complex circuitry and immense number of signal interconnections occupy a very large area of silicon, restrict operating speed and dissipate considerable power. Also, the analog signal sampling process and attendant aliasing effects impose stringent demands on the distortion and noise behavior of the analog circuitry.

Folding and interpolating reduces on-chip components and power consumption
 An elegant method of reducing the complexity of the full-parallel ADC circuitry, is

to reduce the number of latches and simplify the encoding logic by combining the outputs from several of the comparators and feeding the resultant signal to a single latch. This "folding" technique is practical as long as the comparators which have their outputs combined are sufficiently far apart on the reference resistor ladder to ensure that any input sample falls within the transition range of only one of them.
The next logical step is to reduce the number of comparators and combining circuits (folding amplifiers), thereby also simplifying the precision reference resistor ladder. This is done by eliminating groups of intermediate comparators fed by consecutive taps on the reference resistor ladder and using a resistor ladder at the remaining comparator outputs to interpolate the missing signals.

Figure 1. 8-bit full-parallel ADC
At the sample clock, an array of 255 latches decides whether the output from each of 255 comparators is 1 or 0 . The usage of the latches is inefficient - each has only to make one decision over the entire full-scale input range.

High-performance 8-bit video data converters

Figure 2. One of 16 identical sections of an 8 -bit folding ADC
Folding the outputs of 16 comparators to one latch reduces the number of latches needed from 255 to 16.

Reducing the number of latches

 by folding the analog input signal Figure 2 shows one of the sixteen identical sections of a "folding" 8 -bit ADC with waveforms for sampling a full-scale input voltage ramp. Here, the outputs from every 16 th comparator along the reference resistor ladder are alternately "folded" up and down by sixteen 16 -input analog gating circuits (folding amplifiers), the output from each of which is sampled by a single latch. The number of latches required for a complete 8 -bit ADC is thus reduced form 255 to 16 , and the 255 to 8 -line encoder is simplified to a 16 to 8 -line circuit. Because the signal distribution problems and chip area for this ADC configuration are also considerably reduced, its overall performance actually improves. Furthermore, since it has only 16 connections between the analog and digital circuitry instead of 255 , kick-back noise is much reduced.Because the output code generated by the 16 latches after folding (fine conversion) is repeated eight times during a full-scale input
voltage ramp, a simple, easy to implement 3 -bit coarse converter is needed to determine which of the eight output code cycles is the current one. It is also necessary to equalize the delays introduced by the coarse and fine conversion to ensure that the accuracy of the final data stream is equal to that of the fine converter.

Reducing the number of comparators by interpolating their outputs

The folding technique was used to reduce the number of latches required for an 8 -bit ADC and simplify the encoding logic, thereby reducing chip area, power consumption and signal distribution paths without compromising performance. We will now show how an interpolation technique is used to further this aim by reducing the number of comparators and consequently the number of taps on the precision reference resistor ladder and the number of folding amplifiers. This interpolation technique exploits the fact that a comparator output signal doesn't change state instantly when the input
exceeds the reference level, but follows the input signal linearly over the first part of the transition range.
Figure 3 shows outputs V_{0} and V_{4} from two of the comparators of the 8 -bit folding ADC which are separated by three taps on the reference resistor ladder. It is clear that, since the transition ranges of these two comparators overlap considerably, the three intermediate outputs ($\mathrm{V}_{1}, \mathrm{~V}_{2}$ and V_{3}) can be derived by interpolation using a simple 3 -tap resistor ladder connected between output V_{0} and V_{4} as shown in Figure 4. The distortion introduced by the interpolation is unimportant because only the zero crossings are of interest for setting the sampling latch.

By using this interpolation technique, three out of every four comparators are eliminated, thereby reducing the number required for an 8 -bit folding and interpolating ADC from 255 to 64. The interpolation technique also reduces the number of taps required on the precision reference resistor ladder from 255 to 64 and reduces the number of folding amplifiers required from 16 to 4.

High-performance 8-bit video data converters

High-performance 8-bit video data converters

The complete 8-bit folding and interpolating ADC

Figure 5 is a simplified block diagram of a complete 8 -bit folding and interpolating ADC. In this diagram, each of the folding amplifier blocks contains 16 comparators and a folding amplifier. Also, although the interpolation is performed by resistor ladders at the outputs of the folding amplifiers, the principle remains the same as that described for interpolating at the comparator outputs.

Figure 5. Block diagram of a complete folding and interpolating ADC Although, in practice, interpolation takes place after folding of the comparator output signals instead of before as explained for clarity in the main text, the result is the same. The folding amplifier blocks each contain 16 comparators and a folding amplifier.

Number of internal components for 8-bit full-parallel ADCs compared with those required for folding and interpolating ADCs

	Conventional Full-Paraliel ADC	Folding and Interpolating ADC
Reference resistor taps	255	64
Comparators	255	64
Interpolation resistor taps	0	24
Latches	255	16
Encoder stages	255	16
Simple 3-bit coarse converter	0	1
Clock driver fan-out	255	24
Output buffiers	8	8

High-performance 8-bit video data converters

APPLICATIONS FOR VIDEO ADCs

The high performance combined with the low cost and power consumption of our TDA87xx range of video data converters make them suitable for applications ranging from costly professional equipment requiring the highest performance, to consumer equipment where cost is the major factor.

To quote just a few examples, transportable medical equipment, such as ultrasonic scanners, demands high performance combined with low power consumption. High performance is also essential for converters in sensitive high-frequency test and measuring equipment such as oscilloscopes and spectrum analyzers. The rapidly expanding market for desktop video is another application area. In the consumer world of home entertainment systems, TV set manufacturers and broadcast authorities are meeting the demand for more TV channels and enhancement of picture quality by using digital signal processing techniques. For example, low-cost converters are needed for decoding MAC-encoded multi-channel TV and sound information from broadcast satellites, and for use in the new TV sets with memory-based features that are appearing on the market.

HOW WE MEASURE THE

 PERFORMANCE OF OUR ADCsFor an ADC specification to be useful to an equipment manufacturer, it must fully characterize the dynamic performance of the IC. Figures relating to integral and differential linearity at low frequencies are of little use as figures of merit because they have to be laboriously converted into more useful figures for many applications. Output signal-to-noise ratio (SNR), provided it is related to input frequency, is a much better and more versatile figure of merit for an ADC because the "noise" includes both the quantization error and the harmonic distortion. Moreover, a simple formula can be used to convert SNR into "effective bits". However, the SNR of an ADC is not easy to measure, and additional specific data relating to Total Harmonic Distortion (THD) is often required as well. This is why we have developed a special Measurement Bench for accurate determination of the static and dynamic performance of our present and future ADCs.

ADC measurement bench

Our ADC measurement bench is arranged as shown in Figure 6. It is for use in a laboratory to determine the static and dynamic characteristics of present and future ADCs with up to 12 digital outputs and conversion rates up to 100 MSPS. The following characteristics can be measured: - signal-to-noise ratio (SNR)

- total harmonic distortion (THD)
- differential non-linearity (DNL)
- integral non-linearity (INL)
- data timing.

A PC is used to control the measurement bench and to acquire the sampled input signal to test the ADC. The acquired signal is converted into a data file that is used by a test program developed with scientific Forth-language software called ASYST, to create histograms, graphs, and a Fast Fourier Transformation (FFT) which facilitate analysis of the ADC output data to determine its operating characteristics.

Analog input signal

For accurate and complete determination of ADC characteristics, it is necessary to test all of the possible quantization levels. It is also necessary to meet the requirements of the Nyquist sampling theorem that states that it is only possible to fully define an analog waveform digitally if the sampling interval is not more than half the bandwidth of the analog signal.

Although it is possible to use an analog input signal with a triangular or sawtooth (ramp) waveform (theoretically infinite bandwidth), we use a full-scale sinusoidal signal because it has only one frequency component and is comparatively easy to synthesize at high frequencies.

High-performance 8-bit video data converters

Sampling method

At the start of a sinewave period, the slope of the signal is maximum and equal to $A 2 \pi f_{i n} \mathrm{v} / \mathrm{s}$, where A is the peak amplitude. The amplitude to be defined by 1 LSB of the ADC is therefore $2 \mathrm{~A} / 2^{\mathrm{N}}$ volts, where N is the number of data outputs from the ADC. To acquire every quantization level by real-time sampling, 2^{N} samples must be taken during the period of one half cycle (one peak-topeak sweep) of the input signal which is $\mathrm{t}_{\mathrm{in}} / \pi$. The time available to describe 1 LSB is therefore $t_{i n} / 2^{N} \pi$, leading to a required conversion rate of $2^{N} \pi \mathrm{f}_{\text {in }}$. For an 8 -bit ADC with an input frequency of 5 MHz , the conversion rate would therefore have to be 4 GSPS, which is far above the maximum conversion rate specified for any of our ADCs.

Instead of using real-time sampling, our measurement bench therefore uses the multi-beat frequency method of sampling illustrated in Figure 7.

Multi-beat frequency sampling uses the principle of "aliasing" to convert the high frequency input sinewave into a lower frequency sinewave from which it is easier to acquire all the quantization levels for analysis.

Instead of acquiring all the samples during the period of half an input cycle by sampling at $f_{S}=2^{N} \pi f_{\text {in }}$, the required number of samples (N_{O}) are now acquired over several
cycles of the input signal and used to reconstruct a sinewave which is a lower frequency aliased version of the input signal.
The ADC under test samples the sinewave input at a rate offset by a small amount from an integer multiple of the input frequency. The small frequency offset is chosen so that the ADC output only changes by one LSB at the point of maximum slope of each consecutive cycle of the input sinewave. Since an LSB period at the point of maximum slope of a sinewave is $\mathrm{tin}^{2} / 2^{\mathrm{N}} \pi$, the minimum number of samples that must be acquired to fully test all the quantization levels is $\mathrm{N}_{\mathrm{O}}>$ $2^{N} \pi$, in which N_{0} must be rounded to an integer. For an 8 -bit converter, N_{O} must be at least 805.

Under these conditions, the minimum sampling period (time to acquire all samples during one input cycle) is $t_{\text {s }} \min =t_{i n} / N_{0}$ which gives a maximum sampling frequency of $f_{\text {s }} \max =f_{\text {in }} N_{0}$. This maximum frequency is too high to be practical and must be reduced to $f_{S}=f_{S} m a x / K_{0}\left(t_{S}=t_{S} m i n K_{0}\right)$, where the difference between K_{O} and N_{O} are relative primes. To minimize the sample acquisition time, the value of K_{O} should, however, be the minimum permitted by the maximum conversion rate specified for the ADC under test.

The measurement bench uses every K_{O} th output from the ADC under test to compile a
sampled sinewave acquired data file. The information in the data file, which is effectively a reconstruction of a sinewave, which is a lower frequency aliased version of the input signal, is then analyzed to determine the ADC characteristics.

Measuring effective bits and harmonic levels

To determine the signal-to-noise ratio (SNR) and harmonic levels of our ADCs on the measurement bench, the data in the acquired sinewave file is transformed into the frequency domain with a fast Fourier transformation (FFT).
The levels of the signal, its harmonics and the noise can now be clearly seen and easily computed. The FFT is analyzed by the computer to determine $\operatorname{SNR}=\mathrm{P}_{\text {signal }} / \mathrm{P}_{\text {noise }}$.
Instead of specifying SNR, it is possible to specify effective bits (b), which are defined as $\mathrm{b}=($ SNR - 1.76)/6.02, where SNR is the calculated value in dB when a full-scale sinewave is analyzed.

By determining SNR as a function of input frequency, it is easy to determine the N -bit resolution bandwidth of an ADC which is equal to the input frequency at which the effective bits have decreased to $\mathrm{N}-0.5$. For an 8-bit ADC, this occurs when the SNR is 46.9 dB .

SIGNAL AFTER
SAMPLING AT is

Not reconstructed

meaist

Figure 7. Principle of multi-beat frequency sampling

High-performance 8-bit video data converters

Differential and integral non-linearity

Differential non-linearity (DNL) is a measure of the maximum amount by which the distance between the midpoints of adjacent steps on the ADC transier function (quantized output level as a function of input level) differs from the width of one LSB. It is measured with a statistical test in which the acquired sinewave file is used to generate a histogram of the digitized signal with a number $\mathrm{H}(\mathrm{i})$ for each output code (i). The probability of obtaining each code is calculated and the ratio of the number of acquired samples of each code $\mathrm{H}(\mathrm{i})$ to the total No of samples (N_{O}) represents the differential non-linearity.
Integral non-linearity (INL) is a measure of the deviation of the ADC transfer function
from the ideal. Since it is equal to the maximum difference between the measured and ideal quantization levels, it can be caiculated from the histogram used to calculated DNL. Since $\operatorname{INL}(0)=$ DNL(0)/2, INL can be calculated for each step (i) of the transfer function as $\operatorname{INL}(i)=\operatorname{INL}(\mathbf{i}-1)+$ DNL(i)/2. The maximum value thus obtained is the integral non-linearity of the ADC.

Data timing

The relative timing of the output bits of the ADC can be displayed on the screen of the PC that forms part of the measurement bench. Acquisition of the timing data can be either synchronized with the ADC clock pulses the frequencies up to 1 GHz , or asynchronous at frequencies up to 2 GHz .

APPLICATION SUPPORT

When designing data converters into a system, it is essential to pay careful attention to a number of circuit details to ensure that the high performance of our ICs is fully exploited. Correct PCB layout is particularly important, with particular emphasis on track widths, avoidance of ground loops and minimization of crosstalk between the analog and digital circuitry. Care must also be taken to understand the relative timing of the sampled and output data. Other important details include decoupling for noise reduction and stability of internal reference levels, decoupling and harmonic suppression for clock signals, and power supply filtering.

Line-locked digital colour decoding

Ton Nillesen - CAB-Elcoma, N.V. Philips, Eindhoven (The Netherlands)

On présente dans cet article une méthode de décodage numérique des signaux vidéo couleur basée sur des fréquences d'échantillonnage verrouillées sur la ligne. La fréquence d'échantillonnage est synthétisée à partir de la fréquence d'un cristal. On génère une fréquence stable de sous-porteuse en utilisant la fréquence variable d'échantillonnage par contrôle direct à partir du synthétiseur.

A digital colour decoding principle involving line-locked sample frequencies is presented. The sampling frequency is synthesized from a crystal frequency. A stable subcarrier frequency is generated from the variable sampling frequency by forward control from the synthesizer.

To digitally decode PAL or NTSC composite video signals in a TV receiver, it is advantageous for the sampling rate to be related to the colour subcarrier frequency because this simplifies the demodulator and the chroma filters. However after colour decoding, the component video signals for luminance and colour difference are available and the colour subcarrier is then no longer relevant. Line-locked sampling is then a better choice.
In fact, for video processing and conversion to other scanning frequencies, line-locked sampling is a natural choice because it results in orthogonal sampling, which simplifies video signal processing with line and field memories [1].

WHY LINE LOCKED ?

Standard conversion to other scanning frequencies might be used for instance for reduction of large area flicker by means of field rate conversion to higher frequencies. Another type of conversion is compression of the signals for features such as picture in picture and multi picture-in-picture, whereas expansion of the signals is required for picture enlargement or C-MAC decoding, etc..

Line-locked digital colour decoding

Some other examples of signal processing using line or field memories are :

- cross colour and cross luminance reduction with line-, field- or frame-combfilters,
- noise reduction by an integrating temporal filter,
- resolution enhancement by a peaking spatial filter.

Furthermore, a line-locked sample frequency is a must for matrix displays such as LCDs, the index tube and dot matrix printers and it is also a necessity for display of good quality characters.
And last but not least, the circuitry for processing line-locked component video signals is substantially independent of transmission standards.

APPLICATION OF SAMPLE

RATE CONVERTER

If a subcarrier-locked colour decoder is used, linelocked samples can be obtained by sample rate conversion. An obvious approach for a Sample Rate

Converter (SRC) is via digital-to-analog (DA) and analog-to-digital (AD) conversion. The subcarrierlocked samples are then converted to analog signals and re-sampled with the line-locked sample frequency (fig. la). Although this is a straigtforward method, using well-known techniques, it is not attractive because it is expensive. It requires ADCs and DACs, three of each for the three component signals, including the reconstruction filters, and a second clock generator. Furthermore, the additional conversion step degrades signal quality. A second approach is a SRC in the digital domain, the line-locked samples being calculated from surrounding subcar-rier-locked samples by means of interpolating algorithms (fig. 1b). Both approaches require two clock generators coupled to the video signal, one burstlocked and the second line-locked.

However, it is not necessary to have the line-locked clock available with equidistant clock transitions. Transfer and processing of the samples with amplitude information belonging to line-locked sampling positions can be done with a gated version of the original clock (fig. 1c). The gated clock should then have a constant number of clock transitions per line period. However a reverse sample rate conversion is then required before DA-conversion. This second SRC is eliminated if the line-locked clock is physically available. DA-conversion is then done with the line-locked clock. However the most complex part of the sample rate conversion is the interpolating algorithm required [2].

Fig. 1. Application of sample rate converters : a. anolog sample rate converter, b. digital sample rate converter and two clocks coupled to video signal, c. two digital sample rate converters and single clock.

INTERPOLATION OF SAMPLES

In principle, interpolation is done by low-pass filtering. The low-pass filter should reject the sidebands of the original subcarrier-locked samples, including at harmonics of the sampling frequency, but should pass the baseband spectrum containing the desired signal with a flat frequency- and linear phase-characteristic. Linear interpolation is certainly not sufficient, neither in the passband nor in the stopband, to preserve good signal quality. Each new sample should therefore be calculated from several surrounding original samples with proper weighting factors. The weighting factors should be of sufficient number and sufficient accuracy to generate new samples with a timing accuracy of about 0.2 ns , if the resulting signal should have a bandwidth of 5 MHz and 8 -bit quantization (fig. 2).

Fig. 2. Principle of sample rate conversion.

For compatibility with non-standard video signals with variable line frequencies, the conversion rate cannot be expressed as a simple ratio of small prime integers but is irrational and time-varying. As a consequence the interpolating filters will be complex with a large set of filter coefficients. A digital SRC will therefore require a relatively large chip area. These are the reasons for considering line-locked colour decoding which produces line-locked samples of the luminance and the colour difference signals directly.

COLOUR DECODING PRINCIPLE

The NTSC and PAL colour systems use suppressedcarrier amplitude modulation with quadrature subcarriers (fig. 3). The chroma signal can be demodulated by multiplying it by the correctly-phased subcarrier sine and cosine waves. This gives the colour difference signals plus some high frequency components,

Fig. 3. Colour decoding principle for PAL system.
the latter being removed by filtering. For digital signals, the chroma signal has to be multiplied by the sampled subcarrier waves. If the sample rate is four times the subcarrier frequency, with the correct phase, the multiplications simplify to multiplication by 1,0 , -1 and 0 of successive samples. With line-locked or other sample frequencies asynchronous with the subcarrier, real four-quadrant multipliers are required for demodulation with the asynchronously-sampled subcarrier [3].
In the subcarrier regenerator (fig. 4) the subcarrier phase is coupled to the received colourbust. In order to reduce the effects of noise, the phase information extracted from several bursts is averaged by means of a narrow filter which in general is implemented as a phase locked loop (PLL). In analog circuits, the phase detector normally consists of a multiplier and the loop filter in a second order loop delivers an output signal which is partly proportional to the phase detector output signal and partly an integrated version of that signal. So digitally these blocks can be realised with adders, multipliers and an integrator.

Fig. 4. Schematic diagram of the analog subcarrier regenerator.

Line-locked digital colour decoding

The tunable oscillator is normally a voltage controlled oscillator with an oscillator control sensitivity of K_{0} (rd $\cdot \mathrm{s}^{-1} \cdot \mathrm{~V}^{-1}$). So for an output frequency of ω_{sc}, the subcarrier frequency, the loop filter has to deliver a control voltage of $\omega_{s c} / K_{0}$. For sinewave oscillators the instantaneous output is $\sin \left(\omega_{\mathrm{c}}\right)$. As a consequence, the oscillator transfers the input signal $\omega_{c c} / K_{0}$ to the output signal $\sin \left(\omega_{\mathrm{sc}} t\right)$ which, apart from the sine function and the constant K_{0}, is an integrating action. The sine function prevents saturation of the output by the ever increasing value of the instantaneous phase. With the sine function the output phase follows the instantaneous phase modulo 2π radians.

THE DISCRETE TIME OSCILLATOR

(DTO)

The integrating and modulo function of the oscillator can be realised digitally with an accumulator consisting of an adder and D-flip-flops (fig. 5a). The multibit output of the adder is applied to its input via D-flipflops which are clocked with the clock frequency $f_{c l}$. At the second input of the adder, a constant multibit value p is applied. So at each clock period the pre-

8 $o_{n}=\left(o_{n-1}+p\right)$ modulo q
b

$$
\frac{p}{q}=\frac{1 / f_{c l}}{1 / f_{0}} \rightarrow p=\frac{f_{0}}{f_{c l}} q
$$

Fig. 5. Principle of the discrete time oscillator.
vious content of the accumulator is incremented by p until overflow occurs at the value q. The next value will then be the previous value plus p modulo q. So the output resembles a time discrete quantised sawtooth signal whose period is set by p. Obviously the ratio between p and q equals the ratio between the clock period and the period of the output signal f_{0}. So the control value p should be $f_{0} / f_{c 1} \cdot q$. If the overflow value is defined as being 1 , then the input value simplifies to $p=f_{0} / f_{\mathrm{cl}}$ (fig. 5b).
That brings us to our definition of a discrete time oscillator (DTO) also known as ratio counter or rate multiplier or accumulator or numerically controlled oscillator. The input value should equal the ratio between the desired output frequency and the clock frequency. Its modulo 1 output indicates from zero to one the instantaneous phase within a single preriod (fig. 6).

Fig. 6. The discrete time oscillator.

Note that the ratio f_{0} / f_{cl} at the input is dimensionless, indicating the phase increment per clock period, whereas the output of the DTO is the instantaneous phase modulo 1 , which in principle is varying. Both signals can, in binary notation, be approximated to the required accuracy. However if the clock frequency is not constant whereas a constant subcarrier frequency should be generated, then the frequency control value should be corrected accordingly to the desired accuracy. As a consequence, the line-locked clock should be known with sufficient accurary and has therefore to be generated with a crystal frequency as reference.

$\boldsymbol{N} \boldsymbol{f}_{\mathrm{I}}$ GENERATOR

It is a logical step to generate the line-locked sample frequency from a crystal frequency by means of a DTO. The DTO is clocked with the crystal frequency f_{c} and the desired output frequency is $N f_{1}$, so the loop

Line-locked digital colour decoding

Fig. 7. Generation of line-locked sampling frequency ($N \mathrm{f}_{\mathrm{f}}$) with crystal accuracy.
filter in the horizontal phase locked loop should deliver the numerical value $N f_{1} / f_{c}$ (fig. 7).
The DTO delivers then a quantised sawtooth signal with frequency $N f_{1}$ but in the discrete time domain sampled with the crystal clock f_{c}. However the sample frequency should be available as a continuous signal so that it can be used as the system clock. Therefore the DTO output signal is converted from digital to analog after a conversion from sawtooth to sinewave via a sine-ROM. The reconstruction filter delivers then an analog sinewave with no undesired harmonics or mixing products. That sinewave is then converted to the proper logical signal levels.
If this sample frequency generator is used in the horizontal phase locked loop, then the relationship between instantaneous sampling frequency and the crystal controlled reference frequency is known. As a consequence, the generated frequency control value $N f_{1} / f_{c}$ from the horizontal phase locked loop can be used to correct the DTO in the subcarrier loop for variations in $N f_{1}$.

FORWARD CONTROL (DIVIDER)

Figure 8 shows the subcarrier phase locked loop with the burst phase detector, the loop filter, the DTO and the sine plus cosine ROM which delivers the demodulating sine and cosine waves. Between the loop filter
and the DTO the correction is done for the varying clock frequency.

Since the subcarrier DTO operates with the line-locked clock, a value $f_{c} / N f_{i}$ should be applied to its input as frequency control value. This value is obtained via an arithmetical divider (A / B) which divides the intermediate control value at the output of the subcarrier loop filter by $N f_{11} f_{c}$ from the horizontal PLL. The intermediate control value should therefore be $f_{\mathrm{c}} / f_{\mathrm{c}}$, the ratio between the subcarrier frequency and the crystal frequency. Apart from long-term variations, this ratio remains constant regardless of the clock frequency. Consequently, the subcarrier loop filter can be designed for narrow noise bandwidth, optimised for subcarrier regeneration. The inaccuracy of the forward control due to the limited wordlength of the signals is handled by the loop as internally-generated noise and can be chosen at a sufficiently low level.

LINE-LOCKED COLOUR DECODER

A complete block diagram of a line-locked colour decoder is presented in figure 9. For simplicity, several functions such as automatic colour control, colour killer, compensating delays etc. have been omitted in the block diagram. The signal-flow in the horizontal and subcarrier PLLs are indicated in heavy lines as is the correction circuit (A / B) which corrects the subcarrier DTO for varying line frequencies. The left-hand part of the circuit operates with the crystal controlled clock frequency f_{c} and generates the line-locked sampling frequency $N f_{1}$ with which the rest of the circuit operates. The coupling between these two parts is via the resynchronisation register R which delivers the control value $N f_{i} / f_{c}$ to the DTO.

In the synchronisation processing part, the $N f_{1}$ sample frequency is divided down to the line frequency f_{1}. The division ratio N can be made selectable to adapt the sample frequency to the bandwith of the video signal or to different line frequencies. The counter drives a state decoder which delivers several control

Fig. 8. Forward control of subcarrier DTO operating with line-locked clock.

Line-locked digital colour decoding

Fig. 9. Simplified block diagram of line-locked digital colour decoder.
signals at line frequency. One of these line frequency signals is applied to the horizontal phase detector where its phase is compared with the phase of the separated synchronisation signal. The result is applied to the loop filter and then added to the nominal input value ($N f_{\text {inom }} / f_{\mathrm{c}}$) for the DTO. As a consequence the loop filter has only to deliver the error on the nominal value and the nominal value can be made selectable to accomodate different line frequencies or different numbers of samples per line.
The frequency control value has only to be updated once per line period. However updating the sample frequency also requires a new correction of the subcarrier DTO input value. For that reason the control values to both DTOs are effectuated on command of a line frequency signal f_{1} when both control values have been calculated. In fact the subcarrier DTO is updated somewhat later than the $N f_{1}$-DTO to compensate for the delay of the video signals from ADC to demodulator. The synchronisation signal f_{1} acts as write clock for the resynchronisation buffer R. The new data is then clocked with f_{c} and applied to the input of the $N f_{1}$-DTO. In the subcarrier DTO the new value becomes availables as soon as the D-flip-flops in front of the subcarrier DTO are clocked with a line frequency signal.

In the subcarrier loop the demodulated burst signal is used as actual phase information for subcarrier regeneration. For PAL the average V-phase of the burst is zero if the subcarrier phase is correct. So the V-demodulator together with the burstgate, consisting
of a multiple input AND-gate, forms the phase detector. After passage through the loop filter, the result is added to the nominal frequency control value ($f_{\mathrm{c} \text { nom }} / f_{\mathrm{c}}$) and divided by $N f_{\mathrm{l}} / f_{\mathrm{c}}$. After the division, which takes several clock cycles, the result is applied to the DTO via the D-flip-flops.

To prevent side-locking, the loop filter output $\Delta f_{\mathrm{c}} / f_{\mathrm{c}}$ should be limited so that the regenerated subcarrier remains close enough to the nominal value. The nominal value can be altered to accommodate the subcarrier frequency in different standards. This gives this system a clear advantage over conventional decoders. Although only a single crystal frequency f_{c} is present, any subcarrier can be regenerated with the proper accuracy only by changing the nominal frequency control value $f_{\text {s nom }} / f_{\mathrm{c}}$.

Let us consider now the analog part of the clock generation circuitry. The reconstruction filter and wave shaper for the $N f_{1}$ clock frequency can be implemented with an analog PLL. The advantages of this are :

- the filter curve tracks the input frequency so that the bandwidth can be smaller than with a fixed filter : this allows fewer bits to be used in the DA-converter :
- several line-locked frequencies can be generated if the PLL is provided with dividers ;
- the entire circuit can be integrated.

Line-locked digital colour decoding

Fig. 10. Analog PLL as reconstruction filter.

Such an implementation is indicated in figure 10 . The analog PLL is indicated with a charge pump phase detector, a loop filter, a voltage controlled oscillator (VCO) and the divider which delivers several linelocked frequencies. As a consequence the first part of the circuit can also operate on a subharmonic of the actual sample frequency.
The phase detector is driven by the DA-converter so that these functions can be combined in form of a multiplying DAC. Good results have been obtained with a 4 bit DAC so that this function can be very small in chip area. The required accuracy of the DAC of course is dependent on the quality of the reconstruction filter. A smaller filter bandwidth requires fewer bits for the DAC. However a narrow noise bandwidth of the PLL results in a slower response on frequency steps and consequently larger phase errors. That response can be improved by forward control of the oscillator to the required frequency. That information is available at the input of the $N f_{1}$-DTO and could be used via DA-conversion for pre-correction of the VCO-frequency.
The factor N, which determines the sample frequency, can have any appropriate value. An attractive choice is $N=858$ for 60 Hz TV systems and $N=864$ for 50 Hz systems. The sampling frequency will then be 13.5 MHz which is in accordance with the CCIR recommendation for digital processing in studio equipment. The number of active samples per line period is then 720 for all TV standards.

CONCLUSION

In this presentation, the principle and the main advantages of line-locked colour decoding have been shown :

- owing to the orthogonal samples, line-locked decoding is optimized for the growing use of picture processing $[4,5]$;
- the system in principle is sample-rate-invariant so that it has excellent multi-standard capabilities and it enables the choice of a common clock for all standards ;
- for applications somewhat further in the future, it is quite important that the principle is directly applicable with matrix displays.

This article is written as a lecture (for ICCE 85 in Chicago).

1 VAN DE POLDER (L.J.). PARKER (D.W.), ROOS (J.). Evolution of television receiver from analog to digital. Proc. IEEE. 73, (1985), 599-612.

2 RAMSTAD (T.A.). - Digital methods for conversion between arbitrary sampling frequencies. IEEE Trans. Acoust., Speech arbitrary sampling irequencies.
Signal Process, ASSP-32, (1984). 577.591.
3 CLARKE (C.P.K.). - Digital PAL decoding using line-locked sampling. 8th Int. Broadcasting Convention Proc., IEE pub. no 191, (1980).

4 Memory based features. Philips publication 939840130011. (1985).

5 CCD video memory systems. Philips publication 939832820011. (1985).

Author: A. H. Nillesen

Several coding parameters have to be specified for interconnecting the digital component video signals YD, UD and VD between several devices. For the digital studio environment the CCIR has made two recommendations on these parameters.

CCIR Recommendation 601 describes an extensive family of clock frequencies and the signal amplitudes, timing codes and auxiliary data for digital video component signals common to the 525 - and 625 -line TV standards. CCIR Recommendation 656 describes the means of interconnecting digital television equipment complying with the 4:2:2 encoding parameters as defined in Recommendation 601.

In the early eighties the basic sampling clock of digital circuits for TV receivers has been chosen, by Philips, Siemens and others, in accordance with the digital component studio standard CCIR Rec. 601, due to obvious benefits of having that parameter in common with the broadcasting side (e.g. MAC-decoding and descrambling). However with respect to signal amplitudes and multiplexing format a different choice was made. Possible benefits from the recommendations on these parameters were not seen, or considered as imaginary, whereas the drawbacks were considered as serious. This paper addresses the signal amplitudes and the multiplexing format which have been chosen for digital YUV interfaces in the TV receiver, including the extensions and revisions from later dates.

1. THE CONVERSION FACTOR

To express the amplitudes of the digital component signals, the conversion factor CF is defined as being the ratio between the digital and the normalized representation of the signal. Normalization is done to Red=Green=Blue=1 at peak white and the digital signals are represented on a scale of 256 (8 bits).
$C F=$ Conversion - Factor $=\frac{\text { digital signal amplitude on } 8 \text { bits scale }}{\text { normalised } \text { signal amplitude }\left(R_{\max }=G_{\max }=B_{\max }=1\right)}$

Figure 1. Definition of Conversion Factor CF

2. MAXIMUM AMPLITUDE OF NORMALIZED SIGNALS

With normalized signals the colour separation signals red, green and blue are unity at peak white: $\mathrm{R}_{\max }=\mathrm{G}_{\max }=\mathrm{B}_{\max }=1$.
The colour equations for broadcast signals are based on the NTSC primaries as specified in CCIR Report 624-2. The resulting equation for the luminance signal is:

$$
\begin{equation*}
Y=0.299 * R+0.587 * G+0.114 * B \tag{2.1}
\end{equation*}
$$

which gives: $Y p-p=1$
$|B-Y|$ is maximum for $R, G, B=0.0,1$ (=blue)
or $R, G, B=1,1,0$ ($=$ yellow=white minus blue)
which gives: $(B-Y) p-p=2 *(1-0.114)=1.772$
$|R-Y|$ is maximum for $R, G, B=1,0,0$ (mred)
or $R, G, B=0,1,1$ ($=$ cyanmwhite minus red)
which gives: (R-Y)p-p=2*(1-0.299)=1.402

> maximum amplitudes of normalized signals
> $Y_{p-p}=1,(B-Y)_{p-p}=1.772,(R-Y)_{p-p}=1.402$

3. MAIN CODING PARAMETERS OF CCIR REC. 601/656

The digital component signals according to CCIR Rec. 601 have been chosen such that, coded in straight binary

- digital levels 0 and 255 are reserved for synchronization data.
- the luminance signal is to occupy only 220 quantisation levels, to provide working margins, and that black is at level 16.
- the colour difference signals are to occupy 225 quantisation levels and that the zero level is to be level 128 in order to cope with the bipolar nature of the colour difference signals.

The conversion factors follow from these limits on the digital signal range and the maximum peak-to-peak value of the normalized signals:


```
CCIR digital YUV:
    CY=219*Y+16
    CU=126*(B-Y)+128 b binary coded
```

- the data words 0 and 255 are reserved for data identification
- the video data words are conveyed (CCIR Rec. 656) as a 27Mwords/second multiplex in the following order:

$$
\mathrm{CU}, \mathrm{CY}, \mathrm{CV}, \mathrm{CY}, \mathrm{CU}, \mathrm{CY}, \mathrm{CV}, \text { etc. }
$$

in which the word sequence $\mathrm{CU}, \mathrm{CY}, \mathrm{CV}$, refers to cosited luminance and colour-difference samples and the following word, CY , corresponds to the next luminance sample.

4. PARAMETERS TO BE CONSIDERED FOR TV RECEIVERS

Without doubt the characteristics of analog or digital video component signals at broadcasting side and receiving end are quite different due to the large differences in environment and cost/performance. As a consequence the coding characteristics of digital interface signals are influenced differently by several parameters. Regarding signal amplitudes:

- maximum digital resolution should be balanced against:
- margin for static and dynamic amplitude changes, l.e. tolerances and multiplicative noise (echo, tilt).
- margin for additive noise.
- margin for filter overshoots
- probable limit on saturation

Also on the ratio between signal amplitudes some criteria should be considered:

- simple gain correction to normalized signals e.g. matrixing.
- simple correction between digital decoder and interface.

The list can be extended with requirements from EMC, limitations or advantages of certain IC technologies, application specific requirements etc. Although no choice is best in all cases, consensus is required on the major coding characteristics, due to obvious benefits of standardization. The agreement on this subject between system engineers from the Consumer-Electronics and the Components divisions of Philips (and others) will be explained in the following chapters.

5. MAIN CODING PARAMETERS FOR DIGITAL TV

The component video signals for digital TV are specified as:

[^0]1) $C C I R$ recommendations use different nomenclature: Y, C_{B}, C_{R}.

The colour difference signals are coded in two's complement in order to fit directly to digital arithmetic functions. The difference with the offset binary coding of the CCIR signals (3.1-3.3) is an inversion of the MSB. Concerning the specified conversion factors it will be shown that several criteria on the coding parameters are fulfilled simultaneously:

- digital resolution is practically optimum for 75% colour difference amplitudes.
- signal amplitudes fit conveniently to D2MAC decoders, taking into account 30\% headroom for noise.
- UDND ratio fits conveniently to the required gain matching ratio for PAL/NTSC colour difference signals.
- amplitude margin is in accordance with the amplitude tolerance of analog decoded signals.
- matrixing to colour selection signals is simple

6. PEAK AMPLITUDE RATIOS

The amplitude ratios should be chosen such that

- the maximum amplitudes are more or less equal in order to maximize digital resolution
- simple gain ratios are required for matrixing
- required correction of the decoded signals is simple
in which 'simple' means that the required gain can be realized with very few additions.

6.1. Probable Maximum Saturation

Due to the gamma of the picture tube the displayed saturation will be higher than the electrical saturation except at 100\%. Saturation is less than 100% if the displayed colour has a certain white content, which means that none of the the RGB signals then becomes zero but have a minimum non-zero value. That minimum value becomes relatively smaller if it is displayed via the gamma of the picture tube.
The electrical saturation can be expressed as $\frac{E_{\max }-E_{\min }}{E_{\max }}=1-\frac{E_{\min }}{E_{\max }}$
from which follows: displayed saturation $=1-\left[\frac{E_{\min }}{E_{\max }}\right]^{\text {gamma }}$
in which Emin is the minimum value of the RGB signals in coloured areas Emax is the maximum value of the RGB signals in coloured areas gamma is the gamma of the drive-to-output display characteristic.
As a consequence a minor reduction of the maximum displayed saturation will result in a significant reduction of the maximum amplitude of the colour difference signals, e.g. only 5% reduction of the maximum displayed saturation at maximum intensity results from 30% reduction of the electrical saturation at gamma=2.4.

Therefore it is important to take into account that it is most unlikely that natural scenes contain fully saturated colours at maximum intensity. PAL and NTSC have been specified such that at maximum saturation the modulated subcarrier would never swing 'blacker-than-black' by more than 33%. As a consequence the composite signal reaches 100% amplitude at $1 / 1.33=75 \%$ amplitude of saturated colours (yellow and cyan in 100.0.75.0 EBU colour bars). On the same ground also D2MAC colour difference signals are specified for only 77% maximum electrical amplitude. Furthermore the most common luminance step colour bar signals used as test signal result in colour difference signals at 75% of their theoretical maximum amplitude [1].
For these reasons it is supposed that the colour difference signals will most probably not exceed 75% of their theoretical maximum value, which corresponds to 96% maximum displayed saturation at a practical value of gamma=2.4. ${ }^{2}$)

6.2. Ratio of Conversion Factors

For equal amplitudes of the digital signals the ratio of the conversion factors should be inversely proportional to the analog amplitudes. As a consequence the ratio of the conversion factors for equal peak amplitudes at 75% maximum electrical saturation is given by

$$
C F_{y}: C F_{u}: C F_{v}=\frac{1}{Y_{p-p}}: \frac{1}{0.75^{*}(B-Y)_{p-p}}: \frac{1}{0.75^{*}(R-Y)_{p-p}}
$$

Substitution of (2.2) gives $C F_{y}: C F_{u}: C F_{v}=1.0 .75: 0.95$ which, after rounding to simple integers, results in:

$$
\begin{equation*}
C F_{y}: \mathrm{CF}_{u}: \mathrm{CF}_{\mathrm{v}}=4: 3: 4 \tag{6.2}
\end{equation*}
$$

2) It should be noted that the gamma of TV cathode ray tubes is about 2.4 whereas the 'transmitted' gamma is nominally 2.8 which results in an overall gamma of 1.2.

With these simple factors, which will lead to simple (digital) matrixing for R and B, the probable maximum amplitudes of the digital signals are practically equal which gives optimum digital resolution.

6.3. U/V Gain Matching for PAL and NTSC

in NTSC and PAL the colour difference signals $U=(B-Y)^{\prime}$ and $V=(R-Y)^{\prime}$ used to modulate the subcarrier are reduced in amplitude with respect to the normalized signals:

$$
\begin{align*}
& U=0.493^{*}(B-Y) \tag{6.3}\\
& \left.V=0.877^{*}(R-Y) 3\right) \tag{6.4}
\end{align*}
$$

As a consequence gain correction is required to obtain normalized signal amplitudes from the demodulated U and V signals. The required gain matching ratio, derived from (6.3) and (6.4), equals $0.493 / 0.877=9 / 16$. Therefore the ratio $\mathrm{CF}_{\mathrm{u}} / \mathrm{CF}_{v}=3 / 4$ fits very conveniently to the required gain matching ratio for UN from decoded PAL or NTSC signals. If the decoded V signal is first reduced with $3 / 4$ (one adder) then the remaining 'error' is $3 / 4$, being the desired $C F_{U} / C F_{v}$. The final correction of $3 / 4$, which will result in equal conversion factors, should then be applied just before or just after DA-conversion to obtain analog colour difference signals with normalized amplitudes, which is common practice for TV receivers.

7. DIGITAL SIGNAL AMPLITUDES

The worst case margins required for noise and amplitude tolerances are quite large. Linear or statistical addition of these margins would lead to insufficient digital resolution at quantisation in 8 bits. As an example, statistical addition of

- 30% headroom for noise (subchapter 7.1)
- 18\% tolerance on transmitted burst-to-chrominance ratio [2]
- 2dB gain tolerance of analog decoders (subchapter 7.2)
would require a total range for the colour difference signals of more than two times the nominal value. Therefore the conversion factors have been chosen such
- that there is sufficient margin in amplitude to handle the tolerance of analog decoders
and
- that the margin is according to the 'headroom' for additive noise as proposed by the EBU for D2MAC signals.

If, for certain applications, the margin is considered as insufficient then a kind of gain control should be applied. Gain control on the CVBS signal in front of the digital decoder is already common practice (TDA8708). However automatic gain correction of component signals, i.e. signals originating from external RGB (SCART) or analog decoders, is far more complicated. Detection and control of the amplitudes should then be done on the three component signals simultaneously.

7.1. noise

The criterion for noise handling capability in this context is the probability that signal quality is degraded by noise clipping due to signal quantisation. A probability of one sample per line (about 10^{-3}) seems a reasonable measure for good noise behavior. Assuming that the noise has a Gaussian distribution (white noise), the peak value to be taken into account is then approximately three times the rms value, six times for the peak-to-peak value.

Signal-to-noise-ratios below OdB are normal operating conditions in the design of TV circuits. E.g. for burst processing it is common practice to design the subcarrier regenerator for stable output (less than 5 degree rms phase noise) at $\mathrm{S} / \mathrm{N}=-10 \mathrm{~dB}$ ($\mathrm{CVBS}_{\mathrm{p}-\mathrm{p}} / \mathrm{Noise}_{\text {ms }}$) [3]. In that case the required margin for noise amplitude would be approximately twenty times larger then the CVBS signal amplitude.
Although it is unlikely that such a margin is present in the analog prestages at nominal CVBS amplitude, it is obvious that a compromise is necessary between quantisation noise and the margin for external noise. Therefore the worst probable case of S/N for D2MAC reception is used as a guideline [4].
In the D2MAC system the carrier is frequency-modulated by the baseband signal [5]. In FM systems there is a rather sharp threshold between carrier-to-noise ratios for 'good' and 'bad' S / N of the demodulated signal. Therefore the assumption is made that the worst probable S / N for D2MAC reception occurs at a carrier-to-noise ratio of 11 dB , just above the threshold. That results in an unweighted noise level of about $-26 \mathrm{~dB}(=0.05)[4,6]$ for the demodulated signal (depending on the filter response of the prestages). That means that $6 * 0.05=30 \%$ headroom has to be taken into account for additive noise.

7.2. MAC Decoder

MAC decoding in principle is time-demultiplexing. Therefore the MAC decoder is transparent (no internal gain) with respect to digital amplitudes. If the MAC (mid-range) clamping level is referred to as zero and if the peak-to-peak range is unity, then the MAC signals according to the D2-MAC specification [5] are transmitted as:

```
Ym=Y-0.5, Um=0.733*(B-Y) and Vm=0.927*(R-Y) &)
```

3) In NTSC the vectors I and Q are also derived from ($B-Y)^{\prime}$ and ($R-Y$)'.

It is supposed that regarding DC level:

- the digitized grey clamping level equals 128 (analog 'zero' becomes digital 128)
and regarding $A C$ input:
- the ratio between the nominal digital peak-to-peak amplitude and the maximum range (256) of the ADC equals MR (Modulation Range).
then the corresponding digital component signals will be (See Fig. 2):

```
MY=128+MR*256*(Y-0.5)
MU=128+MR*256*0.733*(B-Y)
(7.3)
MV=128+MR*256*0.927*(R-Y) (7.4)
```


Figure 2. Relation Between Analog and Digital D2MAX Baseband Signals

[^1]
Digital interfaces for component video signals

With 30% headroom for additive noise (MR=0.77) the decoded signals (7.2)-(7.4) and the resulting conversion factors become:

$$
\begin{align*}
& M Y=197^{*} Y+29 \quad C F_{y}=197 \tag{7.5}\\
& M U=144^{*}(B-Y)+128 C F_{u}=3 / 4^{*} 192 \tag{7.6}\\
& M V=183^{*}(R-Y)+128 C F_{v}=183=192 / 1.05 \tag{7.7}
\end{align*}
$$

Consequences for interfacing:

- luminance black level should be corrected to 16 (one adder).
- error on CFy results in an acceptable saturation error
- V-signal has to be corrected with 192/183w17/16*63/64 (two adders)
- no correction is needed for the U-signal

7.3. Analog Decoder

An accepted value for the specified tolerance on the output signals of analog colour decoders (e.g.TDA4555) is $+/-2 d B$ ($0.8-1.25$). With a fixed digital black level of 16 the available range for luminance is $255-16+1=240$. Reduction with 2 dB , rounded to the nearest multiple of 4 (resulting in an integer value for CFu), gives a nominal range of 192. That means that the digital interface signals (CF $\mathrm{y}_{\mathrm{y}}=192$) can also handle the amplitude tolerance of analog decoders.

7.4. Digital PAL Decoder

In PAL and NTSC decoders the amplitude of the demodulated U and V signals is, via action of Automatic Colour Control (ACC), directly related to the amplitude of the colour burst. For PAL the relation can be derived from
$\mathrm{BP}=$ peak burst amplitude $=3 / 7$
Substitution in in (6.3) and (6.4) gives
$U=1.15^{*} B P^{*}(B-Y)$ and $V=2.05^{*} B P^{*}(R-Y)$
If the burst peak amplitude in the digital PAL decoder is kept at $B P=125$ and the amplitude of the V signal is reduced with $3 / 4$ then the resulting UD and VD signals become:

$$
\begin{align*}
& U D=1.15^{*} 125^{*}(B-Y)=3 / 4^{*} 192^{*}(B-Y) \tag{7.9}\\
& V D=3 / 4^{*} 2.05^{*} 125^{*}(R-Y)=192^{*}(R-Y) \tag{7.10}
\end{align*}
$$

which is in accordance with the desired interface signals (5.1)-(5.3).

7.5. Digital Matrixing

For certain applications, e.g. gamma correction for LCD, it might be required to operate on colour separation signals rather than colour difference signals. With six adders the YD, UD and VD signals can be matrixed to digital luminance, red and blue signals normalized to a conversion factor of 216.

luminance:	$216^{*} \mathrm{Y}=9 / 8^{*} \mathrm{YD}$	(one adder)	(7.11)
red:	$216^{\star} \mathrm{R}=9 / 8^{*} \mathrm{YD}+3 / 2^{*} \mathrm{UD}$	(three adders)	(7.12)
blue:	$216^{\star} \mathrm{B}=9 / 8^{*}(\mathrm{YD}+\mathrm{VD})$	(two adders)	(7.13)

These signals cover 90% (216) of the total range from black (16) to maximum (255).

8. DATA MULTIPLEXING

The video interface signal according to CCIR Rec. 656 is based on 4:2:2 sample ratio. For digital TV the 4:1:1 sample ratio is an attractive alternative, in particular for memory based processing of video originating from decoded CVBS signals. Therefore data formats have been specified for 4:1:1 and 4:2:2 The luminance and colour difference signals are conveyed as separate data with identical clock rate according to the luminance sample rate, 13.5 MHz or 27 MHz in case of frequency doubling. Luminance data is transferred on eight data lines, whereas the colour difference signals are multiplexed on four or eight data lines.
The 4:2:2 multiplex format is chosen such that it can simply be made from the multiplexed data according to CCIR Rec.656. In the 4:1:1 format the UD and VD signals are multiplexed on separate data lines. The multiplex formats of the colour difference samples are given in the following tables together with the cosited luminance sample.

Digital interfaces for component video signals

dataline	samplebits			samplebits			
Y7	$\begin{aligned} & \text { T7 } \\ & \text { Y6 } \\ & \text { Yo } \end{aligned}$	next Y	$\|r\| r$ dataline $Y 7$ 76 $Y 0$	$\begin{aligned} & Y 7 \\ & Y 6 \\ & \text { YO } \end{aligned}$	next Y -samples		
Y6 \ldots							
Y0							
C7	U7	V7	C7	U7	U5	U3	U1
C6	U6	V6	C6	U6	U4	U2	U0
			C5	V7	V5	V3	V1
CO	U0	Vo	C4	V6	V4	V2	Vo
time-slot	0	1	time-slot	0	1	2	3

The start of the multiplex frame is identified by the positive going edge of a control signal (BLN or HREF or MUX, depending on the integrated circuit used as source).

9. CONCLUSION

Signal amplitudes and multiplexing formats for digital component video signals as used for interconnecting TV receiver functions are based on receiver specific requirements. Concerning amplitudes the following criteria are fulfilled:

- digital resolution is practically optimum for 75% colour difference amplitudes.
- signal amplitudes fit conveniently to D2MAC decoders, taking into account 30% headroom for noise.
- UD/ND ratio fits conveniently to the required gain matching ratio for PAL/NTSC colour difference signals.
- amplitude margin is in accordance with the amplitude tolerance of analog decoded signals.
- matrixing to colour selection signals is simple Data multiplexing parameters are specified for:
- 4:2:2 as well as 4:1:1 sample frequency ratio to cope with different bandwidths, in particular for memory applications
- clock frequency equal to luminance sample frequency for application with or without frequency doubling

The following figures give the characteristic amplitudes of the digital component video signals according to the specifications for application in TV receivers and according to CCIR Rec. 601.

Digital interfaces for component video signals

REFERENCES

[1] CCIR Recommendation 471-1; "Nomenclature and description of colour bar signals"
[2] IBA Technical Review, part 2 Technical Reference Book, July 1974
[3] Donald Richman; Proc. IRE, vol. 43, 1954; "Colour-carrier reference phase synchronization accuracy in NTSC colour television"
[4] Appendix to part 2 of [5]; "Guidelines for system implementation"
[5] EBU Technical centre; Tech.3258-E; October 1986; "Specification of the systems of the MAC/packet family"
[6] Arno Neelen, Philips Components division, PCALE; private communication.

RECOMMENDATION 601-2

ENCODING PARAMETERS OF DIGITAL TELEVISION FOR STUDIOS*

(Question 25/11, Study Programmes 25G/11, 25H/11)
(1982-1986-1990)

The CCIR,

CONSIDERING

(a) that there are clear advantages for television broadcasters and programme producers in digital studio standards which have the greatest number of significant parameter values common to 525 -line and 625 -line systems;
(b) that a world-wide compatible digital approach will permit the development of equipment with many common features, permit operating economies and facilitate the international exchange of programmes;
(c) that an extensible family of compatible digital coding standards is desirable. Members of such a family could correspond to different quality levels, facilitate additional processing required by present production techniques, and cater for future needs;
(d) that a system based on the coding of components is able to meet some, and perhaps all, of these desirable objectives;
(e) that the co-siting of samples representing luminance and colour-difference signals (or, if used, the red, green and blue signals) facilitates the processing of digital component signals, required by present production techniques,

UNANIMOUSLY RECOMMENDS

that the following be used as a basis for digital coding standards for television studios in countries using the 525 -line system as well as in those using the 625 -line system:

1. Component coding

The digital coding should be based on the use of one luminance and two colour-difference signals (or, if used, the red, green and blue signals).

The spectral characteristics of the signals must be controlled to avoid aliasing whilst preserving the passband response. When using one luminance and two colour-difference signals as defined in Table I of RECOMMENDS 4, suitable filters are defined in Annex III, Figs. 1 and 2 . When using the $E_{R}^{\prime}, E_{G}^{\prime}, E_{B}^{\prime}$ signals or luminance and colour-difference signals as defined in Table II of Annex I, a suitable filter characteristic is shown in Fig. 1 of Annex III.

[^2]
2. Extensible family of compatible digital coding standards

The digital coding should allow the establishment and evolution of an extensible family of compatible digital coding standards.

It should be possible to interface simply between any two members of the family.
The member of the family to be used for the standard digital interface between main digital studio equipment, and for international programme exchange (i.e. for the interface with video recording equipment and for the interface with the transmission system) should be that in which the luminance and colour-difference sampling frequencies are related in the ratio $4: 2: 2$.

In a possible higher member of the family the sampling frequencies of the luminance and colour-difference signals (or, if used, the red, green and blue signals) could be related by the ratio $4: 4: 4$. Tentative specifications for the 4:4:4 member are included in Annex I (see Note).

Note - Administrations are urgently requested to conduct further studies in order to specify parameters of the digital standards for other members of the family. Priority should be accorded to the members of the family below 4:2:2. The number of additional standards specified should be kept to a minimum.

3. Specifications applicable to any member of the family

3.1 Sampling structures should be spatially static. This is the case, for example, for the orthogonal sampling structure specified in § 4 of the present Recommendation for the $4: 2: 2$ member of the family.
3.2 If the samples represent luminance and two simultaneous colour-difference signals, each pair of colour-difference samples should be spatially co-sited. If samples representing red, green and blue signals are used they should be co-sited.
3.3 The digital standard adopted for each member of the family should permit world-wide acceptance and application in operation; one condition to achieve this goal is that, for each member of the family, the number of samples per line specified for 525 -line and 625 -line systems shall be compatible (preferably the same number of samples per line).

4. Encoding parameter values for the $4: 2: 2$ member of the family

The following specification (Table I) applies to the $4: 2: 2$ member of the family, to be used for the standard digital interface between main digital studio equipment and for international programme exchange.

TABLE I - Encoding parameter values for the 4:2:2 member of the family

'Parameters	525 -line, 60 field/s ${ }^{(1)}$ systems	625 -line, 50 field $/ \mathrm{s}\left({ }^{1}\right)$ systems
1. Coded signals: Y, C_{R}, C_{B}	These signals are obtained from gamma pre-corrected signals, namely: E_{Y}^{\prime}, $E_{R}^{\prime}-E_{Y}^{\prime}, E_{B}^{\prime}-E_{Y}^{\prime}$ (Annex II, § 2 refers)	
2. Number of samples per total line: - luminance signal (Y) - each colour-difference signal $\left(C_{R}, C_{B}\right)$	$\begin{aligned} & 858 \\ & 429 \end{aligned}$	$\begin{aligned} & 864 \\ & 432 \end{aligned}$
3. Sampling structure	Orthogonal, line, field and frame repetitive. C_{R} and C_{B} samples co-sited with odd (1st, 3rd, 5th, etc.) Y samples in each line	
4. Sampling frequency: - luminance signal - each colour-difference signal	The tolerance for the sampling for the line frequency of the r	Id coincide with the tolerance vision standard
5. Form of coding	Uniformly quantized PCM, 8 bits per sample, for the luminance signal and each colour-difference signal	
6. Number of samples per digital active line: - luminance signal - each colour-difference signal	$\begin{aligned} & 720 \\ & 360 \end{aligned}$	
7. Analogue-to-digital horizontal timing relationship: - from end of digital active line to 0_{H}	16 luminance clock periods	nance clock periods
8. Correspondence between video signal levels and quantization levels: - scale - Iuminance signal - each colour-difference signal	0 to 255 220 quantization levels with the black level corresponding to level 16 and the peak white level corresponding to level 235 . The signal level may occasionally excurse beyond level 235 225 quantization levels in the centre part of the quantization scale with zero signal corresponding to level 128	
9. Code-word usage	Code-words corresponding to quantization levels 0 and 255 are used exclusively for synchronization. Levels 1 to 254 are available for video	

${ }^{(1)}$ See Report 624, Table I.
(${ }^{2}$) The sampling frequencies of 13.5 MHz (luminance) and 6.75 MHz (colour-difference) are integer multiples of 2.25 MHz , the lowest common multiple of the line frequencies in $525 / 60$ and $625 / 50$ systems, resulting in a static orthogonal sampling pattern for both.

ANNEX I

TENTATIVE SPECIFICATION OF THE 4:4:4 MEMBER OF THE FAMILY

This Annex provides for information purposes a tentative specification for the $4: 4: 4$ member of the family of digital coding standards.

The following specification could apply to the 4:4:4 member of the family suitable for television source equipment and high quality video signal processing applications.

TABLE II - A tentative specification for the 4:4:4 member of the family

Parameters	$525-\mathrm{line}, 60$ field $/ \mathrm{s}$ systems\quad625 -line, 50 field $/ \mathrm{s}$ systems
1. Coded signals: Y, C_{R}, C_{B} or R, G, B	These signals are obtained from gamma pre-corrected signals, namely: $E^{\prime} r$, $E_{R}^{\prime}-E_{Y}^{\prime}, E_{B}^{\prime}-E_{Y}^{\prime}$ or $E_{R}^{\prime}, E_{G}^{\prime}, E_{B}^{\prime}$
2. Number of samples per total line for each signal	858 崖 864
3. Sampling structure	Orthogonal, line, field and frame repetitive. The three sampling structures to be coincident and coincident also with the luminance sampling structure of the $4: 2: 2$ member
4. Sampling frequency for each signal	13.5 MHz
5. Form of coding	Uniformly quantized PCM. At least 8 bits per sample
6. Duration of the digital active line expressed in number of samples	At least 720
7. Correspondence between video signal levels and the 8 most significant bits (MBS) of the quantization level for each sample: - scale - R, G, B or luminance signal (${ }^{1}$) - each colour-difference signal (${ }^{1}$)	0 to 255 220 quantization levels with the black level corresponding to level 16 and the peak with level corresponding to level 235 . The signal level may occasionally excurse beyond level 235 225 quantization levels in the centre part of the quantization scale with zero signal corresponding to level 128

${ }^{(}{ }^{1}$ If used.

ANNEX II

DEFINITION OF SIGNALS USED IN THE DIGITAL CODING STANDARDS

1. Relationship of digital active line to analogue sync. reference

The relationship between 720 digital active line luminance samples and the analogue synchronizing references for $\mathbf{6 2 5}$-line and $\mathbf{5 2 5}$-line systems is shown below.

TABLE III

525-line, 60 field/s systems 1 1	720 T	$16 T \quad \begin{array}{ll} & \\ & \\ & \text { I } \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ \hline \end{array}$	
	Digital active-line period	$\begin{gathered} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0_{H} \\ 1 \\ \hline \end{gathered}$	Next line
 625-line, 50 field/s $132 T$ systems 	$720 T$	$\begin{array}{lll} 12 & T & \\ & & 1 \\ & 1 \\ & & 1 \\ & & 1 \\ \hline \end{array}$	

T : one luminance sampling clock period (74 ns nominal).
The respective numbers of colour-difference samples can be obtained by dividing the number of luminance samples by two. The $(12,132)$ and $(16,122)$ were chosen symmetrically to dispose the digital active line about the permitted variations. They do not form part of the digital line specification and relate only to the analogue interface.

2. Definition of the digital signals Y, C_{R}, C_{B}, from the primary (analogue) signals $E_{R}^{\prime}, E_{G}^{\prime}$ and E_{B}^{\prime}

This section describes, with a view to defining the signals Y, C_{R}, C_{B}, the rules for construction of these signals from the primary analogue signals $E_{R}^{\prime}, E_{G}^{\prime}$ and E_{B}^{\prime}. The signals are constructed by following the three stages described in § 2.1, 2.2 and 2.3 below. The method is given as an example, and in practice other methods of construction from these primary signals or other analogue or digital signals may produce identical results. An example is given in § 2.4.
2.1 Construction of luminance $\left(E_{Y}^{\prime}\right)$ and colour-difference $\left(E_{R}^{\prime}-E_{Y}^{\prime}\right)$ and $\left(E_{B}^{\prime}-E_{Y}^{\prime}\right)$ signals

The construction of luminance and colour-difference signals is as follows:

$$
E_{Y}^{\prime}=0.299 E_{R}^{\prime}+0.587 E_{G}^{\prime}+0.114 E_{B}^{\prime} \quad \text { (See Note) }
$$

whence:

$$
\begin{aligned}
\left(E_{R}^{\prime}-E_{Y}^{\prime}\right) & =E_{R}^{\prime}-0.299 E_{R}^{\prime}-0.587 E_{G}^{\prime}-0.114 E_{B}^{\prime} \\
& =0.701 E_{R}^{\prime}-0.587 E_{G}^{\prime}-0.114 E_{B}^{\prime}
\end{aligned}
$$

and:

$$
\begin{aligned}
\left(E_{B}^{\prime}-E_{Y}^{\prime}\right) & =E_{B}^{\prime}-0.299 E_{R}^{\prime}-0.587 E_{G}^{\prime}-0.114 E_{B}^{\prime} \\
& =-0.299 E_{R}^{\prime}-0.587 E_{G}^{\prime}+0.886 E_{B}^{\prime}
\end{aligned}
$$

Note. - Report 624 Table II refers.

Taking the signal values as normalized to unity (e.g., 1.0 V maximum levels), the values obtained for white, black and the saturated primary and complementary colours are as follows:

TABLE IV

Condition	E_{R}^{\prime}	E_{G}^{\prime}	E_{B}^{\prime}	E_{Y}^{\prime}	$E_{R}^{\prime}-E_{Y}^{\prime}$	$E_{B}^{\prime}-E_{Y}^{\prime}$
White	1.0	1.0	1.0	1.0	0	0
Black	0	0	0	0	0	0
Red	1.0	0	0	0.299	0.701	-0.299
Green	0	1.0	0	0.587	-0.587	-0.587
Blue	0	0	1.0	0.114	-0.114	0.886
Yellow	1.0	1.0	0	0.886	0.114	-0.886
Cyan	0	1.0	1.0	0.701	-0.701	0.299
Magenta	1.0	0	1.0	0.413	0.587	0.587

2.2 Construction of re-normalized colour-difference signals ($E^{\prime} C_{k}$ and $E^{\prime} C_{g}$)

Whilst the values for E_{Y}^{\prime} have a range of 1.0 to 0 , those for ($E_{R}^{\prime}-E_{Y}^{\prime}$) have a range of +0.701 to -0.701 and for $\left(E_{B}^{\prime}-E_{Y}^{\prime}\right)$ a range of +0.886 to -0.886 . To restore the signal excursion of the colour-difference signals to unity (i.e. +0.5 to -0.5), coefficients can be calculated as follows:

$$
K_{R}=\frac{0.5}{0.701}=0.713 ; K_{B}=\frac{0.5}{0.886}=0.564
$$

Then:

$$
E_{C_{R}}^{\prime}=0.713\left(E_{R}^{\prime}-E_{Y}^{\prime}\right)=0.500 E_{R}^{\prime}-0.419 E_{G}^{\prime}-0.081 E_{B}^{\prime}
$$

and:

$$
E_{C_{B}}^{\prime}=0.564\left(E_{B}^{\prime}-E_{Y}^{\prime}\right)=-0.169 E_{R}^{\prime}-0.331 E_{G}^{\prime}+0.500 E_{B}^{\prime}
$$

where $E^{\prime} C_{R}$ and $E^{\prime} C_{B}$ are the re-normalized red and blue colour-difference signals respectively (see Notes 1 and 2). Note 1 - The symbols $E^{\prime} C_{R}$ and $E^{\prime} C_{k}$ will be used only to designate re-normalized colour-difference signals, i.e. having the same nominal peak-to-peak amplitude as the luminance signal E_{Y}^{\prime}, thus selected as the reference amplitude.
Note 2 - In the circumstances when the component signals are not normalized to a range of 1 to 0 , for example, when converting from analogue component signals with unequal luminance and colour-difference amplitudes, an additional gain factor will be necessary and the gain factors K_{R}, K_{B} should be modified accordingly.

2.3 Quantization

In the case of a uniformly-quantized 8 -bit binary encoding, 2^{8}, i.e. 256 , equally spaced quantization levels are specified, so that the range of the binary numbers available is from 00000000 to 11111111 (00 to FF in hexadecimal notation), the equivalent decimal numbers being 0 to 255 , inclusive.

In the case of the $4: 2: 2$ system described in this Recommendation, levels 0 and 255 are reserved for synchronization data, while levels 1 to 254 are available for video.

Given that the luminance signal is to occupy only 220 levels, to provide working margins, and that black is to be at level 16, the decimal value of the luminance signal, \bar{Y}, prior to quantization, is:

$$
\bar{Y}=219\left(E_{y}^{\prime}\right)+16
$$

and the corresponding level number after quantization is the nearest integer value.
Similarly, given that the colour-difference signals are to occupy 225 levels and that the zero level is to be level 128, the decimal values of the colour-difference signals, \bar{C}_{R} and \bar{C}_{B}, prior to quantization are:

$$
\bar{C}_{R}=224\left[0.713\left(E_{R}^{\prime}-E_{Y}^{\prime}\right)\right]+128
$$

and:

$$
\bar{C}_{B}=224\left[0.564\left(E_{B}^{\prime}-E_{Y}^{\prime}\right)\right]+128
$$

which simplify to the following:

$$
\left.\bar{C}_{R}=160\left(E_{R}^{\prime}-E_{Y}^{\prime}\right)\right]+128
$$

and:

$$
\left.\bar{C}_{B}=126\left(E_{S}^{\prime}-E_{Y}^{\prime}\right)\right]+128
$$

and the corresponding level number, after quantization, is the nearest integer value.
The digital equivalents are termed Y, C_{R} and C_{B}.
2.4 Construction of Y, C_{R}, C_{B} via quantization of $E_{R}^{\prime}, E_{G}^{\prime}, E_{B}^{\prime}$

In the case where the components are derived directly from the gamma pre-corrected component signals $E_{R}^{\prime}, E_{G}^{\prime}, E_{B}^{\prime}$, or directly generated in digital form, then the quantization and encoding shall be equivalent to:

$$
\begin{aligned}
& \left.E_{R_{D}}^{\prime} \text { (in digital form }\right)=\operatorname{int}\left(219 E_{R}^{\prime}\right)+16 \\
& \left.E_{G_{D}}^{\prime} \text { (in digital form }\right)=\operatorname{int}\left(219 E_{G}^{\prime}\right)+16 \\
& \left.E_{B_{D}}^{\prime} \text { (in digital form }\right)=\operatorname{int}\left(219 E_{B}^{\prime}\right)+16
\end{aligned}
$$

Then:

$$
\begin{gathered}
Y=\frac{77}{256} E_{R_{D}}^{\prime}+\frac{150}{256} E_{G_{D}}^{\prime}+\frac{29}{256} E_{B_{D}}^{\prime} \\
C_{R}=\frac{131}{256} E_{R_{D}}^{\prime}-\frac{110}{256} E_{G_{D}}^{\prime}-\frac{21}{256} E_{B_{D}}^{\prime}+128 \\
C_{B}=-\frac{44}{256} E_{R_{D}}^{\prime}-\frac{87}{256} E_{G_{D}}^{\prime}+\frac{131}{256} E_{B_{D}}^{\prime}+128
\end{gathered}
$$

taking the nearest integer coefficients, base 256 . To obtain the $4: 2: 2$ components Y, C_{R}, C_{B}, low-pass filtering and sub-sampling must be performed on the $4: 4: 4 C_{R}, C_{B}$ signals described above. Note should be taken that slight differences could exist between C_{R}, C_{B} components derived in this way and those derived by analogue filtering prior to sampling.

ANNEX III

FILTERING CHARACTERISTICS

c) Passband group-delay tolerance

FIGURE 1 - Specification for a luminance or $R G B$ signal filter used when sampling at 13.5 MHz

Note - The lowest indicated values in b) and c) are for 1 kHz (instead of 0 MHz).

b) Passband ripple tolerance

FIGURE 2 - Specification for a colour-difference signal filter used when sampling at 6.75 MHz
Note. - The lowest indicated values in b) and c) are for 1 kHz (instead of 0 MHz).

a) Template for insertion loss/frequency characteristic

b) Passband ripple tolerance

FIGURE 3 - Specification for a digital filter for sampling-rate conversion from $4: 4: 4$ to $4: 2: 2$ colour-difference signals

Notes to Figs. 1, 2 and 3:

Note 1 - Ripple and group delay are specified relative to their values at 1 kIIz . The full lines are practical limits and the dashed lines give suggested limits for the theoretical design.
Note 2. - In the digital filter, the practical and design limits are the same. The delay distortion is zero, by design.
Note 3 - In the digital filter (Fig. 3), the amplitude/frequency characteristic (on linear scales) should be skew-symmetrical about the half-amplitude point, which is indicated on the figure.
Note 4 - In the proposals for the filters used in the encoding and decoding processes, it has been assumed that, in the postfilters which follow digital-to-analogue conversion, correction for the ($\sin x / x$) characteristic of the sample-and-hold circuits is provided.

(ALSO RESOLUTIONS AND OPINIONS) VOLUME XI - PART 1 BROADCASTING SERVICE (TELEVISION)

CCIR

1. The International Radio Consultative Committee (CCIR) is the permanent organ of the International Telecommunication Union responsible under the International Telecommunication Convention "...to study technical and operating questions relating specifically to radiocommunications without limit of frequency range, and to issue recommendations on them..." (International Telecommunication Convention, Nairobi 1982, First Part, Chapter I, Art. 11, No. 83). ${ }^{1}$
2. The objectives of the CCIR are in particular:
a. to provide the technical bases for use by administrative radio conferences and radiocommunication services for efficient utilization of the radio-frequency spectrum and the geostationary-satellite orbit, bearing in mind the needs of the various radio services;
b. to recommend performance standards for radio systems and technical arrangements which assure their effective and compatible interworking in international telecommunications;
c. to collect, exchange, analyze and disseminate technical information resulting from studies by the CCIR, and other information available, for the development, planning and operation of radio systems, including any necessary special measures required to facilitate the use of such information in developing countries.
3. See also the Constitution of the ITU, Nice, 1989, Chapter 1, Art. 11, No. 84.

Rec. 656

RECOMMENDATION 656

INTERFACES FOR DIGITAL COMPONENT VIDEO SIGNALS IN 525-LINE AND 625-LINE TELEVISION SYSTEMS

The CCIR,

CONSIDERING

a. that there are clear advantages for television broadcasting organizations and programme producers in digital studio standards which have the greatest number of significant parameter values common to 525 -line and 625 -line systems;
b. that a world-wide compatible digital approach will permit the development of equipment with many common features, permit operating economies and facilitate the international exchange of programmes;
c. that to implement the above objectives, agreement has been reached on the fundamental encoding parameters of digital television for studios in the form of Recommendation 601;
d. that the practical implementation of Recommendation 601 requires definition of details of interfaces and the data streams traversing them;
e. that such interfaces should have a maximum of commonality between 525 -line and 625 -line versions;
f. that in the practical implementation of Recommendation 601 it is desirable that interfaces be defined in both serial and parallel forms;
g. that digital television signals produced by these interfaces may be a potential source of interference to other services, and due notice must be taken of No. 964 of the Radio Regulations,

UNANIMOUSLY RECOMMENDS
that where interfaces are required for component-coded digital video signals in television studios, the interfaces and the data streams that will traverse them should be in accordance with the following description, defining both bit-parallel and bit-serial implementations.

1. Introduction

This Recommendation describes the means of interconnecting digital television equipment operating on the 525 -line or 625 -line standards and complying with the 4:2:2 encoding parameters as defined in Recommendation 601.

Part I describes the signal format common to both interfaces.
Part II describes the particular characteristics of the bit-parallel interface.
Part III describes the particular characteristics of the bit-serial interface.

PART I

COMMON SIGNAL FORMAT OF THE INTERFACES

1. General description of the interfaces

The interfaces provide a unidirectional interconnection between a single source and a single destination.
A signal format common to both parallel and serial interfaces is described in $\S 2$ below.

Rec. 656

The data signal are in the form of binary information coded in 8 -bit words. These signals are:

- video data;
- timing reference codes;
- ancillary data;
- identification codes.

2. Video data

2.1 Coding characteristics

The video data is in compliance with Recommendation 601, and with the field-blanking definition shown in Table 1.

TABLE I - Field interval definitions

		625	525
V-digital field blanking			
	$\begin{aligned} & \text { Finish } \\ & (V=0) \end{aligned}$	Line 624	Line 1
Field 1	$\begin{gathered} \text { Start } \\ (V=1) \end{gathered}$	Line 23	Line 10
Field 2	$\begin{gathered} \text { Start } \\ (V=1) \end{gathered}$	Line 311	Line 264
	Finish $(V=0)$	Line 336	Line 273
F-digital field identification			
Field 1	$F=0$	Line 1	Line 4
Field 2	$F=1$	Line 313	Line 266

Note 1 - Signals F and V change state synchronously with the end of active video timing reference code at the beginning of the digital line.

Note 2 -Definition of line numbers is to be found in Report 624. Note that digital line number changes state prior to O_{H} as shown in Fig. 1.

2.2 Video data format

The data words 0 and 255 (00 and FF in hexadecimal notation) are reserved for data identification purposes and consequently only 254 of the possible 256 words may be used to express a signal value.

The video data words are conveyed as a 27 Mwords/s multiplex in the following order:

$$
C_{B}, Y, C_{R}, Y, C_{B}, Y, C_{R}, \text { etc. }
$$

where the word sequence C_{B}, Y, C_{R}, refers to co-sited luminance and colour-difference samples and the following word, Y , corresponds to the next luminance sample.

Rec. 656
2.3 Timing relationship between video data and the analogue synchronizing waveform

2.3.1 Line interval

The digital active line begins at 244 words (in the 525 -line standard) or at 264 words (in the 625 -line standard) after the leading edge of the analogue line synchronization pulse, this time being specified between half-amplitude points.

Figure 1 shows the timing relationship between video and the analogue line synchronization.

FIGURE 1 - Data format and timing relationship with the analogue video signal

T: \quad clock period 37 ns nom.
SAV: start of active video timing reference code
EAV: end of active video timing reference code

2.3.2 Field interval

The start of the digital field is fixed by the position specified for the start of the digital line: the digital field starts 32 words (in the 525 -line systems) and $\mathbf{2 4}$ words (in the 625 -line systems) prior to the lines indicated in Table I.

2.4 Video timing reference codes (SAV, EAV)

There are two timing reference codes, one at the beginning of each video data block (Start of Active Kdeo, SAV) and one at the end of each video data block (End of Active Vdeo, EAV) as shown in Fig. 1.

Each timing reference code consists of a four word sequence in the following format: FF 0000 XY . (Values are expressed in hexadecimal notation. Codes FF, 00 are reserved for use in timing reference codes.) The first three words are a fixed preamble. The fourth word contains information defining field 2 identification, the state of field blanking, and the state of line blanking. The assignment of bits within the timing reference code is shown below in Table II.

TABLE II - Video timing reference codes

Word			Bit No.							
	7 (MSB)	6	5	4	3	2	1	0 (MSB)		
First	1	1	1	1	1	1	1	1		
Second	0	0	0	0	0	0	0	0		
Third	0	0	0	0	0	0	0	0		
Fourth	1	F	V	H	P_{3}	P_{2}	P_{1}	P_{0}		

$F=\begin{aligned} & 0 \text { during field } 1 \\ & 1 \text { during field } 2\end{aligned}$
$V=0$ elsewhere
$V=1$ during field blanking
$H=\begin{aligned} & 0 \text { in SAV } \\ & 1 \text { in } E A V\end{aligned}$
$P_{0}, P_{1}, P_{2}, P_{3}$: protection bits (see Table III).
MSB: most significant bit
LSB: least significant bit

Rec. 656
Table I defines the state of the V and F bits.
Bits $P_{0}, P_{1}, P_{2}, P_{3}$, have states dependent on the states of the bits F, V and H as shown in Table III. At the receiver this arrangement permits one-bit errors to be corrected and two-bit errors to be detected.

TABLE III — Protection bits

Bit No.	7	6	5	4	3	2	1	0
Function	Fixed 1	F	V	H	P_{3}	P_{2}	P_{1}	P_{0}
0	1	0	0	0	0	0	0	0
1	1	0	0	1	1	1	0	1
2	1	0	1	0	1	0	1	1
3	1	0	1	1	0	1	1	0
4	1	1	0	0	0	1	1	1
5	1	1	0	1	1	0	1	0
6	1	1	1	0	1	1	0	0
7	1	1	1	1	0	0	0	1

2.5 Ancillary data

Provision is made for ancillary data to be inserted synchronously into the multiplex during the blanking intervals at a rate of $\mathbf{2 7}$ Mwords/s. Such data is conveyed by one or more 7-bit words, each with an additional parity bit (LSB) giving odd parity.

Each ancillary data block, when used, should be constructed as shown in Table IV from the timing reference code ANC and a data field.

2.6 Data words during blanking

The data words occurring during digital blanking intervals that are not used for the timing reference code ANC or for ancillary data are filled with the sequence $80,10,80,10$, etc. (values are expressed in hexadecimal notation) corresponding to the blanking level of the C_{B}, Y, C_{R}, Y signals respectively, appropriately placed in the multiplexed data.

Rec. 656
TABLE IV - Ancillary data block

Note 1-The precise location of the ancillary data blocks and the coding of words 3, 4 and 5 require further study.

PART II

BIT-PARALLEL INTERFACE

1. General description of the interface

The bits of the digital code words that describe the video signal are transmitted in parallel by means of eight conductor pairs, where each carries a multiplexed stream of bits (of the same significance) of each of the component signals, C_{B}, Y, C_{R}, Y. The eight pairs also carry ancillary data that is time-multiplexed into the data stream during video blanking intervals. A ninth pair provides a synchronous clock at 27 MHz .

The signals on the interface are transmitted using balanced conductor pairs. Cable lengths of up to 50 m ($\cong 160$ feet) without equalization and up to 200 m ($\cong 650$ feet) with appropriate equalization (see § 6) may be employed.

The interconnection employs a twenty-five pin D-subminiature connector equipped with a locking mechanism (see § 5).
For convenience, the eight bits of the data word are assigned the names DATA 0 to DATA 7 . The entire word is designated as DATA
(0-7). DATA 7 is the most significant bit.
Video data is transmitted in NRZ form in real time (unbuffered) in blocks, each comprising one active television line.

2. Data signal format

The interface carries data in the form of 8 parallel data bits and a separate synchronous clock. Data is coded in NRZ form. The recommended data format is described in Part I.

3. Clock signal

3.1 General

The clock signal is a 27 MHz square wave where the $0-1$ transition represents the data transfer time. This signal has the following characteristics:

Width: $18.5 \pm 3 \mathrm{~ns}$
Jitter: Less than 3 ns from the average period over one field.

3.2 Clock-to-data timing relationship

The positive transition of the clock signal shall occur midway between data transitions as shown in Fig. 2.

FIGURE 2 - Clock-to-data timing (at source)

Clock period (625):	$T=\frac{1}{1728_{f_{H}}}=37 n s$
Clock period (525):	$T=\frac{1}{1716_{f_{H}}}=37 n s$
Clock pulse width:	$t=18.5 \pm 3 n s$
Data timing - sending end:	$t_{d}=18.5 \pm 3 n s$
$f_{H}:$ line frequency	

4. Electrical characteristics of the interface

4.1 General

The interface employs nine line drivers and nine line receivers.
Each line driver (source) has a balanced output and the corresponding line receiver (destination) a balanced input (see Fig. 3).
Although the use of ECL technology is not specified, the line driver and receiver must be ECL-compatible, i.e. they must permit the use of ECL for either drivers or receivers.

All digital signal time intervals are measured between the half-amplitude points.

Rec. 656

FIGURE 3 - Line driver and line receiver interconnection

4.2 Logic convention

The A terminal of the line driver is positive with respect to the B terminal for a binary 1 and a negative for a binary 0 (see Fig. 3).

4.3 Line driver characteristics (source)

4.3.1 Output impedance: 110Ω maximum

4.3.2 Common mode voltage: $-1.29 \mathrm{~V} \pm 15 \%$ (both terminals relative to ground).
4.3.3 Signal amplitude: 0.8 to 2.0 V peak-to-peak, measured across a 110Ω resistive load.
4.3.4 Rise and fall times: less than 5 ns , measured between the 30% and 80% amplitude points, with a 110Ω resistive load. The difference between rise and fall times must not exceed 2 ns .

4.4 Line receiver characteristics

4.4.1 Input impedance: $110 \Omega \pm 10 \Omega$.

4.4.2 Maximum input signal: 2.0 V peak-to-peak.

4.4.3 Minimum input signal: 185 mV peak-to-peak.

However, the line receiver must sense correctly the binary data when a random data signal produces the conditions represented by the eye diagram in Fig. 4 at the data detection point.
4.4.4 Maximum common mode signal: $\pm 0.5 \mathrm{~V}$, comprising interference in the range 0 to 15 kHz (both terminals to ground).
4.4.5 Differential delay: Data must be correctly sensed when the clock-to-data differential delay is in the range between $\pm 11 \mathrm{~ns}$ (see Fig. 4).

5. Mechanical details of the connector

The interface uses the 25 contact type D subminiature connector specified in ISO Document 2110-1980, with contact assignment shown in Table V.

Connectors are locked together by a one-piece slide lock on the cable connectors and locking posts on the equipment connectors. Connectors employ pin contacts and equipment connectors employ socket contacts. Shielding of the interconnecting cable and its connectors must be employed (see Note).
Note - It should be noted that the ninth and eighteenth harmonics of the 13.5 MHz sampling frequency (nominal value) specified in Recommendation 601 fall at the 121.5 and 243 MHz aeronautical emergency channels. Appropriate precautions must therefore be taken in the design ad operation of interfaces to ensure that no interference is caused at these frequencies. Emission levels for related equipment are given in CISPR Recommendation: "Information technology equipment - limits of interference and measuring methods" Document CISPR/B (Central Office) 16. Nevertheless, No. 964 of the Radio Regulations prohibits any harmful interference on the emergency frequencies.

Rec. 656

FIGURE 4 - Idealized eye diagram corresponding to the minimum input signal level

$$
\begin{gathered}
T_{\min }=11 \mathrm{~ns} \\
V_{\min }=100 \mathrm{mV}
\end{gathered}
$$

Note - The width of the window in the eye diagram, within which data must be correctly detected comprises $\pm 3 \mathrm{~ns}$ clock jitter, $\pm 3 \mathrm{~ns}$ data timing (see § 3.2), and $\pm 5 \mathrm{~ns}$ available for differences in delay between pairs of the cable.

TABLE V — Contact assignments

Contact	Signal line	Contact	Signal line
1	Clock A	14	Clock B
2	System ground	15	System ground
3	Data 7A (MSB)	16	Data 7B
4	Data 6A	17	Data 6B
5	Data 5A	18	Data 5B
6	Data 4A	19	Data 4B
7	Data 3A	20	Data 3B
8	Data 2A	21	Data 2B
9	Data 1A	22	Data 1B
10	Data 0A	23	Data 0B
11	Spare A-A	24	Spare A-B
12	Spare B-A	25	Spare B-B
13	Cable shield	-	-

Rec. 656
Any spare pairs connected to contacts 11,24 or 12,25 are reserved for bits of lower significance than those carried on contacts 10,23 .

6. Line receiver equalization

To permit correct operation with longer interconnection links, the line receiver may incorporate equalization.
When equalization is used, it should conform to the nominal characteristics of Fig. 5 . This characteristic permits operation with a range of cable lengths down to zero. The line receiver must satisfy the maximum input signal condition of $\S 4.4$

FIGURE 5 - Line receiver equalization characteristic for small signals

PART III
BIT-SERIAL INTERFACE

1. General description of the interface

The multiplexed data stream of 8 -bit words (as described in Part I) is transmitted over a single channel in bit-serial form. Prior to transmission, additional coding takes place to provide spectral shaping, word synchronization and to facilitate clock recovery.

2. Coding

The 8-bit data words are encoded for transmission into 9 -bit words as shown in Table VI.
For some 8 -bit data words alternative 9 -bit transmission words exist, as shown in columns 9 B and 9 B , each 9 -bit word being the complement of the other. In such cases, the 9 -bit word will be selected alternately from columns 9B and $9 B$ on each successive occasion that any such 8 -bit word is conveyed. In the decoder, either word must be converted to the corresponding 8-bit data word.

Rec. 656
TABLE VI - Encoding table

Input	Output																
8B	9 B	9B	8B	9B	9B	8B	9 B	9B	8B	98	9B	8B	9B	78	8B	9B	9B
00	OFE	101	2B	053		56	097		81	OAA		AC	12 C		D7	OCC	
01	027		2 C	1AC		57	168		82	055		AD	0D9		D8	139	
02	1D8		2D	057		58	099		83	1AA		AE	126		D9	OCE	
03	033		2E	1A8		59	166		84	OD5		AF	0E5		DA	133	
04	1CC		2 F	059		5A	09B		85	12A		B0	11A		DB	OD8	
05	037		30	1A6		5B	164		86	095		B1	0E9		DC	131	
06	1CB		31	05B		5 C	09D		87	16A		B2	116		DD	ODC	
07	039		32	05D		5D	162		88	OB5		B3	O2E		DE	127	
08	1 C 6		33	1A4		5E	OA3		89	14A		B4	1D1		DF	OE2	
09	03B		34	065		5 F	15C		8A	09A		B5	036		E0	123	
OA	1C4		35	19A		60	OA7		8 B	165		B6	1 C 9		E1	0 E 4	
OB	03D		36	069		61	158		8 C	OA6		B7	03A		E2	11D	
OC	1C2		37	196		62	025	1DA	8D	159		B8	1 C 5		E3	OE6	
OD	14D		38	026	1 199	63	OA1	15E	8 E	OAC		B9	04E		E4	11B	
OE	OB4		39	08C	173	64	029	1D6	8 F	153		BA	$1 \mathrm{B1}$		E5	OE8	
OF	14B		3A	02C	1D3	65	091	16E	90	OAE		BB	05C		E6	119	
10	1A2		3B	098	167	66	045	1BA	91	151		BC	1A3		E7	OEC	
11	086		3 C	032	1CD	67	089	176	92	02A	1D5	BD	05E		E8	117	
12	149		3D	OBE	141	68	049	$1 \mathrm{B6}$	93	092	16D	BE	1A1		E9	0F2	
13	OBA		3E	034	1CB	69	085	17A	94	04A	185	BF	066		EA	113	
14	145		3 F	0 C 2	13D	6A	051	1AE	95	094	16B	C0	199		EB	OF4	
15	OCA		40	046	1B9	6 B	08A	175	96	OA8	157	C1	06C		EC	10D	
16	135		41	0 C 4	13B	6C	OA4	15B	97	OB7	148	C2	193		ED	076	
17	OD2		42	04C	1B3	6D	054	$1 A B$	98	0F5	10A	C3	06E		EE	10B	
18	12D		43	0C8	137	6 E	OA2	15D	99	OBB	144	C4	191		EF	0C7	
19	OD4		44	058	1A7	6 F	052	1AD	9A	OED	112	C5	072		F0	13C	
1A	129		45	OB1		70	056		9 B	OBD	142	C6	18D		F1	047	
1B	0D6		46	14E		71	1 A9		9 C	OEB	114	C7	074		F2	1B8	
1 C	125		47	OB3		72	05A		9 D	OD7	128	C8	18B		F3	067	
1D	ODA		48	14C		73	1A5		9 E	ODD	122	C9	07A		F4	19C	
1E	115		49	0B9		74	06A		9 F	ODB	124	CA	189		F5	071	
1F	OEA		4A	06B		75	195		A0	146		CB	08E		F6	198	
20	OB2		4B	194		76	096		A1	0 C 5		CC	185		F7	073	
21	02B		4 C	06D		77	169		A2	13A		CD	09C		F8	18E	
22	1D4		4D	192		78	OA9		A3	OC9		CE	171		F9	079	
23	02D		4E	075		79	156		A4	136		CF	09E		FA	18C	
24	1D2		4F	18A		7A	OAB		A5	OCB		D0	163		FB	087	
25	035		50	08B		7 B	154		A6	134		D1	OB8		FC	186	
26	1CA		51	174		7 C	OA5		A7	OCD		D2	161		FD	0 C 3	
27	04B		52	08D		7D	15A		A8	132		D3	OBC		FE	178	
28	$1 \mathrm{B4}$		53	172		7E	OAD		A9	0D1		D4	147		FF	062	19D
29	04D		54	093		7F	152		AA	12E		D5	$0 \mathrm{C6}$				
2A	1 B 2		55	16C		80	155		AB	OD3		D6	143				

Rec. 656

3. Order of transmission

The least significant bit of each 9-bit word shall be transmitted first.

4. Logic convention

The signal is conveyed in NRZ form. The voltage at the output terminal of the line driver shall increase on a transition from 0 to 1 (positive logic).

5. Transmission medium

The bit-serial data stream can be conveyed using either a coaxial cable (§ $\mathbf{6}$) or fibre optic bearer (§7).
6. Characteristics of the electrical interface
6.1 Line driver characteristics (source)

6.1.1 Output impedance

The line driver has an unbalanced output with a source impedance of 75Ω and a return loss of at least 15 dB over a frequency range of 10 to 243 MHz .

6.1.2 Signal impedance

The peak-to-peak signal amplitude lies between 400 mV and 700 mV measured across a 75Ω resistive load directly connected to the output terminals without any transmission line.

6.1.3 DC offset

The DC offset with reference to the mid amplitude point of the signal lies between +1.0 V and -1.0 V .

6.1.4 Rise and fall times

The rise and fall times, determined between the 20% and 80% amplitude points and measured across a 75Ω resistive load connected directly to the output terminals, shall lie between 0.75 and 1.5 ns and shall not differ by more than 0.40 ns .

6.1.5 Jitter

The timing of the rising edges of the data signal shall be within $\pm 0.10 \mathrm{~ns}$ of the average timing of rising edges, as determined over a period of one line.

6.2 Line receiver characteristics (destination)

6.2.1 Terminating impedance

The cable is terminated by 75Ω with a return loss of at least 15 dB over a frequency range of 10 to 243 MHz .

6.2.2 Receiver sensitivity

The line receiver must sense correctly random binary data either when connected directly to a line driver operating at the extreme voltage limits permitted by $\S 6.1 .2$, or when connected via a cable having loss of 40 dB at 243 MHz and a loss characteristic of $1 / \sqrt{f}$.

Over the range 0 to 12 dB no equalization adjustment is required; beyond this range adjustment is permitted.

6.2.3 Interference rejection

When connected directly to a line driver operating at the lower limit specified in §6.1.2, the line receiver must correctly sense the binary data in the presence of a superimposed interfering signal at the following levels:

d.c.	$\pm 2.5 \mathrm{~V}$
Below $1 \mathrm{kHz}:$	2.5 V peak-to-peak
1 kHz to $5 \mathrm{MHz}:$	100 mV peak-to-peak
Above $5 \mathrm{MHz}:$	40 mV peak-to-peak

6.3 Cables and connectors

6.3.1 Cable

It is recommended that the cable chosen should meet any relevant national standards on electro-magnetic radiation.
Note - It should be noted that the ninth and eighteenth harmonics of the 13.5 MHz sampling frequency (nominal value) specified in Recommendation 601 fall at the 121.5 and 243 MHz aeronautical emergency channels. Appropriate precautions must therefore be taken in the design and operation of interfaces to ensure that no interference is caused at these frequencies. Emission levels for related equipment are given in CISPR Recommendation: "Information technology equipment - limits of interference and measuring methods" (Document CISPR/B (Central Office) 16). Nevertheless, No. 964 of the Radio Regulations prohibits any harmful interference on the emergency frequencies.

6.3.2 Characteristic impedance

The cable used shall have a nominal characteristic impedance of 75Ω

6.3.3 Connector characteristics

The connector shall have mechanical characteristics conforming to the standard BNC type (IEC Publication 169-8), and its electrical characteristics should permit it to be used at frequencies up to 500 MHz in 75Ω circuits.

7. Characteristics

To be defined.

There are various ways to represent video information. This note describes some aspects of different color spaces, conversion between them, and normalized digital coding.

RGB at video camera output

The principal signal components of color camera or scanners, or other imaging pickup devices are Red, Green and Blue, RGB. These are also the principal components for video signal reproduction (i.e. picture display) at the monitor, as the CRT phosphors are comprised of these colors. But there is a non-linear relation between the camera signal pickup function (light input) and the CRT signal display function (light output). The transfer function is approximately exponential; and commonly referred to as "gamma" curve. Gamma is mainly a light reproduction function of the CRT.

$$
\begin{aligned}
& \mathrm{R}_{\text {display }}=\mathrm{R}_{\text {camera }}{ }^{\gamma}{ }^{\gamma}{ }_{\text {display }}=\mathrm{G}_{\text {camerar }}{ }^{\gamma} \mathrm{B}_{\text {display }}=\mathrm{B}_{\text {camera }}
\end{aligned}
$$

During the development of the video transmission standards it was decided to compensate for this gamma-curve at the source side (camera, studio), and not to burden the television receiver with this effort and cost. The NTSC standard defines a gamma of 2.2 , the PAL and SECAM standards defines a gamma of 2.8. Normally this gamma-correction is performed directly in the camera.
$\mathrm{R}_{\text {transmit }}=\mathrm{R}_{\text {pickup }}{ }_{1 / \gamma}^{1 / \gamma}$
$\mathrm{G}_{\text {transmit }}=\mathrm{G}_{\text {pickuu }}^{1 / \gamma}$
$\mathrm{B}_{\text {transmit }}=\mathrm{B}_{\text {pickup }}^{1 / \gamma}$

The gamma-pre-corrected RGB signals at the camera output are stretched in the darker range and compressed in the lighter signal range. This has, as a side effect, a positive effect on noise influence on the transmission channel. The human eye is more sensitive to noise in dark areas, where the gamma behavior of the CRT reduces visibility.
Computer graphics generation is defined normally in "linear" RGB color space. The computer monitor of today has often a smaller gamma factor than used by the television standard definition, but there is no standard value. Sometimes it is compensated in the monitor itself, or by means of the look-up tables of the graphics RAMDAC, or not at all. The human eye is not very sensitive against gamma mismatch.

If video (camera) RGB gets merged with computer RGB, it is preferably be done in the same RGB space, including the assumed gamma. The anti-gamma compensation, as implemented in the Philips scaling ICs, compensates for a gamma-pre-correction of 1.4 only. The remaining gamma factor is assumed to be still performed by the computer monitor. A greater value of gamma-correction-compensation would lose more digital codes in the available 8 -bit number range, and produce larger quantization steps in bright areas, which is not acceptable.

RGB can assume only positive values, and generate a cube like color space. The RGB components are commonly normalized to unity (e.g. 1 Volt peak-peak as analog signal). If any of the components is 0 , it means there
is no color of this component, if it is 1 , there is full (100%) saturation of this color. All components equal zero represents the color 'black', all components equal 1 represents bright 'white'. The RGB cube is an additive color space.

Matrix to YUV (YCbCr)

In order to allow a compatible migration from black\&white television to color television the YUV color space was utilized. Y stands for the luminance (lightness) information, and is compatible to black\&white (and gray) signal. U and V are the so-called color difference signals $\mathrm{B}-\mathrm{Y}$ an $\mathrm{R}-\mathrm{Y}$, and carry the additional color information (additive color space). The YUV representation of video information is also oriented on the human perception of visual information, whereby RGB representation is more based on the technical reproduction of color information. The human eye senses luminance and color with different receptors. There are less color receptors, and they have significant less spatial resolution. The YUV color space representation can take advantage of that fact, by spending less bandwidth for color difference information than for luminance information (see sampling schemes, later in this note).

Luminance Y can be positive only, the color difference signals U and V can be positive or negative. Commonly YUV is also normalized to unity (peak-to-peak $=1$). The following matrix equation transforms gamma-pre-corrected and normalized RGB into normalized YUV (see also CCIR recommendation 601).
Y
$\mathrm{U}=\mathrm{C}_{\mathrm{b}}=(\mathrm{B}-\mathrm{Y})=-0.299 * \mathrm{R}+0.169 * \mathrm{R}-0.57 * \mathrm{G}+0.331 * \mathrm{G}+0.114 * \mathrm{~B}$
$\mathrm{~V}=\mathrm{C}_{\mathrm{r}}=(\mathrm{R}-\mathrm{Y})=0.500 * \mathrm{~B}$
$=0.500 * \mathrm{R}-0.419 * \mathrm{G}-0.081 * \mathrm{~B}$
(NOTE: For analog signal processing often un-normalized signals are used, which results in different number in the matrix equations, but does not change the cross relationship between RGB and YUV.)

Color space, digital coding, and sampling schemes

for video signals

U and V form a square color plane. But for colors of natural pictures and due to some restrictions in the video standards NTSC and PAL, this square color plane is reduced to a color circle plane. The vectors of natural colors don't point into the extreme corners of the square UV plane. The size of that circle is further restricted, if luminance values are close to minimum or maximum. There can't be any color in black or white e.g.. (Artificial YUV signals, e.g., test signals can use those extreme combinations). The YUV color space is best represented by a round column, with the dimension of luminance Y as axle in its center, and this round YUV color space column is shaped to a point at the bottom and at the top.
CCIR rec. 601 describes also how to represent these YUV signals by digital codes. It is recommended not to use the entire available number range for nominal signal values, but leaving some margin, room for digital signal processing, e.g. for over and under shoots. In an 8 bit system, luminance
Y black is coded with 16 decimal $(=10$ hexadecimal), 100% white is coded with 235 decimal (= EB hexadecimal). The color difference signals Cb and Cr are coded in offset binary, which 'offsets' the 'no color' point into the middle of the number range to code 128 (80 hex). 100% color saturation uses the codes from 16 (10 hex) to 240 (FO hex). 75% color saturation uses only codes from 44 (2C hex) to 212 (D4 hex) (see also data sheet SAA7151B, Fig.13, for example).

The codes 00 hex and FF hex should not be used for video signal coding. These two codes are reserved for synchronization purposes (see CCIR rec 656).
(Note regarding nomenclature: The terms "YUV" and " YCbCr " are referring to the same color space and cross relationship to RGB. The expressions " $B-Y$ " and " $R-Y$ " are normally used for non-normalized color difference signals. It is not part of any standard specification, but some literature is using the term "YUV" to indicate analog
signal representation, and the term " YCbCr " for its digital representation. Most data sheets and documents in this book are using both terms interchangeable for digital signal representation of normalized signals.)

The CCIR recommendation 601 (re-printed elsewhere in this book) gives an example of a digital RGB to YUV conversion. It is assuming digital sampled RGB, defined in codes like luminance signal Y , i.e., between 16 for black and 235 for full saturation. The given equation assumes a matrix realization by means of 8×8 bit multipliers, which is only approximating the correct relationship. This equation system should not be used as reference to construct the inverse matrix from YUV to RGB. Today's technology allows matrix implementation by means of look-up tables, avoiding the limiting multiplier resolution and truncation problem.

The accurate digital RGB to digital YCrCb conversion is described by the following matrix:

The digital RGB ranges from 16 to 235 , i.e. over 219 possible values. The digital CrCb goes from 16 to 240 , uses 224 possible values. This causes a re-normalization factors.

The inverse matrix from digital YCrCb to digital RGB (16 to 235) calculates to :

$$
\left[\begin{array}{l}
\mathrm{R} \\
\mathrm{G} \\
\mathrm{~B}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1.371 & 0 \\
1 & -0.698 & -0.336 \\
1 & 0 & 1.732
\end{array}\right] *\left[\begin{array}{l}
\mathrm{Y} \\
\mathrm{Cr} \\
\mathrm{Cb}
\end{array}\right]
$$

Color space, digital coding, and sampling schemes for video signals

YIQ, and other YUV related color spaces

YIQ color space is similar to YUV color space except that it has the I and Q color axes rotated 33 degrees with the respect to the U and V axes of the YUV definition.. "I" means "in phase", and " Q " means "quadrature phase". This color space was adopted by early NTSC systems to take full advantage of the human eye color response with respect to color bandwidth capability.

```
I = V * cos(3\mp@subsup{3}{}{\circ}) - U * sin(33⿱㇒日
Q = V * sin}(3\mp@subsup{3}{}{\circ})+U*\operatorname{cos}(3\mp@subsup{3}{}{\circ}
```

The Philips digital decoder have fully adjustable "hue" control. The demodulation angle can be programmed to any value, and can achieve an I-Q demodulation,
i.e., generating I and Q outputs instead of U and V .

Some other color space approaches (like HSI, or HSV, or HSL etc.) describe the UV plane in polar coordinates by means of a vector, its length($\mathrm{S}=$ saturation) and its angle($\mathrm{H}=\mathrm{hue}$). The luminance (Intensity, Value, Lightness) corresponds to the Y of

YUV space. This color space representations are related to the quadrature encoding of U and V onto a color subcarrier, in the transmission standards NTSC and PAL.

CMYK for color printer

CMYK color space is a subtractive color space used for color printing. CMYK stands for Cyan, Magenta, Yellow and Black. It describes, which color component is removed from white, to generate a certain wanted/printed color. In theory, only the CMY portion is required, however, in actual printing ink applications, black ink is added to enhance the contrast ratio and purity of the black portion of the image. K is defined as $\min (\mathrm{CMY})$, that is, K is equal the lowest value of C, M, or Y.

The relation of CMY to RGB is given vectorally as :

$$
\left[\begin{array}{l}
\mathrm{C} \\
\mathrm{M} \\
\mathrm{Y}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
\mathrm{R} \\
\mathrm{G} \\
\mathrm{~B}
\end{array}\right]
$$

4:4:4 sampling ($\mathrm{RGB}, \mathrm{YCbCr}$)

Figure 1 illustrates the sampling positions for 4:4:4 sampling, which is mainly used for

RGB, but can also be used for YUV or YCbCr . At each pixel a sample is taken for R, G , and B , or Y, U, and V etc.

All three components have the same spatial resolution (bandwidth). If 8 bits per component is used, a 24 bit system is required.

4:2:2 YCbCr sampling

Figure 2 represents a more effective sampling format, in which Y samples are measured at each pixel position, and Cb and Cr samples only at every second pixel position. By that the color information has horizontally a resolution, that is half of that of luminance. The human eye does not perceive chrominance with the same clarity as luminance,. therefore this type of data reduction causes very little visual loss of content. The 4:2:2 sampling scheme reduces the data bandwidth need by a third.

Cb and CR samples are co-sited with every second Y samples, but starting with the first Y sample of each line. If 8 bits per component is used, a 16 bit system is required.

$\mathrm{Y}, \mathrm{Cb}, \mathrm{Cr}$ SAMPLE

Figure 1. 4:4:4 Sampling Scheme

Y, Cb, Cr SAMPLEY SAMPLE ONLY
Figure 2. 4:2:2 Sampling Scheme

Color space, digital coding, and sampling schemes for video signals

4:1:1 YCbCr (orthogonal)

sampling

Figure 3 is an example of $4: 1: 1$ sampling, often used in consumer type video products. The achievable color bandwidth in this case is only one third that of luminance: But in broadcasted video (NTSC, PAL, or SECAM), or in tape-recorded video, there is normally not more chroma bandwidth supported/available.
The CbCr samples are taken co-sited with every fourth luminance pixel, but starting. with the first luminance sample of each line. An 8 bit per component system is capable of fitting into a 12 bit wide frame buffer. 7 bit per component and 6 bit per component systems are also used in combination with 4:1:1 sampling, which reduces the needed frame buffer capacity even more (e.g., for PIP function on television sets).

4:2:0 YCbCr (spatial) sampling

This sampling scheme is used generally for MPEG and $\mathrm{H}-261$ compression standards, and is also called "coded picture sampling". Figure 4 shows the two dimensional 2:1 sub-sampling of color pixels relative to luminance pixels. The CbCr samples are not co-sited with a luminance sample, but representing the color information for a quartet of four Y pixels, ordered in a square. The CbCr values are normally derived (calculated) from a $4: 4: 4$ or 4:2:2 sampling scheme by both horizontal and vertical filtering and interpolation. Usually the CbCr values are transported only every second scan line with pairs of Y samples, the other line carries only Y samples ($4: 2: 0$). The overall data bandwidth of 4:2:0 sampling is identical to $4: 1: 1$ sampling.

In the example in Figure 4 a non-interlaced video source is represented, as those compression standards know only 'pictures' and use whole frames, or just one field.

Y, Cb, Cr SAMPLE
Y SAMPLE ONLY
Figure 3. 4:1:1 Sampling Scheme

Video signal bandwidth/resolution

BANDWIDTHS OF VARIOUS VIDEO SIGNALS

FORMAT	FORMAT RESOLUTION		BANDWIDTH	BANDWIDTH
	TOTAL RESOLUTION	ACTIVE RESOLUTION	MBytes/sec (burst) ${ }^{1}$	MBytes/sec (continuous) ${ }^{2}$
CCIR 601 (30 Frames per Second, 4:3 Aspect Ratio)				
QCIF	214×131	176×120	1.68	1.27
CIF	429×262	352×240	6.74	5.07
Full resolution	858×525	720×485	27.0	20.95
CCIR 601 (25 Frames per Second, 4:3 Aspect Ratio)				
QCIF	216×156	176×144	1.69	1.27
CIF	432×312	352×288	6.74	5.07
Full resolution	864×625	720×576	27.0	20.74
Square Pixel (30 Frames per Second, 1:1 Aspect Ratio)				
QCIF	195×131	160×120	1.53	1.15
CIF	390×262	320×240	6.13	4.61
Full resolution	780×525	640×480	24.55	18.43
Square Pixel (25 Frames per Second, 1:1 Aspect Ratio)				
QCIF	236×156	192×144	1.84	1.38
CIF	472×312	384×288	7.36	5.53
Full resolution	944×625	768×576	29.5	22.12

NOTE:

1. Burst bandwidth assumes that the transfer of video occurs only during the active period.
2. Continuous bandwidth assumes entire frame time is used to transfer active video.

Data rates given here are for 16-bit 4:2:2 $Y C_{R} C_{B}$ video; if 24-bit $R G B$ is used, the rates are 150% higher.

standard for				standard for			
Country	VHF	UHF	colour	Country	VHF	UHF	colour
A				F			
Afganistan	B		PAL	Finland	B	G	PAL
Albania	B			France	E	L	SECAM
Algeria	B	G,H	PAL	French Polynesia			
Angola	1			Polynesia	K1		
Argentina	N	N	PAL	G			
Australia	B	G	PAL	Gabon	K1		SECAM
Austria	B	G	PAL	Gambia	(K1)		
Azores	M			German Dem. Rep.	B	G	SECAM
B				German			
Bahamas	M		NTSC	Fed. Rep.	B	G	PAL
Bahrain	B		PAL	Ghana	B		PAL
Bangla-Desh	B			Gibraltar	B		PAL
Barbados	N		NTSC	Greece	B	G	SECAM
Belgium	B	H	PAL	Greenland	M/B		NTSC/
Bermuda	M		NTSC				PAL
Bolivia	N		NTSC	Guadeloupe	K1		SECAM
Brazil	M	M	PAL	Guatemala	M	M	NTSC
Brunei	B		PAL	Guana (French)	K1		
Bulgaria	D	K	SECAM	H			
Burma			NTSC	Haitl	M	M	NTSC
C				Honduras	M	M	NTSC
Cambodia	M			Hong Kong	B	I	PAL
Canada	M	M	NTSC	Hungary	D	K	SECAM
Canary Isi.	B		PAL	1			
Centr. Afr. Rep.	B			Iceland	B		PAL
Chad	K1			India	B		
Chile	M	M	NTSC	Indonesia	B	G	PAL
China	D	K	PAL	Iran :	B		SECAM
Colombia	M	M	NTSC	traq	B		SECAM
Congo	D			Ireland	A, 1	1	PAL
Costa Rica	M	M	NTSC	Israel	B	G	PAL
Cuba	M	M	NTSC	Italy	B	G	PAL
Cyprus	B	G,H	PAL	Ivory Coast	K1		SECAM
Czechoslovakia	D	K	SECAM	J			
D				Jamaica	M		-
Dahomey	K1	K1*		Japan	M	M	NTSC
Denmark	B	G	PAL	Jordan	B		PAL
Djibouti	K1		SECAM	K			
Dominican Rep.	M	M	NTSC	Kenya	B		PAL
E				Korea, North	D		SECAM
Ecuador	M	M	NTSC	Korea, South	M	M	NTSC
Egypt	B	G, H	SECAM	Kuwait	B		PAL
El Salvador	M	M	NTSC			\%	
Equatorial Guinea	B		PAL				
Ethopia	B						

International TV systems and standards

standard for					standard for		
Country	VHF	UHF	colour	Country	VHF	UHF	colour
L				R			
Lebanon	B		SECAM	Reunion	K 1		SECAM
Liberia	B		PAL	Rumania	D	D	1
Libya	B		SECAM	S			
Luxembourg	C	G,L	$\begin{aligned} & \text { PAL } \\ & \text { SECAM } \end{aligned}$	Sabah/Sarawak	B		PAL
				St. Kitts	M	M	NTSC
M				Samoa	M		NTSC
Madagascar	K1			Saudi Arabia	B	G	SECAM
Madeira	B		PAL	Senegal	K1		
Malagasy	K1		SECAM	Sierra Leone	B		PAL
Malawi	8	G*		Singapore	B		PAL
Malaysia	8		PAL	South Africa	1	1	PAL
Mali	K1	K1*		Spain	B	G	PAL
Malta	B	H	PAL	Sri Lanka	B		PAL
Martinique	K1		SECAM	Sudan	B		
Maruitania	B			Surinam	M	M	NTSC
Maruitius	B		SECAM	Swaziland	B	G	PAL
Mexico	M	M	NTSC	Sweden	B	G	PAL
Monaco	E	G,L	$\begin{aligned} & \text { PAL } \\ & \text { SECAM } \end{aligned}$	Switzerland	B	G	PAL
Mongolia	D			Syria	B		SECAM
Morocco	B		SECAM	T			
Mozambique	B			Tahiti	K1		
N				Taiwan	M	M	NTSC
Netherlands	B	G	PAL	Tanzania (Zanzibar)	B	B	PAL
Neth. Antilles	M	M	NTSC	Thailand	B	M	PAL
New Caledonia	K1		SECAM	Togo Rep.	K1		SECAM
New Zealand	B		PAL	Trinidad \&			
Nicaragua	M	M	NTSC	Tobago	M	M	NTSC
Niger	K1		SECAM	Tunisia	B		SECAM
Nigeria	B		PAL	Turkey	B		(PAL)
Norway	B	G	PAL	U			
0				Uganda	B		PAL
Oman	B	G	PAL	United Arab Emirates			
P							
Pakistan	B		PAL	United Kingdom	A	1	PAL
Panama	M	M	NTSC	Upper Volta	K1		
Paraguay	N		PAL	Uruguay	N	N	PAL
Peru	M	M	NTSC	USA	M	M	NTSC
Philippines	M	M	NTSC	USSR	D	K	SECAM
Poland	D	K	SECAM				
Portugal	B	G	PAL				
Puerto Rico	M	M	NTSC				
0				\cdots			
Qatar	B		PAL				

International TV systems

and standards

International TV systems

 and standards
BASIC CHARACTERISTICS OF VIDEO AND SYNCHRONIZING SIGNALS

Characteristics	CCIR system designation									\cdots	
	A	M	N	C	B,G	H	1	D,K	K1	L	E
Number of lines per frame	405	525	625	625	625	625	625	625	625	625	819
Number of fields per second	50	$\begin{aligned} & \hline 60 \\ & (59.94) \end{aligned}$	50	50	50	50	50	50	50	50	50
Line frequency fy, Hz, and tolerances	10.125	$\begin{aligned} & 15,750 \\ & 15,734 \\ & (\pm 0.0003 \%) \end{aligned}$	$\begin{aligned} & 15,625 \\ & \pm 0.15 \% \end{aligned}$	$\begin{aligned} & 15,625 \\ & \pm 0.02 \% \end{aligned}$	$\begin{aligned} & 15.625 \\ & \pm 0.02 \% \\ & (\pm 0.0001 \%) \end{aligned}$	$\begin{aligned} & 15,625 \\ & \pm 0.02 \% \\ & (\pm 0.0001 \%) \end{aligned}$	$\begin{aligned} & 15,625 \\ & (\pm 0.0001 \%) \end{aligned}$	$\begin{aligned} & 15.625 \\ & \pm 0.02 \% \\ & (\pm 0.0001 \%) \end{aligned}$	$\begin{aligned} & \hline 15,625 \\ & \pm 0.02 \% \\ & (\pm 0.0001 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 15,625 \\ & \pm 0.02 \% \\ & (\pm 0.0001 \%) \end{aligned}$	20,475
Interlace ratio	2/1	2/1	$2 / 1$	2/1	2/1	2/1	2/1	$2 / 1$	2/1	$2 / 1$	$2 / 1$
Aspect ratio	4/3	4/3	4/3	4/3	4/3	4/3	4/3	4/3	4/3	4/3	4/3
Blanking level, IRE units	0	0	0	0	0	0	0	0	0	0	0
Peak-white level	100	100	100	100	100	100	100	100	100	100	100
Sync-pulse level	-43	-40	-40	-43	-43	-43	-43	-43	-43	-43	-43
Picture-black level to blanking level (setup)	0	$\begin{aligned} & 7.5 \\ & \pm 2.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 7.5 \\ \pm 2.5 \end{array}$	0	0	0	0	0-7	$\begin{aligned} & 0 \text { color } \\ & 0-7 \text { mono } \end{aligned}$	$\begin{aligned} & 0 \text { color } \\ & 0-7 \text { mono } \end{aligned}$	0-5
Nominal video bandwidth, MHz	3	4.2	4.2	5	5	5	5.5	6	6	6	10
Assumed display gamma	2.8	2.2	2.2	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
Notes: (1) Systems A, C, and E are not recommended by CCIR for adoption by countries setting up a new television service. (2) Values of horizontal line rate tolerances in parentheses are for color television. (3) In the systems using an assumed display gamma of 2.8 , an overall system of gamma of 1.2 is assumed. All other systems assumed an overall transfer function of unity.											

CCIR COLOR SYSTEMS CHARACTERISTICS (II)

Hem	M/NTSC	M/PAL	B,G,H,PAL	UPAL	B,D,G,H,K,K1,L/SECAM
Subcarrier frequency, MHz	3.579545 ± 10	$3.575611 .49 \pm 10$	$4.433618 .75 \pm 5$	$4.433618 .75 \pm 1$	$\begin{aligned} & f_{\mathrm{OR}}=4.406250 \pm 2000 \\ & f_{\mathrm{OB}}=4.250000 \pm 2000 \end{aligned}$
SSC multiple of $\frac{1}{}$	$f_{\mathrm{SC}}=\frac{455}{2} f_{\mathrm{H}}$	$f_{\text {SC }}=\frac{909}{4} f_{\mathrm{H}}$		$\frac{35}{4}+\frac{1}{25} f_{\mathrm{H}}$	$\begin{aligned} & f_{\mathrm{OR}}=282 \mathrm{H} \\ & f_{\mathrm{OB}}=272 \mathrm{f} \end{aligned}$

Contact addresses

Requests for various standards specifications can be directed to the following:	
CCIR	The International Radio Consultative Committee International Telecommunications Union Place Des Nations CH-1211 Geneva 20 Switzerland Telephone: (011) 41227305800
CCITT	The International Telephone and Telegraph Consultative Committee International Telecommunications Union Place Des Nations CH-1211 Geneva 20 Switzerland Telephone: (011) 41227305851
EBU	European Broadcasting Union The Technical Center of the EBU 32, Avenue Albert Lancaster B-1180 Brussels Belgium
EIA	Electronic Industries Association 2001 Pennsylvania Avenue, NW Washington, DC 20006 Telephone: Headquarters: (202) 4574936 Standards: (800) 8547179
IEee	Institute of Electrical and Electronics Engineers Headquarters: 345 East 47th Street New York, NY 10017 Telephone: (212) 7057900 Standards Office: IEEE Service Center P.O. Box 1331 Piscataway, NJ 00855 Telephone: (908) 9810060
SMPTE	Society of Motion Picture and Television Engineers 595 W. Hartsdale Avenue White Plains, NY 10607 Telephone: (914) 7611100

DEFINITION OF TERMS

AC-COUPLED - A means by which the constant, or DC component, of a signal is removed, usually by passing the signal through a capacitor.

AM - Amplitude Modulation (AM) is a modulation process by which the amplitude of the carrier signal is scaled in proportion to the modulation signal (which is the signal which carries the content). AM modulation is used for the video portion of the transmitted TV signal for both NTSC and PAL standards.

Anti-Top Flutter Pulse - Disables the phase detector during equalization and framing times.

APL - Average Picture Level. The mean or average signal level during the active video period. It is expressed as a percentage of the difference between blanking and peak white (O and 100 IRE).

AV - Audio Video
Back Porch - That section of the video waveform between the end of horizontal sync and the beginning of active video. The color burst signal is inserted during this period.

Bandwidth - The frequency range over which an input signal of uniform amplitude will be passed with uniform output (within a specified limit).

Baseband Video - Same as Composite Video (CVS or CVBS)

Black Burst - Black Burst (Color Black) is a composite video signal containing sync information, color reference (burst) and setup information (in the case of NTSC). Black Burst is often used as the studio reference to facilitate synchronization of all the devices in the system.

Black Level - The signal level which represents black picture intensity. For NTSC, this level is 7.5 IRE (also called Setup) and for PAL this level is 0 IRE.

Black Level Noise - Very similar to a white spot noise spike except it is in the opposite or black level direction.

Blanking Level - The video level immediately preceding or following horizontal sync exclusive of the active video region. The video level for blanking is defined as 0 IRE. In the case of PAL, blanking level and black level are the same.

Breezeway - That portion of the Back Porch between the end of horizontal sync and the beginning of the color burst.

Color Difference Signals - The chrominance information of a video signal, expressed as the combination of two orthogonal axis signals, $B-Y$ (also called U or Cb) and R-Y (also called V or Cr). These signals contain no luminance (Y) information.

Composite Video - Composite video (CVS/CVBS) signal carries video picture information for color, brightness and synchronizing signals for both horizontal and vertical scans. Sometimes referred to as "Baseband Video".

CTV - Color Television

CVBS or CVS - Same as composite video.
Data Slicing - The process of extracting digital data from an incoming, non-TTL signal.

DC Coupled - An electrical connection passing both the DC component as well as the AC component of a signal.

DC Restoration - The process of setting the DC level of a video signal to a defined level. DC restoration is generally applied during the back porch region of the video signal by means of a clamp pulse applied to the restoration circuit at that point of the signal.

Demodulation - The process by which the original signal content is recovered from the modulated carrier. In color television, demodulation may additionally refer to the recovery of the color difference signals from the modulated chroma subcarrier.

Equalization Pulses - The pulses existing before and after the vertical pulse during the vertical interval. These are half horizontal in length and are inserted to effect the half-line offset in vertical sync required for interlace.

Field - For interlaced video the total picture is divided into two fields, one even and one odd each containing one half of the total vertical information. Each field takes one sixtieth of a second (one fiftieth for PAL) to complete. Two fields make a complete frame of video.

FM - Frequency modulation is the method by which the modulation signal which contains the information is used to vary the frequency of the carrier. For NTSC and PAL video, FM modulation is used to transmit the sound portion of the program.

Frame - One frame (two fields) of video contains the full vertical interlaced information content of the picture. For NTSC this consists of 525 lines and for PAL a frame is consisted of 625 lines.

Front Porch - The section of the video signal that lies between the end of active video and the beginning or leading edge of horizontal sync.
Full Field Teletext - In this mode, Teletext information is transmitted over, virtually, all available TV lines.
Gamma - Cathode ray tubes (CRTs) do not have a linear relationship between brightness and the input voltage applied. To compensate for this non-linearity, a pre distortion or gamma correction is applied, generally at the camera source. A value of gamma equal to 2.2 is typical, but can vary for different CRT phosphors.
Genlock - Two composite video signals can by phase locked to each other by synchronizing both the composite sync and color burst of the two signals. This process is called genlock.
Ghost Rows - These are the rows that are specified by the "row address field" of the "page header" but do not get displayed. These are rows 24 to 31. Sometimes referred to as "Extension Packets", these rows carry miscellaneous control information. (Page extension for Telesoftware, linked pages, higher display level, etc.)
Harmonic Distortion - A distortion added to a signal which consists of multiples or harmonics of that signal which were not present in the original. System non-linearity can contribute to this distortion.
Horizontal Blanking - The sum of the front porch, horizontal sync and back porch periods, i.e. the entire period from the end of active video to the beginning of active video on a line.
Horizontal Sync - A negative active pulse of 287 mv amplitude (300 mv for PAL) inserted in the composite video signal. This pulse is extracted by the monitor (or receiving system) and used to horizontally synchronize or define the left hand side of the image.
Hue - Tint or color such as red, pink, yellow, etc.
Hum - An undesirable superimposition of $60 \mathrm{~Hz}(50 \mathrm{~Hz}$ in Europe) power energy into the signal content.
Intercarrier Sound - The means by which sound is separated from the modulated television signal by the use of a sound carrier to beat against the video carrier. This produces a 4.5 MHz signal which contains the audio portion of the television signal.
Interlace - A method to give a higher apparent number of lines on the television CRT screen. One television frame is written on the CRT with television lines of the "even field" placed in between those of the "odd field".

Video glossary

IQ Signals - Similar to the color difference signals (R-Y), (B-Y) but using different vector axis for encoding or decoding. Used by some USA TV and IC manufacturers for color decoding.

IRE - $1 / 140$ of a volt which is the peak to peak amplitude of a video signal from the bottom of sync to the top of peak white. Sync and burst amplitude is defined as 40 IRE units, while active video is 100 IRE Max. The unit was originally defined by the Institute of Radio Engineers, hence the name.

Linear Distortion - Distortions which are independent of amplitude.

Luminance - The brightness or black and white content of a picture. No hue or saturation components exist. Luminance is also referred to by the letter Y and is defined as a sum of scaled red, green and blue primaries by the formula:
$\mathrm{Y}=.30 \mathrm{R}+.59 \mathrm{G}+.11 \mathrm{~B}$.
Modulation - The process whereby a signal containing information is used to vary some characteristic of a carrier. In the case of AM the carrier amplitude is varied, in the case of FM the carrier frequency is varied and in the case of chroma modulation, the phase of the carrier (called subcarrier in this case) is modulated.

NABTS - North American Broadcasting Teletext Specifications. Note that this is not a standard.

This document specifies both the acquisition protocol and the display format. The display format is NAPLPS.

NAPLPS - North American Presentation Level Protocol Syntax. Again, this is not a display standard. It applies to both Teletext and Videotex services.

Non-Linear Distortion - These are distortions which are amplitude dependent. Differential gain and phase measurements are used to measure these distortions.

NTSC - National Television Standards Committee (USA).

Page Header - This is equivalent to Row 0. Carry Control information about this page.

PAL - Phase Alternate Line. A television standard used in Europe and other countries which alternates the relationship of the color axes on a line by line basis so that color modulation errors can be canceled out.

Peak White - Maximum amplitude signal corresponding to the maximum brightness of the video screen.

Peritel - An audio/video connector standard for European TV receivers. Serves the same purpose as AV connector on some of the newer American TV sets.

Quadrature AM - Refers to the process by which two different modulation signals each modulate carriers of the same frequency but which are 90 degrees out of phase. The summed signals can be added together for transmission and can be recovered at the receiver end if they are demodulated 90 degrees apart. This is the process used to modulate chrominance information onto the color subcarrier of a video signal.
Quadrature Distortion - Distortion which results if the sidebands of a vestigial sideband transmission are uneven or asymmetrical. If synchronous decoding is used instead of envelope detection, this distortion can be minimized.

RF Video - System used on standard Television transmissions via an antenna or cable system. Baseband video is amplitude modulated on an RF carrier.

RGB - Three separate signals of Red, Green and Blue used to produce a color image.

R-Y, G-Y, B-Y - Red, Green or Blue signals without the luminance $(-Y)$.
Sandcastle Pulse - Multilevel pulse generated by the horizontal processor and the vertical deflection circuit. This pulse contains gating pulse and blanking signal information for use by the color decoder and the video control circuits.

Saturation - A characteristic describing color amplitude or intensity. A color of a given hue may consist of low or high saturation value which relates to the vividness of the color.

SECAM - Sequential Color and Memory system. TV color system used primarily in France and the USSR.

Setup - A video level which, for NTSC, defines black level and which is 7.5 IRE above blanking. Pal does not have setup.
SRM - Service Reference Model of NAPLPS. It is a skeleton NAPLPS, specifying a low level type display in order to allow for easy implementation ($256 \mathrm{~h} \times 200 \mathrm{v}$ pixels).
Subcarrier - The carrier used to convey chroma information within the composite video signal. The R-Y and B-Y color difference signals are modulated onto the subcarrier by a process of quadrature AM modulation. The frequency of the subcarrier signal is related to the odd half-line multiples of the horizontal frequency in such a manner as to allow the chrominance frequency spectrum to co-exist or interleave within the luminance spectrum.

Synchronous Detection - A process by which demodulation is performed by multiplying the signal by another signal generated by a oscillator which is locked to the original carrier. This is the method preferred over envelope detection.

Teletext - One way broadcast of digital information.

Termination - Unless proper source and termination impedance's are presented to a transmission line, such as a co-ax cable, undesirable reflections and ringing can occur. Video transmission cable typically has a characteristic impedance of 75 ohms and should be terminated by same.

Unmodulated - Refers to the pure carrier frequency with no AM, FM, or Phase modulation imposed upon it. Also referred to as CW or continuous wave.

Vectorscope - An oscilloscope specifically designed to demodulate and display chroma as an $\mathrm{x}-\mathrm{y}$ display of the decoded color with respect to the $R-Y$ and $B-Y$ (or I and Q) axis. Hue is displayed as the angle around the display, and saturation as the amount of displacement from the center.

Vertical Blanking Interval (VBI) - The time it takes the beam to fly back to the top of the screen in order to retrace the opposite field (odd or even). VBI is in the order of 20 TV (25 for PAL) lines. Teletext information is transmitted over 4 of these lines (lines 14-17).

Videotex - A two-way interactive system through which the user can communicate to a large, organized and secure, database through a telephone line using the TV as the display medium.

Waveform Monitor - An oscilloscope designed to measure the specific timings of a video signal.

World System Teletext (WST) - World System Teletext is based on the British teletext standard in which a one-to-one correspondence exists between transmitted characters, page memory, word addresses and the display screen character locations. Over 98% of the world's teletext decoders are WST compatible.

Y Signal - Luminance. Determines the brightness of each spot (pixel) on CRT screen either color or BN systems, but not the color.

Alphanumeric index of products

Analog-to-digital converter selection guide 3-3
Digital-to-analog converter selection guide 3-4
PCF8574/PCF8574A Remote 8-bit I/O expander for $\mathrm{I}^{2} \mathrm{C}$-bus 3-5
PCF8584 $\quad{ }^{2} \mathrm{C}$-bus controller 3-16
SAA1101 Universal sync generator (USG) 3-41
SAA5191 Teletext video processor 3-52
SAA5231 Teletext video processor 3-58
SAA5250 Interface for data acquisition and control (for multi-standard teletext systems) 3-69
SAA5252 Line twenty-one acquisition and display (LITOD) 3-100
SAA5296 Single chip economy 10 page teletext/TV microcontroller 3-114
SAA7110 One Chip Frontend 1 (OFC1) 3-120
SAA7116 Digital video to PCl interface 3-185
SAA7151B Digital multistandard colour decoder with SCART interface (DMSD2-SCART) 3-202
SAA7152 Digital video comb filter (DCF) 3-243
SAA7157 Clock signal generator circuit for digital TV systems (SCGC) 3-252
SAA7164 Video enhancement and D/A processor (VEDA3) 3-258
SAA7165 Video enhancement and D/A processor (VEDA2) 3-276
SAA7169 35 MHz triple 9 -bit D/A converter for high-speed video 3-295
SAA7183 Digital video encoder (square pixel with Macrovision) 3-302
SAA7186 Digital video scaler 3-303
SAA7187 Digital video encoder (DENC2-SQ) 3-332
SAA7188A Digital video encoder (DENC2-M) 3-359
SAA7191B Digital multistandard colour decoder, square pixel (DMSD-SQP) 3-387
SAA7192A Digital colour space converter 3-418
SAA7194 Digital video decoder and scaler circuit (DESC) 3-454
SAA7196 Digital video decoder, scaler, and clock generator (DESCPro) 3-457
SAA7197 Clock signal generator circuit for Desktop Video systems (SCGC) 3-511
SAA7199B Digital video encoder, GENLOCK-capable 3-517
SAA9042 Multi-standard Teletext IC for standard and features TV 3-549
SAA9051 Digital multistandard TV decoder 3-575
SAA9057B Clock signal generator circuit for Digital TV systems (CGC) 3-619
SAA9065 Video enhancement and D/A processor (VEDA) 3-626
TDA2595 Horizontal combination 3-644
TDA3566A PAL/NTSC decoder 3-651
TDA4665 Baseband delay line 3-669
TDA4670 Picture signal improvement (PSI) circuit 3-675
TDA4680 Video processor with automatic cut-off and white level control 3-685
TDA4686 Video processor, with automatic cut-off control 3.701
TDA4820T Sync separation circuit for video applications 3-717
TDA8444/AT/ Octuple 6-bit DAC with I ${ }^{2} \mathrm{C}$-bus 3-722
TDA8446; TDA8446T Fast RGBNC switch for digital decoding 3-731
TDA8501 PAL/NTSC encoder 3-738
TDA8540 4×4 video switch matrix 3-763
TDA8702 8 -bit video digital-to-analog converter 3-776
TDA8703 8 -bit high-speed analog-to-digital converter 3-790
TDA8706 6-bit analog-to-digital converter with multiplexer and clamp 3-803
TDA8707 Triple RGB 6-bit video analog-to-digital interface 3-813
TDA8708A Video analog input interface 3-825
TDA8708B Video analog input interface 3-842
TDA8709A Video analog input interface 3-859
TDA8712; TDF8712. 8-bit digital-to-analog converters 3-878
TDA8714 8-bit high-speed analog-to-digital converter 3-893
TDA8716 8-bit high-speed analog-to-digitalconverter 3-908
TDA8718 8-bit high-speed analog-to-digital converter 3-924
TDA8755 YUV 8-bit video low-power analog-to-digital interface 3-933
TDA8758 YC 8-bit low-power analog-to-digital video interface 3-948
TDA8760 10-bit high-speed analog-to-digital converter 3-963
TDA8771 Triple 8-bit video digital-to-analog converter 3-984
TDA8772; TDA8772A Triple 8-bit video digital-to-analog converter 3-996
TDA9141 PAL/NTSC/SECAM decoder/sync processor 3-1010
TDF8704 8 -bit high-speed analog-to-digital converter 3-1033

Desktop Video Products

Section 2
 Application Notes and Materials

DPC7110 Video capture card (24/16-bit) with display filter 2-3
DPC7116SD Video to PCl demo board 2-17
Clock and synchronization signals of SAA7187 and SAA7188 Application note for digital video encoder 2-30
DTV7188A Evaluation board for SAA7188A encoder 2-48
DTV9051 Digital video evaluation module 2-54
DTV7199 Digital Television Demonstration System 2-68
SAA7199B operational modes 2-93
DTV7194/96 Desktop video demo board 2-103
Crystal specifications 2-139
TDA8708 black level and gain modulation circuit 2-140
TDA9141 analog decoder application 2-143
Digital video evaluation board 2-149
CVBS output filter for SAA7199B encoder 2-157
SAA1101 sync generator application 2-162
The ${ }^{2} \mathrm{C}$-bus and how to use it (including specification) 2-163
$1^{2} \mathrm{C}$ bus addresses 2-182
${ }^{2} \mathrm{C}$ parallel printer port adaptor 2-183
AN425 Interfacing the PCF8584 $1^{2} \mathrm{C}$-bus controller to 80C51 family microcontrollers 2-184
What is Teletext? 2-204
Packet and Page Teletext data reception using the SAA5250 2-213

Author: Herb Kniess

The demonstration schematic shown on the following pages is meant to be a baseline reference design showing the application of the Philips SAA7110 Single-Chip Video Decoder providing video overlay on the VGA monitor and capture on a standard PC ISA bus computer.

The board contains 4 basic elements to provide video display on the PC VGA monitor. The first element is the SAA7110 video decoder. It digitizes the incoming analog baseband video signals and decodes it into color difference information. Sync, clock and blanking signals are also provided to drive memory controllers such as the MCT MVM121A on this board.

The second function, as mentioned above, is to store the digital video data into memory. This particular board can use memory up to 24-bit RGB format, therefore, the MCT memory controller converts the digital YUV color difference data from the SAA71110 to 24-bit RGB internally before storing the data in VRAM. The memory controller's job is to write data to memory and scan convert it up on the read side to VGA timing frequencies supplied by connection to the VGA feature connector for sync and pixel clock.

The memory controller sits on the ISA bus directly for programming of display modes
and reading and writing video memory for record and playback of live video clips.

The third portion of the system is memory. This board uses VRAM so that the graphics display can make use of the serial port of VRAMs for high speed display. DRAM solutions would require 2 or 4 times the number of devices to meet the bandwidth requirements for video input and VGA display.

The fourth and final part of this system is the DAC and VGA output. On a typical display screen you might have graphics and live video at the same time. Under windows, a color key area is painted where the live video screen should appear. The memory controller listens to the data on the VGA feature connector along with sync and clock to tell the RGB DAC when to switch between digital RGB pixels from the video memory or analog VGA RGB from the graphics board. A short loop back cable must be connected from the VGA card output to the mini 8-pin DIN connector on the overlay board. This loop-back cable allows analog RGB from the VGA boad to be mixed with analog video in the 24-bit DACs analog mulitplexer. Do not force the connector into the SVIDEO connector, as it is only a 4-pin version.

Software comes with the demo board that auto installs under Windows 3.1 and higher. Video for Windows 1.1 is required for capture and play-back. You can get a copy from Microsoft. Video for Windows must be installed first. All you have to do is select the drive where the floppy is and type install. It will do the rest, you will have to answer yes several times, that's all.

After installing the software you must align the board for your particular VGA card and timing on the feature connector. Under the SETUP menu for the VMPLUS application for the board, you can select INPUT VIEWPROT, OUTPUT VIEWPORT, and VGA PARAMETERS to set up the board. After you remove any color key area overlap or noise caused by VGA feature connector timing errors, be sure to save your changes under the setup menu SAVE CHANGES.

There are a number of special effects you can experiment with, such as ZOOM, CHANGE PICTURE SIZE, etc. Be sure to check out the video control capability of the SAA7110 under VIDEO PARAMETERS. A parallel YUV connector is provided to allow connection to other signal processing boards. There is also a 24-bit RGB connector provided for connection to LCD panels. Be careful. The RGB connector runs non-interlaced at the VGA scan rates!
TITLE PAGE
VIDEO CAPTURE CARD (24/16 BIT)
WITH DISPLAY FILTER
PHILIPS 7110 DECODER
PHILIPS
(c) $1992,1993, \mathrm{MCR}$, Inc.
notice:

90IA COMPUTER TECHNOLOGIES, INC

Video capture card (24/16-bit) with display filter

Video capture card (24/16-bit) with display filter DPC7110

[^3]

Video capture card (24/16-bit) with display filter

Media Computer Technologies		Revised:
January 25, 1994		
7110 Fab Rev B BOM		Revision: 3.0
Bill Of Materials	February 1, 1994	$11: 05: 12$

See Notes on stuffing option

All resistors are 5% unless noted
Notes

1. U12 7064EPLD needed for Horizontal filter onlyThis filter can e used only in 16bit RGB board.
For 512K, 24 bit RGB board, do not stuff U1,U2,U3Short J2 \& J3 for 24 bit RGB board
2. For 1024K, 24 bit RGB board, Short J2 \& J3
3. For $512 \mathrm{~K}, 16$ bit RGB board do not stuff U1,U2,U3,U7Stuff U12 for horizontal filter OR Short J1 \& J2
4. For 1024 K 16 bit RGB board do not stuff U3, U7Stuff U12 for horizontal filter OR Short J1 \& J2
5. Do not stuff R34 (680K)

Video to PCl demo board

Author: Herb Kniess

The schematics following on the next few pages show the application reference design of a complete audio and video board operating on a personal computer equipped with a PCI local bus. The board will digitize, decode, scale, and send video data to 2 different PCl memory locations. PCl bus is the latest high speed local bus for personal computers. Pentium, 486, and even POWER PC systems can make use of such a system bus for transferring large amounts of high speed data, such as full motion video, directly to CPU memory or graphics screen without the need for an additional frame buffer. The cost savings is obvious. This concept is known as SHARED FRAME BUFFER.

The PCI bus has 100 MBytes of useable data bandwidth. At peak, this video capture card could produce 45 mbytes of 24-bit RGB data if a full screen high resolution PAL video signal was connected to one of the video inputs. In practice 20-30 mbytes is a more realistic number for data bandwidth requirements of high quality full motion video. Small pictures and slow frame rates will reduce the data rates even further if necessary.

The board contains a TV tuner, BTSC stereo audio decoder for TV sound, video decoder and picture scaler, and single chip PCl bus interface. The SAA7116 contains all circuitry necessary for a complete interface between the Philips SAA7196 video decoder scaler output bus and PCI bus. The SAA7116 is a PCI bus master and contains an internal 1 KByte FIFO to decouple realtime video data
rates and the PCl bus burst transfer modes. The FIFO size is very generous in order to accommodate worst-case conditions on PCl bus data transfers.

This demo board is not just a technology demonstration of the products mentioned above, but satisfies the needs of the computer industry to bring video into a PCl equipped computer at minimum possible cost. There is no wasted hardware or additional cost to the customer once a PCl equipped computer has been purchased in order to add video. There is no secondary frame buffer needed to convert video data rates to graphic data rates. The SAA7116 makes use of the SHARED FRAME BUFFER concept.

OPERATION

Analog video signals are supplied to the board and are digitized by the TDA8708 or TDA8709 AD converters. The digital composite video data is passed to the SAA7196 video decoder scaler. The decoder function is necessary to convert the video data into color difference YUV or RGB data formats for the graphics frame buffer or CPU. The SAA7196 will decode NTSC, PAL, or SECAM video standards. The decoder also generates pixel clock and sync signals to feed the scaler portion of the SAA7196. The scaler function will reduce the picture size with proper filtering vertically and horizontally to provide a picture of any size as required by an application. The SAA7196 has an optional

YUV data port for external signal connection as provided by connector J 4 on the board. Do not connect the composite or S-VIDEO inputs at the same time because they share the same input on the TDA8708 data converter.

A Philips Fl 1236F TV tuner is also provided on the board to optionally send baseband audio and video signals to the signal processing devices. Audio signal processing is handled by the TDA9855 stereo TV decoder. It contains a complete stereo decoder function as well as volume, treble, bass, pseudo-stereo, and mixing functions. All devices, including the TV tuner, are controlled via the $1^{2} \mathrm{C}$ serial 2-wire bus generated in the SAA7116 PCI interface. Software drivers are supplied with the board which run under VIDEO FOR WINDOWS VIDCAP V1.1.
Under WINDOWS VIDCAP, you can select direct PCI transfer to the graphics display buffer or transfer to CPU memory. If the video data is sent to CPU memory, the frame update rate is limited by the ability of the CPU to transfer data to the screen. The transfer rate will not be real time 30 frames/second. Even a Pentium system cannot handle video data rates as high as direct transfer to the frame buffer at 24 MBytes/sec.

Drivers for VIDCAP and other applications are available to support the WINDOWS development environment. Philips Semiconductors will make interface documentation and software support available on a developer basis.

SAMPLE MACRO FILE FOR SAA7116 DEBUGGER

;filename: v16p.mac
;This file initializes the SAA7116 to send RGB15 640×480
; with CCIR 601 compatible levels to a frame buffer located at 0xa0200000
[PEG]

$\operatorname{MEM}(60)=00000000$	$;$ I2C COMMAND/STATUS
$\operatorname{MEM}(40)=00000000$	$;$ CAPTURE CONTROL
$\operatorname{WAIT}(01)=000$ fffff	$;$ CAPTURE CONTROL
$\operatorname{MEM~}(40)=00000040$	$;$ DMA1E
$\operatorname{WAIT}(01)=000$ fffff	$;$ DMA2E
$\operatorname{MEM}(00)=00000004$	$;$ DMA3E
$\operatorname{MEM~}(04)=00000004$	$;$ DMA2O
$\operatorname{MEM~}(08)=00000004$	$;$ DMA3O
$\operatorname{MEM}(0 c)=00000004$	$;$ DMA_O_END
$\operatorname{MEM~}(10)=00000004$	$;$ PHASE
$\operatorname{MEM}(14)=00000004$	$;$ CAPTURE CONTROL
$\operatorname{MEM~}(8 c)=00000000$	

I2C $(400 \mathrm{e})=38$
I2C $(400 f)=50$
$\operatorname{MEM}(40)=00008040 \quad ; \quad$ CAPTURE CONTROL
WAIT (01) $=000 f f f f f$
;The SAA7116 is initialized at this point
$\operatorname{MEM}(00)=a 0200000 \quad ; \operatorname{DMA1E}$

MEM $(04)=00000000$; DMA2E
$\operatorname{MEM}(08)=00000000 \quad ;$ DMA3E
$\operatorname{MEM}(0 c)=a 0200800$; DMA10
$\operatorname{MEM}(10)=00000000 \quad$; DMA2O
$\operatorname{MEM}(14)=00000000 \quad ; \quad$ DMA30
$\operatorname{MEM}(18)=00000 \mathrm{~b} 00$; STRD1E
$\operatorname{MEM}(1 c)=00000000$; STRD2E
$\operatorname{MEM}(20)=00000000 \quad ; \quad \operatorname{STRD} 3 E$
$\operatorname{MEM}(24)=00000 \mathrm{~b} 00$; STRD10
$\operatorname{MEM}(28)=00000000$; STRD2O
$\operatorname{MEM}(2 \mathrm{C})=00000000$; STRD30
$\operatorname{MEM}(30)=$ eeeeee01 ; MODE_E
$\operatorname{MEM}(34)=$ eeeeee 01 ; MODE_O
$\operatorname{MEM}(38)=00200020 \quad ; \quad$ FTRIG_PLA, FTRIG_PAC
$\operatorname{MEM}(3 C)=00000103$; AMODE, FTOGGLE, INCDEC_E, INCDEC_O
$\operatorname{MEM}(40)=000000 \mathrm{C} 0 \quad$; CAPTURE CONTROL - reset prst
$\operatorname{MEM}(44)=00000000$; RETRY_WAIT
$\operatorname{MEM}(48)=00000000 \quad$; INTERRUPT MASK
$\operatorname{MEM}(4 \mathrm{C})=00000001$; MASK_E
$\operatorname{MEM}(50)=00000001$; MASK_O
$\operatorname{MEM}(54)=00000000$
MLEN_E, MLEN_O
$\operatorname{MEM}(58)=0005007 \mathrm{c}$; FAEMPTYFLAG, FAFULLFLAG
$\operatorname{MEM}(5 c)=461 e 1 e 0 f \quad ; \quad$ PHASE
$\operatorname{MEM}(60)=00000000$; I2C COMMAND/STATUS
$\operatorname{MEM}(64)=00000000 \quad ;$ I2CD
$\operatorname{MEM}(68)=00000000$; I2CD1_E, I2CDO_E
$\operatorname{MEM}(6 \mathrm{C})=00000000$; I2CD3_E, I2CD2_E
$\operatorname{MEM}(70)=00000000$; I2CD5_E, I2CD4_E
$\operatorname{MEM}(74)=00000000$; I2CD7_E, I2CD6_E
$\operatorname{MEM}(78)=00000000 \quad ; \quad$ I2CD1_0, I2CD0_O
$\operatorname{MEM}(7 \mathrm{C})=00000000 \quad ; \quad$ I2CD3_O, I2CD2_O
$\operatorname{MEM}(80)=00000000 \quad ; \quad$ I2CD5_O, I2CD4_O
$\operatorname{MEM}(84)=00000000$; I2CD7_O, I2CD6_O
$\operatorname{MEM}(88)=00000000 \quad ;$ I2CD_EN_O, I2CD_EN_E
MEM (8c) $=\mathrm{a} 02$ eece 4 ; DMA_E_END
$\operatorname{MEM}(90)=$ a02ef4e4 ; DMA_O_END
I2C $(4000)=50$

```
I2C(4001)=7f
I2C (4002) =53
I2C (4003)=43
I2C(4004)=19
I2C(4005)=00
I2C(4006)=46
I2C (4007) =00
I2C(4008)=7f
I2C(4009)=7f
I2C(400a)=7f
I2C(400b)=7f
I2C(400C)=40
I2C (400d) =84
I2C (4010) =00
I2C (4011) =2c
I2C (4012) =40
I2C (4013) =40
I2C (4014)=34
I2C (4015) =0c
I2C (4016) =fb
I2C (4017) = d4
I2C(4018) =ec
I2C (4019) =80
I2C(4020)=90
I2C(4021) =80
I2C (4022)=80
I2C (4023)=04
I2C (4024)=8a
I2C (4025) =f0
I2C(4026)=f0
I2C(4027)=0f
I2C (4028) =80
I2C (4029)=16
I2C (402a) =00
I2C (402b) =00
I2C (402c) =00
I2C (402d) =00
I2C(402e)=00
I2C (402f) =00
I2C (4030) =8f
MEM(40)=00008ff3 ; CAPTURE CONTROL - enable pegasus
[]
```


THE TABLE BELOW LIST THE STUFFING OPTIONS WHICH SELECT BETWEEN STEREO OUT OR MONO OUT. STUFF ONE OPTION OR THE OTHER BUT NOT BOTH

MONO OUT	STEREO OUT
RT	CS
R22	C8
CG	C65

[^4]

Clock and synchronization signals of SAA7187 and SAA7188 Application note for digital video encoder

Author: Leo Warmuth.

1.0 INTRODUCTION

The devices of the SAA7187/88 family of video encoders can be used in a variety of applications differing regarding the signal flow of timing information. Video timing is defined by clock signals, synchronization signals and blanking signals. The video encoder ICs can generate these signals by itself (master mode), or can accept them as input (slave mode). The master/slave characteristic can be chosen independently for clock and sync-signals.

This application note describes the various clock and synchronization signals, their functions, and how to select and program them. The timing relation of some of these signals is programmable. An application example shows a possible configuration.

2.0 CLOCK LLC AND CREF SIGNAL

The SAA7187/88 has two clock signals: LLC and CREF, functionally compatible with other Philips digital video processing circuits. LLC on pin 38 is the Line-Locked-Clock in double pixel clock frequency. CREF on pin 39 is the clock qualifier signal, accompanying LLC, to indicate on which LLC edges the 16 bit wide YUV data stream transports valid data. CREF is continuously toggling in pixel rate frequency, but is not meant as pixel clock. The transitions of CREF have to maintain certain setup and hold times relative to clock LLC (see data sheet). The digital encoder ICs can generate and provide (drive) the clock signals by its own by means of the built-in
crystal oscillator, or receive the clock signals from external. In remote genlock mode, LLC and CREF can be fed from one of the Philips digital decoder (DMSD), but must then be accompanied by RTC signal (real time control information).

2.1 Built-in clock signal generator

SAA7187/88 has built-in an optional crystal oscillator for LLC frequency. A crystal with double pixel clock frequency as base frequency, or as third harmonic frequency, with appropriate auxiliary circuitry, can be connected between the pins XTALi (input, pin 41) and XTALo (output, pin 40). The swing at the XTAL-pins is about 1 Vpp , and is DC-compensated via an internal resistor between the two pins. Alternatively an external crystal oscillator could directly drive into XTALi.

An internal switch, hardware controlled by CDIR at pin 36, selects whether the IC provides or receives clock signals LLC and CREF (see Table 1). If CDIR is low, clock is taken from the internal crystal oscillator and the IC outputs LLC at pin 38 and CREF at pin 39. If CDIR is high, LLC pin and CREF pin are both switched to be input. The IC then requires a double pixel clock LLC from external circuitry at pin 38 . Under certain conditions, CREF input at pin 39 has data-phase (timing) relevance, but it does not have directly clock and data qualifying function.

2.2 External Clock

In the "clock slave mode" case, i.e., if clock is provided from external into LLC pin 38, a CREF-like signal can optionally be applied to pin 39, but this is not required. If the IC sees a toggling signal, i.e., edges, at pin 39, CREF will contribute to re-synchronization of the internal horizontal counter (once per line) and - by that - defines the active data phases in the 16 bit wide YUV input data stream. If horizontal synchronization from external via RCV1 or RCV2 is selected, i.e., the encoder $I C$ is in slave mode regarding horizontal timing, CREF defines together with the selected horizontal reference input signal, when the horizontal trigger counter has to start. From there the programming parameter HTRIG (11 bits in subaddress 6E and 6F) defines the start of the horizontal pixel counter, and the LSB of the parameter HTRIG determines one of the two possible phases of the internally effective CREF relative to the external provided CREF. The horizontal reference edge is defined regarding source and polarity by the various bits in subaddress 6Chec (see also later in this application note: re-trigger).

If no CREF is provided to the IC, a horizontal reference signal input is sampled direct with LLC resolution. The phase of the internal CREF, and expected valid data phases, are defined by the selected horizontal reference edge, and by the LSB of HTRIG. The horizontal reference edge is defined regarding source and polarity by the various bits in subaddress 6Chec (see also later in this application note: re-trigger).

Table 1. Selection of Clock Modes

CDIR	LLC	CREF	XTALo	XTALi	RTCI	RTCE
Pin 36	Pin 38	Pin 39	Pin 40	Pin 41	Pin 43	subaddress $61 h e x$
low	output	output	local crystal		don't care	don't care
low	output	output	don't care	external oscillator	don't care	don't care
high	input	don't care but constant	don't care		don't care	0
high	input	input	don't care	don't care	0	
high	input from DMSD/CGC	don't care but constant	don't care	RTCO from DMSD	1	
high	input from DMSD/CGC	input from DMSD/CGC	don't care	RTCO from DMSD	1	

Clock and synchronization signals of SAA7187 and SAA7188 Application note for digital video encoder

Figure 1. Timing of internal CREF and expected valid data input, if CREF and horizontal reference is provided from external into the encoder IC

Figure 2. Timing of internal CREF based on horizontal reference signal input only

Clock and synchronization signals of SAA7187 and SAA7188 Application note for digital video encoder

2.3 Clock accuracy

The digital encoder SAA7187 and SAA7188A synthesize all horizontal and vertical timing as well as the color subcarrier oscillation from the provided clock LLC, respectively crystal. If the clock frequency deviates from its nominal value, line and field frequency will change accordingly. Consumer type receiver equipment is rather tolerant regarding these raster frequencies, and can normally accept and follow several \% deviations from the standard raster frequencies.

But the subcarrier frequency has much higher requirements regarding accuracy and stability to ensure proper color decoding. Broadcast quality class specification asks for less than 2ppm deviation of subcarrier frequency. Consumer type equipment may accept up to 50ppm static deviation, but dynamic deviation should be kept much smaller and very slow.

In case the crystal or the provided LLC at the digital encoder does not have the correct frequency, the synthesized color subcarrier
frequency can still be adjusted to the required frequency value, by programming the 32 bit of "FSC" under subaddress 63hex to 66hex appropriate. Subcarrier phase reset PHRES in subaddress 70hex has then to be switched off, i.e., set to 00 . In general, such an adjustment of "FSC" would produce a non-standard video output signal regarding subcarrier to line phase coupling, comparable to a regular VCR signal. The resulting video signal shows correct subcarrier frequency and (slightly) incorrect raster frequencies. It can be decoded and displayed correctly by any equipment that could handle VCR signals, e.g. by a consumer type television set.

2.4 Remote Genlock

In remote genlock mode the digital encoder runs with the line locked clock LLC, generated by a digital multi standard decoder (DMSD) respectively clock generator (CGC), like SAA7110, SAA7196, SAA7197 or SAA7157. In the decoding process the line locked clock LLC is derived from an analog
video input signal as reference. If this input video signal is not stable or non standard, e.g., a camcorder play back signal, the DMSD will control LLC to stay line locked, which may result into a non-nominal clock frequency. The Philips digital decoder provides an RTC-signal (real time control information) to enable the digital encoder (DENC) to compensate such non-nominal clock, if decoder and encoder are running the same system, i.e., same sampling scheme (CCIR or SQP) and same video norm (field frequency, subcarrier frequency). Decoder LLC and RTCO output signal from DMSD must be connected to LLC and RTCI input signal of DENC. Horizontal and vertical sync signal of both systems can run with phase offset. The data path can have any processing delay, or may be not closed at all.

SAA7187 can be paired for remote genlock operation with the SAA7110, or SAA7191B plus SAA7197, or with SAA7196.
SAA7188A can be paired for remote genlock operation with SAA7151B plus SAA7157.

Clock and synchronization signals of SAA7187 and SAA7188 Application note for digital video encoder

3.0 RASTER CONTROL OUTPUT SIGNALS

The NTSC / PAL video encoder has an internal synchronization circuitry. For the purpose of this application note it is referred to as horizontal counter - counting in clocks along a horizontal line - and as vertical counter - counting in half lines through a video field. A third counter for color field sequence identification is implemented to support the interlace characteristic of the video signal as well as to distinguish the NTSC four color field sequence, and PAL eight color field sequence. The ic has four Raster Control pins (RCxx), which reflect the timing and status of the internal synchronization circuitry. Two of them carry vertical / field synchronization signals, and two carry horizontal / line synchronization information. One of each pair is output only, the other one can be defined as output or as input, to re-trigger the internal synchronization circuitry. (The nomenclature of these four pins is related to data flow in a particular application, but should not be understood as restriction.) All four signals are defined on one and the same internal synchronization circuitry.

3.1 Vertical - Field - Reference Output Signals

The digital encoder SAA7187 and SAA7188A have two pins to output field reference Raster Control signals. RCM1 on pin 29 has output only functionality, and a fixed (nominal) signal polarity. RCV1 on pin 6 has selectable signal polarity and can be used as output or as input to re-trigger internal timing (see later in this application note).

3.1.1 Field Reference Signal Types

 For both field reference outputs, one signal out of a set of the following three signal types can be selected independently.vS Vertical Sync signal is nominal active (nominal high) for 3 lines if 60 Hz timing is selected, or for 2.5 lines if 50 Hz timing is selected, i.e., during those half lines, in which the analog CVBS output contains the main vertical sync pulses..

FS Frame Sync signal is an odd_/even signal, that is active (nominal low) during every first i.e. odd field, and inactive (nominal high) during every second, i.e., even field in the 2:1 interlace scheme of two fields in one frame. The first field is that field, in which the first main vertical sync pulse (serration pulse) starts in coincidence with the begin of a line.

FSEQ The color Field SEQuence signal indicates the start of the color field sequence (see CCIR report 624, e.g.). FSEQ is active (nominal high) during the first field of the 4-(NTSC) or 8 -(PAL) color field sequence for standard encoding. FSEQ is inactive (nominal low) through all the other fields.

The position of the output signals VS, FS and FSEQ as RCM1 at pin 29, as well as RCV1 at pin 6 , has a fix timing relationship to the internal horizontal and vertical counters and is not directly effected by programming of HTRIG or VTRIG. The leading (nominal
rising) edge of VS, and all edges of FS and FSEQ occur at nominal field start (according to CCIR nomenclature), and on half line boundaries. For standard interlaced mode and nominal field length, FS is low for 262.5 (312.5) lines and high for 262.5 (312.5) lines, for example. The leading (nominal falling) edge of FS or the leading (nominal rising) edge of FSEQ indicates the begin of a frame, the begin of a field, and aiso the begin of a line, and can be used to reset/trigger external vertical as well as horizontal synchronization counter.

If the encoder is forced into non-interlaced mode through external re-trigger, the FS function is meaningless. If non-standard encoding regarding subcarrier-to-line coupling is applied, selection of FSEQ function is meaningless.

Selecting any of these signal for output as RCM1 on pin 29 or as RCV1 on pin 6 has no direct effect on internal blanking or other processing in the encoder IC itself. RCM1 and RCV1 as output are just auxiliary timing signals for use by the application environment, to support the video signal source (e.g., MPEG decompression circuitry, or video memory controller, or graphics generator) to time its data stream output.

3.1.2 Pin 29 : RCM1

Pin 29 RCM1 has output only function and carries field synchronizing raster control information. Via two SRCM bits in subaddress 6Dhex one of three types of field sync signals can be selected.

Table 2. Selection of RCM1 signal function on Pin 29
$\mathrm{F}=$ relevant function, $\mathrm{x}=$ other function/signal definition, $-=$ don't care

BITS UNDER SUBADDRESS 6Dh								BITS UNDER SUBADDRESS 61 h								SHORT NAME	FUNCTION RESULTING SIGNAL
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0		
								-	x	x	x	x	x	x	F	FISE	select field frequency (V-pulse sequence) select number of clocks/line (selects FSEQ as 4 or 8 field se- quence)
-	-	-	-	F	F	x	x									SRCM	select RCM1 signal function
				0	0										0	VS 50 Hz	active high for 2.5 lines at begin of every field
				0	0										1	VS 60 Hz	active high for 3 lines at begin of every field
				0	1										0	FS 50 Hz	low in first (odd) field, $\mathbf{3 1 2 . 5}$ lines high in second (even) field, 312.5 lines
				0	1										1	FS 60Hz	low in first (odd) field, 262.5 lines high in second (even) field, 262.5 lines
				1	0										0	FSEQ 50Hz	high in the first field of 8 field sequence
				1	0										1	FSEQ 60Hz	high in the first field of 4 field sequence
				1	1										x	n.a.	reserved, do not use

Clock and synchronization signals of SAA7187 and SAA7188 Application note for digital video encoder

3.1.3 Pin 6 as Output: RCV1

Pin 6 RCV1 can assume output as well as input function and carries field synchronizing raster control information. Via two SRCV1x bits, PRCV1 bit and ORCV1 bit in subaddress 6Chex one of three types of field sync signals can be determined for RCV1 output.

Table 3. Selection of RCV1 output signal function on pin 6
$\mathrm{F}=$ relevant function, $\mathrm{x}=$ other function/signal definition, $-=$ don't care

BITS UNDER SUBADDRESS 6Ch								BITS UNDER SUBADDRESS 61h							SHORT NAME	FUNCTION RESULTING SIGNAL
7	6	5	4	3	2	1	0	7	6	5	4 3	32	1	0		
								-	x	$\mathrm{x} \times$	x \times	x x	x	F	FISE	select field frequency (V-pulse sequence) select number of clocks/line (defines FSEQ as 4 or 8 field sequence)
x	x	x	x	F	x	x	x								PRCV1	Select RCV1 signal polarity
x	x	x	F	x	x	x	x								ORCV1	Input or Output of RCV1 signal
F	F	x	x	x	x	x	x								SRCV1	Select RCV1 signal function
x	x		0	x										-	input	RCV1 is input, see Table 6
0	0		1	0										0	VS 50 Hz	Active high for 2.5 lines at begin of every field
0	0		1	1										0	Vs 50 Hz	Active low for 2.5 lines at begin of every field
0	0		1	0										1	VS 60Hz	Active high for 3 lines at begin of every field
0	0		1	1										1	VS 60Hz	Active low for 3 lines at begin of every field
0	1		1	0										0	FS 50Hz	Low in first (odd) field, $\mathbf{3 1 2 . 5}$ lines High in second (even) field, 312.5 lines
0	1		1	1										0	FS 50Hz	High in first (odd) field, 312.5 lines Low in second (even) field, 312.5 lines
0	1		1	0										1	FS 60Hz	Low in first (odd) field, 262.5 lines High in second (even) field, 262.5 lines
0	1		1	1										1	FS 60Hz	High in first (odd) field, 262.5 lines Low in second (even) field, 262.5 lines
1	0		1	0										0	FSEQ 50Hz	High in the first field of 8 field sequence
1	0		1	1										0	FSEQ 50Hz	Low in the first field of 8 field sequence
1	0		1	0										1	FSEQ 60Hz	High in the first field of 4 field sequence
1	0		1	1										1	FSEQ 60Hz	Low in the first field of 4 field sequence
1	1		-	-										x	n.a.	reserved, do not use

Clock and synchronization signals of SAA7187 and SAA7188 Application note for digital video encoder

3.2 Horizontal - Line Reference Output Signals

 The digital encoder SAA7187 and SAA7188A have two pins to output line reference Raster Control signals. RCM2 on pin 30 has output only functionality, and a fixed (nominal) signal polarity. RCV2 on pin 7 has selectable signal polarity and can be used as output, or as trigger input to re-synchronize internal timing, or as 'blanking' input to gate input data stream (see later in this application note).Both horizontal raster control output signals can be freely defined along the line, and are active (nominal high) between "begin" and "end" (see Table 4). Begin and end can be chosen independently for RCM2 and RCV2. Both pairs are relative to the same internal horizontal counter, and are defined in LLC clocks. The internal horizontal counter manifests its timing in the analog output, and can depend on re-trigger via RCV1 or RCV2 input signals and programming of HTRIG under subaddress 6Ehex and 6Fhex (see later in this application note).

RCM2 and RCV2 as output are auxiliary timing signals for use by the application environment, e.g., to help the data source (MPEG decompression circuitry, video memory controller or graphics overlay generator) to time its data stream, or disable it. The programming of RCM2 and RCV2 as output does not effect internal blanking, data enabling, or any timing or processing in the encoder IC itself.

3.2.1 Pin 30: RCM2

Pin 30 RCM2 has output only function. RCM2 is active high between 'Begin = BMRQ' and 'End = EMRQ' in every line, i.e., also during vertical blanking interval VBI. Programming of FAL and LAL has no effect on RCM2. If End is programmed before (i.e., with a lower number than) Begin, RCM2 may be seen/understood as an active low signal between End and Begin.

3.2.2 Pin 7 as Output: RCV2

Pin 7 RCV2 can assume output as well as input function (see Tables 3, 4, and 5).

Program bit ORCV2 $=1$ defines pin 7 for RCV2 output signal. RCV2 output is active (nominal high) from programmed 'Begin = BRCV' to 'End = ERCV'. The polarity is defined by program bit PRCV2.

Program bit CBLF defines whether RCV2 output is active in every line (CBLF = 0), regardless of vertical position, or whether RCV2 output is only active during selected vertical active range (CBLF $=1$). Vertical active range is defined between first active line' FAL and 'last active line' LAL under subaddress 7Bhex to 7Dhex. By that, RCV2 as output signal could be used as horizontal line timing reference signal ("HREF") or as composite blanking signal ("CBN"), to enable data output at the video signal source. But if pin 7 is programmed as RCV2 output signal, its signal and related programming has no effect for any timing, blanking, data enabling or processing in the encoder IC itself. FAL and LAL defines internal vertical blanking, independently of whether CBLF is selecting it for gating of RCV2 output or not.

Table 4. Definition of output timing of RCM2 (pin 30) and RCV2 (pin 7)

PROGRAM WORD	11 BIT ADDRESS IN HORIZONTAL DIRECTION LLC RESOLUTION	RCM2 PIN30 OUTPUT ONLY	RCV2 PIN7
ONLY IF OUTPUT			

Table 5. Selection of RCV2 output signal function on pin 7
$\mathrm{F}=$ relevant function, $\mathrm{x}=$ other function/signal definition, $-=$ don't care

BITS IN SUBADDRESS 6Chex								SHORT NAME	FUNCTION DESCRIPTION
7	6	5	4	3	2	1	0		
x	x	X	x	x	x	x	F	PRCV2	Polarity of RCV2
x	x	x	X	X	X	F	x	ORCV2	1/O of RCV2
x	X	x	X	x	F	x	X	CBLF	RCV2 in VBI (see FAL and LAL)
					x	0	x	input	RVC2 is input, see Table 7
					0	1	0	"HREF"	RCV2 output is active high between BRCV till ERCV in every line of the entire field, i.e., including VBI
					0	1	1	"HREF_"	RCV2 output is active low between BRCV till ERCV in every line of the entire field, i.e., including VBI
					1	1	0	"CBN"	RCV2 output is active high between BRCV till ERCV in active lines only from FAL to LAL, i.e., excluding VBI
					1	1	1	"CB"	RCV2 output is active low between BRCV till ERCV in active lines only from FAL to LAL, i.e., excluding VBI

Clock and synchronization signals of SAA7187 and SAA7188 Application note for digital video encoder

4.0 RASTER CONTROL INPUT SIGNALS, SYNC-SLAVE-MODE

The internal synchronization circuitry of the digital encoder SAA7187 and SAA7188A are always defined by FISE (number of clocks per line, subaddress 61hex), FLEN (number of lines per field, subaddress 7Ahex and 7Dhex), and PAL (defining color field sequence length, subaddress 61 hex). In sync slave mode, those horizontal and vertical counters can be re-triggered by an external trigger event at pin 6 as RCV1 input and/or at pin 7 as RCV2 input. The rising or falling edge can be selected as timing reference (trigger event) to re-synchronize the internal synchronization circuitry, regarding horizontal or vertical counter, or odd-even flip-flop, or color field sequence counter. As long as no trigger event occurs the internal counters are free running in the defined loops. Any single occurance of the selected edge in RCV1 or RCV2 input will hard re-trigger - i.e., it is not
a smoothed PLL procedure. Due to processing pipeline delay, the resulting re-synchronization does not take effect before the next following corresponding period. A programmable vertical and horizontal trigger offset can be applied via VTRIG and HTRIG.

RCV2 as input can also optionally be used as "composite blanking" signal to gate the input data stream, but only for data coming through V-port (and D-port).

VTRIG represents a negative delay between external trigger event and internal vertical counter start, i.e., start of main vertical sync (serration) pulses. The external re-synchronization event at RCV1 over-writes the vertical counter state with VTRIG value, which then synchronizes the next vertical period to the external trigger signal. VTRIG is defined with 5 bits under subaddress 70 hex. The programmed VTRIG number corresponds with the position of the
external trigger event along the field, counted in half lines. Programming 00 will synchronize the internal vertical counter to generate vertical sync at the begin of that same half line, in which the external trigger event occurs. Programming of 1 F hex results in vertical sync output 31 half lines ahead of the external trigger input, for example.
HTRIG represents a negative delay between external trigger event and internal horizontal counter start, i.e., leading edge of horizontal sync pulse. The external re-synchronization event at RCV1 or RCV2 over-writes the horizontal counter state with HTRIG value, which then synchronizes the next horizontal period to the external trigger signal. HTRIG is defined with 11 bits under subaddresses 6 E hex and 6F hex in LLC clock resolution, and covers the whole line period. The programmed HTRIG number corresponds with its position (in LLC clocks) along the scan line.

Clock and synchronization signals of SAA7187 and SAA7188 Application note for digital video encoder

4.1 Pin 6 as Input: RCV1

If pin 6 is selected as input, RCV1 signal could carry field synchronization information in a form like vertical sync VS, or frame sync FS, or field sequence identification FSEQ. The actual re-trigger function of RCV1 input is defined via the two SRCV1 bits, TRCV2 bit, ORCV1 bit and PRCV1 bit, all in subaddress 6Chex, and the PAL bit in subaddress 61 hex. Table 6 describes signal meaning and effect of RCV1 as input at pin 6.

Table 6. Selection of RCV1 input signal function on pin 6
$\mathrm{F}=$ relevant function, $\mathrm{x}=$ other function/signal definition, $-=$ don't care

BITS UNDER SUBADDRESS 6Ch								BITS UNDER SUBADDRESS 61h								SHORT NAME	RCV1 INPUT PIN 6	FUNCTION: Active edge results in retrigger of following counters:			
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0			HORIZONTAL	VERTICAL	ODD/EVEN	COLOR FIELD SEQ
0	0	0	0	0											x	VS	rising	horizontal	vertical	(n-interl.)	
0	0	0	0	1											x	VS	falling	horizontal	vertical	(n-interl.)	
0	0	1	0	0											x	VS	rising		vertical		
0	0	1	0	1											x	VS	falling		vertical		
0	1	0	0	0											x	FS	rising	horizontal	vertical	odd field	
0	1	0	0	1											x	FS	falling	horizontal	vertical	odd field	
0	1	1	0	0											x	FS	rising		vertical	odd field	
0	1	1	0	1											x	FS	falling		vertical	odd field	
1	0	0	0	0											0	FSEQ8	rising	horizontal	vertical	odd field	1st of 8 fields
1	0	0	0	1											0	FSEQ8	falling	horizontal	vertical	odd field	1st of 8 fields
1	0	1	0	0											0	FSEQ8	rising		vertical	odd field	1st of 8 fields
1	0	1	0	1											0	FSEQ8	falling		vertical	odd field	1st of 8 fields
1	0	0	0	0											1	FSEQ4	rising	horizontal	vertical	odd field	1st of 8 fields
1	0	0	0	1											1	FSEQ4	falling	horizontal	vertical	odd field	1st of 8 fields
1	0	1	0	0											1	FSEQ4	rising		vertical	odd field	1st of 8 fields
1	1	1	0	1											1	FSEQ4	falling		vertical	odd field	1st of 8 fields
1	1	x	x	x											x	n.a		reserved, do not use			
X	X	x	1	x											x	n.a.	output	RCV1 is output, see Table 3			
								-	x	X	x	x	X	X	F	FISE		Select field frequency (V-pulse sequence) select clocks per line defines FSEQ as 4 or 8 field sequence			
x	x	X	x	F	X	x	x									PRCV1		Select RCV1 signal porlarity			
x	X	x	F	x	x	x	x									ORCV1		Input or Output of RCV1 signal			
x	X	F	x	x	x	x	x									TRCV2		RCV1 or RCV2 for horizontal trigger			
F	F	x	x	x	x	x	x									SRCV1		Select RCV1 signal function			

Clock and synchronization signals of SAA7187 and SAA7188
Application note for digital video encoder

4.2 Pin 7 as Input: RCV2

If pin 7 is selected as input, RCV2 signal can carry just line synchronization information like horizontal sync HS, or input data gating function like HREF or CBN. The horizontal re-trigger function and the data input gating function can be utilized seoarately, or they combined. The actual function of RCV2 input is defined via the CBLF bit, ORCV2 bit, PRCV2 bit and TRCV2 bit, all in subaddress 6Chex. Table 7 describes signal meaning and effect of RCV1 as input at pin 6.

Table 7. Selection of RCV2 input signal function on pin 7
(" x " defines other functions/signals)

Clock and synchronization signals of SAA7187 and SAA7188 Application note for digital video encoder

5.0 SYNC TIMING

 DEPENDENCIESThe selected "active" edge of the external timing reference signal RCV1 or RCV2 loads the internal horizontal counter with the HTRIG value. At the end of the line the counter is automatically reset, and all timing signals are in phase with the requesting re-trigger. This horizontal counter also defines the begin and end points of the raster control output signals.

The effect of VTRIG for vertical synchronization timing is very similar.

Clock and synchronization signals of SAA7187 and SAA7188
Application note for digital video encoder.

6.0 APPLICATION EXAMPLE

Figure 4 points out several of those features that can be realized in an application with SAA7188A (or SAA7187). Two or more digital video encoder devices can be locked to each other. All their analog video outputs are completely in phase: horizontally, vertically and also the subcarrier. One of the devices functions as timing master, the other ones work in sync slave mode. The master device provides on RCM1 the color field sequence indication signal FSEQ, which transports horizontal and vertical reference as well as subcarrier phase reference via the color field sequence indication. The RCV1 inputs of the other devices are set to FSEQ function and also used to trigger line timing. VTRIG and HTRIG are both set to zero.

RCM2 output of the master device can be freely defined in horizontal timing. By that it can be used as input data gating signal (HREF-gate) at the RCV2 inputs of the other encoder devices. This RCM2 output signal of the master device (or of each device) could also be fed back to its own RCV2 input for input data gating function.
RCM1 and RCM2 outputs of the slave devices can be used as trigger and timing signals for the digital video signal sources.

RCM1 can be chosen as a vertical sync, or as an odd/even signal. RCM2 can be defined as an HS for trigger and counting purposes, or it can be used as a source gating signal. It can be placed 'early' to compensate for pipeline delay on the data delivery side, such as memory access, etc.
If the RCV2 pins of the slave (and/or the master) device are not used as gating input, they could be switched to output, and could be used as (early) enabling signal (CBN) at the signal source. In that case even VBI blanking is supported. (This option is not shown in Figure 4).

The digital encoder that works as timing master in the configuration of Figure 4 can be genlocked to an analog video reference signal via digital encoder circuitry. For this purpose, the SAA7188A can be combined with the SAA7151B, SAA7157 and TDA8708/09. The SAA7187 can be combined with the SAA7191B, SAA7197 and TDA8708/09 or with the SAA7110. The digital real-time decoder system locks itself to the analog reference video signal and generates line-locked clock, horizontal and vertical sync signals, and the real-time control signal RTC. If the encoder runs with the line-locked clock of the decoder, it is important to also have the

RTC wire connected, in order to maintain the correct subcarrier frequency in the encoder, same as in the analog reference signal. To have the same clock at both the decoder and encoder side is very interesting in some applications; for example, as a frame buffer as it avoids the complications of an asynchronous two-clock system.
The SAA7151B or other decoder can provide a pair of vertical and horizontal syncs as VS and HS, or provide an odd/even signal FS ("ODD" on pin 39 of SAA7151B, for example) to synchronize the digital encoder to the reference video signal, and also into the correct interlace sequence. Proper programming of HTRIG and VTRIG can adjust pipeline processing delay in decoder and/or frame buffer circuitry. If FS from the decoder is used as RCV1 input for the first "master" encoder, it can also be utilized as a horizontal reference signal. Then RCV2 is free to be used as gating input, fed by the RCM2 output, or it can be switched to output a CBN-like signal to one of the video signal sources.

Figure 4 shows a rather complex system, but the various timing techniques, as discussed above, can be applied in simpler systems, too.

Clock and synchronization signals of SAA7187 and SAA7188 Application note for digital video encoder

Figure 4. Possible Application with SAA7188A

Clock and synchronization signals of SAA7187 and SAA7188 Application note for digital video encoder

7.0 APPENDIX: SOME PROGRAMMING TABLES

7.1 Synchronization Signals (6C, 6D, 70)

7.1.1 Subaddress 6C hex

Table 8. Program for RCV1 and RCV2 function at pin 6 and pin 7 in subaddress 6C-hex

BITS IN SUBADDRESS 6Chex								SHORT NAME	FUNCTION DESCRIPTION	DEFAULT AFTER RESET
7	6	5	4	3	2	1	0			
							0 1	PRCV2	RCV2 is active high, rising edge is timing reference RCV2 is active low, falling edge is timing reference	0
					0 0 1			SRVC2	CBLF \& ORCV2 RCV2 is input, has no input data gating function, but can be used for horizontal re-trigger, see TRCV2 RCV2 is output, horizontal (timing) reference signal in all lines, begin and end freely programmable by BRCV and ERCV RCV2 is input, and has input data gating function, can also be used for horizontal re-trigger, see TRCV2 RCV2 is output, can be used as external composite blanking signal, horizontal begin and end defined by BRCV and ERCV, vertial first active line defined by FAL, first inactive line defined by LAL (FAL - LAL, then all lines active).	00
				0 1				PRCV1	RCV1 is active high, rising edge is timing reference RCV1 is active low, falling edge is timing reference	0
			0 1					ORCV1	RCV1 is input RCV1 is input	0
		0 1						TRCV2	Horizontal re-trigger by RCV1, RCV1 must be input Horizontal re-trigger by RCV2, RCV2 must be input	0
0 0 1 1 1	$\left(\begin{array}{l} 0 \\ 1 \\ 0 \\ 1 \end{array}\right.$							SRCV1	VS (vertical sync), every field FS (frame sync), odd_/even FSEQ color field sequence indication n.a.; don't use this combination	00
0	0	0	0	0	0	0	0	00 hex	default after reset IC is prepared to accept an odd/_even signal at RCV1 (rising edge at begin of first field)	00000000

Clock and synchronization signals of SAA7187 and SAA7188 Application note for digital video encoder

7.1.2 Subaddress 6D hex

Table 9. Program for RCM1 at pin 29 and "Line 21" encoding in subaddress 6D-hex

BITS IN SUBADDRESS 6Dhex								SHORT NAME	FUNCTION DESCRIPTION
7	6	5	4	3	2	1	0		
						0 1 1	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	CCEN	"Line 21" encoding, Closed Caption and Extented Data service no "line 21 " encoding in either field "Line 21 " encoding in first (odd) field only (extented data), data content as programmed in subaddress 69hex and 6Ahex "Line 21 " encoding in second (even) field only (Closed Caption), data content as programmed in subaddress 67hex and 68hex "Line 21 " encoding in both fields
				$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$			SRCM	select type of field reference output signal on pin 29 RCM1 VS (vertical sync), active high during serration pulses (3 or 2.5 lines) FS (frame sync), active low during odd field, high during even field FSEQ color (field sequence indication signal), active high during first field of four fields, if FISE $=1$ ($60 \mathrm{~Hz}, 525$ lines) first field of eight fields, if $F I S E=0(50 \mathrm{~Hz}, 625$ lines $)$ n.a.; do not use this combination
0	0	0	0						reserved

7.1.3 Subaddress 70 hex

Table 10. Program for VTRIG and VBI (vertical blanking interval) in subaddress 70-hex

BITS IN SUBADDRESS 70hex								SHORT NAME	FUNCTION DESCRIPTION
7	6	5	4	3	2	1	0		
			X	X	X	x	X	VTRIG	vertical trigger phase offset half line number, in which vertical/field trigger input occurs
		0 1						SBLBN	Vertical Blanking Interval (VBI) blanking is enforced in all lines outside FAL-to-LAL, (First Active Line to Last Active Line, see subaddress 7B, 7C, and 7D) blanking is only enforced only during equalization and serration (vertical sync) pulses, i.e., $9(60 \mathrm{~Hz})$ or $7.5(50 \mathrm{~Hz})$ lines, signal insertion a/o encoding also outside FAL-to-LAL, allowing data, time code or test signal insertion in regular VBI
0 0 0 1	$\begin{aligned} & 0 \\ & 1 \\ & 0 \end{aligned}$ 1							PHRES	color subcarrier reset mode, to support SC-H coupling continuously running color subcarrier oscillation, e.g., for remote genlock RTC mode color subcarrier phase reset every second line color subcarrier phase reset every eighth field (PAL) color subcarrier phase reset every fourth field (NTSC)

Clock and synchronization signals of SAA7187 and SAA7188 Application note for digital video encoder

7.2 Video Standard Parameters (61, 70, 60)

7.2.1 Subaddress 60 hex

Table 11. Basic video standard parameters in subaddress 61-hex

BITS IN SUBADDRESS 61-hex								SHORT NAME	FUNCTION DESCRIPTION	DEFAULT AFTER RESET
7	6	5	4	3	2	1	0			
							0 1	FISE	field frequency mode select $50 \mathrm{~Hz}, 312.5$ lines per field, 5 V -sync serration pulses etc, (start pre-equalization pulses 310 lines after field start) 864 (CCIR) pixels per line, i.e., 1778 LLC, 13.5 MHz 944 (SQP) pixels per line, i.e., 1888 LLC, 14.75 MHz FSEQ generates 4 field sequence $60 \mathrm{~Hz}, 262.5$ lines per field, 6 V -sync serration pulses etc, (start pre-equalization pulses 259.5 lines after field start) 858 (CCIR) pixels per line, i.e., 1716 LLC, 13.5 MHz 780 (SQP) pixels per line, i.e., 1560 LLC, 12.27 MHz FSEQ generates 8 field sequence	1
						0 1		PAL	switch of subcarrier phase for V-component in alternative lines no color subcarrier phase toggle switch, for NTSC encoding PAL-switch, i.e., subcarrier phase switch ($\pm 45^{\circ}$ toggle) for V-color component in alternative lines, for PAL encoding	0
					0 1			SCBW	chrominance bandwidth extended chrominance bandwidth, e.g., option for S-video output standard chrominance bandwidth	1
				$\begin{array}{\|l} 0 \\ 1 \end{array}$				RTCE	Real Time Control enable no Real Time Control applied, standard subcarrier generation, relies on clock LLC stability Real Time Control of subcarrier frequency generation, RTC connection from appropriate Philips decoder needed	0
			$\begin{aligned} & 0 \\ & 1 \end{aligned}$					YGS	luminance gain select luminance (black to white) is adjusted to 100 IRE Juminance (black to white) is adjusted to 92.5 IRE, giving room for 7.5 IRE setup, e.g., for NTSC	1
		0 1						INPI	PAL switch phase nominal (standard) phase of PAL-switch opposite to standard, e.g., to adjust pipeline delay in RTC mode	0
	$\begin{aligned} & 0 \\ & 1 \end{aligned}$							DOWN	analog output (DACs) DACs in normal operation, analog output of encoded video signal DACs are switched to lowest output voltage	0
0									reserved -	0
0	0	0	1	0	1	0	1	15 hex	default after reset	00010101

Clock and synchronization signals of SAA7187 and SAA7188
 Application note for digital video encoder

7.2.2 Subaddress 70 hex

Table 12. Program for subcarrier phase reset (SC-H) in subaddress 70-hex

BITS IN SUBADDRESS 70hex								SHORT NAME	FUNCTION DESCRIPTION
7	6	5	4	3	2	1	0		
			x	X	X	X	x	VTRIG	vertical trigger phase offset half line number, in which vertical/field trigger input occurs
		0 1						SBLBN	Vertical Blanking Interval (VBI) blanking is enforced in all lines outside FAL-to-LAL, (First Active Line to Last Active Line, see subaddress 7B, 7C, and 7D) blanking is only enforced only during equalization and serration (vertical sync) pulses, i.e., $9(60 \mathrm{~Hz})$ or $7.5(50 \mathrm{~Hz})$ lines, signal insertion a/o encoding also outside FAL-to-LAL, e.g., data, time code or test signal insertion in regular VBI
0 0 1 1	0 1 0 1							PHRES	color subcarrier reset mode, to support SC-H coupling continuously running color subcarrier oscillation, e.g., for remote genlock RTC mode color subcarrier phase reset every second line color subcarrier phase reset every eighth field (PAL) color subcarrier phase reset every fourth field (NTSC)

7.2.3 Subaddress 60 hex

Table 13. Program for cross color reduction in analog CVBS-out under subaddress 60-hex

BITS IN SUBADDRESS 60hex								SHORT NAME	FUNCTION DESCRIPTION
7	6	5	4	3	2	1	0		
		0	0	0	0	0	0		reserved
0 0 1	0 1 0							CCRS	Cross Color Reduction, reducing cross taik from luminance into chrominance as support for the testination receiver / decoder filter are active only from FAL-to-LAL, i.e., active video standard CVBS, straight addition of luminance and chrominance signals notch filter at 4.5 Mhz in luminance signal before adding chrominance, e.g., for PAL color subcarrier or NTSC sound carrier notch filter at 3.3 Mhz in luminance signal before adding chrominance, wide and deep, e.g., for NTSC color subcarrier notch filter at 3.3 Mhz in luminance signal before adding chrominance, more narrow than other one, e.g., for NTSC color subcarrier

Clock and synchronization signals of SAA7187 and SAA7188 Application note for digital video encoder

7.3 Input Data Format and Signal Flow (3A, 6B)

7.3.1 Subaddress 3A hex, SAA7188A only

Table 14. Program for input data de-formating in subaddress 3A-hex

BITS IN SUBADDRESS 3A-hex								BIT NAME	FUNCTION DESCRIPTION	DEFAULT AFTER RESET
7	6	5	4	3	2	1	0			
							0 1	MUV2C	(M-port chroma two's complement) $\mathrm{Cb}-\mathrm{Cr}$ data at M -port is expected in two's complement $\mathrm{Cb}-\mathrm{Cr}$ data at M -port is expected in offset binary (acc. to CCIR 656)	1
						0		MY2C	(M-port luminance two's complement) Y data at M -port is expected in two's complement around medium gray Y data at M-port is expected in straight binary (acc. to CCIR 656)	1
					0			VUV2C	(V/D-port chroma two's complement) $\mathrm{Cb}-\mathrm{Cr}$ data at V/D-port is expected in two's complement (compare DTV-mode of SAA7151B) $\mathrm{Cb}-\mathrm{Cr}$ data at V/D-port is expected in offset binary (CCIR-mode)	0
				0 1				VY2C	(V-port luminance two's complement) Y data at V -port is expected in two's complement around medium gray Y data at V-port is expected in straight binary (CCIR- and DTV-mode)	0
			0 1					V656	data format at V -port and D -port 16 bit YUV interface formed by V-port = Y \& D-port = UV 8 -bit wide CCIR656 compatible data format at V-port	1
	0	0							reserved	00
0 1								CBENB	internal color bar test signal switch normal encoding of input data color bar test signal via encoding of LUT values	0
0	0	0	1	0	0	1	1	13 hex	default after reset	00010011

7.3.2 Subaddress 6B hex, SAA7188A only

Table 15. Program for input data selection in subaddress 6B-hex

Clock and synchronization signals of SAA7187 and SAA7188 Application note for digital video encoder

7.4 Input Data Formats (subaddress 3A), SAA7187 only

7.4.1 Subaddress 3A hex, SAA7187 only

Table 16. Program for input data de-formating in subaddress 3A-hex

BITS INSUBADDRESS 3A-hex								BIT NAME	FUNCTION DESCRIPTION	DEFAULT AFTER RESET
7	6	5	4	3	2	1	0			
						0 0 1 1	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	FMT	Input Data Formats YUV 4:4:4 on 24 pins, Y on VP1, $\mathrm{V}=\mathrm{Cr}$ on VP2, $\mathrm{U}=\mathrm{Cb}$ on VP3 YUV 4:2:2 on 16 pins, Y on VP1, $\mathrm{U}=\mathrm{Cb}$ and $\mathrm{V}=\mathrm{Cr}$ multipexed on VP3 YUV 4:2:2 on 8 pins, on VP1, multipexed according to CCIR-656 reserved	00
					0 1			Vuvc	chroma two's complement $\mathrm{Cb}-\mathrm{Cr}$ input data is expected in two's complement $\mathrm{Cb}-\mathrm{Cr}$ input data is expected in offset binary (CCIR-mode)	0
				0 1				VY2C	luminance two's complement Y data at V -port is expected in two's complement around medium gray Y data at V-port is expected in straight binary (CCIR- and DTV-mode)	0
	0	0	0						reserved	000
0								CBENB	internal color bar test signal switch normal encoding of input data color bar test signal via encoding of LUT values	0
0	0	0	0	0	0	0	0		00 hex default after reset	00000000

Author: George Ellis

OVERVIEW

The Philips SAA7188A digital video encoder has been developed to address the consumer and set-top converter market. This device offers an excellent ratio of performance to cost. It has a highly programmable feature set designed for flexible interfacing in a variety of environments. The following application board information is provided to aid customers in the development of their products.

BOARD FEATURES

The evaluation board consists of three major sections:

- An input section consisting of:
- A dual converter which will digitize both S-Video and composite video (replacing the TDA8708A and TDA8709A parts). This device is the TDA8758.
- The SAA7152 digital adaptive comb filter.
- The SAA7151B, CCIR601-based, multistandard digital video decoder.
- The SAA7197 clock generator.
- An interface section consisting of:
- ECL to TTL translators for converting CCIR656 (D1) data to TTL levels.
- A PLD device to extract the sync timing information from the D1 video data.
- The encoding section, consisting of:
- SAA7188A digital video encoder.
- A n S87C055 microcontroller for programming the system and providing on-screen display.
- A PCF8598 EEPROM to allow the user to save custom settings.

Ancillary TTL, voltage regulation and filtering components are provided to complete the functionality of the evaluation board.

The system can be configured for a variety of operational modes.

- Composite or S-Video can be digitized and decoded and this data, clocks and sync information used to operate the encoder in RTC remote genlock mode. This is called DTV mode.
- D1 (CCIR656) video data can be input from a digital generator. The sync timing is
decoded from the video data stream and used to drive the encoder in slave mode.
- The encoder can receive clock information from a server (such as an MPEG decoder) and provide handshake information (HREF and VERT) to download data from the server.
- The SAA7188A can be run in Master mode providing clock and sync timing to other slave devices.

Input Section

Either composite or S-Video can be selected to be digitized by the TDA8758. The input selection of the AVD converter is controlled by programming the SEL pins with the general purpose switches on the decoder (GPSW1 and GPSW2).

The digitized video is then routed to the SAA7152 comb filter, which, in the case of composite video, separates the data into luminance and chrominance data. In the case of S-Video, the comb filter is bypassed in software. The comb filter can be removed entirely and bypassed at JP5 with jumpers.

The SAA7151B, in conjunction with the SAA7197 (or SAA7157), decodes the chroma into baseband U and V , performs luminance processing and generates the clock and sync signals.

D1 Interface Section

As an alternative to digital video from the SAA7151B input section (DTV mode), the board will accept CCIR656 (D1) input. Being that D1 is an ECL data format, ECL to TTL conversion will be necessary (a negative 9 volt supply is also required).

Selection between the two video inputs is as follows:

For video from the SAA7151B (DTV mode), jumpers are installed onto JP1 (except across pins 55-56 and 57-58. Jumper JP3 is not connected.

To select D1 video, remove JP1 jumpers from pins 39 to 60 and install a shunt to JP3.

Devices U2, U3, and U4 translate the ECL data and clock into TTL. U1 then decodes the TTL data to extract HREF, Vert. Sync. and Field ID to synchronize the encoder.

The Encoder Section

The SAA7188A has three 8 bit data ports. For this application, the MP port, which is a multiplexed YCbCr port, is used to receive the D1 data stream. the VP port is used to receive the Y portion of the SAA7151B data stream and the CP port receives the UV (CbCr) portion. Selection between the two inputs is done using the SEL_ED pin, controlled via a port from the microcontroller (P2.0). The VP/CP port is set to 16 bit mode by $I^{2} \mathrm{C}$ programming.

In the D1 mode, clock (ENC_LLCC), Data (on the MP port), HREF (ENC_HREF), field ID (ENC_FI) are all that is needed to drive the SAA7188A.

In the DTV mode, the 16 bit YUV data stream is used, along with ENC_LLC, ENC_CREF, ENC_HREF, ENC_FI and ENC_RTC. All derived via JP1.

NOTE: In both modes, the CDIR is set to select the clocks as INPUTS. CDIR is controlled by port P2.1 of the microcontroiler.
Other interfacing modes are available, CDIR can be set to select that the SAA7188A function as a clock MASTER. The signals RCV1 and RCV2 can be set to be either INPUTS for external H and V synchronization, or they can be configured as OUTPUTS. As inputs, the reset point can be offset with programming. As outputs, the position can be programmed with respect to the internal H and V origins.

This allows for a wide variety of handshaking with various data servers, such as MPEG decoders, graphic systems, FIFOs, etc.

Use the jumpers selections at JP1 and JP3 to avoid configuration conflicts.

Anti-aliasing filters are suggested on the output, however, because the SAA7188A is twice over-sampled, these filters can be simple. The filters shown here are inexpensive and provide some $\sin (x) / x$ compensation.
External $I^{2} \mathrm{C}$ control is available by interfacing to JP2.

The PLD source for the EOV-SOV decoder, U1 is provided; it is done under the SNAP programming format.

A sample programming example is also provided in Section 3, following the data sheet.

$\forall 88$ LL^LO depooue $\forall 88$ LL $\forall \forall S$ dof preoq uọ!enfenヨ

Evaluation board for SAA7188A encoder

```
    " D1 EOV-SOV-decoder for synchronization signals
@PINLIST
INPUT[7..0] I ;
CLK I ;
HREF O;
VBLK 0;
FID O;
@GROUPS
@TRUTHTABLE
@LOGIC EQUATIONS
CODE[3..1].CLK = CLK ;
CODE1.D = INPUT[7..0] == FFH ;
CODE2.D = INPUT[7.0] == 00H ;
CODE3.D = INPUT[7..0] == 00H ;
LOOK = CODE1 * CODE2 * CODE3 ;
FID.D = LOOK * INPUT6 +
/LOOK * FID ;
FID.CLK = CLK ;
VBLK.D = INPUT5 * LOOK +
    /LOOK * VBLK ;
VBLK.CLK = CLK ;
HREF.D = INPUT4 * LOOK
    + /LOOK * HREF ;
HREF.CLK = CLK ;
@INPUT VECTORS
@OUTPUT VECTORS
@STATE VECTORS
@TRANSITIONS
```


Digital video evaluation module

7-bit digital video evaluation module featuring the SAA9051 and TDA4680 integrated circuits

THEORY OF OPERATION

The Digital Video Evaluation Board was designed to provide a compact, self-contained demonstration system for the Philips SAA9051 Digital Multistandard Color Television Decoder. The board accepts composite video (CVBS) signals or S-VHS (Y, C) signals and digitally decodes these input signals into luminance and color difference components. The digital outputs of the decoder are stored in a 6 Megabit frame memory and made available for output format conversion to analog red, green, and blue (RGB). An 87C751 microcontroller is required to send initialization information to various devices on the board.

In order to decode analog composite signals to component form, the TDA8708 8-bit AVD converter digitizes the input signal and sends the data to the SAA9051 Digital Multistandard Decoder. The digital decoder generates a 6.75 MHz clock locked to the horizontal sync of the input CVBS signal. This 6.75 MHz clock is sent to the SAA9057 clock generator for frequency multiplication to 13.5 MHz and 27 MHz . The 13.5 MHz clock from the SAA9057 is sent back to the SAA9051 and TDA8708 and used as the system clock for digitizing and output timing of the SAA9051. The FIFO memories and the SAA9060 triple 8 -bit D/A converter also use the 13.5 MHz clock.

The digital data output from the SAA9051 is sent to the frame memory in a 12-bit data bus. The bus provides 8 bits form luminance and 4 bits for multiplexed chroma in a $\mathrm{Y}: \mathrm{U}: \mathrm{V}$ 4:1:1 ratio. Each field memory consists of 3 TMS4C1050 $256 \mathrm{~K} \times 4$ first-in-first-out (FIFO) memories. The field memories are always alternately read for output data but the writing, or input, to the memories can be stopped on an odd field boundary by pulling the still line to a logical LOW. A freeze frame of the input video signal is realized when a logical LOW is maintained on the still line.

After the data is read out of the frame memories, it is sent to the triple D/A converter, the SAA9060, for conversion to analog $Y, R-Y, B-Y$ component signals. The gain of the SAA9060 is controlled via $I^{2} C$ serial control of a D/A connected to bias at Pin 8. The pull-up resistors on Pins 9,10, and 11 are required to match the analog outputs of the SAA9060 to the input levels of the TDA4680 output RGB processor.

Finally, the TDA4680 RGB processor converts the color difference component signals back to RGB. The TDA4680 has the capability to control the black level, contrast, saturation, and individual gain of each RGB output. 75 ohm buffers are added to provide low impedance outputs for RGB and sync
signals. Three $\mathrm{I}^{2} \mathrm{C}$-controlled D / As are connected to Pins 21, 23, and 25 of the TDA4680 to allow the black level of the RGB outputs to be individually adjusted.

The SAA9051 does more than just decode composite video input signals into their color difference components. The DMSD also provides two programmable timing signals for sync and clamping in the TDA8708 A/D. It also provides blanking, horizontal sync, and vertical sync for interface to memory and output circuits. The SAA9051 maintains a close relationship between the 13.5 MHz clock and the input horizontal sync. The phase jitter of the master clock is kept in the 5 ns range. All output signals from the SAA9051 are synchronous to the 13.5 MHz clock, and have proper set-up and hold times for easy interface to various types of memory.

If S-VHS capability is required, the TDA8709 A/D can be used to digitize the chroma portion of the input signal. The luminance signal must still be applied to the TDA8708 for digitizing and sync processing. The TDA8708 contains a three channel input multiplexer, AGC circuit, and black level clamp.

Another feature of this demonstration board is the absence of any chrominance or luminance delay lines. No mechanical adjustments are required. All parameters for color decoding and level setting can be made by microprocessor control. The SAA9051 can decode seven variations of PAL and NTSC formats and maintain vertical, horizontal, and color lock even in VCR shuttle or scan mode.

The 26-pin connector provides all digital and timing information on the output side of memory.

With minor modification, this evaluation board can be upgraded to accept the SAA7151 Digital Multistandard Decoder.

DESIGN CONSIDERATIONS

A single 10 to 12-volt power supply was chosen to provide the simplest power supply connection. Most of the board uses 5 volt power. Therefore, the 5 volt power regulator dissipates about as much power as the rest of the board. the TDA4680 and TDA8444 are connected to the 8 volt power regulator. Analog +5 V and digital +5 V are isolated with $100 \mu \mathrm{H}$ inductors and bypassed at each active component. Special attention is paid to the data converter analog supply and clock generator circuit. The SAA 9057 clock generator also has a bulk $220 \mu \mathrm{~F}$ capacitor on analog supply to remove any low frequency ripple. A separate 5 -volt regulator for this IC and the analog supply for the digital decoder
will keep clock jitter well below 10 nS relative to input sync.
Since the sample clock frequency of this system is 13.5 MHz , it is important to take care in grounding in order to keep clock noise away from analog video inputs. A common ground plane is suggested for the data converters, SAA9051, and SAA9057. Other ground planes can be used for the output section and for any logic or memory requirement, but careful design should allow for one common ground connection point for all ground planes.
Another source of noise is clock feedthrough into the data converters. A resistor is normally placed in series with the clock line to slow down the fast rise and fall times. Stray capacitance of the wiring and input pins of the data converters will aid in reducing the high frequency energy coupled into analog circuits.
On the output side, noise can be easily coupled from digital data lines feeding the SAA9060 D/A converter to the analog output pins of this device. Careful trace layout is required in order to minimize clock or data interference.

${ }^{2}{ }^{2} \mathrm{C}$ COMMUNICATIONS

A Philips Semiconductors 87C751 microprocessor is supplied to send power-up information to the SAA9051, TDA8444, and TDA4680. Normally, roughly one second after power is supplied to the board, 20 data bytes are sent to various slave devices. This message will not support multi-master $1^{2} \mathrm{C}$ protocol. Therefore, any connection to the ${ }^{2} \mathrm{C}$ bus connection jack if forbidden unless it is in the high inactive state for clock and data.
If an external computer of CPU is used for $I^{2} \mathrm{C}$ control, data transmission can safely begin three seconds after board power-up. By this time the 87C751 CPU has completed sending the power-up instruction sequence, and has entered a halt-inactive state.

Implementation of automatic broadcast standard detection would require ongoing $I^{2} C$ communication between the SAA9051 and the on-board CPU. This can be seen as activity on the clock and data lines of the $1^{2} \mathrm{C}$ connector, making external control or testing of the board impossible. In this case, the 87C751 should be removed from the board to allow external $\mathrm{I}^{2} \mathrm{C}$ control of the digital decoder and analog functions.
Philips has made available $1^{2} \mathrm{C}$ control software for hardware development and debug of $I^{2} \mathrm{C}$ products. This software runs under MS-DOS, and uses a parallel printer port as an I/O connector. This software has user-friendly menus for various $I^{2} \mathrm{C}$ devices as well as a universal message generator menu for control of any ${ }^{2} \mathrm{C}$ device.

OUTPUT VIDEO BUFFERS

Most analog RGB monitor connections require 75 ohm source terminated, 1 volt peak-to-peak video signals. The RGB output connectors meet this requirement, but the analog output levels can be adjusted in the TDA4680 to about 6 dB from the nominal 1 volt peak-to-peak standard. Sync is not supplied on the RGB lines.
Looking at the supplied schematic, you should note the 10 ohm resistors in the collector leads of the output transistors. These resistors are required to keep high frequency video signals off of the 5 V power supply lines and reduce power dissipation in the output transistors. These output buffers are not power-efficient, but do provide a simple 75 ohm output stage and DC output level at ground during blanking time.

GENERATION OF THE SANDCASTLE SIGNAL

A very simple resistor and diode circuit is used to generate the sandcastle signal required by the TDA 4680 for proper operation. Unfortunately, the SAA9060 has a 22 clock pipeline delay from data input to analog output. The same BLN signal from the SAA9051 is used for the SAA9060 and sandcastle, so there will be a slight loss of picture information on the right side of the screen in this implementation. Because monitors are typically overscanned, this shouldn't cause a visible effect. A delay of the BLN signal would be required to eliminate this loss of picture information.

MEMORY INTERFACE AND FIELD ID GENERATION

This demonstration board contains 2 fields of memory organized as $256 \mathrm{~K} \times 12$ bits each. Normal video signals are interlaced with even and odd fields. A D flip-flop can be clocked by vertical sync from the DMSD, and BLN can be used to determine and even or odd field by connecting it to the data input of the same flip-flop. This works well for standard signals.
The Field ID is used only as a reset for a divide-by-two flip-flop from vertical sync. In this way, if there is not a good field interlace, the field memories will still be written to on an alternate basis.
Only active picture information is stored in memory. The BLN signal is used to store 720 picture elements for each scan line. Each field memory has enough storage even for PAL video signals.
A digital data bus connector is provided on the output side of the memory for expansion to 8 -bit 4:1:1 digital output format. The memories are rated for 30 ns clock maximum.

Therefore, the memory could be read out at rates higher than 13.5 MHz if modifications were made to the board.

SYSTEM IMPROVEMENTS

There are several areas in the design of this board which can be improved if necessary.
The software for the microprocessor can be easily expanded to include automatic detection of broadcast standard by the SAA9051. Only about 10% of the 2KB ROM is currently used for board set-up.
This board is double-sided. If a ground plane were added, the system signal-to-noise ratio would be improved.
To improve stability of color and black level, an external circuit feeding RGB signals back into the TDA4680 dark current input is suggested. The external circuit required about six extra transistors and is not necessary for many applications. The TDA4680 application diagrams show this implementation.

PC BOARD LAYOUT
 CONSIDERATIONS

The Philips DeskTop Video ICs are designed for lowest radiated and conducted noise performance. The high noise performance can only be achieved if great care is taken with the PC board layout. The layout should be optimized for lowest noise on the IC's analog and digital power and ground lines.
A good decoupling with minimized interconnection length between the decoupling capacitors and the corresponding IC pins is important for low inductive ringing.

Analog and Digital Ground

 PlanesThe DeskTop Video ICs with analog and digital circuits, such as A/D converter, color decoder, clock generator and D/A converter should have two separate ground planes. The lowest noise in the content of the digital data stream and a minimum uncertainty of clock jitter can be achieved on most of the PC boards by connecting both ground planes near the clock generator (SAA9057A, SAA7157, or SAA7197).

Analog and Digital Power

Supplies

The impedance of the power supply lines should be as low as possible. In order to provide EMI suppression in series to the analog supply pins of the ICs, a ferrite bead or, better, a ferrite EMI suppressor should be connected.

Supply Decoupling

Decoupling capacitors can further reduce the noise on the power supply lines. For optimum performance, a 100 nF multilayer ceramic capacitor should be placed as close as possible to every supply pin of the ICs and should be connected to the corresponding digital or analog ground plane. This is needed especially for the analog supply Pins 4 and 5 at the clock generator. In addition to the multilayer ceramic capacitors, a $5-10 \mu \mathrm{~F}$ electrolytic capacitor shouid be placed near each IC.

Analog Signal Lines

The analog part of the board design should be isolated as much as possible from the digital signal and clock lines.

Optimum performance is achieved by overlaying the analog components with the analog ground plane.
The video signal lines at the A/D converter TDA8708 and TDA8709 from Pin 19 to Pin 20 should be as short as possible to minimize noise pickup.

Digital video evaluation module

$1^{2} \mathrm{C}$ Values

The following values are loaded into the
$1^{2} \mathrm{C}$-addressable components at power-up.
This corresponds to video input \#1, NTSC,
NTSC matrix, 1 volt peak-to-peak output.

SAA9051	TDA8444	TDA4680
Slave Address 8AH	Slave Address 40H	Slave Address 88H
64 H Reg 00	26 H Reg 00	2 HH Reg 00
35 H	26 H	13 H
OAH	1 HH	33 H
F8H	00 H	22 H
CAH	00 H	34 H
FEH	23 H	34 H
29 H	3 HH	34 H
00 H	3 FH	20 H
77 H		20 H
EOH		20 H
40 H		3 FH Reg 0AH
00 H		89 H Reg 0CH
		$10 \mathrm{H} \quad$ Reg 0DH

NOTE:

TDA4680 register 0BH is omitted. The TDA4670 responds to this subaddress only.

CONCLUSION

This digital multistandard decoder board provides a means of evaluating the performance of the Philips digital television system, and of quickly prototyping your application. The digital video system delivers a robust, flexible, and cost-effective solution for digitizing video images.

PHILIPS DMSD2 DEMO BOARD PARTS LIST (Revised May 10, 1991)

ITEM	QUANTITY	REFERENCE	PART
1	8	J-Y/C CHROMA1, J-BLU 1, J-GREEN1, J-IN1, J-RED1, J-SYNC1, J-IN2, J-IN3	BNC
2	8	R1, R2, R3, R4, R5, R6, R7, R8	75
3	1	S1	SW SPDT
4	2	R46, R47	6.8K
5	1	C5	0.22
6	7	R11, R10, R12, R21, R48, R49, R50	10K
7	1	JP2	10 volt in
8	1	J-IIC1	4 PIN
9	1	P1	DB26
10	1	JP1	BLANK JUMP
11	5	C1, C2, C3, C4, C39	3.3/16V
12	1	VR1	LM7805
13	1	VR2	LM7808
14	35	C69, C6, C9, C14, C17, C22, C23, C24, C25, C26, C27, C29, C33, C34, C35, C40, C41, C42, C43, C44, C45, C58, C59, C60, C61, C62, C63, C64, C65, C66, C74, C75, C77, C81, C86	0.1
15	6	C70, C49, C50, C68, C71, C73	22/20V
16	1	C72	220/10V
17	14	C76, C28, C30, C31, C32, C46, C47, C52, C53, C54, C55, C78, C79, C80	22/16V
18	3	L5, L4, L7	$100 \mu \mathrm{H}$
19	1	L6	$100 \mu \mathrm{H}$
20	1	U1	TDA8709
21	1	U2	TDA8708
22	1	U3	SAA9051
23	1	C7	0.33
24	2	R13, R36	330
25	4	R14, R16, R18, R19	750
26	2	R15, R60	680K
27	1	Y1	24.576
28	2	L2, L3	$22 \mu \mathrm{H}$
29	2	C10, C12	30pF
30	2	C11, C13	30pF
31	1	R17	15
32	1	U4	SAA9057
33	2	R20, R39	470
34	2	JP3, JPDMSD ADD	HEADER 3
35	1	C8	1nF
36	1	L1	10رF
37	2	C15, C16	1/16V

Digital video evaluation module

DTV9051

PHILIPS DMSD2 DEMO BOARD PARTS LIST (Revised May 10, 1991)

ITEM	QUANTITY	REFERENCE	PART
38	4	R26, R43, R44, R45	68
39	4	R27, R51, R52, R53	10
40	9	R28, R29, R30, R31, R32, R33, R54, R55, R56	4.7K
41	5	Q1, Q2, Q3, Q4, Q5	PN2222
42	2	C20, C21	10 nF
43	5	D2, D3, D4, D5, D6	1N4148
44	3	U7, U6, U9	74HC74
45	2	U8, U5	74AHCT27
46	1	C19	33pF
47	1	R34	8.2K
48	1	R35	2.4K
49	6	U10, U11, U12, U13; U14, U15	TMS4C1050
50	1	JP5	JUMPER
51	1	R59	56K
52	1	Y20	$3.5-12 \mathrm{MHz}$
53	1	C83	3.3nF
54	2	C85, C84	20pF
55	1	C82	15/16V
56	1	U16	S87C751-XXXX
57	1	U17	PCF8582AP
58	1	R37	560
59	1	R38	820
60	1	R40	680
61	2	R41, R42	100
62	1	C36	100pF
63	2	C37, C38	330pF
64	1	JP4	WIRE
65	1	U21	SAA9060
66	1	U22	TDA4680
67	1	U20	TDA8444
68	1	R58	82K
69	2	R57, R60	20K
70	1	R9	12K

[^5]

7OHINOJ－a甘vO日 OWヨa ZaSWa Sdilitd

yヨMOd－ay甘Og OWヨa ZaSwa SdiרiHd

Application Note

PHILIPS SAA9051 V5.0 AND SAA7191 V1 BLANK AND SYNC TIMING NOTE: VNL ON, VCR Mode

Field One, Odd NTSC 60Hz

NOTE: Leading edge of V-sync may move with Input noise conditions.

Field Two, Even NTSC 60Hz

DTV7199 Digital Television Demonstration System

Author: Herb Kniess

SECTION 1: OVERVIEW

The DTV7199 evaluation board provides a comprehensive means of demonstrating and evaluating the latest digital video signal processing devices from Philips
Semiconductors. Color encoding and decoding is performed using a line-locked-clock system. The following ICs are featured:

TDA8708	Video ADD converter, 30MHz, 8-bit, for CVBS and Y, with analog pre-processing, clamp and gain control
TDA8709	Video ADD converter, 30MHz, 8-bit, for C of S-Video, with analog preprocessing, clamp and gain control
SAA7151B	Digital Multi Standard Decoder (DMSD) for CCCR-601 1ixel raster (industrial applications)
SAA7157	Clock Generator Circuit (CGC) for SAA7191B
SAA7191	Digital Multi Standard Decoder (DMSD), for square pixel raster (graphics environment)
SAA7197	Clock Generator Circuit (CGC) for SAA7191
SAA7192A	Digital Color Space Converter (DCSC), interpolation filter, YUV to RGB matrix
SAA7169	Triple DAC, 30MHz, 9-bit in each channel
SAA7199B	Digital Encoder (DENC), GENLOCK capable, rom digital YUV or RGB into analog CVBS or S-Video
S87C054	Microcontroller, 8051-based, dedicated for video control applicatitons, with OSD, on-chip EPROM.

Analog video input is accepted in CVBS or S-Video form, in NTSC, PAL, or SECAM color standards. The video signals are digitized and sent to the digital decoder (DMSD) SAA7151B or SAA7191B for synchronization processing, line-locked-clock generation, and color decoding. The output bus of the DMSD contains digital YUV baseband information. The data is sent to a two-field frame store for buffering and time base conversion. After the frame buffer, the YUV data is converted to 24 -bit RGB data in the SAA7192A color space converter. The 24-bit RGB data is fed to the SAA7169 Triple DAC for analog RGB output conversion and also to the SAA7199B digital encoder (DENC). The encoder can be programmed in various modes, such as GENLOCK so that time base correction of input signals is
possible. The encoder can operate in NTSC or PAL television standards.

Various board configurations are possible by changing jumper settings and by reprogramming several of the signal processing devices. In addition, two 60 -pin headers are provided to allow external connection of digital YUV data before and after the frame buffer. The MTV onboard microprocessor sends configuration data to various devices via an $1^{2} \mathrm{C}$ serial two-wire bus. A connector for the serial data is also provided to allow external computer control to the board via a DOS software package supplied with each board.

SECTION 2: INPUT VIDEO DATA CONVERSION

Input video sources can be NTSC, PAL, or SECAM world standards in Y/C or composite formats by four BNC connectors. Refer to "Input" section schematic. An S-Video or Y/C connector is provided at JSVID2 for these higher performance Y / C input signals. The Philips TDA87088-bit 30 MHz A/D converter at location U2 is used for composite or Y signal processing. It has a three-channel multiplexer for input source selection, video clamp for DC restoration, and automatic gain control in front of the high performance 8 -bit A/D converter. Input source selection is controlled via two switch signals from the SAA7191 and connected to the TDA8708 at Pins 14 and 15 . The switch signals are programmed in the DMSDs via the $1^{2} \mathrm{C}$ bus.
If the higher performance Y / C input format is desired, a second data converter is required for digitizing the chrominance, or " C ", half of the input signal. The TDA8709 at location U1 provides this function. Low pass filters for removing high frequency components in the analog input signals are provided between Pins 19 and 20 of both A/D converters before digitizing. Please note that the $A C$ reference for the converters is the analog power supply. The power supplies for these devices are well decoupled since the performance of the entire system is determined at the input data converters. The digitizing clock is provided by the SAA7197 clock generator at location U3 with a rate of two times the final pixel rate for decoded signal at the output of the DMSD. The clock rate of the converters is line-loaded and can range from $24-$ to 30 MHz depending on input television standards and the type of digital decoder used. The clock input on Pin 5 of both A/D converters is fed with a series resistor, which slows the clock slopes down in order to minimize the effect of high rise times from the clock line entering
analog areas around the converter. Clamping and sync pulses coming from the decoder are fed to the AVD converters on Pins 27 and 26 to inform internal digital level detectors when to activate and make automatic adjustments of gain and black level on each scan line.
It is recommended that the input signal area and the data converters share a common ground plane for analog and digital grounds at the converters. However, it is possible to have separate ground planes and have the common point under the data converters on Pins 23 and 8 . High amplitude noise between Pins 23 and 8 should be avoided. Otherwise it may cause ground loop conditions within the converters. The entire video signal is digitized in order to recover the sync and color burst information. The converters deliver 8 -bit digital data in a two's complement format to the decoder input. The format selection is made by grounding Pin 9 on both converters. For other applications the A/D converters can be operated in binary format.

SECTION 3: DIGITAL COLOR DECODING

After converting analog video inputs to digital data it is the function of the Digital Multi Standard Decoder (DMSD) to provide clock information, sync, blanking and, of course, Juminance and decoded color difference video data known as YUV or Y, RY, BY. Refer to the "Input" section schematic.
The output signals are all synchronized to the input video timing in frequency and phase via a clock control loop feeding from U4 DMSD on Pin 36 called Line Frequency Control Output (LFCO) to U3 SAA7197 clock generator. LFCO is internally generated via the crystal reference on Pins 33 and 34 of the DMSD and made to phase lock to incoming video sync. The frequency of LFCO is one half of the pixel clock frequency at the output of the DMSD, so the SAA7197 must multiply this synthesized frequency by 2 and 4 for the system line-locked clock. In order to close the PLL loop, the clock generators' clock outputs are fed back to the DMSD clock inputs and the A / D converters' clock inputs. The system works as a highly stable digital PLL because the DMSD calculates the clock frequency of LFCO on a line-by-line basis and in conjunction with the crystal reference maintains a constant number of clock samples for each input video scan line regardless of input signal conditions.
The DMSD also decodes the color information from video signals. The UV

DTV7199 Digital Television Demonstration System

output bus contains the color information in one of several programmable industry standard formats such as CCIR 601. In CCIR 601 the output data bus is 8 bits Y of luminance and 8 bits UV time multiplexed.
This is 16 bits per pixel or clock cycle. A $4: 1: 1$ mode is also available via $1^{2} \mathrm{C}$ programming if memory cost is too high for 4:2:2 CCIR 601 mode. RAMs U8 and U9 could be removed for $4: 1: 1$ operational mode. The DTV7199 demo board is capable for applications of the square pixel DMSD SAA7191B as well as of the CCIR-DMSD SAA7151B. Only the DMSD IC and the related reference crystal must be exchanged (see Table 2). The board layout is prepared to support both systems. Also, the MTV controlier contains software to set up both ICs.

SECTION 4: MEMORY INTERFACE AND STORAGE

The 16 -bit data bus from the DMSD is being clocked at rates from $12-15 \mathrm{MHz}$. High speed serial RAMs were chosen to store the data without the need for memory addressing and counting chains. Refer to FIFO and MEMCON schematic. Each RAM is really a FIFO with 256 k by 4 bits memory. Input and output clocks can run independently with some limiting restrictions. Four RAMs, U9, U10, U11, U12, make up a bank for field one. Four RAMs, U8, U7, U6, U5, make up the bank for field two. If memory cost is too high for 4:2:2 CCIR 601 mode, RAMs U8 and U9 could be removed for $4: 1: 1$ operational mode. Video data from the DMSD is stored alternately in each bank. Only data during active portion of each scan line is written to the memory. Less than 75% of the RAM is used for each incoming field, even in PAL or SECAM modes.

The simple memory controller comprised of U15, U17, U19, U51, U20, U21 and U54 uses vertical sync to reset the memory pointers and horizontal blanking to stop and start reading and writing the memory. The top portion of the schematic is for writing into memory. The bottom portion is for reading from memory. Devices U15 and U54 provide timing delays to guarantee that complete fields will be stored in memory. U51B will inhibit writing to memory on frame boundaries and provide a freeze frame picture for quality analysis and special effects. Both fields will be displayed so there may be inter-field motion displayed on the monitor. The "still picture" switch activates the freeze frame with a low on U51B Pin 12. Switch S1 must be in the down position for active video. The up position is for still frame (both fields).

The DMSD generates an H $H_{\text {REF }}$ signal for enabling writing to memory. A comparable signal must be generated for reading from memory. The SAA7199B encoder does not deliver such a Horizontal Blanking, but needs to receive it. H REFO, or Horizontal Blanking, $^{\text {Hen }}$ is generated via counters for output video timing only by using HSYNC from DENC to trigger counters. Refer to HREFGEN schematic.

The HREF generator times the correct horizontal blanking interval and generates a delayed HSYNC signal for display monitor from the HSYNC from the SAA7199B encoder. U26 Pin 2 receives HSYNC from the encoder and generates a single clock reset pulse via U27 Pin 3 to reset U28 and U29 counters. The output timing diagram and clock cycles are shown. It is important only that the total number of clock cycles of HREFO at U53 Pin 6 be set properly regarding display and SAA7199B timing scheme. Table 1 shows how to select the memory read blanking timing interval depending on how the board is programmed, which standard is applied and which type of decoder is installed. If there is an error between memory write format (number of pixels per line) and memory read format, there will be a horizontal error line-by-line down the screen because the line lengths are different.

HSYNC0 is generated at U27 Pin 6 with a delay because of the pipeline delay through the SAA7192A color space converter. The RGB data must be in time with the RGB sync at the SAA7169 DAC outputs. Transistor Q2 provides composite sync for RGB monitors.

Data for the SAA7199B must be read from memory early to compensate the delay through the SAA7192A color space converter. The SAA7199B encoder has a programmable HSYNC for this very reason. It is not known what delay future memory or memory controllers will produce so the SAA7199B is prepared to adjust for new devices.

SECTION 5: COLOR SPACE CONVERSION AND DAC

Data from memory read operations is passed through jumper JP14 to the Digital Color Space Converter SAA7192A. Refer to SAA7192 schematic. Normally 24 jumpers are installed on the board to pass data from the memory through the connector. However, a daughter board can be added using JP3 and JP14 to multiplex YUV or RGB data at JP14. The data coming from memory must be disabled via the expansion board. Make special note of U16 Pin 5. H REFO is delayed
by one additional clock to compensate for the memory read delay of one clock. If this delay is not compensated for from the memory, the color space converter will not demultiplex the UV data bus correctly. U47, U48, U49 switch data on to the RGB output bus of the SAA7192A when MTV 87C054 says there is a character to display. The VCTRL signal from MTV controls which talks into the RGB data bus, either the SAA7192A or the MTV. Pin 61 of the SAA7192A tri-states its output RGB bus.
The SAA7169 DAC is wired in a standard configuration, with the low order 2 bits of all three 10-bit wide input ports grounded for 8-bit operation. RP1 and RP2 provide low order bit pull-up when the RGB data bus is switched to MTV-source in order to meet the CCIR 601 requirement of 16 for black levels. JP13 chooses two clock phases for U50. MEMRD is preferred.

SECTION 6: DIGITAL ENCODER AND GENLOCK

The SAA7191 decoder provides the memory write clocks and timing, and the SAA7199B digital encoder provides the memory read clocks and timing. These input and output clocks can be synchronous or asynchronous. The digital encoder will synchronize to any video reference input signal via U23 TDA8708 in the same manner as the SAA7191 DMSD if programmed to do so (GENLOCK mode). Refer to previous discussions on Digital Decoding. It can also run in a stable mode, by use of its crystal reference and U24 SAA7197 clock generator.
A small change in the output level of the SAA7199B DACs can be made by changing the bias on Pin 63. Linearity may be affected with large changes in bias. Key input at Pin 73 has been deactivated by pull-down resistor R45. The clock generator power supply has been well filtered at Pin 5 to guarantee minimum effects from input video timing crosstalk. Crystal selection for the SAA7199B should be made as shown in Table 2. See application note "SAA7199B Operation Modes".

SECTION 7: POWER SUPPLY GROUNDING AND LAYOUT

Clean analog power supplies are essential if the full performance of an 8-bit system is to be realized. The analog supplies on the A/D converters and the clock generator are the most sensitive. The performance of the A/D converter determines the signal-to-noise ratio of the complete system. The performance of

DTV7199 Digital Television Demonstration System

the clock generator determines system clock jitter and, to some extent, the quality of the chroma demodulation.

Noise on Pins 21 and 22 of the TDA8708 ADD converter will degrade the signal-to-noise ratio of analog input signals. Please note that the low pass filter at Pins 19 and 20 has an AC reference to the analog supply on Pin 22. Therefore, noise on Pin 22 would directly be coupled to input signals being digitized.

The SAA7197 must have a clean analog supply at Pin 5 which must be directly connected to Pin 37 on the SAA7191B or SAA7151B decoders because of the close coupling of the LFCO signal between the clock generator and the decoders. Bypassing capacitors at pins of both devices is a must. Of course, all digital power inputs must be bypassed on all devices.

The DTV7199 evaluation board makes use of one other power supply isolation technique. The input and output supplies are regulated separately. This isolation guarantees minimum crosstalk between input decoding and output encoding. Small ferrite core
inductors further reduce analog and digital supply crosstalk.
In many computer applications it is not possible to regulate the digital supplies because of current limits placed on higher supply voltages. In this case, only the lower current analog supplies should be regulated. Total analog supply current is under 100 mA for input circuits and also under 100 mA for output circuits. Because of delay differences in power supply sequencing during power up, it is suggested that 5 V regulated analog supplies have parallel opposite biased diodes connected to the digital supply. This will keep both supplies in sync during power up. This is needed to perform a determined power-on reset procedure at SAA7157 and SAA7197. 1N4148 diodes will supply enough current for a short period of time and allow regulation isolation of about 600 mV .
A single ground plane has been shown to be effective under input components and ICs such as the TDA8708, SAA7197 and SAA7191B. After the decoder, a digital ground plane could be used if there are a large number of digital devices and fast
memory. The input ground plane could be considered analog ground. The evaluation board uses a single ground plane for the entire board. A single ground plane appears to work well for most applications.
Clock and data line routing should be kept away from analog components and analog signals. The most critical signal is LFCO between the digital decoder and the clock generator. It has an analog characteristic and may pick up unwanted digital noise. The length of the LFCO trace between these two devices must be kept to a minimum.

SECTION 8: FACTORY JUMPER CONFIGURATION

The factory jumper configuration is required for normal operation of the DTV7199 demo board when the 87C054 microcontroller has been installed. Software version 1.x will only configure the board for NTSC mode using the SAA7191 decoder with video input connected to JIN2. Any one of the push buttons can be used to switch the "Philips Digital Video" message on the screen on and off.

DTV7199 Digital Television Demonstration System

Table 1: $H_{\text {REF }}$ Length Jumper Table

12.272727	60 Hz	140	SQUARE PIXELS	SAA7191
14.75	50 Hz	176	SQUARE PIXELS	SAA7191
13.50	60 Hz	138	CCIR 601	SAA7151B (SAA9051)
13.50	50 Hz	144	CCIR 601	SAA7151B (SAA9051)

Table 2: Crystal Selection

SYSTEM	ACTIVE PIXELS	CRYSTAL	DECODER
SQUARE PIXELS	640 or 768	26.800 MHz	SAA7191 decoder
CCIR 601	720	24.576 MHz	SAA7151 decoder

Table 3: Factory Jumper Settings

JP3	Install all jumpers except bottom six.
JP14	Install all jumpers except bottom six.
JP2	Install jumper to left for SAA7151 (right for SAA7191).
JP20	Installed
JP5	Install jumper to the left.
JP7	Open
JP8	Open
JP6	Install jumper to the right.
JP13	Open. Install jumpers only if RTC function is required.
JP19	This connector is for I² C communications.
J12C	Install jumpers depending on which decoder is used. (See previous section on HREF LENGTH JUMPER TABLE.)
JP15	

DTV7199 Digital Television Demonstration System

Table 4. JP3 Functions

PINS	JP3 FUNCTIONS
1,2	DY7
3,4	DY6
5,6	DY5
7,8	DY4
9,10	DY3
11,12	DY2
13,14	DY1
15,16	DYO
17,18	DUV7
19,20	DUV6
21,22	DUV5
23,24	DUV4
25,26	DUV3
27,28	DUV2
29,30	DUV1
31,32	DUV0
33,34	LLCl
35,36	VSI
37,38	$\mathrm{H}_{\text {REFI }}$
39,40	CREFI
41,42	LL31
43,44	HSI
45,46	SDA
47,48	SCL
49,50	FEIN
51,52	RESI
53,54	
55,56	
57,58	GROUND
59,60	GROUND

Table 5. JP14 Functions

DTV7199 Digital Television Demonstration System

SECTION 9: DEFAULT REGISTER CONFIGURATION VALUES

For composite video input at JIN2; Decoding of NTSC into YUV 4:2:2.

NTSC - SQUARE PIXEL		
REGISTER (HEX)	SAA7191	SAA7199B
00	50 H	DCH
01	7FH	00H
02	53H	OOH
03	43H	OOH
04	19H	FOH
05	00 H	2DH
06	19H	52H
07	00 H	OAH
08	7FH	30 H
09	7FH	OOH
OA	7FH	00 H
OB	7FH	OOH
OC	40 H	56H
OD	80 H	OOH
OE	79H	0 CH
OF	78 H	
10	00 H	
11	18 H	
12	$00 \mathrm{H}^{*}$	
13	$00 \mathrm{H}^{*}$	
14	36 H	
15	OBH	
16	FEH	
17	D2H	
18	0 OH	

NTSC - CCIR MODE		
REGISTER (HEX)	SAA7151B	SAA7199B
00	66H	DCH
01	3AH	OOH
02	07H	00H
03	F7H	00H
04	CBH	FOH
05	00 H	2BH
06	35 H	52 H
07	00 H	11H
08	BOH	30 H
09	30 H	00H
OA	7FH	00H
OB	7FH	OOH
OC	24H	OFH
OD	4 CH	0 OH
OE	30 H	ODH
OF	58 H	
10	60 H	
11	21 H	
12	COH	

NOTE: SAA7192A is always programmed in register 0 with 2A hex.

[^6]
DTV7199 Digital Television Demonstration System

SECTION 10: MENU CONTROLLED SOFTWARE (DVS)

The Desktop Video Software (DVS) package supports programming of the digital video ICs on the demo board DTV7199. It guides the user with a menu-controlled graphic interface, showing how to program individual functions and bits accessible by the $I^{2} \mathrm{C}$ bus. Detailed device $I^{2} \mathrm{C}$ register data can be obtained by using the "special options" function. The software runs on a PC or compatible and talks to the $1^{2} \mathrm{C}$ bus via an interface board at the parallel printer port. See application note ${ }^{4}{ }^{2} \mathrm{C}$ Parallel Printer Port Adaptor". The DVS also allows a software-only demonstration mode; neither ${ }^{2} \mathrm{C}$ bus interface nor device samples are required to be connected to operate this demo-mode.

This section gives a short guideline on how to get started using the Desktop Video control software for demonstration and evaluation purposes. The menu-controlled software offers a lot more features than the fundamental functions described here.

How to Use the Software-only Demonstration Mode

Required Equipment

The following equipment is required to operate the DVS software in demonstration mode:
-IBM-PC/AT compatible personal computer, with at least 384 Kbytes of system memory available
-MS-DOS or PC-DOS operating system

- preferably a color graphics adaptor and associated monitor
- floppy disk containing the DVS software and setup files

Procedure

Follow the instructions step by step to install the software and get it started:

Switch the personal computer and its monitor on. Wait for completion of self test and booting of the operation system.
Insert the floppy disk containing the Desktop Video Software into a disk drive. Change the current home drive to this drive.
You may copy the content of the DVS floppy into a dedicated directory on the hard disk. This will improve the speed for loading the program and the related utility and setup files.
Type "DVS <enter"" to start DVS. The control software will display "Philips Semiconductors" on the PC screen and perform an automatic search for installed
desktop video devices and their respective $1^{2} \mathrm{C}$ addresses. Because in demonstration mode there are no such devices connected, the search will result in "not in use" noted on the screen for all devices supported by the software.

Set the devices of interest "active" by using the " + " key on the numeric keypad and the cursor up/down to move to the concerned devices.

Hit "<enter>" to finish the device activation and to proceed with the page assignment procedure. A default device-to-page assignment is offered. If you like, use the function keys to redefine the page assignment.
Hit "<enter>" to confirm the device to page assignment and to proceed.
$I^{2} \mathrm{C}$ bus check will report "not ready".
Enable demonstration mode by choosing " A " to neglect real $I^{2} C$ bus operation.
Load any of the predefined settings: Press " F " to select the file selection menu, press " L " and enter a filename. " D " gives a directory of available settings.
Now you have access to all the programming parameters of the selected 'active' devices. Every device is assigned to a page number and can be selected by typing the appropriate function key. Subject to the amount of programmability for a certain IC, the page may have sub-pages called sheets, which are accessible with page up/page down.

Move the cursor up/down to select a parameter. Use " $+/-$ " keys of the numeric keypad to change the selected parameter.

The DTV7199 Demonstration Board under Control of DVS

Required Equipment

In order to operate the Demo Board DTV7199 under DVS control the following items are required in addition to that which is mentioned for the software-only demonstration mode:
-Demo Board DTV7199

- Power supply 8V DC, 1A
$-\left.\right|^{2} \mathrm{C}$ bus adapter board, to be connected to the PC's parallel printer board and associated ${ }^{2} \mathrm{C}$ cable
- one or two video signal sources, e.g., video test pattern generator, or a video camera, video tape recorder, etc.
\bullet RGB monitor, capable of displaying analog RGB inputs at television frequencies of
$15-16 \mathrm{kHz}$ horizontal and $50 / 60 \mathrm{~Hz}$ vertical scan frequencies, and/or
-TV-monitor, with built-in color decoder, with 'external' CVBS or S-Video input
-cables to connect the video signal source to the board (BNC or S-Video), cables to connect the board's RGB output (BNC) to the monitor, cable to connect the encoded CVBS from the board (BNC or S-Video) to the TV monitor.

Procedure

Follow the instructions step by step to power up the system and run the software:
Connect the DTV7199 demo board with a signal source at the input BNC connector JIN2. Switch the signal source on.

Connect the RGB outputs and associated sync BNC connectors with a RGB monitor, or
Connect the encoder output CVBS-out or S-Video out with a TV monitor.
Power up the demo board with the $I^{2} C$ cable not connected to the board. The on-board control software embedded in the MTV loads the default parameters. This requires a few seconds and then the $\mathrm{I}^{2} \mathrm{C}$ bus is ide.
The monitor shows a picture according to the default settings.
Plug the $I^{2} C$ bus adapter board into the parallel printer connector (Centronics Interface) of the personal computer. Connect the ${ }^{2} \mathrm{C}$ cable (gray, 4 wires) to this $1^{2} \mathrm{C}$ bus adapter board.

Switch the personal computer and its monitor on. Wait for completion of self test and booting of the operation system.
Insert the floppy disk containing the Desktop Video Software into a disk drive. Change the current home drive to this drive.
You may copy the content of the DVS floppy into a dedicated directory on the hard disk. This will improve the speed for loading the program and the related utility and setup files.
Type "DVS <enter>" to start DVS. The control software will display "Philips Semiconductors" on the PC screen and perform an automatic search for installed desktop video devices and their respective addresses. The found devices are listed with their $I^{2} \mathrm{C}$ addresses and declared as "active". If necessary, that can be changed using cursor keys and " $+/-$ " keys.
Hit "<enter>" to confirm the device search program results as displayed and to

DTV7199 Digital Television Demonstration System

proceed to the page assignment procedure. A default device-to-page assignment is offered. If you like, use the function keys to redefine the page assignment.
Hit "<enter>" to confirm the device to page assignment and to proceed.
In normal DVS operation mode the initialization is performed by selecting a predefined initialization data files.

Press " F " to select the file selection menu, press " L " and enter a filename; the file "DTV7199" is provided as default setting. Typing " D " would display a directory of available settings.
The software pre-loads all the device parameters; but the actual transmission into the $I^{2} \mathrm{C}$ device registers is inhibited until the transmission is triggered by typing " T " to select the transmit option and "l" to perform the initialization.

The RGB monitor (respectively the TV monitor) should now show a picture according to the programming as loaded by the file.

Now there is access to all the programming parameters of the selected 'active' devices. Every device is assigned to a page number and can be selected by typing the appropriate function key F1, F2, etc. Subject to the amount of programmable parameters for a certain IC, the page may have sub-pages called sheets, which are accessible with page up/ page down.
Use cursor up/down to select a parameter. Use " $+1-$ " keys of the numeric keypad to change the selected parameter. As long as
transmit function is enabled, the changes of parameters are updated immediately into the device programming registers.

The results of new programming can be studied directly on the monitor screen.

Loading Look-up Tables of SAA7192A and SAA7199B

 Under the programming page of the Digital Color Space Converter SAA7192A, select the " S " special option to load the Video Look-up Tables (VLUT). The sub-menu asks for a filename with the data for the contents of the VLUT. Enter "?" to see the available files or give the desired filename. All files with the extension '.VLT’ are data files for VLUT.Under the pages for the digital encoder SAA7199B one will also find a similar special option " S " sub-menu to load data into the encoders Color Look-up Tables (CLUT). The files that are provided for this purpose carry the extension '.CLT'.
The DVS floppy also contains a utility program SHOW_LUT.exe, which shows the content of VLT-files as well as CLT-files in a graphic representation. Under DOS just type "SHOW_LUT filename.CLT".

Determining ${ }^{2} \mathbf{C}$ Register Contents

By means of DVS it is possible to determine the binary or hexadecimal values for the various programming registers for certain programming configurations. These codes can serve as reference for a specific device initialization of a dedicated system, where the programming is drawn from a ROM, PROM or other system file. The software-only
demonstration mode of DVS is especially very helpful for this purpose to obtain the 'compiled' $I^{2} \mathrm{C}$ register content based on the chosen parameter programming.
The SAA7192A has a single byte for $I^{2} \mathrm{C}$ programming. The binary representation of the selected programming is directly displayed on that single device page.
For the digital decoders SAA7151B and SAA7191B, as well as the digital encoder SAA7199B, the "special option" is supported by pressing " S ". This submenu directly displays the table of the $I^{2} \mathrm{C}$ registers, displaying the content in binary as well as in hexadecimal representation. For the encoder this table is in the sub-sub-menu Read the section on Registers.

Please note that these tables do not include the $I^{2} \mathrm{C}$ address and the subaddress/index data required to program the ICs. Refer to the respective data sheets for the exact data protocols for initialization of each device.

Saving of device and board program settings

It is possible to store the device settings as a data file for use in future sessions. The program saves the settings of all devices in one turn; press " F " to select the file option and " S " to select the save to file option. The user is asked for a file name. the filename must not have any file extension; this is automatically set to '.VAL' by the program. Please make sure that a unique new filename is used to store the setting, otherwise the program will update the device settings of the previously loaded data file as default file.

DTV7199 Digital Television Demonstration System

SECTION 11: NOTES

SOFTWARE: DVS V. 303 OR LATER FOR USE ON PC DOS SYSTEMS

UNIVERSAL ${ }^{2}$ TC V. 3.2 OR LATER

MTV CPU (ON BOARD) V1.0 OR LATER

1. Do not connect the printer ${ }^{2} \mathrm{C}$ adaptor cable to the demonstration board until the microprocessor has sent out the board configuration data after power up.
2. Only install jumpers at JP19 if RTC feature is required.

If jumpers are installed at JP19, then U24 output clock generator, must be removed. The " B " versions of the digital decoder and digital encoder support RTC (Real Time Control). Real time control means that the Digital Encoder SAA7199B, will GENLOCK to the timing signals from the Digital Decoder and clock generator. RTC is a special GENLOCK mode of the Philips Digital Video product family.
3. JP2 selects slave address 8 A or 8 E for the digital decoder. The microcontroller
transmits data to slave address 8 A for the SAA7191 and to slave address 8E for the SAA7151B.
4. The microprocessor may have other menu and programming functions at a future date. If so, the sign-on message will contain new instructions and options as they become available.
5. IC U14 may not be installed from the factory. It can be used to store screen messages and board configuration settings in future software revisions of the onboard microprocessor at U13.
6. A display monitor such as Sony 1342Q or similar is a good choice for evaluating the Y/C, RGB, or Composite Video outputs from the evaluation board. This monitor also displays and decodes PAL if the demo board is reprogrammed.
7. The onboard microprocessor will set up the board for NTSC mode, SAA7199B GENLOCK active, SAA7191 decoder installed, video input composite at JIN2. It is recommended that a reference signal be connected to the GENLOCK input connector at JGL1 so that the digital encoder, SAA7199B, will have a reference.

The reference can be the same video source as the input signal. Double termination of the source signal will be compensated by the automatic gain functions in the TDA8708 AD converters.
8. High stability GENLOCK even to VCR-type signals is possible with the digital decoder and the digital encoder as well. GENLOCK to VCRs in high speed shuttle or search mode is excellent even for the digital encoder.
9. Real Time Control (RTC) allows the SAA7199B encoder to use sync and clocks from the input section comprised of the SAA7191, SAA7197, and the TDA8708. The SAA7199B does not require the reference crystal or the SAA7197 at location U24 to operate in RTC mode.

RTC signals from the digital decoder transport frequency, phase and other critical timing information about the system clock for other Philips' devices such as the SAA7199B encoder. RTC is a special minimum system configuration feature. It is not a requirement of most applications to make use of RTC.

DTV7199 Digital Television Demonstration System

DIVA8 EVALUATION BOARD (Revised May 21, 1992)
REVISION: E
Bill of Materials May 21, 1992

ITEM	QUANTITY	REFERENCE	PART
1	7	C1, C2, C3, C4, C59, C62, C76	$3.3 \mu \mathrm{~F}$
2	23	C5, C6, C7, C8, C13, C17, C18, C19, C21, C23, C27, C28, C31, C49, C57, C77, C78, C79, C80, C82, C126, C129, C132	$22 \mu \mathrm{~F}$
3	52	C9, C10, C11, C12, C14, C15, C16, C20, C22, C24, C25, C26, C29, C30, C32, C33, C37, C38 C43 C44 C38, C43, C44, C45, C50, C51, C52, C53, C54, C58, C60, C61, C66, C67, C69, C70, C71, C72, C73, C74, C75, C97, C121, C122, C123, C124, C125, C127, C128, C130, C131, C142, C143, C144, C145	$0.1 \mu \mathrm{~F}$
4	5	C34, C40, C55, C56, C84	20pF
5	3	C35, C41, C83	30pF
6	2	C36, C42	$1 \mu \mathrm{~F}$
7	2	C39, C68	. $22 \mu \mathrm{~F}$
8	3	C46, C63, C133	. $001 \mu \mathrm{~F}$
9	4	C47, C48, C64, C65	10pF
10	1	C81	$220 \mu \mathrm{~F}$
11	12	C85, C88, C89, C92, C93, C96, C109, C112, C113, C116, C117, C120	220pF
12	6	C86, C90, C95, C111, C114, C118	390 pF
13	6	C87, C91, C94, C110, C115, C119	560pF
14	2	C134, C135	. $01 \mu \mathrm{~F}$
15	3	C136, C137, C138	XXXX
16	3	C139, C140, C141	680pF
17	3	D1, D2, D3	1N4148
18	1	J-8V1	8VDC
19	10	J-BLUE1, J-CHROMA1, J-CVBS1, J-GL1, J-GREEN1, J-IN1, J-RED1, J-SYNC1, J-IN2, J-IN3	BNC
20	1	J-GND1	GND
21	3	J-GND2, J-GND3, J-GND4	GND TP
22	1	J-GND5	J-GND
23	1	$\mathrm{J} \mathrm{l}^{2} \mathrm{C} 1$	4 PIN
24	2	J-SVID1, JSVID2	S-VIDEO
25	3	JP2, JP5, JP13	HEADER 3
26	2	JP3, JP14	HEADER 30X2
27	1	JP6	JUMPER
28	1	JP15	HEADER 8X2
29	2	JP17, JP18	HEADER 2
30	1	JP19	RTC MODE CONTROL
31	1	JP20	$\mathrm{H}_{\text {REF0 }}$
32	9	L1, L2, L3, L4, L5, L6, L7, L8, L13	$100 \mu \mathrm{H}$
33	3	L9, L10, L14	$22 \mu \mathrm{H}$
34	2	L11, L12	$10 \mu \mathrm{H}$
35	15	L15, L16, L17, L18, L19, L20, L21, L22, L23, L24, L25, L26, L27, L28, L29	$2.7 \mu \mathrm{H}$
36	2	Q1, Q2	PN2222
37	7	R1, R2, R3, R4, R7, R30, R36	75
38	13	R5, R6, R10, R11, R19, R20, R21, R22, R23, R32, R39, R50, R51	10K

DTV7199 Digital Television Demonstration System

DIVA8 EVALUATION BOARD (Continued) (Revised May 21, 1992)

ITEM	QUANTITY	REFERENCE	PART
39	6	R8, R9; R13, R14, R33, R34	750
40	4	R12, R15, R35, R41 .	330
41	4	R16, R37, R59, R60	22
42	1	R17	47K
43	13	RP1, RP2, R18, R24, R25, R27, R28, R45, R53, R54, R55, R56, R58	4.7K
44	1	R26	10
45	2	R29, R40	1.5K
46	1	R31	33 K
47	1	R38	680 K
48	3	R42, R43, R44	30
49	3	R46, R47, R48	15
50	1	R49	15K
51	1	R52	6.8K
52	1	R57	100K
53	1	RP3	10KX6
54	1	S1	SW SPST
55	4	S2, S3, S4, S5	SW PUSHBUTTON
56	1	U1	TDA8709
57	2	U2, U23	TDA8708
58	2	U3, U24	SAA7197
59	1	U4	SAA7191B
60	8	U5, U6, U7, U8, U9, U10, U11, U12	TMS4C1050
61	1	U13	S87C054
62	1	U14	PCF8582E
63	9	U15, U16, U17, U20, U26, U31, U51, U53, U54	74HC74
64	3	U18, U19, U21	74HC27
65	1	U22	SAA7199B
66	1	U25	74HC04
67	1	U27	74 HCOO
68	2	U28, U29	$74 \mathrm{HC163}$
69	1	U30	74HC10
70	1	U32	74HC30
71	3	U47, U48, U49	74HCT243
72	1	U50	SAA7169
73	1	U52	SAA7192A
74	2	VR1, VR2	7805
75	2.	Y1, Y3	26.800
76	1	Y2	10 MHz

DTV7199 Digital Television Demonstration System

DTV7199 Digital Television Demonstration System

DTV7199 Digital Television Demonstration System

APPENDIX TO DTV7199 APPLICATION NOTE

Measurements on SAA7199B

The digital encoder SAA7199B is brought into slave mode and a digital pattern generator is applied to feed the data to the encoder's input. With a test pattern according to CCIR test procedure 100% luminance (white) and 75\% color saturation (see application note "Digital interface for component video signals") a standard color bar test signal is generated. Figure 1 shows the measurement
on Tektronix 521 A vectorscope for a PAL signal under a 13.5 MHz clock (CCIR 601). The color dots are clearly in the target boxes. The small deviations (spot size and angle) are in the accuracy limitations of an 8-bit representation of video baseband signals.

Figure 2 shows the transients for 100% color saturation in primary colors by means of a multiple color sawtooth test signal. This test signal, shown in Figure 3 in its time domain,
provides luminance ramps and color saturation (envelope) ramps together. It supports differential phase measurement with real video specific constraints (no saturation at black). The result of such a check is shown in Figure 4. The differential phase error is less than 1.5 degrees peak-to-peak. The CCIR color bar tolerance boxes are about four times as large.

Figure 1. Color bar test signal on the vectorscope

DTV7199 Digital Television Demonstration System

Figure 2. Color transients

Figure 3. Color and luminance ramps combined signal

DTV7199 Digital Television Demonstration System

Figure 4. Differential phase measurement

DTV7199 Digital Television Demonstration System

Figure 5. Differential phase measurement Second color ramp

SAA7199B operational modes

Author: Herb Kniess

INTRODUCTION

The SAA7199B Digital Video Signal Encoder can be contigured to operate in one of four different modes. Each operation mode has different system cost and interface considerations. One or more modes may be implemented for each application depending on system requirements and hardware interfaces. This note describes the different hardware configurations for the different modes and also the available timing programmabilities.

GENLOCK MODE

In many system applications it is necessary to GENLOCK the CVBS video output of the encoder to a master timing reference. It is necessary in GENLOCK MODE to adjust the horizontal sync and subcarrier phase relative to the master reference in order to compensate for external phase shift or signal delays in cable connections. The SAA7199B can GENLOCK to stable references and also to signals with time base errors such as signals from consumer VCRs. As all signals including the subcarrier will follow the reference signal, RS170A cannot be enforced automatically; if the reference is standard, the encoded CVBS will be standard. See Figure 1 for connection diagram.

GENLOCK mode can be turned off via $I^{2} C$ control register in the absence of a reference sync signal and the sync-to-clock PLL will assume the nominal default frequency (see Stand Alone Mode). In GENLOCK mode it is necessary to digitize the reference signal using the TDA8708 A/D converter. The TDA8708 A/D converter is operated at normal data rates, not $2 \times$, as in applications with the 8-bit digital decoders. The SAA7197 clock generator is used to assist in generation of the system clock. A stable crystal reference completes the GENLOCK configuration. An external stable clock could be supplied at Pin 59 instead of the crystal oscillator. It is important to note that in GENLOCK mode the SAA7199B will precisely follow the sync and subcarrier phase of the reference signal. The SAA7199B generates all sync, clock, and timing signals to strobe and trigger the data source. The SAA7199B supports that by extensive programmability.
Input data, e.g., from a frame buffer memory, must be supplied when requested so that encoded signals will be available on DAC outputs in time with the reference signal. Data inputs to the encoder must be supplied ahead of the analog output sync signal because of internal pipe line delays of 55 clocks. The horizontal sync (HSN) on Pin 84 can be programmed relative to the reference
signal to compensate for memory access delays and the 55 clock pipeline delay in the encoder (see also the chapter on Timing later in this application note). The composite blanking CBN must be supplied to Pin 23 as an input to synchronize data handling. Pin 3 VS/CSY is normally programmed as vertical output to be used as a reset for memory controllers at the beginning of a field at line 6. A single clock system is shown for convenience and ease of interface (for the double clock system, please refer to the datasheet). IC 3A and 3B delay the system clock by at least 8 ns at Pins 55 and 49 to follow the LDV clock requirements. LDV latches data from the signal data source.

STAND ALONE MODE

STAND ALONE MODE is a simplified version relative to GENLOCK mode but shows the same data input interface. The TDA8708 A/D converter is not used and stable sync and timing signals are always generated by the SAA7199B based on a stable clock Since the subcarrier frequency is also synthesized out of this clock frequency, the clock needs to have sufficient accuracy and stability to ensure RS1970A standard. It is an option to let the clock be generated by the SAA7199B itself in conjunction with a SAA7197 and a crystal.
The crystal reference frequency is 24.576 MHz for CCIR system or 26.8 MHz for square pixel system, but only one crystal for PAL or NTSC. CCIR-624 specifies - as broadcast requirement - a tolerance of 5 ppm (NTSC) respectively 2 ppm (PAL), but regular consumer-like equipment except static deviations of 50ppm or more. By means of FSC(0...7) in programming register index-0D frequency offset in the crystal reference can be compensated in the range of $\pm 450 \mathrm{ppm}$ in steps of 2ppm. An external stable reference clock could be used at Pin 59 instead of the crystal oscillator. See Figure 2 for connection diagram. U2A and U2B is used again to delay the main encoder clocks relative to LDV about 10 ns . LDV latches data from memory.

SLAVE MODE

All timing signals such as sync, clocks, and blanking are provided by external sources. The clocks must be crystal stable, without exception.

Note the clock delay through UIA and UIB of about 10 ns . No other components are required because the external source provides all timing information. Pin 59 XTALI should be grounded because the reference crystal is not needed. Figure 3 shows pin connections and signal directions. The output
analog sync will contain proper equalizing, serration, and burst blanking signals even if they are not contained on input sync signals.
As an option, the clock may be generated by the SAA7199A in conjunction with SAA7197 and a reference crystal (see Stand Alone Mode).

REMOTE GENLOCK (RTC MODE)

RTC MODE (Real Time Control) is an exclusive feature of Philips Digital Decoders and Digital Encoders. Pin 57 (RTCI) must be programmed and connected to a SAA7191B or SAA7151B digital decoder RTCO pin. In RTC mode the digital decoder front end provides all timing information including the clock to the SAA7199B. The clock frequency may vary, especially since a digital decoder could be locking to a VCR source. However, with the connection of RTCO from a decoder, the encoded subcarrier in the SAA7199B will be stabilized even with VCR sources as inputs. RTC and the DMSDs LLC-clock can be applied to the SAA7199B under stand alone, as well as slave mode. The connection block diagram is shown in Figure 4. Note the clock delay through U3A and U3B of about 10ns.
RTC MODE allows a complete decoding and encoding system to be configured with only four processing devices. The following ICs are required as the minimum configuration:

1. TDA8708 AVD Converter

2. SAA7151B or SAA7191B Digital Decoder
3. SAA7157 or SAA7197 Clock Generator

4. SAA7199B Digital Encoder

The RTC line contains valuable data about the system clock phase and frequency and related subcarrier information generated within the decoder during the color demodulation process. The data is updated every line and coded in a serialized protocol; protocol start is self-synchronizing, i.e., sender and receiver can have different line-sync phase.

When a SAA7199B is connected directly to the decoder clock system, it is possible to encode stable subcarrier even with variable but line-loaded system clocks from the decoding front end. The output sync and subcarrier from the encoder will have the same timing (standard or non-standard) as the input demodulated signals (standard or non-standard) in front of the decoder. The digitized CVBS in front of the DMSD can be applied to the CVBS input Pins (76-83) of the SAA7199B to be used with the CVBS key function. The timing programming range of HS as DMSD output and HSN as DENCs

SAA7199B operational modes

input allows direct sync-coupling. The subcarrier phase is adjustable via programming as needed by the application purpose. The DP inputs of the SAA7199B may carry manipulated or other video overlay data. With a memory buffer included in the system between DMSD and DENC, the sync timing can be different in phase than the accumulated data processing delay of about 150 clocks, but will remain constant because the clocks are the same.

DATA, BLANKING, AND SYNC TIMING

Processing Delay and

Programmable Timing

Depending on the different operation modes of the digital encoder SAA7199B, the timing from the digital input side to the analog output respectively to the analog CVBS reference can be programmed in different ways.
Figure 5 is a reprint of Figure 10 from the SAA7199B data sheet; it shows the timing of input data and sync to output representing that sync and data. There is a constant 55 pixel clock pipeline delay from input data to analog output signals. The horizontal sync-signal HSN at Pin 84 can be an input or an output depending on the selected operational mode of the encoder. The relative timing of HSN to the analog output sync is programmable for input as well as for output modes.

Composite blanking CBN at Pin 23 must have a rising edge at the beginning of active data to ensure proper operation of the UV format demultiplexer and also to remove the blanking condition. Video blanking is forced during vertical and horizontal blanking regardless of the state of CBN signal of Pin 23.

Output Timing to GENLOCK Reference Input

The SAA7199B has an internal timing machine which generates all timing and gating signals to generate the proper sync pulse position (phase), sync pulse duration, sync slopes, default blanking, burst gate position and length as well as burst envelope (shaping) for all possible clock frequencies and video standards to be selected. The result of that can be seen in the CVBS output signal- or Y -C outputs at Pins 69,67 and 65.

In GENLOCK mode the DENC refers its internal timing machine to the digital CVBS signal (applied to the Pins 76 to 83). The DENC investigates that external CVBS, detects the slope of the horizontal synchronization pulse, and locks phase and frequency of the clock via SAA7197 and sampling ADC TDA8708 to this reference $t_{\text {REF1 }}$ (Line-Locked-Clock system). Beyond that it is possible to program a constant time offset between sync-pulse of the reference $\mathrm{t}_{\text {REF1 }}$ and sync-pulse of the CVBS output, respectively the Y-C outputs (compare Figure 5), but maintaining the Line-Locked-Clock feature. By programming the GDC-bits in register index-05 to zero the CVBS output is 17 pixel clock cycles later than the reference CVBS; programming GDC to 17 decimal (11 hexadecimal) brings reference and CVBS output into identical phase. Increasing the GDC value up to 63 decimal (3 F hexadecimal) brings the internal timing scheme and the output CVBS in advance of the reference input by up to 46 pixel clock cycles earlier.

Independent of this GENLOCK-delay programming via GDC, it is also possible to adjust the subcarrier phase of the output relative to the subcarrier phase at the reference input. The programming byte CHPS(0..7) in register index-0C covers the
whole cycle of 360 degrees in 256 steps, which means 1.4 degree each step.

The adjustment of GENLOCK-delay and subcarrier phase offset is relevant in an application where the generated DENC output is further processed and mixed with other video signals for editing purposes. Also for modulating multiple video sources onto one cable or for broadcasting by air a well-defined phase relationship of these signals is necessary in order to keep channel cross-talk under control.

CBN and t REF2

The processing (pipeline) delay $t_{E N C}$ from digital data input to analog output is constant under all modes, input formats, clocks and other programming conditions and is 55 pixel clocks (compare Figure 5). Data fed into the digital input ports DPn ($n=1,2,3$) are visible 55 pixel clock cycles later in the analog video output signal. Figure 5 shows the composite blanking input CBN in nominal standard form; CBN may claim a wider blanking period if less data than the nominal active pixels per line are available. The same processing delay $t_{E N C}=55$ pixel clocks ahead of the leading slope of the CVBS output signal is the reference point for the leading edge of the (imaginary) sync pulse at the data input. In Figure 5 this point is signed with $t_{\text {REF2 }}$. The different standard requirements for NTSC and PAL and the various possible clock frequencies result in different number of clock pulses for the nominal blanking period, and for the time from the start of sync to the end of line blanking. Table 1 lists the relevant numbers. The number for nominal line blanking period is implemented via the internal timing machine as default; it cannot be shortened, but blanking can be extended by CBN at Pin 23. The rising slope of CBN also synchronizes the UV format demultiplex sequence.

Table 1. Standards and Number of Clocks

STANDARD SYSTEM	PIXEL CLOCK (MHZ)	CLOCKS PER LINE	ACTIVE PIXELS	LINE BLANKING (PIX-CL)	SYNC START TO ACTIVE LINE	LINE PERIOD (μ S)	BLANKING PERIOD (μ S)
NTSC-SQP	12.273	780	640	140	125	63.56	
PAL-SQP	14.750	944	768	176	163	64	11.41
NTSC-CCIR	13.500	858	720	138	122	63.56	10.93
PAL-CCIR	13.500	864	720	144	134	64	

SAA7199B operational modes

HSN, VSN as output (GENLOCK, stand-alone)
In stand-alone mode as well as in GENLOCK mode the SAA7199B outputs an HSN signal at Pin 84 and a VSN/CSYN signal at Pin 3, in order to provide the signal source (graphic- or pattern-generator, memory controller) with a timing trigger signal. In order to compensate for unspecified delays in that peripheral controller, the actual position (phase) of HSN output is programmable over a range of 64 pixel clock cycles by means of the PSO-bits in register index-07. Programming PSO to " 00 " generates an HSN with a leading edge that is 58 pixel clock periods earlier than the nominal position treFz; " 3 F hex" $=$ " $63 \mathrm{dec}^{\prime \prime}$ as PSO makes an HSN that is 5 pixel clock cycles after trefz. The leading edge of VSN-output, of the combined composite sync CSYN-output follows this programming of the PSO-bits to always coincide with HSN in the same clock period.
The pulse width of HSN output is always 64 clock cycles. The polarities of HSN, VSN or CSYN are independently programmable via the bits SYSELO and SYSEL1 in register index-04. These two bits also control whether the signal at Pin 3 acts as VS block vertical sync or as composite sync. The HSN signal form as shown in Figure 5 is called "active LOW" and requires a programming of 01 bin in SYSEL.

HSN, VSN as input (slave mode)

In slave mode, the SAA7199B requires that all sync and clock signals come from an external source. The clock frequency is supposed to be accurate and stable enough to enable the DENC to generate a proper subcarrier frequency. The clock frequency is also supposed to be line-locked, so that there is always the nominal number of clock cycles between two horizontal sync pulses.

HSN (Pin 84) and VSN/CSYN (Pin 3) act as inputs. The nominal phase relative to CBN and input data is shown in Figure 5 as $t_{\text {REF2 }}$. Table 1 gives the times from (imaginary) sync pulse start to start of active line (end of nominal line blanking) at the DENC's input for the various standards and clock frequencies. The leading edge of the incoming sync pulse HSN triggers the internal timing machine. A minimum pulse width of one pixel clock period is required.
In order to compensate for unspecified delays in the controller for the signal source, the actual position of HSN input relative to reference point $t_{\text {REF } 2}$ is programmable over a range of 64 pixel clock cycles by means of the GDC bits in register index-05. This is not the register defining the timing offset of HSN as output, but the one to be used in GENLOCK mode to program reference to output "GENLOCK delay". Programming GDC to "00" enables the DENC to accept an HSN-input with a leading edge that is 17 pixel clock periods earlier than the nominal position $t_{\text {REF2 }}$. If HSN-input leading edge is in phase with treF2 GDC needs to be programmed with " 17 dec" (11 hexadecimal); " 3 F hex" $=$ " 63 dec" supports an HSN-input with a leading edge that is 46 pixel clock cycles lafter $t_{\text {REF2 }}$. The leading edge of VSN-output, of the combined composite sync CSYN-output follows programming of the GDC bits to coincide always with HSN in the very same clock period.

MULTI-PURPOSE KEY AND INPUT FORMATS

The digital encoder SAA7199B has three digital data input ports, each 8 -bits wide, and named DP1, DP2 and DP3. There are seven
basic input formats accepted; see Tables 10 to 16 in the data sheet. Beyond the basic format definition, the data stream can be transformed via look-up tables. The look-up tables can be used for any kind of linear or non-linear amplitude processing, as in a gain in YUV or gamma correction in RGB. CCIR-601 specifies the number range for luminance signal from 16 (black) to 235 (100% white) and for the color difference signals U and $V(75 \%$ saturation) from 44 to 212. In the Philips DTV system, some slightly different numbers are chosen (DMSD-2 levels) in order to get better usage of the available 8 -bit number range and to minimize truncation noise and visibility of signal limiting (clipping) artifacts. Luminance goes from 12 (black) to 230 (100% white) and provides more room for superwhite overshoots. The color difference signals are coded in two's complement and use about 20% more number range, which enhances color resolution. Refer also to the SAA7151B data sheet, Figures 5 and 6.
The SAA7199B has a CVBS KEY function, controlled by Pin 73 to insert (pixel by pixel) the reference CVBS signal in realtime into the encoded CVBS output signal. In addition, realtime input format switching is supported by means of the MPK function (Multi-Purpose Keying). Table 2, MPK-Pin and Input Formats, gives a comprehensive overview of the realtime switching possibilities by MPK at Pin 32. Two different input formats are defined simultaneously via software programming and can be mixed on a pixel-by-pixel basis at the DP input pins. For example it can be switched from any YUV format to RGB 24-bit or indexed color, or between RGB with and without look-up table.

SAA7199B operational modes

Table 2. MPK-Pin and Input Formats

$\begin{gathered} \text { MPK } \\ \text { PIN \#32 } \end{gathered}$	PROGRAM-BYTE							SELECTED:		
	INDEX OOHEX					INDEX O9HEX				
	$\begin{gathered} \text { D7 } \\ \text { VTBY } \end{gathered}$	$\begin{gathered} \text { D6 } \\ \text { FMT2 } \end{gathered}$	$\begin{gathered} \text { D5 } \\ \text { FMT1 } \end{gathered}$	$\begin{gathered} \hline \text { D3 } \\ \text { FMTO } \end{gathered}$	$\begin{gathered} \mathrm{D2} \\ \mathrm{CCIR} \end{gathered}$	$\begin{gathered} \text { D5 } \\ \text { MPKC1 } \end{gathered}$	$\begin{gathered} \hline \text { D4 } \\ \text { MPKC0 } \end{gathered}$	$\underset{\#}{\text { FORMAT }}$	LUTs	LEVELS ACC. TO
LOW	(*)	0	0	0	(*)	X	X	\#0	(*)	(*)
LOW	(*)	0	0	1	(*)	X	X	\#1	(*)	(*)
LOW	(*)	0	1	0	(*)	X	X	\#2	(*)	(*)
LOW	(*)	0	1	1	(*)	X	X	\#3	(*)	(*)
LOW	(*)	1	0	0	(*)	X	X	\#4	(*)	(*)
LOW	(*)	1	0	1	1	X	X	\#5	(*)	CCIR
LOW	X	1	1	0	X	X	X		NOT USED	
LOW	0	1	1	1	1	X	X	\#7	$8 \rightarrow 24$	CCIR
HIGH	X	0	0	0	(*)	0	0	\#0	BYPASS	(*)
HIGH	X	0	0	1	(*)	0	0	\#1	BYPASS	(*)
HIGH	X	0	1	0	(*)	0	0	\#2	BYPASS	(*)
HIGH	X	0	1	1	(*)	0	0	\#3	BYPASS	(*)
HIGH	X	1	0	0	(*)	0	0	\#4	BYPASS	(*)
HIGH	X	1	0	1	1	0	0	\#5	BYPASS	CCIR
HIGH	X	1	1	0	X	0	0		NOT USED	
HIGH	X	1	1	1	1	0	0	\#7	$8 \rightarrow 24$	CCIR
HIGH	X	X	X	X	X	0	1	\#5	ACTIVE	CCIR
HIGH	X	X	X	X	X	1	0		DONT USE	
HIGH	X	X	X	X	X	1	1	\#7	$8 \rightarrow 24$	CCIR

NOTES:

$\mathrm{X}=$ don't care
(*) \rightarrow see table about VTBY and CCIR programming bits
HIGH $=$ TTL level high, i.e., $>2.0 \mathrm{~V}$
LOW = TTL level low, i.e., $<0.8 \mathrm{~V}$
LUTs: BYPASS = Look-up tables not in signal path ACTIVE $=$ the three RAM-tables are used independently as three 8 -bit $\rightarrow \mathbf{2 4}$-bit Look-up tables in the three channels RGB or
YUV
$8 \rightarrow \mathbf{2 4}=$ the RAM-block is used as one 8 -bit $\boldsymbol{\rightarrow} \mathbf{2 4}$-bit look-up table to transform indexed or palettized 8 -bit color into 24-bit color

SAA7199B operational modes

Table 3. VTBY and CCIR Bits

$\begin{gathered} \text { MPK } \\ \text { PIN \#32 } \end{gathered}$	PROGRAM-BYTE				SELECTED:	
	INDEX OOHEX		INDEX 09HEX			
	$\begin{gathered} \text { D7 } \\ \text { VTBY } \end{gathered}$	$\begin{gathered} \mathrm{D} 2 \\ \mathrm{CCIR} \end{gathered}$	$\begin{gathered} \hline \text { D5 } \\ \text { MPKC1 } \end{gathered}$	$\begin{gathered} \text { D4 } \\ \text { MPKC0 } \end{gathered}$	LUTs	LEVELS ACC. TO
LOW	0		X	X	IN DATA-PATH	
LOW	1		X	X	IN BYPASS	
LOW		0	X	X		DMSD-2
LOW		1	X	X		CCIR 601
HIGH	X		0	0	IN DATA-PATH	
HIGH	X	0	0	0		DMSD-2
HIGH	X	1	0	0		CCIR 601
HIGH	X	X	0	1	IN DATA-PATH	CCIR 601
HIGH	X	X	1	0	DON'T USE	DON'T USE
HIGH	X	X	1	1	$8 \rightarrow 24$ BITS	CCIR 601

NOTES:
$X=$ don't care
HIGH = TTL level high, i.e., $>2.0 \mathrm{~V}$
LOW = TTL level low, i.e., $<0.8 \mathrm{~V}$

SAA7199B operational modes

Figure 1. SAA7199B clock wiring GENLOCK mode

SAA7199B operational modes

Figure 2. SAA7199B clock wiring Stand Alone mode

SAA7199B operational modes

(1) $\Delta t=125 \times$ PIXCLK at 12.27 MHz $\Delta t=163 \times$ PIXCLK at 14.75 MHz $\Delta t=134 \times$ PIXCLK at $13.50 \mathrm{MHz} / 50 \mathrm{~Hz}$ mode $\Delta t=122 \times$ PIXCLK at $13.50 \mathrm{MHz} / 60 \mathrm{~Hz}$ mode

Figure 5. Processing delay and programmable timing

Author: Leo Warmuth

OVERVIEW

The DTV7194/96 demo board shows the system concept of Philips desktop video ICs. The main video processing functions incorporated in the demo board, are:

1. Video capture with multistandard decoding
2. Standardized digital video signal interface
3. Digital scaling
4. Frame buffer and related control
5. Video encoding
6. DACs and RGB conversion.

The DTV7194/96 demo board features the following Philips desktop video ICs:

TDA8708	8-bit ADC for CVBS and Y
TDA8709	8-bit ADC for CVBS and C
SAA7194/96	Digital true multistandard decoder-NTSC, PAL, and
	SECAM; horizontal and vertical scaling with filtering in both horizontal and vertical domains; control function for brightness, contrast, and saturation; expansion port I/O; SAA7196 also includes clock generator circuit
SAA7197	Clock generator; only needed in combination with
SAA7194	

The demo board also uses the following Philips ICs with general purpose functions:

PCF8574	$I^{2} \mathrm{C}$ serial-to-parallel interface
PL22V10	Programmable Logic Device (PLD)
PLC42VA10	PLD
PML2552	PLD
87C054	Microcontroller (MTV), $I^{2} C$ controller, character overlay generator
PCF8582E	EEPROM with serial $1^{2} \mathrm{C}$ interface
82B715	$\mathrm{I}^{2} \mathrm{C}$ booster

601. The expansion port carries three types of signals:

- 16-bit wide YUV data
- synchronization signals, HREF and VS
- LLC and CREF clock signals.

These signals can be selected independently as input or output by means of the $I^{2} \mathrm{C}$ bus. The direction pin DIR can switch the data stream on a pixel-by-pixel basis.

The expansion port taps the signal path between the decoder part and scaler part of the SAA7194/96. The expansion port interface, as output, looks exactly like the output of the SAA7191, and is compatible. As input, the expansion port feeds the scaler part of the SAA7194/96. As input, it can share its timing with the decoder part, or it can provide its own timing signals, including clock, even if it is asynchronous to the line locked clock of the decoder part. In the latter case, the decoder part, together with the analog front end (ADCs) and CGC, determines its clock and stays locked to the incoming analog CVBS or Y/C signal.

The signals of the expansion port are brought onto a separate connector called DAVE. The two $\mathrm{I}^{2} \mathrm{C}$ signals are also provided. The connector is prepared for a ribbon cable connection, input or output, and support interface to other video signal processing devices, e.g., for compression or decompression, video conference.

Scaler output port

The scaler output of the SAA7194/96 hasdepending on the chosen data format-up to 32 data lines in the VRO port. The SAA7194/96 provides various RGB, YUV and gray-scale data formats at the VRO scaler output port. The circuitry of the DTV7194/96 demo board supports the two formats:

- RGB 24 bits in 4:4:4 sampling scheme

- YUV 16 bits in 4:2:2 sampling scheme, one pixel at a time.

The color key 'alpha-bit' is available and used in both formats. The demo board does not utilize the 2-pixels-per-longword formats, which are provided by the SAA7194/96 for wider memory organizations, which would enable very-high-speed read pixel rates at the display side.
The scaling output port of SAA7194/96 has two interface modes:

- the asynchronous FIFO mode
- the synchronous transparent mode.

The DTV7194/96 demo board works in both interface modes.

In the asynchronous FIFO buffer mode the SAA7194/96 operates with a FIFO 16 words

Adaptor

The layout of the DTV7194/96 demo board provides a ring of through-hole measurement points around the 120 -lead quad flat pack (QFP) package. This layout enables the signals at each pin to be probed.

Expansion Port

The expansion port of the SAA7194/96 is a bi-directional digital video signal interface with YUV and 4:2:2 sampling scheme. The signal format, i.e., the meaning of the code values, is based upon CCIR recommendation

This document focuses on the functionality and interfaces of the new highly integrated video capture IC SAA7194/96, also called DESC:

- Digital multistandard decoder (NTSC, PAL, SECAM); SAA7196 includes also clock generator circuit.
- Expansion port with standardized digital video interface, CCIR oriented coding of digital YUV
SCaling with programmable filter in horizontal and vertical direction for anti-aliasing and asynchronous FIFO buffer for easy memory interface.

In addition, a memory controller is described, realized by means of PLDs, which demonstrates both scaler output interface modes: synchronous (transparent) and asynchronous (FIFO) operation. The problem of conversion from interlaced to non-interlaced video signal and vice-versa is addressed, too.

The appendix shows all the schematics and listings of the PLD programming, i.e., logic equations and state machine definitions.

FRONT END

The front end, with the analog-to-digital converters TDA8708 and TDA8709, includes automatic clamp and gain control. This circuitry is identical to the front end processing used for SAA7191 and SAA7151. For a more detailed description, please refer to the application note "DTV7199 Digital Television Demonstration System," p. 2-68. There is no significant functional difference between SAA7194 and SAA7196 beyond the clock generator circuit inside the SAA7196. The application circuitry described here is prepared for either one. The application, including the programming model for the decoder part of the SAA7194/96, is very similar to that of the SAA7191.

THE PORTS OF THE SAA7194/96

deep and up to 32 bits wide, and provides the signals:

- HFL, the 'half-full-flag', indicates that the device has at least 8 valid words in the output FIFO
- INCADR, the 'increment-address' signal, indicates-together with HFL-that the memory controller should increment line and/or field pointer
and requires the signals:
- VCLK, a gated clock burst, as answer to a request by HFL to empty the FIFO
- VOEN, output enable signal, whose use is optional.
The operation of the FIFO mode requires that the memory controller provide a gated VCLK after an HFL request to empty, or partly empty, the FIFO. It is recommended to apply a burst of 8 VCLK pulses. The SAA7194/96 has already "preloaded" the output with the "next-to-deliver" signal before it requests a burst of VCLK. Then, the first VCLK rising edge clocks out the next following sample. VCLK is the clock which directly writes into memory or a register immediately following the DESC output.
For the synchronous, transparent mode the SAA7194/96 requires a continuous clock VCLK, synchronous to its scaler input, and delivers output data qualified by various valid and gate signals:
- PXQ: qualifying the actual pixel as valid
- LNQ: telling that this line (will) carry valid data
- HRF: delay compensated HREF signal
- HGT: enveloping that part of line selected for scaling
- VGT: enveloping that part of field selected for scaling
- O/E: identifying odd and even field.

Not all these signals are needed at the same time, but their availability may simplify the design of a memory controller, or make a system more flexible and capable. For example, the presence of the faise-state of the line qualifier LNQ or vertical gate VGT informs the system that there will be, for a certain time, no HFL request, and the system may undertake other access to the memory.

The demo board DTV7194/96 is made to demonstrate both scaler output interface modes. As all pins of the SAA7194/96 are available on test points, the behavior of the concerned control signals can easily be observed. The control logic for both cases is embedded in a single PLD implementation. For the PLD programming, refer to the listings in the appendix. Some aspects of the logic equations and state machine structure are explained in the following section.

FRAME BUFFER

Concept for Frame Buffer Controller

The concept for the memory control on the DTV7194/96 demo board is guided by the desire to:

- maximize the usage of given memory capacity
- ensure synchronous scaling and display sizing
- support interlace/non-interlace conversion
- minimize the effort on control logic.

The solution has the following main components:

Serial Stream with embedded "Marker"

The video scanning technique maps the three-dimensional video stream into a one-dimensional, serial signal stream. But some markers are inserted as dummy pixels (not to be displayed), to signal when a line, field, or frame is complete. This stream is written into memory in a strict serial one-dimensional manner.

The start-time of the read process is controlled by given display raster coordinates, and then data is read until an end-of-line marker is found in the data stream (or an end-of-field/frame marker). The read process pauses and resumes again at given display raster coordinates.

Independent of the actual input picture dimensions, the memory can get filled up to the last pixel. There is no waste by incompletely filled rows. A change of input picture dimensions, e.g., changing of scaling factor, is immediately transported to the read and display window control by the signal stream itself.

CCIR-601 reserves the codes 00 hex and FF hex for synchronization purposes. The SAA7194/96 ensures that the signal stream does not use these codes. The DTV7194/96 demo board uses the code 00 hex as end-of-line marker (eol) and the code FF hex as end-of-field (eof) marker.

Alpha "Marker"

In an extension to this eol/eof marker concept the alpha bit (color key signal) is also encoded into the data stream by means of a special marker-code. The luminance value of that pixel, which should be keyed-out, is overwritten with a code, to be interpreted as 'transparent', i.e., as a pixel not to be displayed. This approach makes the need for an additional alpha bit plane in the memory obsolete, reduces memory requirements, and enhances memory efficiency.

The SAA7194/96-in FIFO mode-fills up unused FIFO burst words with dummy pixels. The fill values are coded with 01hex. The DTV7194/96 demo board uses this code as transparent pixel, or key marker, too.

Two Field Buffer Banks (FBB)

The frame buffer memory is split into two banks, one for "odd" (upper) fields the other for "even" (lower) fields, respectively, "even" and "odd" lines. The address-pointer toggle from one bank to the other can be controlled independently for read and write processes. Conversion between interlace and non-interlace schemes can easily be performed.
If a video source is interlaced, the first (odd) field gets written into the "lower" FBB, the second (even) field gets written into the "upper" FBB (field toggling). Reading for an interlaced output (video display) accesses the memory in opposite order: during odd field the "upper" FBB gets read, during even field the "lower" FBB gets read. The time sequence is maintained and no tearing occurs where read- and write-address-pointer are crossing. Reading for a non-interlaced output will "de-interlace" the stored two-field picture by reading from both FBB in a line-alternating fashion (line toggling).
A non-interlaced source writes its first line, and all odd lines, into the "upper" FBB, and the interleaving even lines into the "lower" FBB (line toggling). Reading for a non-interlaced display will access the memory in identical order. Reading for an interlaced output will "interlace" the stored single frame into two fields by reading during the "odd" field from the "upper" FBB, and then during the "even" field from the "lower" FBB in a field-alternating fashion (field toggling).

Serial Memory: FRAMs

Because the video data stream in this application is exclusively serial, FIFO-DRAM ICs are utilized for the frame buffer circuitry. These FRAMs don't need any addressing (which saves external address generation) and therefore significantly simplifies the control logic. But VRAMs or standard DRAM memory applications could also be used and would benefit by the "marker" control concept and two field buffer bank approach.

Byte Serial, Field Serial

Most of the commonly available memory ICs have an address space which is deeper than the number of pixels in a standard video field. The used FRAMs, for example, have 262144 storage locations. A regular NTSC field with 240 lines and 640 SQ-pixels per line results into 158600 pixels total, which is about 58% of the available memory address range.
An effective way to get higher memory utilization is to place the information
belonging to one pixel into two memory addresses. The 16 -bit wide YUV format could be converted into two consecutive bytes (byte-serialized), like a D1 or CCIR-656 data stream. This approach would require memory with double the speed.

A similar saving of memory devices can be achieved by writing the two fields of an interiaced source into a single FBB, one after the other. They can be read again for interlaced display in the same sequence. This approach is supported as an option by the DTV7194/96 demo board.

It is obvious that then only 85% of a regular NTSC-SQP field or frame will fit into the given memory space. But this conflict can be resolved either by "cropping" only the interesting area of the field, i.e., throwing peripheral information away, or by "squeezing" the picture content into fewer pixels, i.e., scaling somewhat down. Both methods can be combined and are supported by the scaling function of the SAA7194/96. Programming of source size determines the cropping function. Destination size, relative to source size, determines the scaling factor. Both source and destination size can be defined independently in horizontal and vertical dimensions.

The memory control function of the DTV7194/96 demo board is capable of demonstrating various methods of optimal memory usage and minimum control effort for different application requirements. Because the demo board combines various approaches in the same hardware, the circuitry itself may show a certain amount of overhead. The various algorithms are selectable via $1^{2} \mathrm{C}$ programming. As the logic is embedded in PLDs, the circuitry offers a multitude of options (by re-programming the PLDs).

The following description will focus on the core functionality.

Functional Description and Partitioning

Frame Buffer

The frame buffer memory block consists of 12 FRAM ICs. The 24-bit RGB format with interlaced signal requires that capacity. A straight 16-bit wide YUV frame buffer requires only 8 FRAMs. With some restrictions in available picture size, a set of only 4 FRAMs is needed. To support only smaller picture sizes, e.g., CIF-format, the application requires just 2 FRAM ICs.

Write Interface

The schematic sheet WRITE.SCH shows the interface between the SAA7194/96 scaler
output port VRO and the frame buffer. The PLD PLC42VA12 named WSYNCB works as clock divider, clock driver, and timing circuit, and takes care of the interface logic to serve the FIFO output mode of the SAA7194/96. But it can also be switched to operate for transparent mode.

For the FIFO mode, the input signals HFL and INCADR are used, and a burst of 8 VCLK cycles is provided. For the transparent mode, the input signais PXQ, HRF, and SVS are used. In both operation modes a unified set of control signals is sent to the second PLD. These control signals are closely related to the chosen frame buffer control circuit. The signals are:

- GATE gate signal = valid data at VRO-port
- EOL end-of-line flag, to insert an end-of-line marker
- EOF end-of-field flag, to insert an end-of-field marker. If both flags (EOL and EOF) occur together, an end-of-frame is signaled to reset the write address pointer
- FBBID field buffer bank ID, to control into which frame buffer bank the actual data needs to be written.

The second PLD PML2552, which is named WPATH, is used mainly as a huge data bus multiplexer. The data streams for YUV format and RGB format are mapped into the frame buffer in such a way that its output busses can be used directly by the SAA7199, which can accept YUV as well as RGB formats. A third data bus is provided for the Red-signal, necessary for the 24-bit RGB format.

WPATH further inserts the marker codes for EOL, EOF, and ALPHA into the data stream. It also generates the delay adjusted write enable (WE1 and WE2) and write pointer reset (RSTR) signals for the frame buffer.

For the details of the PLD programming, refer to the listings in the appendix. The various operation modes of the write control logic are programmable via $I^{2} \mathrm{C}$, and the serial-toparallel converter IC PCF8574 at position U 20 with $\mathrm{I}^{2} \mathrm{C}$ device slave address 42 hex.

Read Interface, Window

The schematic sheet WINDOW.SCH shows the read control logic. By means of two 8-bit words the horizontal and vertical start points of display window are defined, and present the scaled picture. If the display timing is synchronized to the expansion port, this signal can be chosen as background signal. In case the display (output) timing is determined by the SAA7199 digital encoder in master mode operation, then an artificial color bar test pattern is used as background signal. The combined signal is fed to the digital encoder and to two DACs for

YUV-conversion (SAA7165) and RGB-conversion (SAA7186), and is also brought to a connector (JP7). It can also be multiplexed via this connector with an external signal by means of the MUTE control signal.

The PL22V10 PLD, named READCLK, is mainly the function of a signal source selector and clock driver. The two PML2552 PLDs share the task to define the horizontal and vertical position (start point) of the window. READV performs a vertical counter, counting in half lines. The vertical window offset is defined by VOS[8..1] via PCF8574 at position U34 with $1^{2} \mathrm{C}$ device slave address 40 hex. The vertical starting trigger is sent from READV to READH in the form of the auxiliary signal FS-GO. FS-GO is a kind of delayed field-ID signal, changing its state in that line where the window should start.

READH performs a horizontal pixel count. The horizontal window offset is defined by HOS[8..1] via PCF8574 at position U35 with $1^{2} \mathrm{C}$ device slave address 41 hex. When both horizontal and vertical enabling signals are true, READH will start reading from the frame buffer. The incoming data stream is checked for the relevant marker codes. If an end-of-line or end-of-field is detected, the read process is stopped until the next horizontal or vertical enabling signal, respectively. As the FS-GO signal carries the odd/even field ID, READHB can decide from which field buffer bank to read (RE1 or RE2).

The horizontal counter is also used to generate the auxiliary signal HS2RD, to be sent to READV. HS2RD is a half-line indication signal, staying LOW for the first half line, and then HIGH for the second half line. This enables READV to count vertically in half lines. Comparing the vertical sync edges of VSD with the state of HS2RD defines the output ID, i.e., display field ID, and when to reset the read address pointer. The vertical counter in READV is also used to generate a luminance and color test pattern as background signal. Further, the video overlay control signals from the MTV microcontroller can be used to add foreground signals.

For the details of the PLD programming, refer to the listings in the appendix. The different operation modes of the read control logic are selectable via $\ell^{2} \mathrm{C}$ and the serial-to-parallel converter IC PCF8574 at position U40 with $1^{2} \mathrm{C}$ device slave address 43 hex.

Implementation, control logic

The listings of the programs of the PLDs as given in the appendix contain extensive comments to improve the understanding of the logic equations and statements. A few
explanations regarding the construction of the state machines are given in this section.

WSYNC

The main state machine in WSYNC handles the interface with the scaler output of the SAA7194/96 in FIFO mode. The IDLE state is the state after regular VCL.K-burst transmission; waiting for further HFL, or an INCADR=Low stimuli, to enter the INCHOT state. INCHOT has two exits.

Combining INCADR-Iow with HFL-high signals the end of a line and generates an EOL-flag. But the LINEND state cannot return to IDLE, otherwise it would be re-triggered by a second line-increment pulse combination, and issue a second EOL. The memory read control side would be mis-triggered by this. Therefore, the LINEND state is extended by LWAIT, and can toggle between these two states without action, in order to be insensitive in the case of a second line-increment pulse sequence. A regular HFL during LWAIT starts the normal VCLK bursts.

The second exit of INCHOT is the return to neutral HFL-INCADR combination, which signals the vertical end of processing, and issues an EOF-flag. In this VERTEND state a line-increment condition may occur to signal the begin of an odd field. Then EOL-EOF double flag is issued to indicate Field ID reset and Frame Buffer Bank pointer reset.

The state machine for the transparent mode is somewhat simpler. it is built to generate the same EOL and EOF flags.

WPATH

WPATH is mainly a data bus multiplexer. The control signals need to be registered to be synchronous to data. WPATH sorts out the FIFO fill pixels, inserts the alpha marker and EOL and EOF markers. The reset of the write address pointer is-delayed another clock cycle to avoid conflict with a last write of EOF.

READCLK

In this programming, READCLK is used mainly for clock selection and as clock driver. It also routes the horizontal and vertical sync signals depending on who the timing master is.

READV

The main function of READV is the vertical counter, which is re-triggered every field by VSENC. the phase of vertical sync relative to the halfline signal HST2RD determines whether the followig field is treated as an odd or even field. The equal comparison with VOS resets the read address pointer with RSTR. The following state, VWB1, represents the vertical window start for READH, by providing FSGO.

The vertical states distinguish an idle range above and below the line, where the window start is defined. (This may be used to issue different background signals, which is not implemented here).

READV also generates VSL, a 10 -line long vertical blanking signal to support the generation on the sandcastle pulse sequence for the TDA4686.

READH

READH has an horizontal counter. It starts the programmable (HOS) horizontal window and also generates the half line reference signal HS2RD. The horizontal state machine is triggered by the window start condition and the end-of-line and/or end-of-field marker in the data stream. The state machine has to work around the signal delays between enabling a read cycle at the FRAMs, and placing valid data on the output bus. In the FIRST state, the marker decoding logic will not see valid data, but the tristate signal of the FRAMs. In the LAST1 (and WBLK1) state, the reading from the FRAMs has already stopped, but there may be the next marker in the signal path pipe line. If this pixel was not a marker, it was a real pixel, i.e., the first pixel of the next line. This pixel is lost for display.

DIGITAL ENCODER SAA7199B

The backend circuitry with the digital NTSC and PAL encoder is identical to the backend processing of the DTV7199 demo board. For a detailed description please refer to the application note "DTV7199 Digital Television Demonstration System," p. 2-72.

VIDEO DACS AND MATRIX

For conversion of the digital YUV data stream to analog RGB, the SAA7165 video DAC is used to convert the data stream to analog YUV, and the TDA4686 RGB matrix combination IC is used to convert the analog YUV into analog RGB with control over brightness, saturation, and contrast.
The SAA7165 (VEDA2) filters and demultiplexes the UV data and positions this chroma data with respect to the proper luminance sample and performs the D to A conversion. In addition, software controlled aperture correction and color transient improvement of the video may be performed to enhance picture quality.

The TDA4686 receives this analog YUV signal, reclamps it and converts it to RGB via an analog matrix. Two additional RGB signals may be switched into this path, assuming that they are congruent to the main

RGB information (that is, they are synchronous). Brightness, saturation, and contrast control may be affected via the $I^{2} C$ bus. Also, peak white and color balance may be controlled via $1^{2} \mathrm{C}$.

The TDA4686 uses a multi-level pulse to control certain blanking and timing parameters; called a sandcastle pulse. Because this pulse is generally derived from the sync signals, it is necessary to account for the 44 clock pipeline delay introduced by the SAA7165 when generating this pulse so that the pulse has the proper positional relation with the output video from the SAA7165. This is achieved by the PLD "castl".
Additional circuitry at the output is used to produce proper DC and drive levels to drive 75Ω loads.

A more detailed description of this analog backend module is given in the application note titled "Digital Video Evaluation Board" (also in this chapter, p. 2-171), along with register programming for these two devices.

INTERLACED VIDEO SIGNALS

The broadcast television standards-and the related camera standards-are all interlaced. There are two fields (field rate 50 Hz or 60 Hz), whose scan lines are interleaved to each other. The second field scans its lines right in between the lines of the first field, but a moment-i.e., a period of the field rate-later. Both fields together form a frame. The line-to-field scan interlacing method was developed to balance achievable vertical resolution with motion resolution and required transmission bandwidth. For mainly static pictures and scenes, a high vertical resolution can be achieved by counting the information of two fields as one frame. For high motion video pictures, a time resolution of 50 Hz or 60 Hz is achieved, which is superior to the 24 Hz of cinema film.
If both input and output of the frame buffer memory is structured in an interlaced manner, the situation is rather obvious. This is the case if the SAA7194/96 decodes a standard television signal and the SAA7199 encodes a standard television signal. We have to take care that the lines of the second field get displayed inbetween the two lines of the first field, as they were scanned in the first place. In a straightforward way, the two fields are written into two memory banks, and also read from them in the right sequence and phase (i.e., starting the line counting).
In the case that input and output field rates are not identical, two memory banks are clearly insufficient to ensure that field two is always and only read after the correlated
preceding field one. An incorrect field sequence would generate motion disrupting artifacts (jumping back and forth).

If the vertical scan speed, i.e., time from line to line, is not the same at the write and read side of the memory, so called "tearing" can occur. This is the case if the signal source is generated by scaling, for example. The write and read pointers in the memory address space are crossing each other. The results are that information displayed as one field are originated by separate fields.

To avoid these two artifacts, memory with a capacity to store four fields and dedicated control would be necessary. The DTV7194/96 demo board, however, solves this problem with only two memory banks (field stores) by exchanging odd and even fields. If input and output are synchronous in vertical, it is ensured that reading and writing happens on different field buffer banks, and do never cross. For $1: 1$ mapping (i.e., no scaling) the output picture appears one line lower thant the original.

If the input of the frame buffer memory is non-interlaced material, and the output of the memory needs to be interlaced, e.g., for the DENC, then "re-interlacing" has to take place. Non-interlaced video can get fed in via the expansion port from video decompression or artificial sources (graphics generation), or the scaling function itself can generate it by
programming it to one-field-only operation (odd field only, even field only).
"Re-interlacing" can be achieved by proper modification either of the write or read control of the frame buffer. The alternating lines of a non-interlaced field can be written in a line-toggling fashion into both memory banks, but read in a field toggling manner. This kind of re-interlacing is comparable-also comparable in results-to film-to-TV conversion.

If the input of the frame buffer memory is interlaced material, and the output of the memory needs to be non-interlaced, then "de-interlacing" has to take place. Non-interlaced frame buffer output may be required for display on a computer monitor, or to drive a video printer, or to feed a compression engine. De-interlacing can be achieved by proper modification either of the write or read control of the frame buffer. The alternating fields of an interlaced frame can be written in a field-toggling fashion into both memory banks, but read in a line toggling manner. De-interlacing in that way works well for static pictures, but creates artifacts during motion. DTV7194/96 has no provisions, regarding memory control, against these artifacts. The more preferable approach is to select the one-field-only operation for the scaling function in the SAA7194/96.

If both the input and output of the frame buffer are non-interlaced data streams, the
situation is transparent; one field is the same as one frame. The field toggling write mode would just write into one memory bank, depending on actual phase of vertical to horizontal sync. The read control has no chance-by any means-to know from where to read. Therefore, for this case, a line toggling mode on both sides is appropriate. This approach also allows storage of larger frames, e.g., 800 pixels by 600 lines, with the given board architecture, as it splits a frame into two 'interlaced' memory banks. But the demo board is not made to clock with real VGA clock rates.

The FBB pointing sequence as part of the memory control can "field-toggle" or "line-toggle" between the two memory banks. This toggle mode is selectable via $\mathrm{I}^{2} \mathrm{C}$, both for writing and reading, and independently of each other. By that, interlaced and non-interlaced video signals can be handled and converted into each other.

SUMMARY

Many other data output formats and memory architectures are possible using the SAA7194/96 and associated chips. This application note touches on just a subset of possibilities to suggest an approach that uses minimum memory and memory control devices to implement a system.

96/661L^IO preoq omәр оәр!^ doysəa

[^7]PHILIPS SEMICONDUCTOR
SUNNYVLE，CA 940 ．
it1e WARMUTH，KNIESS，ELLIS，SCHNETDER
DTV7194：I2C INTERFACE，CONTROLLER，OVERLAY E Div7190 ：MTV．SCH

96/t61LヘLO preoq oшәр оәр!ィ dołysəa

[^8]

[^9]
Programs of the PLDs used on DTV7194/96 board

GATE		"20: valid pixel at VRO $=$ in front of WPATHPMB
EOLPIN	\bigcirc	"21: end of line flag, to WPATHPML
EOFPIN	0	"22: end of field flag, to WPATHPML $"$ both EOL \& EOF together: reset of FBBID write pointer for odd=1.field "
FBBID	0	"23: Frame Buffer Bank ID: where to write to FBBIB $=1$, i.e. 'odd field' into bank 1 FBBIB $=0$, i.e.'even field' into bank 2 " for re-interlacing of a non-interlaced source, write in line-toggling manner into both banks, if there are two banks (sort5 $=0$)
VMUX	0	"19: VMUX control for SAA7194/96 fifomode to 16 bit here used as RSTW monitor pin
VCLKGATE		"14: reserved, to 'time-adjust' VCLK burst-gate " can not used externally "
"		SORTx under I2C bus address 44 hex
SORT4	I	" 7: Source Field Mode: $\quad 1 \quad$: Interlaced
SORT5	I	" 8: Scaler Output Interface Mode, VRO operation $\begin{aligned} & 1: \text { FIFO-mode } \\ & 0: \text { transparent-mode } \end{aligned}$

@GROUPS
@TRUTHTABLE
@LOGIC EQUATIONS


```
+ FIFOMODE * Q3 ; " OR burst of clocks "
VCLKGATE.OE = 1 ; " to 'adjust' timing "
VCLK = INTCLK * VCLKGATE ; " clock for VRO "
GATE = FTFOMODE * Q3 * (Q2 + Q1 + Q0)
        + FIFOMODE */Q3 * Q2 * /Q1 * /Q0 " . count8"
        + /FIFOMODE * PXQ ; " valid PXQ data at VRO "
EOLPIN = EOL ;
EOFPIN = EOF ;
```


WPD.EQN

WREDD. EQN

" WREDD	Multipexer and register between $=======$
U18 DESC VRO and field buffer in the	
red channel: 24 bit / 15 bit	

CONTROL

@GROUPS
@TRUTHTABLE
@LOGIC EQUATIONS

RGB24	$=$ SORT0 ;
RGB15	$=$ SORT0 ;

@INPUT VECTORS
@OUTPUT VECTORS
@STATE VECTORS
@TRANSITIONS

Desktop video demo board

RCD.EQN

QGROUPS
@TRUTHTABLE
@LOGIC EQUATIONS

DENC	VIEW7 ;		" DENC is sync timing master "
$\mathrm{XPORT}=$	/VIEW7 ;	" sync	timing signals from expansion port "
PIXCLOCK	= XPORT * LLC2B		
	+ DENC *	PIXENC	
MEMREAD	$=$ PIXCLOCK	K	" clock for FRAM- read interface"
REDCLK	PIXCLOCK	K	" second driver
LDV	$=\mathrm{PIXCLOCK}$	K	" pixel clock $=$ LDV "
CLKE1	$=\mathrm{PIXCLOCK}$	K	
CLKMTV.D	= /CLKMTV	;	" I/2 pixel clock for uC
CLKMTV.CLK	= PIXENC	;	" toggle by pixclk "
HSENC	$=\mathrm{XPORT}^{*}$	* HSB	;
HSENC. OE	$=\mathrm{XPORT}$;
VSENC	$=$ XPORT *	* VSYNCB	;
VSENC.OE	$=\mathrm{XPORT}$;
CBN	$=$ XPORT ${ }^{\text {* }}$	* /HSB	" blanking is active low "
	+ DENC *	* /HSENC	-

@INPUT VECTORS

@OUTPUT VECTORS
@STATE VECTORS
@TRANSITIONS

RVD.EQN

"

CONTROL PARAMETER in byte VIEW, I2C-address $=46$ hex

@GROUPS @TRUTHTABLE										
" MODI truth table (as in equation: === MODE CONTROL TABLE ==="										
[VIEW6		VIEW	:	DEC			PATTERN,	OVLE,	RGBO	UV]
0	0	0	:	1	0	0	0	1	0	;
0	0	1	:	1	0	0	0	0	0	;
0	1	0	:	1	0	0	0	1	1	;
0	1	1	:	1	0	0	1	0	0	;
1	0	0	:	0	1	0	1	1	0	;
1	0	1	:	0	1	0	1	0	0	;
1	1	0	:	0	1	1	1	1	0	;
1	1	1	:	0	1	1	1	0	0	;

@LOGIC EQUATIONS

$$
\text { COUNT[7..0].J }=1 \text {; }
$$

$$
\operatorname{COUNT}[7 . .0] . \mathrm{K}=1 \text {; }
$$

$$
\text { COUNT [7..0].RST }=/ \text { CNTRST ; }
$$

$$
\text { COUNTO.CLK }=\text { CNTCLK ; }
$$

$$
\text { COUNT1.CLK }=/(/ \text { CNTCLK * COUNTO }) ;
$$

$$
\text { COUNT2.CLK }=/(/ \mathrm{CNTCLK} * \operatorname{COUNT} 0 * \operatorname{COUNT} 1) ;
$$

$$
\text { COUNT3. CLK }=/(/ \mathrm{CNTCLK} * \text { COUNT0*COUNT1*COUNT2) ; }
$$

$$
\text { COUNT4.CLK }=/(/ \text { CNTCLK } * \text { COUNTO*COUNT1*COUNT2*COUNT3 }) ;
$$

$$
\text { COUNT5.CLK }=/(/ \text { CNTCLK } * \text { COUNT0*COUNT1*COUNT2*COUNT } 3 * \text { COUNT4 }) ;
$$

$$
\text { COUNT6.CLK }=/(/ \text { CNTCLK } * \operatorname{COUNT} 0 * C O U N T 1 * C O U N T 2 * C O U N T 3 * C O U N T 4
$$

*COUNT5) ;

COUNT7. CLK $=/(/ \mathrm{CNTCLK} * \mathrm{COUNT0*COUNT1*COUNT2*COUNT3*COUNT4}$ *COUNT5*COUNT6) ;

@INPUT VECTORS

> " for VQ vertical state machine, for FSGO etc." $========$
[ENCS,VGA, VSI,HS2RD,HS2, INTRL, FID, VSLE,VBEND,VWB]

$$
\begin{aligned}
& " \text { for INRTL-FID state machine " } \\
& \quad "======== \pm
\end{aligned}
$$

	$[\mathrm{TF} 1$,	TF 0	$]$	
VSODD	$=1$	0	$\mathrm{~B} ;$	
VSEVEN	$=$	0	1	$\mathrm{~B} ;$

@OUTPUT VECTORS
[CNTRST, TF1, TF0, VSLJ, VSLK, RSTR, FSGOJ, FSGOK]

COUNTRST	l	1	0	0	0	0	0	0	0	B;
TICFID1	$=$	0	1	0	1	0	0	0	0	B;
TICFIDO	0	0	1	1	0	0	0	0	B;	
VSLRST	0	0	0	0	0	1	0	0	0	B;
FBRESET	$=$	0	0	0	0	0	1	0	0	B;
GOTOGGLE	$=$	0	0	0	0	0	0	1	1	B;
GOCLEAR	0	0	0	0	0	0	0	0	1	B;
GOSET	0	0	0	0	0	0	1	0	B;	

asTATE VECTORS

@TRANSITIONS
" VQ vertical state machine "
WHILE [VBI]

$I F$	[VSLEND]	WITH [VSLRST]	THEN [VBI]
IF	[ENDVBI]		

WHILE [LINEZERO]					
IF	[MIDLINE]	WITH	[COUNTRST]	THEN [L	[LINEZERO]
IF	[NEXTLINE]			THEN [ID	[IDLETOP]
WHILE [IDLETOP]					
IF	[VS1IZ]	WITH	[COUNTRST]	THEN [ID	[IDLETOP]
IF	[VS1]	WITH	[TICFID0]	THEN [VB	[VBI]
IF	[VS2IZ]	WITH	[COUNTRST]	THEN [ID	[IDLETOP]
IF	[VS2]	WITH	[TICFID1]	THEN [VB	[VBI]
IF	[VSVGA]			THEN [V	[VGA2VS]
IF	[VWBEGOF]	WITH	[FBRESET]	THEN [ID	IDLETOP]
IF	[VWBEGNI]	WITH	[FBRESET]	THEN [ID	[IDLETOP]
IF	[VWBEGLE]	WITH	[GOTOGGLE]	THEN [VF	[VWB1]
WHILE [VWB1]					
IF	[ODDFNL]	WITH	[GOSET]	THEN [ID	[IDLEBOT]
IF	[EVNFNL]	WITH	[GOCLEAR]	THEN [ID	[IDLEBOT]
IF	[NONINL]	WITH	[GOCLEAR]	THEN [ID	[IDLEBOT]
WHILE [IDLEBOT]					
IF	[VS1IZ]	WITH	[COUNTRST]	THEN [ID	[IDLEBOT]
IF	[VS1]	WITH	[TICFID0]	THEN [VB	[VBI]
IF	[VS2IZ]	WITH	[COUNTRST]	THEN [ID	[IDLEBOT]
IF	[VS2]	WITH	[TICFID1]	THEN [VB	[VBI]
IF	[VSVGA]			THEN [VG	[VGA2VS]
WHILE [VGA2VS]					
IF	[VSEND]			THEN [VG	[VGABOT]
WHILE [VGABOT]					
IF	[VS2XZ]	WITH	[COUNTRST]	THEN [VC	[VGABOT]
IF	[VS2]	WITH	[TICFID1]	THEN [VB	[VBI]
WHILE [DUMMY]					
IF	[]			THEN [IDLEBOT]	
	" INTRL-FID	state	machine, 'sp	inning wh	wheel' for
WHILE	[FIELD1]	"11"			
IF	[VSEVEN]		THEN	[FIELD2]	2] 10 "
IF	[VSODD]		THEN	[NINT0]	"00"
WHILE	[FIELD2]	"10"			
IF	[VSEVEN]		THEN	[NINT1]	"01"
IF	[VSODD]		THEN	[FIELD1]] "11"
WHILE	[NINT1]	"01"			
IF	[VSEVEN]		THEN	[NINT0]	"00"
IF	[VSODD]		THEN	[NINT1]	"01"
WHILE	[NINT0]	"00"			
IF	[VSEVEN]		THEN	[NINT0]	"00"
IF	[VSODD]		THEN	[FIELD1]] "11"

RHD.EQN

" RHD $=$ ReadH	: horizontal definition of display window "
$"=========$	generation of half-line signal HS2RD

CONTROL PARAMETER
================== VIEW3 VIEW2 VIEW1 VIEW0

1 : non-interlaced display 0 : interlaced đisplay

1 : $50 \mathrm{~Hz}, 944$ clocks per H -line
$0: 60 \mathrm{~Hz}, 780$ clocks per H -line
1 : one field buffer bank only
0 : two field buffers in use
clock direction, not relevant for READH, but for READCLK 1 : clock from encoder-CGC, e.g. genlock, or stand-alone 0 : clock from decoder to encoder, RTC-lock-operation, e.g. slave mode, stand-alone mode

| @PINLIST | "pin-\#" |
| :--- | :--- | :--- |
| CLKA I ; " 36 : MEMREAD, memory read clock, pixel clock, | |
| for byte-serial-mode, this is $2 *$ pixel-clk" | |

@GROUPS
"EOLMARK $=[0,0,0,0,0,0,0,0] ; "$
"EOFMARK $=[1,1,1,1,1,1,1,1] ; "$
"KEYMARK $=[0,0,0,0,0,0,0,1] ; "$

@TRUTHTABLE

@LOGIC EQUATIONS

" === HORIZONTAL COUNT === "

```
            " .rst guides snap to use 10 * JKCL552 with individual "
COUNT[9..0].RST = /CNTRST ; " reset and individual clock "
COUNT[9..0].J = 1 ;
COUNT[9..0].K = 1 ;
COUNTO.CLK = CLK ;
COUNT1.CLK = /(/CLK * COUNT0) i
COUNT2.CLK = /(/CLK * COUNTO*COUNT1) ;
COUNT3.CLK = /(/CLK * COUNTO*COUNT1*COUNT2) ;
COUNT4.CLK = /(/CLK * COUNT0*COUNT1*COUNT2*COUNT3) ;
COUNT5.CLK = /(/CLK * COUNT0*COUNT1*COUNT2*COUNT3*COUNT4) ;
COUNT6.CLK = /(/CLK * COUNT0*COUNT1*COUNT2*COUNT3*COUNT4
    *COUNT5) ;
COUNT7.CLK = /(/CLK * COUNT0*COUNT1*COUNT2*COUNT 3*COUNT4
    *COUNT5*COUNT6) ;
COUNT8.CLK = /(/CLK * COUNT0*COUNT1*COUNT2*COUNT3*COUNT4
    *COUNT5*COUNT'6*COUNT7) ;
COUNT9.CLK =/(/CLK * COUNT0*COUNT1*COUNT2*COUNT 3*COUNT4
                        *COUNT5*COUNT6*COUNT7*COUNT8) ;
                                    " === HORIZONTAL EVENTS === "
HOSO = 0 ; " to adjust for uv-sequence "
HOS9 = 0 ;
HBL . J = HSD ;
TRIGGER = HSD * /HBL ; " rising edge is leading edge "
HS2RD.K = HBL * COUNT[9..0] == 023H ; " 35 = some room "
RESTART = HBL * COUNT[9..0] == 05FH * SQ60 " 140-45 = 95 "
    + HBL * COUNT[9..0] == 083H * SQ50 ; " 176-45=131"
        " restart to position HWB in 'active line' only "
CNTRST = TRIGGER + RESTART ;
```


@INPUT VECTORS
[FSGO, HBL , HWB, EOL, EOF,
IDA7, IDA6, IDA5, IDA4, IDA3, IDA2, IDA1, IDA0,

INTRL, FB1, FBBID]

	[FBBID, RE1, RE2] JKFFS				
FBBLO	$=$	0	0	0	$\mathrm{~B} ;$

@STATE VECTORS

	[RQ2	RQ1	RQO]	JKFFS		" $===$ for WINACT $===$	
DUMMY2	$=$	0	0	0	B;		" 2nd dummy	read at window begin	
IDLODD	$=$	0	0	1	B;				
IDLEVN	=	0	1	0	B;			" display zones and	"
WINACT	=	0	1	1	B;			" window generation	"
RIBBON	=	1	0	0	B;				
FIRST	=	1	0	1	B ;			" read 1st tristate	"
SECOND	=	1	1	0	B;			" read 2nd tristate	"
LAST1	=	1	1	1	B;			" check for eof	"

@TRANSITIONS

" There is a pipeline delay until an eol or eof marker is detected. In that moment - as an eol marker is found - there are already initiated two more reads from FRAM,
i.e. the first two pixels of the next line are already read. These first two pixels of every line get lost.

At the begin of a frame buffer bank, i.e. for the first line, two pixels have to be thrown away artificially : an extra read at vertical window begin and excursing loop via dummy2.

If an end of field is indicated by a plain eof marker (no preceding eol, irregular case) there get two pixels lost, too.

If an end of field is indicated by a sequence of eol and eof marker (regular case) only one pixel gets lost.

WHILE [IDLEVN]
IF [FSGUP] THEN [DUMMY2] WITH [DUMREAD]
" for parity, throw first 2 pixel of Frame Buffer Bank away, "
" like first 2 pixel of other lines
WHILE [IDLODD]
IF [FSGDN] THEN [RIBBON]
IF [WAIT] THEN [IDLODD] WITH [NOREAD]
WHILE [DUMMY2]
IF []

THEN [RIBBON]
WHILE [RIBBON]

IF	[HSTARTU]	THEN	[FIRST]	WITH [READU]
IF	[HSTARTL]	THEN	[FIRST]	WITH [READL]
IF	[WAIT]	THEN	[RIBBON]	WITH [NOREAD]

" first, second : from issue a 'read' to FRAM to receiving related 'correct' data in PLD there is a pipeline delay of 2 clocks. Don't use these intermediate data.
Don't check for 'eol' or 'eof', as there is rubbish in pipe. "
\(\left.\begin{array}{rcclll}WHILE \& [FIRST]

IF \& []\end{array}\right]\)| | | | | |
| :--- | :--- | :--- | :--- | :--- |
| WHILE | [SECOND] | THEN | [SECOND] | |
| IF | [] | | | |
| | | | | |
| WHILE | [WINACT] | | | |
| IF | [EOLI] | THEN | [LAST1] | WITH [NOREAD] |
| IF | [EOLN1] | THEN | [LAST1] | WITH [NOREAD] |
| IF | [EOLN2U] | THEN | [LAST1] | WITH [FBBLO] |
| IF | [EOLN2L] | THEN | [LAST1] | WITH [FBBUP] |
| IF | [EOFODD2] | THEN | [IDLODD] | WITH [FBBLO] |
| IF | [EOFODD1] | THEN | [IDLEVN] | WITH [NOREAD] |
| IF | [EOFEVN] | THEN | [IDLEVN] | WITH [NOREAD] |

RREDD.EQN
" RREDD : insert red for MTV-red for menu overlay
U38 Also insert of blank level during CBN
PL22V10

@GROUPS
@TRUTHTABLE
@LOGIC EQUATIONS

```
BLACK [7..0] = 10H ;
RED [7..0] = B4H ; " 100% = EB, 75% = B4"
OUT[7..0] .D = VCTRL * /MTVRED * BLACK [7..0]
    + VCTRL * MTVRED * RED [7..0]
    + /VCTRL * /CBN * BLACK [7..0]
    +/VCTRL * CBN * RO [7..0] ;
OUT[7..0] .CLK
    = REDCLK ;
```

@INPUT VECTORS
@OUTPUT VECTORS
@StATE VECTORS
@TRANSITIONS

" CASTLD	
$==========$	generation of SANDCASTLE timing for
U26	TDA4686, and sync signals for
PLC42VA12	RGB monitor output

TASK
$====$ castl gets - horizontal sync/blanking - active high
(leading edge is used as timing reference) and - vertical syncs : VSENC and VSLong)
castl delivers :

- combined vertical and horizontal blanking as CBLANK
- sandcastle HCLAMP signal,
to construct externally 'analog' sandcastle pulse
- horizontal sync HSYCM and vertical sync VSYNCM for RGB monitor timing, both selectable in polarity castl counts horizontally with CLKMTV, half the pixel rate

CONTROL PARAMETER

```
=================
```

 COSY (SORT3)
 1 : HSYNCM is Composite Sync for Monitor, like CBLANK
0 : horizontal and vertical sync on separate wires
POLH (SORT6) \# hsP : select polarity of HSYNCM for monitor 1 : positive sync pulse 0 : negative sync pulse

POLV (SORT7) \# vsP : select polarity of VSYNCM for monitor 1 : positive sync pulse 0 : negative sync pulse

Concept :
$=========\quad 5$ bit counter and
2 bit statemachine (blank, clamp)
HSENC triggers counter:
enable counting
begin H blanking
reset counter
count 2
(48 pixclk): then
begin H sync begin H clamp

HSYNCM is copy of internal horizontal sync timing VSYNCM is copy of selected vSLong (10 lines) timing CBLANK is 'or' of VSLong and Hblank

@GROUPS
@TRUTHTABLE
@LOGIC EQUATIONS

@INPUT VECTORS

	[HSENC,	CNT08,	CNT24,	CNT48,	CNT60]	
SYNC	$=$	1	-	-	-	1	$\mathrm{~B} ;$
C08	$=$	-	1	-	-	-	$\mathrm{B} ;$
C24	$=$	-	-	1	-	-	$\mathrm{B} ;$
C48	$=$	-	-	-	1	-	$\mathrm{B} ;$
C60	$=$	-	-	-	-	1	$\mathrm{~B} ;$
HOLD	$=$	0	-	-	-	1	$\mathrm{~B} ;$

@OUTPUT	VECTORS			
	[CNTRST,	CNTHLD	1
RESTART	$=$	1	0	B
STOP	$=$	0	1	B
GO	=	0	0	B

@STATE VECTORS

[HQ1,	HQO]
IDLE	$=$	0	0
$\mathrm{~B} ;$			
BLK1	$=$	0	1
$\mathrm{~B} ;$			
CLAMP	$=$	1	1
$\mathrm{~B} ;$			
BLK2	$=$	1	0
B;			

@TRANSITIONS					
WHILE	[IDLE]				
IF	[C60]	WITH	[STOP]	THEN	[IDLE]
IF	[HOLD]	WITH	[STOP]	THEN	[IDLE]
IF	[SYNC]	WITH	[GO]	THEN	[BLK1]
WHILE [BLK1]					
IF	[C60]	WITH	[RESTART]	THEN	[BLK1]
IF	[C48]			THEN	[CLAMP]
WHILE [CLAMP]					
IF	[C60]	WITH	[RESTART]	THEN	[CLAMP]
IF	[C24]			THEN	[BLK2]
WHILE [BLK2]					
IF	[C60]	WITH	[RESTART]	THEN	[BLK2]
IF	[C08]			THEN	[IDLE]

Crystal specifications

The Philips line of digital decoders requires crystals which meet specific specifications. Picking a crystal vendor solely on the basis of frequency will not guarantee satisfactory performance.

Operational failures that could be related to crystal dysfunction are:

1. Inability to achieve line lock (horizontal lock)
2. Inability to achieve chroma lock
3. Slowness of lock acquisition.

The crystal specifications are:

Nominal frequency:	26.800000 MHz (square pixel decoders)
	24.576000 MHz (CCIR decoders)
Load capacitance $\mathrm{C}_{\mathrm{I}}:$	8 pf
Adjustment toierance:	$\pm 40 \mathrm{ppm}$
Resonance resistance $\mathrm{R}_{\mathrm{r}}:$	50Ω (square pixel)
	60Ω (CCIR)
Drive level dependency:	80Ω
Motional capacitance $\mathrm{C}_{1}:$	1.1 fF (square pixel)
	1.0 fF (CCIR)
Parallel capacitance $\mathrm{C}_{0}:$	3.5 pF (square pixel)
	3.3 pF (CCIR)
Temperature range $\mathrm{T}_{0}:$	0 to $70^{\circ} \mathrm{Celsius}$
Frequency stability:	$\pm 20 \mathrm{ppm}$

The Philips part numbers for these crystals are:
992252030004 for the square pixel systems (26.800000 MHz)
992252030009 for the CCIR system (24.576000 MHz)
The Philips crystals can be obtained from:
Philips Components Passive Group, phone: (803) 772-2500
The crystals are also available from Ecliptek. Their part numbers are:
ECX-2194-26.800MHz and

ECX-2097-24.576MHz
Ecliptek can be reached at (714) 433-1200. The contact sales representative is Rodney Mills.

TDA8708 black level and gain modulation circuit

Author: Herb Kniess

The Philips TDA8708 8-bit AVD converter digitizes video signals and contains black level and automatic gain control circuits. The binary levels for sync and black are internally fixed in the device. Sync tip is maintained at 00 H and black level is maintained at 40 H . It may be desirable to allow manual override of these automatic features. The following circuit describes a method for overriding the automatic features of the TDAB708 as well as retaining them.

MANUAL GAIN CONTROL

Normal operation and connections of the TDA8708 are shown on page 2 of the schematic when it is used in conjunction with the Philips SAA71XX series Digital Video Decoders. The only changes to the normal circuit are made through connections labeled "Black" and "Gain." Normally, a capacitor is connected to ground at Pin 25 of the data converter. This capacitor holds a charge dependent on the level of the input video signal and the control voltage necessary at Pin 25 to maintain sync level of 00 H . Currents near 50-100 microamps are generated within the converter during horizontal blanking times to charge or discharge the capacitor as necessary, in order to maintain the preset binary output levels of the converter. The voltage on Pin 25 controls the gain of the input amplifier of the converter.
A similar circuit and current source is implemented on Pin 24. However, its only function is to provide the proper DC offset voltage necessary to maintain the black level at 40 H regardess of changes of input signals or bias changes on input pins 16,17, or 18.

Under normal operation, the data converter binary outputs are maintained at precise digital values.

Page 1 of the application schematic shows that the gain connection to Pin 5 of the TDA8708 is connected to capacitor C1 via an analog switch at U2. During horizontal blanking time the analog switch maintains a connection from Pin 25 of the converter to capacitor. Thus, sync levels are maintained via the automatic circuits in the converter. However, if necessary, the control voltage on Pin 25 can be switched to the input voltage at Pin 12 of analog U2 switch during the active video time of each scan line. DAC7 of U1 and bias resistors R1, R2, and R3 provide a variable control voltage for manual control of gain only during the active video portion of the scan line.

The bandwidth of the control voltage on Pin 25 of the converter can be as high as 5 Mhz so that a precise match of the timing of the gain change is possible at the beginning and ending of blanking times. Noise on the gain control pin must be kept to a minimum in order to avoid AM modulation of the input video signal. The digital decoder can be reprogrammed to adjust the timing of the HCL and HSY timing signals to carefully match the timing diagram of page 1 of the schematic. Refer to the TDA8708 data sheet for a discussion of the operation of these signals in the TDA8708. Do not worry that the modified positions of the HSY and HCL signals might affect the operation of the converter. They will not because the change in position is small compared to the overall width of the pulses. For optimum performance, the beginning and ending of the
gate signal at Pins 5 and 6 of U3 should be set within the minimum blanking time of any signal being digitized.

BLACK LEVEL CONTROL

Analog switch U2 provides another function besides control of the gain voltage at Pin 25 of the TDA8708 converter. It can be switched to inject a DC puise on Pin 4 to R15 at Pin 19 of the data converter. Pin 19 is the video output of the input amplifier of the TDA8708. It is nominally about 1V PP. If a DC pulse is added to the video signal at R15 during active video time, the DC level between blanking and active video can be modified. The data converter still provides a constant black level of 40 H during blanking time but the data converter can produce other levels for black during active video depending on the polarity and level of the injected signal. DAC6 and bias resistors R6, R4, and R5 provide a variable bias at Pin 5 of U2, which is gated onto the video signal by gate pulse at Pin 3 of U5.
It is desirable to inhibit the modulation of black and gain signals during the vertical sync area so that proper integration of the vertical sync will be maintained by processing circuits. This is accomplished by VSYNC INHIBIT at Pin 11 of U5. Additional control functions are provided by logic levels of DAC5 and DAC4, which turn on and off the black level and gain modification signals at U2. It should be noted that different bias resistors can be selected on DAC7 and DAC6 pins to affect the allowable range of control but the DAC full range of 00 H to 3 FH should be used in order to give the finest degree of control.

$\varepsilon 661!\mu \mathrm{d} v$

TDA9141 analog decoder application

Author: George Ellis

OVERVIEW

Analog solutions for video decoding and digitization are available in addition to the digital methods mentioned elsewhere in this book. The individual components are generally of lower cost; however, trade-offs with regard to the total number of components to perform a specific function must be considered.

SYSTEM CONFIGURATION

This application is divided into four blocks: 1. Analog video to analog YUV decoding
2. A/D converter with clock and support circuitry
3. Level control circuit for block 2
4. Optional RGB output block

Various elements of this application need not be used if not called for by the application. The intent here is to demonstrate a full featured solution.

DECODER

Composite, S-video, or analog RGB can be input to the Philips TDA9141 multi-standard decoder. This device, in conjunction with the TDA4661 delay line, will decode the NTSC, Pal and Secam standards, and output them as analog Y (luma) and UV (chroma) outputs. The luma-to-chroma delay is matched; therefore, no luminance delay line is necessary. If NTSC is desired exclusively, the TDA4661 delay line need not be used.

The delay line is used as a chroma comb filter for NTSC, and although not strictly required, it does reduce undesirable cross-color effects. Note that unlike older delay lines that work in the subcarrier base-band, the TDA4661 works in the demodulated UV color-difference band, and is implemented with charged-coupled technology instead of using a bulky glass delay line.
Optional color transient improvement and peaking can be applied to the YUV signal by use of the TDA4670; again, this may be deleted in a no-frills application.

Two comparators are used to extract horizontal blanking and clamp signals from the sandcastle pulse generated by the TDA9141, and are used for the A/D converters. The TDA9141 also outputs a line-locked 6.75 MHz clock that is used in the conversion process.
The decoder and color transient device are controlled via the IIC two-line interface bus. The decoder can be programmed for automatic detection of the three video standards.

A/D CONVERSION AND CLOCK

The analog Y, U, and V signals are applied as AC coupled inputs to three TDA8709 A/D converters. Gain controls for all three converters and a black level control for the Y converter are provided by the level control block.

The Clamp Select pin (pin 27) is set to adjust the $D C$ level of the U and V converters to a value corresponding to decimal value 128 during the application of the positive clamp pulse derived from the decoder block. The Clamp Select pin of the Y converter is set to force the DC input level to correspond to a value of decimal 16. This sets the converters to the appropriate digital value during blanking.

Each converter is capable of selecting one of three inputs applied, and a simple low-pass filter is inserted between the selected signal and the A/D input to remove any possible high frequency noise that could cause aliasing effects.

The 6.75 MHz clock from the TDA9141 is a low level sawtooth with an amplitude of about 1 Vpp . This signal is very similar to the LFCO signal available from the digital chip decoders, thereby making it possible to generate $13.5 \mathrm{MHz}, 27 \mathrm{MHz}$, and CREF signals using the same device as that used by the digital chip set, the SAA7197.

The UV bandwidth is one half the 13.5 MHz luma bandwidth, therefore, the 13.5 MHz clock is divided by two. The 13.5 MHz signal and the CREF signal are delayed to match the delay introduced in producing the 6.75 clock.

The 6.75 clock is used for the conversion process of the U and V converters and for the multiplexers that follow. This results in one UV pair for every two luminance samples. The outputs of the multiplexers and the luma A/D converter are latched with D flip-flops using the 13.5 clock.

The resulting digital format is the 16 bit 4:2:2 format used by various digital systems, including the Philips video scaler (SAA7186) and encoder (SAA7199B). This is also an efficient storage mode for video as it uses 16 bit wide memory structures instead of 24.

A new triple input YUV A/D converter has been added to the Philips line, the TDA8758, which outputs the 4:2:2 format; however, it will not be available until the end of 1993, and therefore has not been included in the handbook.

LEVEL CONTROL

An IIC controllable level control circuit is achieved using a TDA8444 6-bit octal DAC to produce DC control of the gain control inputs of the data converters. A fourth DAC output is gated to be applied only during blanking, and is added to the Y input signal to produce a $D C$ offset of the luma signal, thus allowing control over the black level. These DC levels could as easily be derived from resistors instead of the DAC, for use in systems that have these parameters preset at the factory.

RGB OUTPUT AND YUV BUFFER STAGE

If YUV to RGB conversion is necessary for output to a monitor or for RGB digitizing, the TDA4686 is useful. This device has a YUV to RGB analog matrix with two additional RGB inputs that can be switched in at a pixel-by-pixel rate.

The circuit shown here will drive an analog RGB monitor with 75Ω loading. It may also be used to drive the inputs of three RGB digitizing A/D converters (same circuit as the Y converter, times three). Because the TDA4686 has brightness, contrast, and saturation controls via IIC bus, the input circuit previously described would not be necessary, as all gain and black level adjustments can be made with the TDA4686.

If YUV analog component video output is desired, the YUV levels that are input to the TDA4686 can be buffered by high speed op amps to drive 75Ω loads. For component video, the output levels are set to .7 Vpp for full scale U, V, and non-composite $Y(Y$ without sync) driven into 75Ω. A series resistor is needed to match the cable impedance and the driven device would have a 75Ω termination load. This requires that the gain of the op amps be set such that full scale output is 1.4 Vpp before the series matching resistor.

SUMMARY

Full featured desktop video solutions can generally be met with far fewer parts if a digital chip set is used. This is due to the fact that these digital solutions were designed for this market, where the analog methods were originally designed for consumer (TV) applications where there is no requirement for digitization and data format. There are, however, many low end applications where various portions of this application could be useful.

TDA9141 analog decoder application

TDA9141 analog decoder application

Digital video evaluation board

Author: George Ellis

OVERVIEW

In order to individually evaluate the Philips digital video encoding and video DAC systems, the SAA7199B and SAA7165 (SAA9065) chips, respectively, a demo board was developed that is capable of receiving digital data from a broadcast quality video test generator.
This board receives input in the D1 digital video format, converts the data to the 16 bit 422 data format used by the Philips system, and produces the clocks and sync signals necessary to drive the encoder and video DAC. The board generates analog composite video and S -video using the SAA7199B digital encoder, and it produces analog YUV ($\mathrm{Y}, \mathrm{Cb}, \mathrm{Cr}$) using the SAA7165. It also converts the analog YUV into analog RGB using the TDA4686, thus demonstrating a complete digital-to-analog video output solution.

D1 DIGITAL VIDEO FORMAT

D1 digital video (parallel mode) is an industry standard used to transfer video without any loss of quality. Being digital in nature, this signal can be duplicated indefinitely, and therefore is used in many broadcast production facilities.
D1 is transferred as a nine-pair (8 bit D1) or as an eleven-pair (10 bit D1) ECL cable configuration; the 8 bit D1 format is used for this demo board.
Upon input to the demo board, these signals are converted to TTL levels consisting of 8 data bits and one 27 MHz clock stream.

The luminance (Y) and chrominance (Cb, Cr) are multiplexed onto the 8 bit data path in the order: Cb, Y, Cr, Y, etc. (see Figure 1). For each two clock cycles, one luminance and one of the two chrominance signals are transmitted. This is the same luminance and chrominance data bandwidth used by the Philips chip set, with the exception that it is multiplexed.
De-multiplexing the luma and chroma data produces 8 bit data paths each for luminance and chrominance, clocked at a 13.5 MHz clock rate. There is now one luma byte delivered for each 13.5 MHz clock and one pair of chroma axis bytes for every two clock intervals; this is exactly the data format required by the digital chip set.

The D1 format also inserts markers into the data path that define the beginning and end of active video. These markers consist of 4 hex bytes: FF, $00,00, \mathrm{XY}$. The series, FF 00 00 is used to initiate the start or end of active video and to latch the $X Y$ byte information.

The XY byte contains three bits that define the following (see Figure 2):

- End or Start of Horizontal Blanking
- End or Start of Vertical Blanking
- Field 1 or Field 2 Status.

Although horizontal and vertical sync are not included in these codes, their relation to the blanking signals is known, and they can be reconstructed.

BOARD DESCRIPTION

Reference to sheet one of the schematic shows that the demo board consists of four subsections:

- ECL translation and power regulation
- D1 to 422 demultiplexing
- Digital YUV to analog composite encoding
- Digital YUV to analog YUV and analog RGB conversion.

ECL Translation

Sheet two shows the D1 signal input at connector P1 as eight pairs of data and one pair of clock lines. These lines are terminated through 470Ω resistors to -5 VDC and are converted from differential ECL data into ground referenced TTL data (U32-U34).

Standard three terminal regulators are used to convert unregulated positive and negative 9 volt inputs to regulated positive 5 VDC
(Vcc), negative 5 VDC and positive 8 VDC. Bypass caps are shown and are distributed throughout the board.

U51 is a programmable microcontroller that will initialize the appropriate devices upon power up by use of the Philips ${ }^{2} \mathrm{C}$ interface. $1^{2} \mathrm{C}$ programming can also be performed over the $\mathrm{I}^{2} \mathrm{C}$ bus via external connectors (JP4 and JP5 shown on sheet 5).

D1 to 422 Demux

The 8 data lines enter buffer U31 on sheet 3 and are clocked sequentially through U12, U 13 , and U 14 at a 27 MHz clock rate. If a byte value of FF is detected at U26 at the output of U14, and if data byte values of 00 are detected by U5A and U5B at the outputs of U13 and U12, the coincidence of these signals latches the contents of bits TL6, TL5, and TL4 into U15. These signals are reclocked at a 13.5 MHz rate and are output by U17 and U6B as HREF (horizontal blanking), vertical blanking, and field ID.
The 27 MHz clock is divided in half by U27A and buffered by U7. Counters U8 and U9 are loaded to a preset by HREF and clocked by the 27 MHz clock to produce a horizontal sync reset pulse at the output of U22A.

The 8 bits of multiplexed YUV data are duplicated into two identical buses. One bus (to be demuxed as Y) is connected to the A1-D1 inputs of U20 and U18, the other bus (to be demuxed as UV) is connected to the A2-D2 inputs of U19 and U21. The outputs of all four of the demux devices are returned to the alternate inputs of the same device, QA-QD of U20 and U18 are returned to the corresponding A2-D2 inputs, and QA-QD of U 19 and U21 are returned to the corresponding A1-D1 inputs. All four devices are clocked at the same 27 MHz rate, and the WS (write strobe) is supplied with a common 13 MHz clock. Due to the reversal of the input arrangement, the write strobe in one case will latch the Y data, and in the other case will latch the UV data. The data output from U18-U21 actually changes at a 13.5 MHz rate due to the feedback of the data and the 13.5 MHz write strobe. This data is latched and buffered by U24 for Y and U23 for UV. These two devices can also be tristated in the case it is desired to input alternative data from connector JP1. This tristate is controlled by jumper JP3.

Digital YUV to Analog Composite Encoding

The 16 bits of demuxed Y and UV are input to the data ports of the SAA7199 digital encoder. The device is supplied with a 13.5 MHz pixel clock, HREF for blanking, HS for horizontal reset, and Field ID for vertical reset. The TSG422 generator does not output interlaced vertical blanking, the generator produces vertical blanking at the beginning of line 263 , as opposed to starting midway between lines 262 and 263, as is the case in analog video. The SAA7199B needs only to be reset vertically once to place it in the proper field sequence; the device will then create the proper vertical synchronization. That being the case, field ID is used to reset the device vertically for the first field, and the SAA7199 calculates and correctly produces the interlaced vertical interval between field 1 and 2.

The signal CLK_13 is used both to latch the data (via the LDV pin) and, after a delay period produced by U47A and U47B, is applied to the CLKIN and LLC pins. The delay is to ensure that latching the data and clocking it do not occur simultaneously.

The SAA7199B simultaneously outputs composite video and S -video (separate luminance and chrominance). Output filters are applied to these outputs to low pass any residual clock energy and to provide $\sin (\mathrm{X}) / \mathrm{X}$ correction. The output of the composite filter is buffered; this allows for driving long cable lengths without effecting the output filter characteristics.

Digital video evaluation board

U54, Q4, and Q5 strip and buffer sync from the luminance portion of the S-video output. This composite sync is used for the analog YUV and RGB that is produced by the SAA7165 and TDA4686 devices (described in the next section). The position of this sync relative to the active YUV (RGB) signals is programmable via the SAA7199B.

The SAA7199B is programmed to run in slave mode with YUV as the input format. The following chart lists the complete register settings for initializing the encoder:

SUB ADDR	DATA
SAA7199B	
00	AE
01	00
02	00
03	00
04	44
05	30
06	52
07	30
08	10
09	00
OA	00
$O B$	00
$O C$	A6
OD	00
$O E$	$0 D$

These registers are programmed via the $I^{2} \mathrm{C}$ bus, either by the microcontroller or the $\mathrm{I}^{2} \mathrm{C}$ interface connectors JP4 or JP5.

Note that the encoder has both digital (Vcc) and analog (AVcc) power connections. AVcc is produced from Vcc by the filter network comprised of L4, C64, C65, and C67.

Digital YUV to Analog YUV and RGB conversion

Sheet five indicates the data buses $\mathrm{Y}[0 . .7]$ and $\mathrm{UV}[0 . .7]$ input to U 53 in parallel with the outputs of U38 and U38 tristate buffers. These buffers, in conjunction with U23 and U24 (sheet 3) and the signal D1SEL set by jumper JP3, select the input to the SAA7165 (and the SAA7199B) to be either the
demuxed D1 data (JP3 shorted) or the data input from connector JP1 (JP3 open). An example of data that could be input to the demo board at JP1 is the data stream from the Philips digital decoder (SAA7151B, SAA7191B, or SAA7194(6)). The sync and clock signals from the decoder are input at connector JP2.

Connectors JP2 and JP1 are oriented such that the D1 demo board may be connected directly above the Philips DTV7199 demo board. JP2 connects to JP10 of the DTV7199 and JP1 connects to JP14 of the DTV7199. The same mechanical relation exists between the pair of connectors.

The SAA7165 also receives the 13.5 MHz clock and HREF signals to clock and blank the conversion process.

The video DAC outputs analog Y, U, and V on separate outputs. The polarity of the U and V signals is controllable in software for flexibility with all systems. The SAA7165 also provides controllable color transient improvement. The analog YUV signals are buffered by U42-U44 to provide 7 Vpp signals (full scale video) into a 75Ω terminated load.

As with the SAA7199B, the SAA7165 has both digital (Vcc) and analog (Vcc_ANA). This separation if effected by L2, C22, and C23.

The YUV outputs are also fed to the inputs of the TDA4686 via resistor netiworks to provide the proper voltage range to the TDA4686. This device requires a full scale Y input of 45 Vpp , U input is 1.33 Vpp full scale, and V is 1.05 Vpp full scale.

The TDA4686 has an analog YUV to RGB matrix with software control of contrast, brightness, and saturation via the $\mathrm{I}^{2} \mathrm{C}$ bus.

The TDA4686 requires a two-level timing signal called 'sandcastle' to initiate certain internal processes. This signal is synthesized by U40A, U45A, U46A, and U45B from vertical sync and HREF. HREF is delayed in this circuit to compensate for the pipeline delay of the video through the SAA7165.

The output of the TDA4686 are fed to a modified emitter follower circuit that ensures the proper DC blanking levels and drives 75Ω loads. The default register setting
provided by the microcontroller set RGB levels to 7 Vpp (full scale).
The default register settings are:

SUB ADDR	DATA
SAA7165*	
01	04
02	85
03	3B
TDA4686	
00	09
01	30
02	27
03	19
04	1 F
05	1F
06	1F
07	1F
08	1F
09	1F
OA	3 F
OB	00
0 C	80
OD	1A
here is no sub A7165.	for the

JP4 and JP5 are connected in parallel to allow daisy chaining of the $I^{2} \mathrm{C}$ cables to facilitate a multiple board configuration. Because the state of the $I^{2} \mathrm{C}$ bus is not necessarily known upon reset, the $\mathrm{I}^{2} \mathrm{C}$ interface should be disconnected when resetting the board via the microcontroller.

The subaddress settings given are suggested initial values; consult the individual data sheets to manipulate the user-adjustable controls such as contrast, brightness, aperture control, color transient improvement settings, etc.

Performance tests of the SAA7199B using the Tektronix VM700A. Video Measurement Test Set were made using the D1 demo Board, and results published in a document titled "SAA7199 Performance Measurements." This document is published as a separate data sheet.

Digital video evaluation board

Samples
 8 bits of luminance

PHILIPS FORMAT 13.5 MHz

$$
\begin{aligned}
& \mathrm{U}=\mathrm{Cb} \\
& \mathrm{~V}=\mathrm{Cr}
\end{aligned}
$$

Figure 1. Data Format Comparison

Figure 2. Active Video Markers for D1 Video

Digital video evaluation board

CVBS output filter for SAA7199B encoder

Author: George Ellis

OVERVIEW

Peak performance of the SAA7199B can be obtained by the use of an output filter connected between the CVBS output of the device and the output connector. This filter provides $\sin (x) / x$ equalization for the CVBS (composite video) signal.

THEORY

$\operatorname{Sin}(x) / x$ attenuation occurs with all DACs (digital-to-analog convertors) due to the sampling clock. This attenuation increases as the output frequency of the DAC increases and reaches total attenuation when the DAC output is equal to the sample frequency (see Figure 1.)
Another result of clocking the DAC is the creation of energy which is centered at multiples of the sample frequency f_{s} and has a bandwidth of $2\left(f_{s}-f_{v}\right)$, where f_{v} is the highest frequency of the output signal (see Figure 2). This non-baseband energy is referred to as 'aliasing', and if f_{s} is less than twice the frequency of f_{v}, this aliasing will extend into the baseband signal. This is not desirable because it produces visible corruption of the video signal.
The requirements of the filter, therefore, are that 1) it provides sufficient attenuation at frequencies above f_{v} and 2) it applies the appropriate inverse $\sin (x) / x$ boost at frequencies below f_{v}. Figure 3 shows an example of this filter requirement as a graph of gain versus frequency.

THE FILTER

The filter is illustrated in Figure 4. It is a modified low pass filter with components added to provide $\sin (x) / x$ equalization (C1, L1, and R2). $\operatorname{Sin}(x) / x$ attenuation is calculated by the formula
$A(x)=\frac{\sin \left(\pi f_{x} / f_{s}\right)}{\pi f_{x} / f_{s}}$
where f_{x} is the frequency in question. The number $\pi f_{x} / f_{s}$ is in radians, before calculating the sin. This number should be converted to degrees (there are 57.29 degrees per one radian).

In this case, attenuation was calculated for 3.58 MHz and 4.43 MHz , the color subcarrier frequencies for NTSC and Pal, respectively.

$$
\begin{aligned}
& \mathrm{A}(3.58 \mathrm{MHz})=.881 \\
& \mathrm{~A}(4.43 \mathrm{MHz})=.834
\end{aligned}
$$

The attenuation in decibels can be calculated from the formula:

$$
\mathrm{dB}=20 \log (\mathrm{~A}(\mathrm{x}))
$$

This gives a value of -1.04 dB down for 3.58 MHz and a value of -1.57 dB down for 4.433 MHz . The filter, therefore, must provide a boost of 1.04 dB at 3.58 MHz , and of 1.57 dB at 4.433 MHz .

Figure 5 is a plot of the filter ranging from 1 MHz to 100 MHz and from 0 dB to -50 dB down, and Figure 6 shows the same
frequency spread and a gain range from 0 dB to -20 dB to better illustrate the $\sin (\mathrm{x}) / \mathrm{x}$ correction.

Starting with a gain value of -6 dB (as would be expected for the 50% DC signal drop across the termination resistor), it can be seen that at a frequency of 3.58 MHz the gain is -5 dB , and at 4.43 MHz the gain is -4.5 dB , a boost of 1 dB and 1.5 dB , respectively, as required (see Figure 6). Figure 5 shows an attenuation of -22 dB at $8 \mathrm{MHz},-40 \mathrm{~dB}$ at 9 MHz , and a value of -43 dB at 13 MHz (the clock frequency).

Many different filters can be made to meet the $\sin (x) / x$ requirement. This filter was chosen to provide augmentation up through the Pal subcarrier region. A filter with a cutoff at lower frequencies could be designed for use with NTSC only. This filter was also chosen for economic reasons, and more expensive filters could certainly be designed with improved performance. This filter was found to have a good performance to cost ratio and can be made from standard component values and 5% tolerance parts.

If large capacitive loads are expected to be encountered, it may be desirable to buffer the output filter with a high speed op amp. If this is the case, the filter should be terminated with a 75Ω load at the input of the op amp. The op amp should be operated in non-inverting mode with a gain of two.

CVBS output filter for SAA7199B encoder

Figure 1. Attenuation

Figure 2. Response

Figure 3. Example of Filter Requirement

2-159

CVBS output filter for SAA7199B encoder

Figure 4. CVBS Output Filter

SAA1101 sync generator application

LOCK TO SUBCARRIER

The SAA1101 can be configured to run in a mode in which the output pulses are locked to a subcarrier signal that is either internally generated (as shown here), or can be applied as an AC coupled, low level input to pin 1.

The internal clock oscillator is used here with the frequency selected to be 2.517482 MHz (CS0 and CS1 = 0). Remember that for different choices of oscillator frequency, the LC values of the tank circuit (L1 and C11) will change accordingly.

The NTSCl system is selected in this example; all outputs are active HIGH (see waveforms shown in data sheets).

LOCK TO EXTERNAL COMPOSITE SYNC

This schematic illustrates a lock to external sync application that uses an external PLL to generate a clock that is optimized for stability. Monostables are added to the reference and variable phase detector inputs to allow offsetting the sync outputs with respect to the composite sync input signal.

As above, the NTSC1 standard and 2.517482 MHz clock are selected. The use of an external PLL (the HC4046) along with optimized loop filters and stable discrete components, produces a very stable clock (5 percent, or better, resistors and COG capacitors are recommended).
The lock mode selection is not critical in this
application because the internal oscillator is not used; LM0 and LM1 are grounded for convenience. The subcarrier input at pin 1 is used as an inverter for the output of the sync stripper before it is fed to the ESC input (pin 11), which requires an active HIGH signal.

Either pot R4 or pot R8 will move the generated sync output relative to sync in, therefore, only one need be adjustable. Pot R11 is used to adjust the oscillator free-run frequency. R10, pot R11, and C9 must be temperature stable parts for oscillator frequency stability over temperature.

The outputs of the SAA1101 are active HIGH signals which can directly drive inverting buffers for use as conventional active LOW drivers.

The $I^{2} \mathrm{C}$-bus and how to use it (including specification)

1.0 THE I2C-BUS BENEFITS DESIGNERS AND
 MANUFACTURERS

In consumer electronics, telecommunications and industrial electronics, there are often many similarities between seemingly unrelated designs. For example, nearly every system includes:

- Some intelligent control, usually a single-chip microcontroller
- General-purpose circuits like LCD drivers, remote I/O ports, RAM, EEPROM, or data converters
- Application-oriented circuits such as digital tuning and signal processing circuits for radio and video systems, or DTMF generators for telephones with tone dialling

To exploit these similarities to the benefit of both systems designers and equipment manufacturers, as well as to maximize hardware efficiency and circuit simplicity, Philips developed a simple bidirectional 2 -wire bus for efficient inter-IC control. This bus is called the Inter IC or $1^{2} \mathrm{C}$-bus. At present, Philips' IC range inciudes more than 150 CMOS and bipolar ${ }^{2} \mathrm{C}$-bus compatible types for performing functions in all three of the previously mentioned categories. All $1^{2} \mathrm{C}$-bus compatible devices incorporate an on-chip interface which allows them to communicate directly with each other via the $1^{2} \mathrm{C}$-bus. This design concept solves the many interfacing problems encountered when designing digital control circuits.
Here are some of the features of the $\mathrm{I}^{2} \mathrm{C}$-bus:

- Only two bus lines are required; a serial data line (SDA) and a serial clock line (SCL)
- Each device connected to the bus is software addressable by a unique address and simple master/ slave relationships exist at all times; masters can operate as master-transmitters or as master-receivers
- It's a true multi-master bus including collision detection and arbitration to prevent data corruption if two or more masters simultaneously initiate data transfer
- Serial, 8 -bit oriented, bidirectional data transfers can be made at up to $100 \mathrm{kbit} / \mathrm{s}$ in the standard mode or up to $400 \mathrm{kbit} / \mathrm{s}$ in the fast mode
- On-chip filtering rejects spikes on the bus
data line to preserve data integrity
- The number of ICs that can be connected to the same bus is limited only by a maximum bus capacitance of 400 pF

Figure 1 shows two examples of $\left.\right|^{2} \mathrm{C}$-bus applications.

1.1 Designer Benefits

$1^{2} \mathrm{C}$-bus compatible ICs allow a system design to rapidly progress directly from a functional block diagram to a prototype. Moreover, since they 'clip' directly onto the ${ }^{2} \mathrm{C}$-bus without any additional external interfacing, they allow a prototype system to be modified or upgraded simply by 'Clipping' or 'unclipping' ICs to or from the bus.

Here are some of the features of $1^{2} \mathrm{C}$-bus compatible ICs which are particularly attractive to designers:

- Functional blocks on the block diagram correspond with the actual ICs; designs proceed rapidly from block diagram to final schematic
- No need to design bus interfaces because the $\mathrm{I}^{2} \mathrm{C}$-bus interface is already integrated on-chip
- Integrated addressing and data-transfer protocol allow systems to be completely software-defined
- The same IC types can often be used in many different applications
- Design-time reduces as designers quickly become familiar with the frequently used functional blocks represented by ${ }^{2} \mathrm{C}$-bus compatible ICs
- ICs can be added to or removed from a system without affecting any other circuits on the bus
- Fault diagnosis and debugging are simple; malfunctions can be immediately traced
- Software development time can be reduced by assembling a library of reusable software modules.

In addition to these advantages, the CMOS ICs in the $I^{2} \mathrm{C}$-bus compatible range offer designers special features which are particularly attractive for portable equipment and battery-backed systems.
They all have:

- Extremely low current consumption
- High noise immunity
- Wide supply voltage range
- Wide operating temperature range.

1.2 Manufacturer benefits

$1^{2} \mathrm{C}$-bus compatible ICs don't only assist designers, they also give a wide range of benefits to equipment manufacturers because:

- The simple 2 -wire serial $1^{2} \mathrm{C}$-bus minimizes interconnections so ICs have fewer pins and there are not so many PCB tracks; result - smaller and less expensive PCBs
- The completely integrated ${ }^{2} \mathrm{C}$-bus protocol eliminates the need for address decoders and other 'glue logic'
- The multi-master capability of the $\mathrm{I}^{2} \mathrm{C}$-bus allows rapid testing and alignment of end-user equipment via external connections to an assembly-line computer
- The availability of $\mathrm{I}^{2} \mathrm{C}$-bus compatible ICs in SO (small outline), VSO (very small outline) as well as DIL packages reduces space requirements even more.

These are just some of the benefits. In addition, $\mathrm{I}^{2} \mathrm{C}$-bus compatible ICs increase system design flexibility by allowing simple construction of equipment variants and easy upgrading to keep designs up-to-date. In this way, an entire family of equipment can be developed around a basic model. Upgrades for new equipment, or enhanced-feature models (i.e. extended memory, remote control, etc.) can then be produced simply by clipping the appropriate ICs onto the bus. If a larger ROM is needed, it's simply a matter of selecting a microcontroller with a larger ROM from our comprehensive range. As new ICs supersede older ones, it's easy to add new features to equipment or to increase its performance by simply unclipping the outdated IC from the bus and clipping on its successor.

1.3 The ACCESS.bus

Another attractive feature of the $\mathrm{I}^{2} \mathrm{C}$-bus for designers and manufacturers is that its simple 2 -wire nature and capability of software addressing make it an ideal platform for the ACCESS.bus (Fig.2). This is a lower-cost alternative for an RS-232C interface for connecting peripherais to a host computer via a simple 4-pin connector (see Section 19).

The ${ }^{2} \mathrm{C}$-bus and how to use it (including specification)

Figure 1. Two Examples of $\mathrm{I}^{2} \mathrm{C}$-Bus Applications: a) A High Performance Highly Integrated TV Set; b) Cellular Radio Chip Set

Table 1. Definition of $\mathrm{I}^{2} \mathrm{C}$-Bus Terminology

Term	Description
Transmitter	The device which sends the data to the bus
Receiver	The device which receives the data from the bus
Master	The device which initiates a transfer, generates clock signals and terminates a transfer
Slave	The device addressed by a master
Multi-master	More than one master can attempt to control the bus at the same time without corrupting the message
Arbitration	Procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed to do so and the message is not corrupted
Synchronization	Procedure to synchronize the clock signals of two or more devices

The ${ }^{2} \mathrm{C}$-bus and how to use it (including specification)

Figure 2. The ACCESS.bus - A Low-Cost Alternative to an RS-232C Interface

Figure 3. Examples of an $I^{2} \mathrm{C}$-Bus Configuration Using Two Microcontrollers

2.0 INTRODUCTION TO THE ${ }^{2} \mathrm{C}$-BUS SECIFICATION

For 8-bit digital control applications, such as those requiring microcontrollers, certain design criteria can be established:

- A complete system usually consists of at least one microcontroller and other peripheral devices such as memories and I/O expanders
- The cost of connecting the various devices within the system must be minimized
- A system that performs a control function doesn't require high-speed data transfer
- Overall efficiency depends on the devices chosen and the nature of the interconnecting bus structure.

In order to produce a system to satisty these criteria, a serial bus structure is needed. Although serial buses don't have the throughput capability of parallel buses, they do require less wiring and fewer IC connecting pins. However, a bus is not merely an interconnecting wire, it embodies all the formats and procedures for communication within the system.
Devices communicating with each other on a serial bus must have some form of protocol which avoids all possibilities of confusion, data loss and blockage of information. Fast devices must be able to communicate with slow devices. The system must not be dependent on the devices connected to it,
otherwise modifications or improvements would be impossible. A procedure has also to be devised to decide which device will be in control of the bus and when. And, if different devices with different clock speeds are connected to the bus, the bus clock source must be defined. All these criteria are involved in the specification of the $I^{2} \mathrm{C}$-bus.

3.0 THE ${ }^{2}$ C-BUS CONCEPT

The $I^{2} \mathrm{C}$-bus supports any IC fabrication process (NMOS, CMOS, bipolar). Two wires, serial data (SDA) and serial clock (SCL), cary information between the devices connected to the bus. Each device is recognised by a unique address - whether it's a microcontroller, LCD driver, memory or keyboard interface - and can operate as either a transmitter or receiver, depending on the function of the device. Obviously an LCD driver is only a receiver, whereas a memory can both receive and transmit data. In addition to transmitters and receivers, devices can also be considered as masters or slaves when performing data transfers (see Table 1). A master is the device which initiates a data transfer on the bus and generates the clock signals to permit that transfer. At that time, any device addressed is considered a slave.

The $I^{2} C$-bus is a multi-master bus. This means that more than one device capable of
controlling the bus can be connected to it. As masters are usually micro-controllers, let's consider the case of a data transfer between two microcontrollers connected to the $1^{2} \mathrm{C}$-bus (Fig.3). This highlights the master-slave and receiver-transmitter relationships to be found on the $\mathrm{I}^{2} \mathrm{C}$-bus. It should be noted that these relationships are
not permanent, but only depend on the direction of data transfer at that time. The transfer of data would proceed as follows:

1. Suppose microcontroller A wants to send information to microcontroller B:

- microcontroller A (master), addresses microcontroller B (slave)
- microcontroller A (master-transmitter), sends data to microcontroller B (slave-receiver)
- microcontroller A terminates the transfer.

2. If microcontroller A wants to receive information from microcontroller B:

- microcontroller A (master) addresses microcontroller B (slave)
- microcontroller A (master-receiver) receives data from microcontroller B (slave-transmitter)
- microcontroller A terminates the transfer.

Even in this case, the master (microcontroller A) generates the timing and terminates the transfer.
The possibility of connecting more than one microcontroller to the $\mathrm{I}^{2} \mathrm{C}$-bus means that

The $\mathrm{I}^{2} \mathrm{C}$-bus and how to use it (including specification)

more than one master could try to initiate a data transfer at the same time. To avoid the chaos that might ensue from such an event an arbitration procedure has been developed. This procedure relies on the wired-AND connection of all $1^{2} \mathrm{C}$ interfaces to the $\mathrm{I}^{2} \mathrm{C}$-bus.

If two or more masters try to put information onto the bus, the first to produce a 'one' when the other produces a 'zero' will lose the arbitration. The clock signals during arbitration are a synchronized combination of the clocks generated by the masters using the wired-AND connection to the SCL line (for more detailed information concerning arbitration see Section 7.0).
Generation of clock signals on the $I^{2} \mathrm{C}$-bus is always the responsibility of master devices; each master generates its own clock signals when transferring data on the bus. Bus clock signals from a master can only be altered when they are stretched by a slow-slave device holding-down the clock line, or by another master when arbitration occurs.

4.0 GENERAL
 CHARACTERISTICS

Both SDA and SCL are bidirectional lines, connected to a positive supply voltage via a pull-up resistor (see Fig.4). When the bus is free, both lines are HIGH. The output stages of devices connected to the bus must have an open-drain or open-collector in order to perform the wired-AND function. Data on the $1^{2} \mathrm{C}$-bus can be transferred at a rate up to $100 \mathrm{kbit} / \mathrm{s}$ in the standard-mode, or up to $400 \mathrm{kbit} / \mathrm{s}$ in the fast-mode. The number of interfaces connected to the bus is solely dependent on the bus capacitance limit of 400 pF.

5.0 BIT TRANSFER

Due to the variety of different technology devices (CMOS, NMOS, bipolar) which can be connected to the la ${ }^{2}$-bus, the levels of the logical ' 0 ' (LOW) and ' 1 ' (HIGH) are not fixed and depend on the associated level of $V_{D D}$ (see Section 15.0 for Electrical Specifications). One clock puise is generated for each data bit transferred.

5.1 Data Validity

The data on the SDA line must be stable
during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW (see Fig.5).

5.2 START and STOP Conditions

Within the procedure of the $\mathrm{I}^{2} \mathrm{C}$-bus, unique situations arise which are defined as START and STOP conditions (see Fig.6).
A HIGH to LOW transition on the SDA line while SCL is HIGH is one such unique case. This situation indicates a START condition.
A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition.
START and STOP conditions are always generated by the master. The bus is considered to be busy after the START condition. The bus is considered to be free again a certain time after the STOP condition. This bus free situation is specified in Section 15.0.

Detection of START and STOP conditions by devices connected to the bus is easy if they incorporate the necessary interfacing hardware. However, microcontrollers with no such interface have to sample the SDA line at least twice per clock period in order to sense the transition.

Figure 4. Connection of $I^{2} C$-Bus Devices to the $I^{2} C$-Bus

Figure 5. Bit Transfer on the $\mathrm{I}^{2} \mathrm{C}$-Bus

Figure 6. START and STOP Conditions

The $\mathrm{I}^{2} \mathrm{C}$-bus and how to use it

 (including specification)

Figure 7. Data Transfer on the $\mathrm{I}^{2} \mathrm{C}$-Bus

Figure 8. Acknowledge on the $\mathrm{I}^{2} \mathrm{C}$-Bus

Figure 9. Clock Synchronization During the Arbitration Procedure

6.0 TRANSFERRING DATA

6.1 Byte Format

Every byte put on the SDA line must be 8 -bits long. The number of bytes that can be transmitted per transfer is unrestricted. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first (Fig.7). If a receiver can't receive another complete byte of data until it has performed some other function, for example servicing an internal interrupt, it can hold the clock line SCL LOW to force the transmitter into a wait state. Data transfer then continues when the receiver is ready for another byte of data and releases clock line SCL.

In some cases, it's permitted to use a different format from the $I^{2} \mathrm{C}$-bus format (for CBUS compatible devices for example). A message which starts with such an address can be terminated by generation of a STOP
condition, even during the transmission of a byte. In this case, no acknowledge is generated (see Section 9.1.3).

6.2 Acknowledge

Data transfer with acknowledge is obligatory. The acknowledge-related clock pulse is generated by the master. The transmitter releases the SDA line (HIGH) during the acknowledge clock pulse.

The receiver must pull down the SDA line during the acknowledge clock pulse so that it remains stable LOW during the HIGH period of this clock pulse (Fig.8). Of course, set-up and hold times (specified in Section 15) must also be taken into account.

Usually, a receiver which has been addressed is obliged to generate an acknowledge after each byte has been received, except when the message starts with a CBUS address (see Section 9.1.3).

When a slave-receiver doesn't acknowledge the slave address (for example, it's unable to receive because it's performing some real-time function), the data line must be left HIGH by the slave. The master can then generate a STOP condition to abort the transfer.

If a slave-receiver does acknowledge the slave address but, some time later in the transfer cannot receive any more data bytes, the master must again abort the transfer. This is indicated by the slave generating the not acknowledge on the first byte to follow. The slave leaves the data line HIGH and the master generates the STOP condition.
If a master-receiver is involved in a transfer, it must signal the end of data to the slavetransmitter by not generating an acknowledge on the last byte that was clocked out of the slave. The slave-transmitter must release the data line to allow the master to generate the STOP condition.

The $\mathrm{I}^{2} \mathrm{C}$-bus and how to use it (including specification)

7.0 ARBITRATION AND CLOCK GENERATION

7.1 Synchronization

All masters generate their own clock on the SCL line to transfer messages on the $1^{2} \mathrm{C}$-bus. Data is only valid during the HIGH period of the clock. A defined clock is therefore needed for the bit-by-bit arbitration procedure to take place.

Clock synchronization is performed using the wired-AND connection of $\mathrm{I}^{2} \mathrm{C}$ interfaces to the SCL line. This means that a HIGH to LOW transition on the SCL line will cause the devices concerned to start counting off their LOW period and, once a device clock has gone LOW, it will hold the SCL line in that state until the clock HIGH state is reached (Fig.9). However, the LOW to HIGH transition of this clock may not change the state of the SCL line if another clock is still within its LOW period. The SCL line will therefore be held LOW by the device with the longest LOW period. Devices with shorter LOW periods enter a HIGH wait-state during this time.

When all devices concerned have counted off their LOW period, the clock line will be released and go HIGH. There will then be no difference between the device clocks and the state of the SCL line, and all the devices will start counting their HIGH periods. The first device to complete its HIGH period will again pull the SCL line LOW.

In this way, a synchronized SCL clock is generated with its LOW period determined by the device with the longest clock LOW period, and its HIGH period
determined by the one with the shortest clock HIGH period.

7.2 Arbitration

A master may start a transfer only if the bus is free. Two or more masters may generate a START condition within the minimum hold
time ($t_{H D} ; S T A$) of the START condition which results in a defined START condition to the bus.

Arbitration takes place on the SDA line, while the SCL line is at the HIGH level, in such a way that the master which transmits a HIGH level, while another master is transmitting a LOW level will switch off its DATA output stage because the level on the bus doesn't correspond to its own level.

Arbitration can continue for many bits. Its first stage is comparison of the address bits (addressing information is in Sections 9.0 and 13.0). If the masters are each trying to address the same device, arbitration continues with comparison of the data. Because address and data information on the $I^{2} \mathrm{C}$-bus is used for arbitration, no information is lost during this process.

A master which loses the arbitration can generate clock pulses until the end of the byte in which it loses the arbitration.
If a master also incorporates a slave function and it loses
arbitration during the addressing stage, it's possible that the winning master is trying to address it. The losing master must therefore switch over immediately to its slave-receiver mode.

Figure 10 shows the arbitration procedure for two masters. Of course, more may be involved (depending on how many masters are connected to the bus). The moment there is a difference between the internal data level of the master generating DATA 1 and the actual level on the SDA line, its data output is switched off, which means that a HIGH output level is then connected to the bus. This will not affect the data transfer initiated by the winning master.

Since control of the $I^{2} C$-bus is decided solely on the address and data sent by competing
masters, there is no central master, nor any order of priority on the bus.

Special attention must be paid if, during a serial transfer, the arbitration procedure is still in progress at the moment when a repeated START condition or a STOP condition is transmitted to the $I^{2} \mathrm{C}$-bus. If it's possible for such a situation to occur, the masters involved must send this repeated START condition or STOP condition at the same position in the format frame. In other words, arbitration isn't allowed between:

- A repeated START condition and a data bit
- A STOP condition and a data bit
- A repeated START condition and a STOP condition.

7.3 Use of the Clock

Synchronising Mechanism as a

Handshake

In addition to being used during the arbitration procedure, the clock synchronization mechanism can be used to enable receivers to cope with fast data transfers, on either a byte level or a bit level.

On the byte level, a device may be able to receive bytes of data at a fast rate, but needs more time to store a received byte or prepare another byte to be transmitted. Slaves can then hold the SCL line LOW after reception and acknowledgement of a byte to force the master into a wait state until the slave is ready for the next byte transfer in a type of handshake procedure.

On the bit level, a device such as a microcontroller without, or with only a limited hardware $I^{2} \mathrm{C}$ interface on-chip can slow down the bus clock by extending each clock LOW period. The speed of any master is thereby adapted to the internal operating rate of this device.

Figure 10. Arbitration Procedure of Two Masters

The $\mathrm{I}^{2} \mathrm{C}$-bus and how to use it

 (including specification)
8.0 FORMATS WITH 7-BIT ADDRESSES

Data transfers follow the format shown in Fig.11. After the START condition (S), a slave address is sent. This address is 7 bits long followed by an eighth bit which is a data direction bit (R / W) - a 'zero' indicates a transmission (WRITE), a 'one' indicates a request for data (READ). A data transfer is always terminated by a STOP condition (P) generated by the master. However, if a master still wishes to communicate on the bus, it can generate a repeated START condition (Sr) and address another slave without first generating a STOP condition. Various combinations of read/write formats are then possible within such a transfer. Possible data transfer formats are:

- Master-transmitter transmits to slave-receiver. The transfer direction is not changed (Fig.12)
- Master reads slave immediately after first byte (Fig.13). At the moment of the first acknowledge, the master-transmitter becomes a master-receiver and the slave-receiver becomes a slave-transmitter. This acknowledge is still generated by the slave. The STOP condition is generated by the master
- Combined format (Fig.14). During a change of direction within a transfer, the START condition and the slave address are both repeated, but with the R/W bit reversed.

NOTES:

1. Combined formats can be used, for example, to control a serial memory. During the first data byte, the internal memory location has to be written. After the START condition and slave address is repeated, data can be transferred.
2. All decisions on auto-increment or decrement of previously accessed memory locations etc. are taken by the designer of the device.
3. Each byte is followed by an acknowledgement bit as indicated by the A or $\overline{\mathrm{A}}$ blocks in the sequence.
4. $1^{2} \mathrm{C}$-bus compatible devices must reset their bus logic on receipt of a START or repeated START condition such that they all anticipate the sending of a slave address.

Figure 11. A Complete Data Transfer

Figure 12. A Master-Transmitter Addresses a Slave Receiver With a 7-Bit Address. The Transfer Direction is not Changed

Figure 13. A Master Reads a Slave Immediately After the First Byte

Figure 14. Combined Format

The $I^{2} \mathrm{C}$-bus and how to use it (including specification)

Table 2. Definition of Bits in the First Byte

Slave address	R/ bit	
0000000	0	General call address
0000000	1	START byte
0000001	X	CBUS address
0000010	X	Address reserved for different bus format
0000011	X	Reserved for future purposes
00001 XX	X	Reserved for future purposes
11111 XX	X	Reserved for future purposes
11110 XX	X	10-bit slave addressing

NOTES:

1. No device is allowed to acknowledge at the reception of the START byte.
2. The CBUS address has been reserved to enable the inter-mixing of CBUS compatible and $\mathrm{I}^{2} \mathrm{C}$-bus compatible devices in the same system. $1^{2} \mathrm{C}$-bus compatible devices are not allowed to respond on reception of this address.
3. The address reserved for a different bus format is included to enable ${ }^{2} \mathrm{C}$ and other protocols to be mixed. Onily $\mathrm{I}^{2} \mathrm{C}$-bus compatible devices that can work with such formats and protocols are allowed to respond to this address.

9.0 7-BIT ADDRESSING

(see Section 13.0 for 10-Bit

Addressing)

The addressing procedure for the $I^{2} \mathrm{C}$-bus is such that the first byte after the START condition usually determines which slave will be selected by the master. The exception is the 'general call' address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge. However, devices can be made to ignore this address. The second byte of the general call address then defines the action to be taken. This procedure is explained in more detail in Section 9.1.1.

9.1 Definition of Bits in the First Byte

The first seven bits of the first byte make up the slave address (Fig. 15). The eighth bit is the LSB (least significant bit). It determines the direction of the message. A 'zero' in the least significant position of the first byte means that the master will write information to a selected slave. A 'one' in this position means that the master will read information from the slave.

When an address is sent, each device in a system compares the first seven bits after the START condition with its address. If they match, the device considers itself addressed by the master as a slave-receiver or slave-transmitter, depending on the R/W bit.

A slave address can be made-up of a fixed and a programmable part. Since it's likely that there will be several identical devices in a system, the programmable part of the slave address enables the maximum possible number of such devices to be connected to
the $\mathrm{I}^{2} \mathrm{C}$-bus. The number of programmable address bits of a device depends on the number of pins available. For example, if a device has 4 fixed and 3 programmable address bits, a total of 8 identical devices can be connected to the same bus.

The $I^{2} \mathrm{C}$-bus committee coordinates allocation of $I^{2} \mathrm{C}$ addresses. Further information can be obtained from the Philips representatives listed on the back cover. Two groups of eight addresses (0000XXX and 1111XXX) are reserved for the purposes shown in Table 2. The bit combination 11110XX of the slave address is reserved for 10 -bit addressing (see Section 13).

9.1.1 General Call Address

The general call address is for addressing every device connected to the $\mathrm{I}^{2} \mathrm{C}$-bus. However, if a device doesn't need any of the data supplied within the general call structure, it can ignore this address by not issuing an acknowledgement. If a device does require data from a general call address, it will acknowledge this address and behave as a slave-receiver. The second and following bytes will be acknowledged by every slave-receiver capable of handling this data. A slave which cannot process one of these bytes must ignore it by not acknowledging. The meaning of the general call address is always specified in the second byte (Fig.16).

There are two cases to consider:

- When the least significant bit B is a 'zero'
- When the least significant bit B is a 'one'.

When bit B is a 'zero'; the second byte has the following definition:

- $00000110\left(H^{\prime} 06^{\prime}\right)$. Reset and write programmable part of slave address by hardware. On receiving this 2-byte sequence, all devices designed to respond to the general call address will reset and take in the programmable part of their address. Precautions have to be taken to ensure that a device is not pulling down the SDA or SCL line after applying the supply voltage, since these low levels would block the bus
- 00000100 ($\mathrm{H}^{\prime} 044^{\prime}$). Write programmable part of slave address by hardware. All devices which define the programmable part of their address by hardware (and which respond to the general call address) will latch this programmable part at the reception of this two byte sequence. The device will not reset.
$-00000000\left(\mathrm{H}^{\prime} 00^{\prime}\right)$. This code is not allowed to be used as the second byte.
Sequences of programming procedure are published in the appropriate device data sheets.

The remaining codes have not been fixed and devices must ignore them.
When bit B is a 'one'; the 2-byte sequence is a 'hardware general call'. This means that the sequence is transmitted by a hardware master device, such as a keyboard scanner, which cannot be programmed to transmit a desired slave address. Since a hardware master doesn't know in advance to which device the message has to be transferred, it can only generate this hardware general call and its own address - identifying itself to the system (Fig.17).

The seven bits remaining in the second byte contain the address of the hardware master.

The $I^{2} \mathrm{C}$-bus and how to use it (including specification)

This address is recognised by an intelligent device (e.g. a microcontroller) connected to the bus which will then direct the information from the hardware master. If the hardware master can also act as a slave, the slave address is identical to the master address.

In some systems, an alternative could be that the hardware master transmitter is set in the slave-receiver mode after the system reset. In this way, a system configuring master can tell the hardware master-transmitter (which is
now in slave-receiver mode) to which address data must be sent (Fig.18). After this programming procedure, the hardware master remains in the master-transmitter mode.

Figure 15. The First Byte After the START Procedure

Figure 16. General Call Address Format

Figure 17. Data Transfer From a Hardware Master-Transmitter

a. Configuring master sends dump address to hardware master

b. Hardware master dumps data to selected slave

Figure 18. Data Transfer by a Hardware-Transmitter Capable of Dumping Data Directly to Slave Devices

The $\mathrm{I}^{2} \mathrm{C}$-bus and how to use it (including specification)

Figure 19. START Byte Procedure

Figure 20. Data Format of Transmissions with CBUS Transmitter/Receiver

9.1.2 START byte

Microcontrollers can be connected to the $1^{2} \mathrm{C}$-bus in two ways. A microcontroller with an on-chip hardware $1^{2} \mathrm{C}$-bus interface can be programmed to be only interrupted by requests from the bus. When the device doesn't have such an interface, it must constantly monitor the bus via software. Obviously, the more times the microcontroller monitors, or polls the bus, the less time it can spend carrying out its intended function.

There is therefore a speed difference between fast hardware devices and a relatively slow microcontroller which relies on software polling.

In this case, data transfer can be preceded by a start procedure which is much longer than normal (Fig.19). The start procedure consists of:

- A START condition (S)
- A START byte (0000C001)
- An acknowledge clock pulse (ACK)
- A repeated START condition (Sr).

After the START condition S has been
transmitted by a master which requires bus access, the START byte (00000001) is transmitted. Another microcontroller can therefore sample the SDA line at a low sampling rate until one of the seven zeros in the START byte is detected. After detection of this LOW level on the SDA line, the microcontroller can switch to a higher sampling rate to find the repeated START condition Sr which is then used for synchronization.

A hardware receiver will reset on receipt of the repeated START condition Sr and will therefore ignore the START byte.

An acknowledge-related clock pulse is generated after the START byte. This is present only to conform with the byte handling format used on the bus. No device is allowed to acknowledge the START byte.

9.1.3 CBUS Compatibility

CBUS receivers can be connected to the $I^{2} \mathrm{C}$-bus. However, a third bus line called DLEN must then be connected and the
acknowledge bit omitted. Normally, $\mathrm{I}^{2} \mathrm{C}$ transmissions are sequences of 8-bit bytes; CBUS compatible devices have different formats.

In a mixed bus structure, $1^{2} \mathrm{C}$-bus devices must not respond to the CBUS message. For this reason, a special CBUS address (0000001 X) to which no $1^{2} \mathrm{C}$-bus compatible device will respond, has been reserved. After transmission of the CBUS address, the DLEN line can be made active and a CBUS-format transmission (Fig.20) sent. After the STOP condition, all devices are again ready to accept data.

Master-transmitters can send CBUS formats after sending the CBUS address. The transmission is ended by a STOP condition, recognised by all devices.

NOTE: If the CBUS configuration is known, and expansion with CBUS compatible devices isn't foreseen, the designer is allowed to adapt the hold time to the specific requirements of the device(s) used.

The $\mathrm{I}^{2} \mathrm{C}$-bus and how to use it (including specification)

10.0 ELECTRICAL CHARACTERISTICS FOR ${ }^{2}{ }^{2} \mathrm{C}$-BUS DEVICES

The electrical specifications for the I/Os of $\mathrm{B}^{2} \mathrm{C}$-bus devices and the characteristics of the bus lines connected to them are given in Tables 3 and 4 in Section 15.
$1^{2} \mathrm{C}$-bus devices with fixed input levels of 1.5 V and 3 V can each have their own appropriate supply voltage. Pull-up resistors
must be connected to a $5 \mathrm{~V} \pm 10 \%$ supply (Fig.21). $\mathrm{I}^{2} \mathrm{C}$-bus devices with input levels related to $V_{D D}$ must have one common supply line to which the pull-up resistor is also connected (Fig.22).
When devices with fixed input levels are mixed with devices with input levels related to $V_{D D}$, the latter devices must be connected to one common supply line of $5 \mathrm{~V} \pm 10 \%$ and must have pull-up resistors connected to their SDA and SCL pins as shown in Fig.23.

Input levels are defined in such a way that:

- The noise margin on the LOW level is $0.1 \mathrm{~V}_{\mathrm{DD}}$
- The noise margin on the HIGH level is $0.2 \mathrm{~V}_{\mathrm{DD}}$
- As shown in Fig.24, series resistors (R_{S}) of e.g. 300Ω can be used for protection against high-voltage spikes on the SDA and SCL lines (due to flash-over of a TV picture tube, for example).
$\mathrm{V}_{\mathrm{DD} 2,3}$ are device dependent (e.g., 12V)

Figure 21. Fixed Input Level Devices Connected to the $I^{2} \mathrm{C}$-Bus

Figure 22. Devices with Wide Supply Range Connected to the $I^{2} C$-Bus

Figure 23. Devices with Input Levels Related to \mathbf{V}_{DD} (Supply $\mathrm{V}_{\mathrm{DD1}}$)
Mixed with Fixed Input Level Devices (Supply $\mathrm{V}_{\mathrm{DD} 2,3}$) on the $I^{2} \mathrm{C}$-Bus

Figure 24. Series Resistors (RS) for Protection Against High-Voltage Spikes

The $\mathrm{I}^{2} \mathrm{C}$-bus and how to use it (including specification)

10.1 Maximum and minimum

 values of resistors R_{p} and R_{s} For standard-mode ${ }^{2} \mathrm{C}$-bus devices, the values of resistors R_{p} and R_{s} in Fig. 24 depend on the following parameters:- Supply voltage
- Bus capacitance
- Number of connected devices (input current + leakage current).
The supply voltage limits the minimum value of resistor R_{p} due
to the specified minimum sink current of 3 mA at $\mathrm{V}_{\text {OLmax }}=0.4 \mathrm{~V}$ for the output stages. V_{DD} as a function of $R_{p \text { min }}$ is shown in Fig.25. The desired noise margin of $0.1 \mathrm{~V}_{\mathrm{DD}}$ for the LOW level, limits the maximum value of R_{S}. $R_{S \text { max }}$ as a function of R_{p} is shown in Fig. 26.
The bus capacitance is the total capacitance of wire, connections and pins. This capacitance limits the maximum value of R_{p} due to the specified rise time. Fig. 27 shows
$\mathrm{R}_{\mathrm{p} \text { max }}$ as a function of bus capacitance.
The maximum HIGH level input current of each input/output connection has a specified maximum value of $10 \mu \mathrm{~A}$. Due to the desired noise margin of $0.2 \mathrm{~V}_{\mathrm{DD}}$ for the HIGH level, this input current limits the maximum value of R_{p}. This limit depends on V_{DD}. The total HIGH level input current is shown as a function of R_{p} max in Fig. 28.

11.0 EXTENSIONS TO THE $1^{2} \mathrm{C}-\mathrm{BUS}$ SPECIFICATION

The $I^{2} \mathrm{C}$-bus with a data transfer rate of up to 100 kbit/s and 7-bit addressing has now been in existence for more than ten years with an unchanged specification. The concept is accepted world-wide as a de facto standard and hundreds of different types of $1^{2} \mathrm{C}$-bus compatible ICs are available from Philips and other suppliers. The $I^{2} \mathrm{C}$-bus specification is now extended with the following two features:

A fast-mode which allows a fourfold increase of the bit rate to 0 to $400 \mathrm{kbit/s}$

- 10-bit addressing which allows the use of up to 1024 additional addresses.

There are two reasons for these extensions to the $\mathrm{I}^{2} \mathrm{C}$-bus specification:

- New applications will need to transfer a larger amount of serial data and will therefore demand a higher bit rate than $100 \mathrm{kbit} / \mathrm{s}$. Improved IC manufacturing technology now allows a fourfold speed increase without increasing the manufacturing cost of the interface circuitry
- Most of the 112 addresses available with the 7 -bit addressing scheme have been issued more than once. To prevent problems with the allocation of slave addresses for new devices, it is desirable to have more address combinations. About a tenfold increase of the number of available addresses is obtained with the new 10 -bit addressing.

Figure 25. Minimum Value of R_{p} as a Function of Supply Voltage with the Value of $\mathbf{R}_{\mathbf{S}}$ as a Parameter
$R_{p}(k \Omega)$

Figure 26. Maximum Value of R_{S} as a Function of the Value of R_{P} with Supply Voltage as a Parameter

Figure 27. Maximum Value of R_{p} as a Function of Bus Capacitance for a Standard-Mode $1^{2} \mathrm{C}$-Bus

Figure 28. Total HIGH Level Input Current as a Function of the Maximum Value of $\mathbf{R p}_{\mathbf{p}}$ with Supply Voltage as a Parameter

The $\mathrm{I}^{2} \mathrm{C}$-bus and how to use it (including specification)

All new devices with an $I^{2} C$-bus interface are provided with the fast-mode. Preferably, they should be able to receive and/or transmit at $400 \mathrm{kbit} / \mathrm{s}$. The minimum requirement is that they can synchronize with a $400 \mathrm{kbit} / \mathrm{s}$ transfer; they can then prolong the LOW period of the SCL signal to slow down the transfer. Fast-mode devices must be downward-compatible which means that they must still be able to communicate with 0 to $100 \mathrm{kbit} / \mathrm{s}$ devices in a 0 to $100 \mathrm{kbit} / \mathrm{s}$ $1^{2} \mathrm{C}$-bus system.

Obviously, devices with a 0 to $100 \mathrm{kbit} / \mathrm{s}$ $1^{2} \mathrm{C}$-bus interface cannot be incorporated in a fast-mode $\mathrm{I}^{2} \mathrm{C}$-bus system because, since they cannot follow the higher transfer rate, unpredictable states of these devices would occur.

Slave devices with a fast-mode $1^{2} \mathrm{C}$-bus interface can have a 7 -bit or a 10-bit slave address. However, a 7-bit address is preferred because it is the cheapest solution in hardware and it results in the shortest message length. Devices with 7-bit and 10-bit addresses can be mixed in the same $I^{2} \mathrm{C}$-bus system regardless of whether it is a 0 to $100 \mathrm{kbit} / \mathrm{s}$ standard-mode system or a 0 to $400 \mathrm{kbit} / \mathrm{s}$ fast-mode system. Both existing and future masters can generate either 7-bit or 10-bit addresses.

12.0 FAST-MODE

In the fast-mode of the $I^{2} \mathrm{C}$-bus, the protocol, format, logic levels and maximum capacitive load for the SDA and SCL lines quoted in the previous $I^{2} \mathrm{C}$-bus specification are unchanged. Changes to the previous $\mathrm{I}^{2} \mathrm{C}$-bus specification are:

- The maximum bit rate is increased to $400 \mathrm{kbit} / \mathrm{s}$
- Timing of the serial data (SDA) and serial clock (SCL) signals has been adapted. There is no need for compatibility with other bus systems such as CBUS because they cannot operate at the increased bit rate
- The inputs of fast-mode devices must incorporate spike suppression and a Schmitt trigger at the SDA and SCL inputs
- The output buffers of fast-mode devices must incorporate slope control of the falling edges of the SDA and SCL signals
- If the power supply to a fast-mode device is switched off, the SDA and SCL I/O pins must be floating so that they don't obstruct the bus lines
- The external pull-up devices connected to the bus lines must be adapted to accommodate the shorter maximum
permissible rise time for the fast-mode $1^{2} \mathrm{C}$-bus. For bus loads up to 200 pF , the pull-up device for each bus line can be a resistor; for bus loads between 200 pF and 400 pF , the pull-up device can be a current source (3 mA max.) or a switched resistor circuit as shown in Fig. 37.

13.0 10-BIT ADDRESSING

The 10-bit addressing does not change the format in the $1^{2} \mathrm{C}$-bus specification. Using 10 bits for addressing exploits the reserved combination 1111XXX for the first seven bits of the first byte following a START (S) or repeated START (Sr) condition as explained in Section 9.1. The 10 -bit addressing does not affect the existing 7 -bit addressing. Devices with 7-bit and 10-bit addresses can be connected to the same $I^{2} \mathrm{C}$-bus, and both 7-bit and 10-bit addressing can be used in a standard-mode system (up to $100 \mathrm{kbit} / \mathrm{s}$) or a fast-mode system (up to $400 \mathrm{kbit} / \mathrm{s}$).

Although there are eight possible combinations of the reserved address bits 1111XXX, only the four combinations 11110 XX are used for 10 -bit addressing. The remaining four combinations 11111XX are reserved for future $\mathrm{I}^{2} \mathrm{C}$-bus enhancements.

13.1 Definition of Bits in the First Two Bytes

The 10-bit slave address is formed from the first two bytes following a START condition (S) or a repeated START condition (Sr).

The first seven bits of the first byte are the combination 11110XX of which the last two bits (XX) are the two most-significant bits (MSBs) of the 10-bit address; the eighth bit of the first byte is the R / W bit that determines the direction of the message. A 'zero' in the least significant position of the first byte means that the master will write information to a selected slave. A 'one' in this position means that the master will read information from the slave.

If the R / W bit is 'zero', then the second byte contains the remaining 8 bits ($X X X X X X X X$) of the 10 -bit address. If the R / W bit is 'one', then the next byte contains data transmitted from a slave to a master.

13.2 Formats with 10-bit

 AddressesVarious combinations of read/write formats are possible within a transfer that includes 10-bit addressing. Possible data transfer formats are:

- Master-transmitter transmits to slave-receiver with a 10-bit slave address. The transfer direction is not changed (Fig.29). When a 10-bit
address follows a START condition, each slave compares the first seven bits of the first byte of the slave address (11110XX) with its own address and tests if the eighth bit (R / W direction bit) is 0 . It is possible that more than one device will find a match and generate an acknowledge (A1). All slaves that found a match will compare the eight bits of the second byte of the slave address (XXXXXXXX) with their own addresses, but only one slave will find a match and generate an acknowledge (A2). The matching slave will remain addressed by the master until it receives a STOP condition (P) or a repeated START condition (Sr) followed by a different slave address

NOTES:

1. Combined formats can be used, for example, to control a serial memory. During the first data byte, the internal memory location has to be written. After the START condition and slave address is repeated, data can be transferred.
2. All decisions on auto-increment or decrement of previously accessed memory locations etc. are taken by the designer of the device.
3. Each byte is followed by an acknowledgement bit as indicated by the A or $\overline{\mathrm{A}}$ blocks in the sequence.
4. $I^{2} \mathrm{C}$-bus compatible devices must reset their bus logic on receipt of a START or repeated START condition such that they all anticipate the sending of a slave address.

- Master-receiver reads slavetransmitter with a 10-bit slave address. The transfer direction is changed after the second R / W bit (Fig.30). Up to and including acknowledge bit A2, the procedure is the same as that described for a master-transmitter addressing a slave-receiver. After the repeated START condition (Sr), a matching slave remembers that it was addressed before. This slave then checks if the first seven bits of the first byte of the slave address following Sr are the same as they were after the START condition (S), and tests if the eighth (R / W) bit is 1 . If there is a match, the slave considers that it has been addressed as a transmitter and generates acknowledge A3. The slave-transmitter remains addressed until it receives a STOP condition (P) or until it receives another repeated START condition (Sr) followed by a different slave address. After a repeated START condition (Sr), all the other slave devices will also compare the first seven bits of the first byte of the slave address (11110XX) with their own

The $\mathrm{I}^{2} \mathrm{C}$-bus and how to use it (including specification)
addresses and test the eighth (R/W) bit. However, none of them will be addressed because $R / W=1$ (for 10-bit devices), or the 11110XX slave address (for 7-bit devices) does not match)

- Combined format. A master transmits data to a slave and then reads data from the same slave (Fig.31). The same master occupies the bus all the
time. The transfer direction is changed after the second R / W bit
- Combined format. A master transmits data to one slave and then transmits data to another slave (Fig.32). The same master occupies the bus all the time
- Combined format. 10-bit and 7-bit addressing combined in one serial
transfer (Fig.33). After each START condition (S), or each repeated START condition (Sr), a 10-bit or 7-bit slave address can be transmitted. Figure 33 shows how a master-transmits data to a slave with a 7 -bit address and then transmits data to a second slave with a 10 -bit address. The same master occupies the bus all the time.

111,0xx0

Figure 29. A Master-Transmitter Addresses a Slave-Receiver with a 10-Bit Address

Figure 30. A Master-Receiver Addresses a Slave-Transmitter with a 10-Bit Address

Figure 31. Combined Format. A Master Addresses a Slave with a 10-Bit Address, then Transmits Data to this Slave and Reads Data from this Slave

Figure 32. Combined Format. A Master Transmits Data to Two Slaves, Both With 10-Bit Addresses

Figure 33. Combined Format. A Master Transmits Data to Two Slaves, One With a 7-Bit Address, and One with a 10-Bit Address.

The $1^{2} \mathrm{C}$-bus and how to use it (including specification)

Figure 34. Definition of Timing on the $I^{2} \mathrm{C}$-Bus

Table 3. Characteristics of the SDA and SCL I/O Stages for I ${ }^{2} \mathrm{C}$-Bus Devices

Parameter	Symbol	standard-mode devices		fast-mode devices		Unit
		Min.	Max.	Min.	Max.	
LOW level input voltage: fixed input levels $V_{D D}$-related input levels	$V_{\text {IL }}$	$\begin{aligned} & -0.5 \\ & -0.5 \end{aligned}$	$\begin{gathered} 1.5 \\ 0.3 V_{D D} \end{gathered}$	$\begin{aligned} & -0.5 \\ & -0.5 \end{aligned}$	$\begin{gathered} 1.5 \\ 0.3 V_{D D} \end{gathered}$	V
HIGH level input voltage: fixed input levels $V_{D D}$-related input levels	V_{IH}	$\begin{gathered} 3.0 \\ 0.7 \mathrm{~V}_{\mathrm{DD}} \end{gathered}$	$\begin{array}{l\|} * * 1) \\ * 1) \end{array}$	$\begin{gathered} 3.0 \\ 0.7 \mathrm{~V}_{\mathrm{DD}} \end{gathered}$	$\begin{aligned} & * 1) \\ & * 1) \end{aligned}$	V
Hysteresis of Schmitt trigger inputs: fixed input levels $V_{\text {DD-related }}$ input levels	$V_{\text {hys }}$	n/a n/a	n/a n/a	$\begin{gathered} 0.2 \\ 0.05 \mathrm{~V}_{\mathrm{DD}} \end{gathered}$		V
Puise width of spikes which must be suppressed by the input filter	$t_{\text {SP }}$	n/a	n/a	0	50	ns
LOW level output voltage (open drain or open collector): at 3 mA sink current at 6 mA sink current	$\mathrm{V}_{\mathrm{OL} 1}$ $\mathrm{V}_{\mathrm{OL} 2}$	$\begin{gathered} 0 \\ \mathrm{n} / \mathrm{a} \end{gathered}$	$\begin{aligned} & 0.4 \\ & \mathrm{n} / \mathrm{a} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.6 \end{aligned}$	V
Output fall time from $\mathrm{V}_{\mathrm{IH} \text { min. }}$ to $\mathrm{V}_{\mathrm{IL} \text { max. }}$. with a bus capacitance from 10 pF to 400 pF :	tof		$\begin{gathered} \left.250^{2}\right) \\ \mathrm{n} / \mathrm{a} \end{gathered}$	$\begin{aligned} & 20+0.1 \mathrm{C}_{\mathrm{b}}^{2)} \\ & 20+0.1 \mathrm{C}_{\mathrm{b}}^{2)} \end{aligned}$	$\begin{gathered} 250 \\ 250^{3} \end{gathered}$	ns
with up to 3 mA sink current at $\mathrm{V}_{\mathrm{OL} 1}$		-	250 ${ }^{\text {) }}$	$\left.20+0.1 \mathrm{Cb}^{2}\right)$	250	
with up to 6 mA sink current at $\mathrm{V}_{\mathrm{OL} 2}$		n/a	n/a	$\left.20+0.1 C_{b}{ }^{2}\right)$	250 ${ }^{3}$	
Input current each I/O pin with an input voltage between 0.4 V and $0.9 \mathrm{~V}_{\mathrm{DD} \text { max. }}$	I_{i}	-10	10	\$10 ${ }^{3}$	$10^{3)}$	$\mu \mathrm{A}$
Capacitance for each I/O pin	C_{i}	\bullet	10	-	10	pF

NOTES:

n/a = not applicable

1. maximum $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD} \text { max. }}+0.5 \mathrm{~V}$
2. $C_{b}=$ capacitance of one bus line in $p F$. Note that the maximum t_{F} for the SDA and SCL bus lines quoted in Table 4 (300 ns) is longer than the specified maximum tof for the output stages (250 ns). This allows series protection resistors (R_{s})to be connected between the SDASCL pins and the SDA/SCL bus lines as shown in Fig. 37 without exceeding the maximum specified t_{F}
3. I/O pins of fast-mode devices must not obstruct the SDA and SCL lines if $V_{D D}$ is switched off.

The $\mathrm{I}^{2} \mathrm{C}$-bus and how to use it (including specification)

14.0 GENERAL CALL ADDRESS AND START BYTE

The 10-bit addressing procedure for the $1^{2} \mathrm{C}$-bus is such that the first two bytes after the START condition (S) usually determine which slave will be selected by the master. The exception is the 'general call' address $00000000\left(H^{\prime} 00^{\prime}\right)$. Slave devices with 10 -bit addressing will react to a 'general call' in the same way as slave devices with 7-bit addressing (see Section 9.1.1).
Hardware masters can transmit their 10-bit address after a 'general call'. In this case, the 'general call' address byte is followed by two successive bytes containing the 10 -bit address of the master-transmitter. The format is as shown in Fig. 17 where the first DATA byte contains the eight least-significant bits of the master address.
The START byte 00000001 ($\mathrm{H}^{\prime} 01$ ') can precede the 10 -bit addressing in the same way as for 7 -bit addressing (see Section 9.1.2).

15.0 ELECTRICAL SPECIFICATIONS

The I/O levels, I/O current, spike suppression, output slope control and pin capacitance for $1^{2} \mathrm{C}$-bus devices are given in Table 3. The $\mathrm{I}^{2} \mathrm{C}$-bus timing is given in Table 4. Figure 34 shows the timing definitions for the $I^{2} \mathrm{C}$-bus.
The noise margin for HIGH and LOW levels on the bus lines for fast-mode devices are the same as those specified in Section 10.0 for standard-mode ${ }^{2} \mathrm{C}$-bus devices.
The minimum HIGH and LOW periods of the SCL clock specified in Table 4 determine the maximum bit transfer rates of $100 \mathrm{kbit} / \mathrm{s}$ for standard-mode devices and $400 \mathrm{kbit} / \mathrm{s}$ for fast mode devices. Standard-mode and fast-mode $1^{2} \mathrm{C}$-bus devices must be able to follow transfers at their own maximum bit rates, either by being able to transmit or receive at that speed or by applying the clock synchronization procedure described in Section 7 which will force the master into a wait state and stretch the LOW period of the SCL signal. Of course, in the latter case the bit transfer rate is reduced.

16.0 APPLICATION INFORMATION

16.1 Slope-Controlied Output Stages of Fast-Mode $\mathbf{I}^{2} \mathrm{C}$-Bus Devices
 The electrical specifications for the I/Os of

$1^{2} \mathrm{C}$-bus devices and the characteristics of the bus lines connected to them are given in Tables 3 and 4 in Section 15.

Figures 35 and 36 show examples of output stages with slope control in CMOS and bipolar technology. The slope of the falling edge is defined by a Miller capacitor (C1) and a resistor (R1). The typical values for C1 and R1 are indicated on the diagrams. The wide tolerance for output fall time tof given in Table 3 means that the design is not critical. The fall time is only slightly influenced by the external bus load (C_{b}) and external pull-up resistor (R_{p}). However, the rise time (t_{R}) specified in Table 4 is mainly determined by the bus load capacitance and the value of the pull-up resistor.

16.2 Switched Pull-Up Circuit for Fast-Mode $I^{2} \mathbf{C}$-Bus Devices

The supply voltage ($V_{D D}$) and the maximum output LOW level determine the minimum value of pull-up resistor R_{p} (see Section 10.1). For example, with a supply voltage of $V_{D D}=5 \mathrm{~V} \pm 10 \%$ and $V_{\text {OL max. }}=0.4 \mathrm{~V}$ at $3 \mathrm{~mA}, \mathrm{R}_{\mathrm{p} \text { min. }}=(5.5-0.4) / 0.003=1.7 \mathrm{k} \Omega$. As shown in Fig.38, this value of R_{p} limits the maximum bus capacitance to about 200 pF to meet the maximum t_{R} requirement of 300 ns . If the bus has a higher capacitance than this, a switched pull-up circuit as shown in Fig. 37 can be used.

The switched pull-up circuit in Fig. 37 is for a supply voltage of $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$ and a maximum capacitive load of 400 pF . Since it is controlled by the bus levels, it needs no additional switching control signals. During the rising/falling edges, the bilateral switch in the HCT4066 switches pull-up resistor $\mathrm{R}_{\mathrm{p}} 2$ on/off at bus levels between 0.8 V and 2.0 V . Combined resistors $R_{p} 1$ and $R_{p} 2$ can pull-up the bus line within the maximum specified rise time (t_{R}) of 300 ns . The maximum sink current for the driving ${ }^{2} \mathrm{C}$-bus device will not exceed 6 mA at $\mathrm{V}_{\mathrm{OL} 2}=0.6 \mathrm{~V}$, or 3 mA at $\mathrm{V}_{\mathrm{OL} 1}=0.4 \mathrm{~V}$.

Series resistors R_{s} are optional. They protect the I/O stages of the $I^{2} \mathrm{C}$-bus devices from high-voltage spikes on the bus lines, and minimize crosstalk and undershoot of the bus line signals. The maximum value of R_{s} is determined by the maximum permitted voltage drop across this resistor when the bus line is switched to the LOW level in order to switch off $\mathrm{R}_{\mathrm{p}} 2$.

16.3 Wiring Pattern of the Bus Lines

In general, the wiring must be so chosen that crosstalk and interference to/from the bus lines is minimized. The bus lines are most susceptible to crosstalk andinterference at the HIGH level because of the relatively high impedance of the pull-up devices.

If the length of the bus lines on a PCB or ribbon cable exceeds 10 cm and includes the $V_{D D}$ and $V_{S S}$ lines, the wiring pattern must be:

SDA
$V_{D D}$
$V_{S S}$
SCL
If only the $V_{\text {SS }}$ line is included, the wiring pattern must be:

SDA
V_{Ss}
SCL \qquad
These wiring patterns also result in identical capacitive loads for the SDA and SCL lines. The $V_{S S}$ and $V_{D D}$ lines can be omitted if a PCB with a V_{SS} and/or V_{DD} layer is used.

If the bus lines are twisted-pairs, each bus line must be twisted with a V_{SS} return. Alternatively, the SCL line can be twisted with a $\mathrm{V}_{\text {SS }}$ return, and the SDA line twisted with a $V_{D D}$ return. In the latter case, capacitors must be used to decouple the $V_{D D}$ line to the $V_{S S}$ line at both ends of the twisted pairs.

If the bus lines are shielded (shield connected to V_{SS}), interference will be minimized. However, the shielded cable must have low capacitive coupling between the SDA and SCL lines to minimize crosstalk.

16.4 Maximum and Minimum Values of Resistors R_{p} and R_{s} for Fast-Mode $\mathrm{I}^{2} \mathrm{C}$-Bus Devices

The maximum and minimum values for resistors R_{p} and R_{s} connected to a fast-mode ${ }^{2}{ }^{2} \mathrm{C}$-bus can be determined from Fig.25, 26 and 28 in Section 10.1. Because a fast-mode $\mathrm{I}^{2} \mathrm{C}$-bus has faster rise times $\left(\mathrm{t}_{\mathrm{R}}\right)$ the maximum value of R_{p} as a function of bus capacitance is less than that shown in Fig. 27 The replacement graph for Fig. 27 showing the maximum value of R_{p} as a function of bus capacitance (C_{b}) for a fast mode $\mathrm{I}^{2} \mathrm{C}$-bus is given in Fig. 38.

The $\mathrm{I}^{2} \mathrm{C}$-bus and how to use it (including specification)

Table 4. Characteristics of the SDA and SCL Bus Lines for $I^{2} \mathrm{C}$-Bus Devices

Parameter	Symbol	Standard-mode $\mathrm{I}^{2} \mathrm{C}$-bus		Fast-mode ${ }^{2}{ }^{2} \mathrm{C}$-bus		Unit
		Min.	Max.	Min.	Max.	
SCL clock frequency	$\mathrm{f}_{\mathrm{SCL}}$	0	100	0	400	kHz
Bus free time between a STOP and START condition	$\mathrm{t}_{\text {BuF }}$	4.7	-	1.3	-	$\mu \mathrm{s}$
Hold time (repeated) START condition. After this period, the first clock pulse is generated	${ }^{\text {thd; }}$ STA	4.0	-	0.6	-	$\mu \mathrm{s}$
LOW period of the SCL clock	tow	4.7	-	1.3	-	$\mu \mathrm{s}$
HIGH period of the SCL clock	thigh	4.0	-	0.6	-	$\mu \mathrm{s}$
Set-up time for a repeated START condition	$\mathrm{t}_{\text {SU; }}$ STA	4.7	-	0.6	\cdot	$\mu \mathrm{s}$
Data hold time: for CBUS compatible masters (see NOTE, Section 9.1.3) for $1^{2} \mathrm{C}$-bus devices	$\mathrm{t}_{\text {HD; }{ }^{\text {dat }} \text { (}}$	$\begin{aligned} & \hline 5.0 \\ & \left.0^{1}\right) \end{aligned}$	-	$0^{1)}$	$0.9^{2)}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
Data set-up time	${ }^{\text {t }}$ SU; DAT	250	-	$100^{3)}$	-	ns
Rise time of both SDA and SCL signals	$\mathrm{t}_{\text {R }}$	-	1000	$20+0.1 \mathrm{C}^{4}{ }^{4}$	300	ns
Fall time of both SDA and SCL signals	t_{F}	-	300	$20+0.1 \mathrm{C}^{4}{ }^{4)}$	300	ns
Set-up time for STOP condition	tsu;STO	4.0	-	0.6	-	$\mu \mathrm{s}$
Capacitive load for each bus line	C_{b}	-	400	-	400	pF

NOTES:

All values referred to $\mathrm{V}_{\mathrm{IH} \text { min. }}$ and $\mathrm{V}_{\mathrm{IL} \text { max. }}$. levels (see Table 3).

1. A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the $\mathrm{V}_{1 H}$ min. of the SCL signal) in order to bridge the undefined region of the falling edge of SCL.
2. The maximum thD;DAT has only to be met if the device does not stretch the LOW period (tow) of the SCL signal.
3. A fast-mode $I^{2} \mathrm{C}$-bus device can be used in a standard-mode $\mathrm{I}^{2} \mathrm{C}$-bus system, but the requirement t_{SU};DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line $\mathrm{t}_{\mathrm{R} \text { max. }}+\mathrm{t}_{\mathrm{SU}: \mathrm{DAT}}=1000+250=1250 \mathrm{~ns}$ (according to the standard-mode $1^{2} \mathrm{C}$-bus specification) before the SCL line is released.
4. $\mathrm{C}_{\mathrm{b}}=$ total capacitance of one bus line in pF .

Figure 35. Slope-Controlled Output Stage in CMOS Technology

Figure 36. Slope-Controlled Output Stage in Bipolar Technology

The ${ }^{2} \mathrm{C}$-bus and how to use it (including specification)

fast mode $1^{2} C$ bus devices
Figure 37. Switched Pull-Up Circuit

Figure 38. Maximum Value of R_{p} as a Function of Bus Capacitance for Meeting the t_{R} max requirement for a Fast-Mode $I^{2} C$-Bus

17.0 DEVELOPMENT TOOLS

17.1 Development tools for 8048 and 8051 -ased systems

Product	Description
OM1016	$I^{2} \mathrm{C}-$ bus demonstration board with microcontroller, LCD, LED, Par. I/O, SRAM, EEPROM, Clock, DTMF generator, AD/DA conversion, infrared link.
OM1018	manual for OM1016
OM1020	LCD and driver demonstration board
OM4151	$I^{2} \mathrm{C}$-bus evaluation board (similar to OM1016 above but without infrared link).

17.2 Development tools for 68000-based systems

Product	Description
OM4160	Microcore-1 demonstration/evaluation board: SCC68070, 128K EPROM, 512K DRAM, $I^{2} \mathrm{C}$, RS-232C, VSC SCC66470, resident monitor
OM4160/3	Microcore-3 demonstration/evaluation board: $93 C 110,128 \mathrm{~K}$ EPROM, 64K SRAM, $\mathrm{I}^{2} \mathrm{C}$, RS-232C, 40 I/O, resident monitor

17.3 Development tools for all systems

Product	Description
OM1022	I^{2} C-bus analyzer. Hardware and software (runs on IBM or compatible PC) to experiment with and analyze the behaviour of the $I^{2} \mathrm{C}$-bus (includes documentation)

The $\mathrm{I}^{2} \mathrm{C}$-bus and how to use it (including specification)

18.0 SUPPORT LITERATURE

Data handbooks
IC01 1992: Semiconductors for radio and audio systems
IC02 1992: Semiconductors for television and video systems
IC03 1993: Semiconductors for telecom systems
IC14 1992: 8048-based 8-bit microcontrollers
IC20 1994: 8051-based 8-bit microcontrollers
Brochures/leaflets
Microcontrollers and microprocessors for embedded control applications
$1^{2} \mathrm{C}$-bus compatible ICs and support overview
I$^{2} \mathrm{C}$-bus control programs for consumer applications

Figure 39. ACCESS.bus Protocol Hierarchy

19.0 APPLICATION OF THE $I^{2} \mathrm{C}$-BUS IN THE ACCESS.bus SYSTEM

The ACCESS. bus (bus for connecting ACCESSory devices to a host system) is an ${ }^{2} \mathrm{C}$-bus based open-standard serial interconnect system jointly developed and defined by Philips Semiconductors and Digital Equipment. Corporation. It is a lower-cost alternative to an RS-232C interface for connecting up to 14 inputs/outputs from peripheral equipment to a desk-top computer or workstation over a distance of up to eight metres. The peripheral equipment can be relatively low speed items such as keyboards, hand-held image scanners, cursor positioners, bar-code readers, digitizing tablets, card readers or modems.

All that's required to implement an ACCESS.bus is an 8051-family
microcontroller with an $\mathrm{I}^{2} \mathrm{C}$-bus interface, and a 4 -wire cable carrying a serial data (SDA) line, a serial clock (SCL) line, a ground wire and a 12 V supply line (500 mA max.) for powering the peripherals.
important features of the ACCESS.bus are that the bit rate is only about 20% less than the maximum bit rate of the $I^{2} \mathrm{C}$-bus, and the peripherals don't need separate device drivers. Also, the protocol allows the peripherals to be changed by 'hot-plugging' without re-booting.
As shown in Fig.39, the ACCESS.bus protocol comprises three levels: the $\mathrm{I}^{2} \mathrm{C}$-bus protocol, the base protocol, and the application protocol.
The base protocol is common to all ACCESS.bus devices and defines the format of the ACCESS.bus message. Unlike the $1^{2} \mathrm{C}$-bus protocol, it restricts masters to sending and slaves to receiving data. One
item of appended information is a checksum for reliability control. The base protocol also specifies seven types of control and status messages which are used in the system configuration which assigns unique addresses to the peripherals without the need for setting jumpers or switches on the devices.

The application protocol defines the message semantics that are specific to the three categories of peripheral device (keyboards, cursor locators, and text devices which generate character streams e.g. card readers) which are at present envisaged.

Philips Semiconductors offers computer peripheral equipment manufacturers technical support, a wide range of $\mathrm{I}^{2} \mathrm{C}$-bus devices and development kits for the ACCESS.bus. Hardware, software and marketing support is also offered by DEC.

$\mathrm{I}^{2} \mathrm{C}$ bus addresses

ASSIGNED I²C BUS ADDRESSES

PART NUMBER	FUNCTION	12C ADDRESS						
		A6	A5	A4	A3	A2	A1	A0
-	General call address	0	0	0	0	0	0	0
-	Reserved addresses	0	0	0	0	X	X	X
PCF8574	$1^{2} \mathrm{C}$ bus to 8 -bit bus converter	0	1	0	0	A	A	A
PCF8574A	$1^{2} \mathrm{C}$ bus to 8 -bit bus converter	0	1	1	1	A	A	A
SAA5252	Closed caption decoder	0	0	1	0	1	0	0
SAA7110	One chip front end	1	0	0	1	1	1	A
SAA7188A	Digital video encoder	1	0	0	0	1	A	0
SAA7151B	Digital multistandard colour decoder with SCART interface	1	0	0	0	1	A	1
SAA7152	Digital combination filter	1	0	1	1	0	0	1
SAA7194 (7196)	Digital video decoder and scaler circuit (DESC)	0	1	0	0	0	0	A
SAA7191B	S-VHS digital multistandard decoder "square pixel"	1	0	0	0	1	A	1
SAA7192A	Digital color space converter	1	1	1	0	0	0	A
SAA7199	Digital encoder	1	0	1	1	0	0	0
SAA9042	Teletext decoder	0	0	1	0	0	0	1
SAA9051	Digital multi-standard TV decoder	1	0	0	0	1	0	1
TDA4670	Picture signal improvement circuit	1	0	0	0	1	0	0
TDA4680/4686	Video processor	1	0	0	0	1	0	0
TDA8440	Switch for CTV receivers	1	0	0	1	A	A	A
TDA8442	Interface for color decoders	1	0	0	0	1	0	0
TDA8443	YUV/RGB interface circuit	1	1	0	1	A	A	A
TDA8444	Octuple 6-bit DAC	0	1	0	0	A	A	A
TDA9141	PAL/NTSC/SECAM decoder/sync processor	1	0	0	0	1	A	1

X = Don't care.

A = Can be connected high or low by the user.

$I^{2} \mathrm{C}$ parallel printer port adaptor

The schematic below shows how Philips $1^{2} \mathrm{C}$ software programs are able to communicate through any IBM-compatible PC parallel printer port using $I^{2} \mathrm{C}$ serial protocol. The software toggles the SDA and SCL lines in a
manner compatible with all $\mathrm{l}^{2} \mathrm{C}$ integrated circuits and $I^{2} \mathrm{C}$ evaluation boards such as DTV7191 and DTV9051. Some variations of the four-wire $1^{2} \mathrm{C}$ bus pinning have changed the order of the clock, data power and
ground. Check the pinning required for each evaluation board connected using this type of interface. Power for the interface board must come from the application, not the PC printer port.

$1^{2} \mathrm{C}$ PARALLEL PRINTER PORT ADAPTOR

DESCRIPTION

This application note shows how to use the PCF8584 ${ }^{2}$ 2C-bus controller with 80 C 51 family microcontrollers. One typical way of connecting the PCF8584 to.an 80C31 is shown. Some basic software routines are described showing how to transmit and receive bytes in a single master system. An example is given of how to use these routines in an application that makes use of the $I^{2} \mathrm{C}$ circuits on an $I^{2} \mathrm{C}$ demonstration board.
The PCF8584 is used to interface between parallel microprocessor or microcontroller buses and the serial $\mathrm{I}^{2} \mathrm{C}$ bus. For a description of the $I^{2} \mathrm{C}$ bus protocol refer to the $\mathrm{I}^{2} \mathrm{C}$ bus specification which is printed in the microcontroller user guide.
The PCF8584 controls the transmission and reception of data on the $\mathrm{I}^{2} \mathrm{C}$ bus, arbitration, clock speeds and transmission and reception of data on the parallel bus. The parallel bus is compatible with 80C51, 68000, 8085 and Z80 buses. Communication with the $I^{2} \mathrm{C}$-bus can be done on an interrupt or polled basis. This application note focuses on interfacing with 8051 microcontrollers in single master systems.

PCF8584

In Figure 1, a block diagram is shown of the PCF8584. Basically it consists of an
$1^{2} \mathrm{C}$-interface similar to the one used in 84 Cxx family microcontrollers, and a control block for interfacing to the microcontroller.
The control block can automatically determine whether the control signals are from 80xx or 68xxx type of microcontrollers.
This is determined after the first write action from the microcontroller to the PCD-8584. The control block also contains a programmable divider which allows the selection of different PCF8584 and ${ }^{2} \mathrm{C}$ clocks.
The $I^{2} \mathrm{C}$ interface contains several registers which can be written and read by the microcontroller.
S1 is the control/status register. This register is accessed while the A0 input is 1 . The meaning of the bits depends on whether the register is written to or read from. When used
as a single master system the following bits are important:

PIN: Interrupt bit. This bit is made active when a byte is sent/received to/from the ${ }^{2} \mathrm{C}$-bus. When ENI is made active, PIN also controls the external INT line to interrupt the microcontroller.

ES0-ES2: These bits are used as pointer for addressing S0, S0', S2 and S3. Setting ES0 also enables the Serial I/O.

ENI: Enable Interrupt bit. Setting this bit enables the generation of interrupts on the INT line.
STA, STO: These bits allow the generation of START or STOP conditions.

ACK: With this bit set and the PCF8584 is in master/receiver mode, no acknowledge is generated by the PCF8584. The slave/transmitter now knows that no more data must be sent to the $I^{2} \mathrm{C}$-bus.

BER: This bit may be read to check if bus errors have occurred.
BB: This bit may be read to check whether the bus is free for $\mathrm{I}^{2} \mathrm{C}$-bus transmission.
S 2 is the clock register. It is addressed when AO $=0$ and ESO-ES2 $=010$ in the previous write cycle to S 1 . With the bits $\mathrm{S} 24-\mathrm{S} 20$ it is possible to select 5 input clock frequencies and $4 \mathrm{I}^{2} \mathrm{C}$ clock frequencies.
S 3 is the interrupt vector register. It is addressed when A0 $=0$ and ESO-ES2 $=001$ in the previous write cycle to $S 1$. This register is not used when an 80C51 family microcontroller is used. An 80C51 microcontroller has fixed interrupt vector addresses.

S0' is the own address register. It is addressed when A0 $=0$ and ESO-ES2 $=$ 000 . This register contains the slave address of the PCF8584. In the single master system described here, this register has no functional use. However, by writing a value to SO^{\prime}, the PCF8584 determines whether an 80 Cxx or $68 x x x$ type microcontroller is the controlling microcontroller by looking at the CS and WR lines. So independent of whether the PCF8584 is used as master or slave, the
microcontroller should always first write a value to 0^{\prime} after reset.
SO is the $I^{2} \mathrm{C}$ data register. It is addressed when $A 0=0$ and ESO-ES2 $=1 \times 0$.
Transmission of a byte on the $1^{2} \mathrm{C}$ bus is done by writing this byte to SO . When the transmission is finished, the PIN bit in S1 is reset and if ENI is set, an interrupt will be generated. Reception of a byte is signaled by resetting PIN and by generating an interrupt if ENI is set. The received byte can be read from SO .

The SDA and SCL lines have no protection diodes to $V_{D D}$. This is important for multi-master systems. A system with a PCF8584 can now be switched off without causing the $\mathrm{I}^{2} \mathrm{C}$-bus to hang-up. Other masters still can use the bus.

For more information of the PCF8584 refer to the data sheet.

PCF8584/8031 Hardware Interface

Figure 2 shows a minimum system with an 8051 family controller and a PCF8584. In this example, an 80 C 31 is used. However any 80 C 51 family controller with external addressing capability can be used.
The software resides in EPROM U3. For addressing this device, latch U2 is necessary to demultiplex the lower address bits from the data bits. The PCF8584 is mapped in the external data memory area. It is selected when $A 1=0$. Because in this example no external RAM or other mapped peripherals are used, no extra address decoding components are necessary. A0 is used by the PCF8584 for proper register selection in the PCF8584.

U5A is an inverter with Schmitt trigger input and is used to buffer the oscillator signal of the microcontroller. Without buffering, the rise and fall time specifications of the CLK signa! are not met. It is also important that the CLK signal has a duty cycle of 50%. If this is not possible with certain resonators or microcontrollers, then an extra flip-flop may me necessary to obtain the correct duty cycle.
U5C and U5D are used to generate the proper reset signals for the microcontroller and the PCF8584.

Interfacing the PCF8584 ${ }^{2}$ C-bus controller

 to 80C51 family microcontrollers

Figure 1. PCF8584 Block Diagram

Figure 2. PCF8584 to 80 C 31 Interface

Basic PCF8584/8031 Driver

Routines

In the listing section (page 2-188), some basic routines are shown. The routines are divided in two modules. The module ROUTINE contains the driver routines and initialization of the PCF8584. The module INTERR contains the interrupt handler. These modules may be linked to a module with the user program that uses the routines in INTERR and ROUTINE. In this application note, this module will be called USER. A description of ROUTINE and INTERR follows.

Module ROUTINE

Routine Sendbyte (Lines 17-20)This routine sends the contents of the accumulator to the PCF8584. The address is such that $A O=0$. Which register is accessed depends on the contents of ESO-ES2 of the control register. The address of the PCF8584
is in variable 'PCF8584'. This must have been previously defined in the user program. The DPTR is used as a pointer for addressing the peripheral. If the address is less than 255, then R0 or R1 may be used as the address pointer.

Routine Sendcontr (Lines 25, 26)-
This routine is similar to Sendbyte, except that now $A O=1$. This means that the contents of the accumulator are sent to the control register S1 in the PCF8584.

Routine Readbyte (Lines 30-33)-
This routine reads a register in the PCF8584 with $\mathbf{A 0}=\mathbf{0}$. Which register depends on ESO -ES2 of the control register. The result of the read operation is returned in the accumulator.

Routine Readcontr (Lines 37-39)-
This routine is similar to Readbyte, except that now $A O=1$. This means that the
accumulator will contain the value of status register S1 of the PCF8584.

Routine Start Lines (44-56)-

This routine generates a START-condition and the slave address with a R/W bit. In line 44, the variable IIC_CNT is reset. This variable is used as a byte counter to keep track of the number of bytes that are received or transmitted. IIC_CNT is defined in module INTERR.

Lines 45-46 increment the variable NR_BYTES if the PCF8584 must receive data. NR_BYTES is a variable that indicates how many bytes have to be received or transmitted. It must be given the correct value in the USER module. Receiving or transmitting is distinguished by the value of the DIR bit. This must also be given the correct value in the USER module.

Then the status register of PCF8584 must be read to check if the $I^{2} \mathrm{C}$ bus is free. First the status register must be addressed by giving ES0- ES2 of the control register the correct value (lines 47-48). Then the Bus Busy bit is tested until the bus is free (lines 49-50). If this is the case, the slave address is sent to data register S0 and the I2C_END bit is cleared (lines 51-53). The slave address is set by the user program in variable USER. The LSB of the slave address is the R/W bit. 12C_END can be tested by the user program whether an 12C reception/transmission is in progress or not.

Next the START condition will be generated and interrupt generation enabled by setting the appropriate bits in control register S1. (lines 54-55).

Now the routine will return back to the user program and other tasks may be performed. When the START condition, slave address and RW bit are sent, and the ACK is received, the PCF8584 will generate an interrupt. The interrupt routine will determine if more bytes have to be received or transmitted.

Routine Stop (Lines 59-62) Calling this routine, a STOP condition will be sent to the $I^{2} \mathrm{C}$ bus. This is done by sending the correct value to control register S1 (lines 59-61). After this the I2C_END bit is set, to indicate to the user program that a complete $1^{2} \mathrm{C}$ sequence has been received or transmitted.

Routine 12C_Init (Lines 65-76)This routine initializes the PCF8584. This must be done directly after reset. Lines 67-70 write data to 'own address' register SO'. First the correct address of $\mathbf{S O}^{\prime}$ is set in control register S1 (lines 67-68), then the correct value is written to it (lines 69-70). The value for SO' $^{\prime}$ is in variable SLAVE_ADR and set by the user program. As noted previously, register S0' must always be the first register to be accessed after reset, because the PCF8584 now determines whether an 80Cxxx or $68 x x x$ microcontroller is connected. Lines 72-76 set the clock register S2. The variable I2C_CLOCK is also set by the user program.

Module INTERR

This module contains the $I^{2} \mathrm{C}$ interrupt routine. This routine is called every time a byte is received or transmitted on the $I^{2} \mathrm{C}$ bus. In lines 12-15 RAM space for variables is reserved.

BASE is the start address in the internal 80 C 51 RAM where the data is stored that is received, or where the data is stored that has
to be transmitted.
NR_BYTES, IIC_CNT and SLAVE were explained earlier. I2C_END and DIR are flags that are used in the program. I2C_END indicates whether an $\mathrm{I}^{2} \mathrm{C}$ transmission or reception is in progress. DIR indicates whether the PCF8584 has to receive or transmit bytes. The interrupt routine makes use of register bank 1.

The transmission part of the routine starts at line 42. In lines 42-43, a check is made whether IIC_CNT = NR_BYTES. If true, all bytes are sent and a STOP condition may be generated (lines 44-45).

Next the pointer for the internal RAM is restored (line 46) and the byte to be transmitted is fetched from the internal RAM (line 47). Then this byte is sent to the PCF8584 and the variables are updated (lines 47-49). The interrupt routine is left and the user program may proceed. The receive part starts from line 55. First a check is made if the next byte to be received is the last byte. (lines 56-59). If true the ACK must be disabled when the last byte is received. This is accomplished by resetting the ACK bit in the control register S1 (lines 60-61).

Next the received byte may be read (line 62) from data register S 0 . The byte will be temporary stored in R4 (line 63). Then a check is made if this interrupt was the first after a START condition. If so, the byte read has no meaning and the interrupt routine will be left (lines 68-70). However by reading the data register SO the next read cycle is started.

If valid data is received, it will be stored in the internal RAM addressed by the value of BASE (lines 71-73). Finally a check is made if all bytes are received. If true, a STOP condition will be sent (lines 75-78).

EXAMPLES

In the listing section (starting on page 8), some examples are shown that make use of the routines described before. The examples are transmission of a sequence, reception of $\mathrm{I}^{2} \mathrm{C}$ data and an example that combines both.

The first example sends bytes to the PCD 8577 LCD driver on the OM1016 demonstration board. Lines 7 to 10 define the interface with the other modules and should be included in every user program. Lines 14 to 16 define the segments in the user module. It is completely up to the user how to organize this.

Lines 24 and 28 are the reset and interrupt vectors. The actual user program starts at line 33. Here three variables are defined that
are used in the $I^{2} \mathrm{C}$ driver routines. Note that PCF8584 must be an even address, otherwise the wrong internal registers will be accessed! Lines 37-42 initialize the interrupt logic of the microcontroller. Next the PCF8584 will be initialized (line 45).

The PCF8584 is now ready to transmit data. A table is made in the routine at line 61. For the PCD8577, the data is a control byte and the segment data. Note that the table does not contain the slave address of the LCD driver. In lines 51-54, variables are made ready to start the transmission. This consists of defining the direction of the transmission (DIR), the address where the data table starts (BASE), the number of bytes to transmit (NR_BYTES, without slave address!) and the slave address (SLAVE) of the $I^{2} \mathrm{C}$ peripheral that has to be accessed.

In line 55 the transmission is started. Once the $1^{2} \mathrm{C}$ transmission is started, the user program can do other tasks because the transmission works on interrupts. In this example a loop is performed (line 58). The user can check the end of the transmission during the other tasks, by testing the 12C_END bit regularly.

The second example program receives 2 bytes from the PCF8574P I/O expander on the OM1016 demonstration board. Until line 45 the program is identical to the transmit routine because it consists of initialization and variable definition. From line 48, the variables are set for $I^{2} \mathrm{C}$ reception. The received bytes are stored in RAM area from label TABLE. During reception, the user program can do other tasks. By testing the I2C_END bit the user can determine when to start processing the data in the TABLE.

The third example program displays time from the PCF8583P clock/calendar/RAM on the LCD display driven by the PCF8577. The LED display (driven by SAA1064) shows the value of the analog inputs of the A/D converter PCF8591. The four analog inputs are scanned consecutively.

In this example, both transmit and receive sequences are implemented as shown in the previous examples. The main clock part is from lines 62-128. This contains the calls to the $I^{2} C$ routines. From lines 135-160, routines are shown that prepare the data to be transmitted. Lines 171 to 232 are the main program for the AD converter and LED display. Lines 239 to 340 contain routines used by the main program. This demo program can also be used with the $1^{2} C$ peripherals on the OM1016 demonstration board.

Interfacing the PCF8584 ${ }^{2}$ C-bus controller to 80C51 family microcontrollers

Interfacing the PCF8584 ${ }^{2}$ C-bus controller to 80C51 family microcontrollers

Interfacing the PCF8584 $1^{2} \mathrm{C}$-bus controller to 80C51 family microcontrollers

Interfacing the PCF8584 ${ }^{2}$ C -bus controller to 80C51 family microcontrollers

Interfacing the PCF8584 ${ }^{2}$ C -bus controller to 80C51 family microcontrollers

Interfacing the PCF8584 ${ }^{2}$ C -bus controller to 80C51 family microcontrollers
ASM51 TSW ASSEMBLER

LOC	OBJ		LINE
			1
			2
			3
			4
			5
			6
			7
			8
			9
			10
			11
			12
			13
			14
			15
			16
			16
			17
			18
---			19
0000:		\mathbf{R}	20
			21
			22
----			23
0000:	020000	R	24
			25
			26
----			27
0003:	020000	R	28

0055
001 C
0000

0003: D2A8		39
0005: D2AF		40
0007: D2B8		41
0009: D 288		42
		43
		44
000B: 120000	R	45
		46
		47
000E: C200	R	48
0010: 750000	R	49
0013: 750002	R	50
$0016: 75004 F$	R	51

Receive 2 bytes from the PCF8574P on OM1016

```
sOURCE
```

```
$TITLE (Receive 2 bytes from the PCF8574P on OM1016)
$PAGELENGTH(40)
;
;This program is an example to receive bytes via
; PCF8584
;from the r2C-bus
;
    PUBLIC SLAVE_ADR,I2C_CLOCK,PCF8584
    EXTRN CODE(I2C_INIT,INTO_SRV,START)
    EXTRN BIT(I2C_END,DIR)
    EXTRN DATA(BASE,NR_BYTES,IIC_CNT,SLAVE)
;
; Define used segments
USER SEGMENT CODE ;Segment for user program
RAMTAB SEGMENT DATA ;Segment for table in
    ;internal RAM
RAMVAR SEGMENT DATA ;Segment for RAM variables
                                    ;in RAM
```

;
;
STACK: DS 20 ;Reserve stack area
;
;
CSEG AT OOH
JMP MAIN ; Reset vector
;
;
CSEG AT 03H
JMP INTO_SRV ;I2C interrupt vector
; (INTO/)
;
;
RSEG USER
; Define I2C clock, own slave address and PCF8584
; Define 12 C clock
;hardware address
SLAVE_ADR EQU 55H ;OWn slave address is 55H
I2C_CLOCK EQU 00011100B;12.00MHz/90kHz
PCF8584 EQU 0000H ;PCF8584 address with A0 $=0$
;0000: 7581FF $\quad 37$ MAIN: MOV SP,\#STACK-1 ; Initialise stack pointer
;Initialise 8031 interrupt registers for I2C
; interrupt
SETB EXO ;Enable interrupt INTO/
SETB EA ; Set global enable
SETB PXO ; Priority level '1'
SETB ITO ;INTO/ on falling edge
;
;Initialise PCF8584
CALL I2C_INIT
;
; Set variables to control PCF8584
CLR DIR ;DIR='receive'
MOV BASE,\#TABLE ; Start address of I2C-data
MOV NR_BYTES, \#02H ; 2 bytes must be received
MOV SLAVE, \#01001111B ; Slave address PCF8574
; + RD

Interfacing the PCF8584 ${ }^{2} \mathrm{C}$-bus controller

 to 80C51 family microcontrollers| 0019: | 120000 | R | 52 | | CALL START | ;Start I2C transmission |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | 53 | ; | | |
| | | | 54 | ; | | |
| 001C: | 80FE | | 55 | LOOP: | JMP LOOP | ; Endless loop when program ;is finished |
| | | | 56 | ; | | |
| | | | 57 | ; | | . |
| | | | 58 | | RSEG RAMTAB | |
| 0000: | | R | 59 | TABLE: | DS 10 | ;Reserve space in internal ; data RAM |
| | | | 60 | | | ; for received I2C data |
| | | | 61 | ; | | |
| | | | 62 | ; | | |
| 000A: | | | 63 | | END | : |

Interfacing the PCF8584 ${ }^{2}$ C -bus controller to 80C51 family microcontrollers

ASM51 TSW ASSEMBLER				Demo program for PCF8584 I2C-routines
LOC	OBJ		LINE	SOURCE
0074			46	PCF8577W EQU 01110100B ;Address PCF8577 with Write ;active
0076			47	SAA1064W EQU 01110110B ;Address SAA1064 with Write ;active
		$\%$	48	;
0000:	7581FF	R	49	MAIN: MOV SP,\#STACK-1 ; Define stack pointer
			50	; Initialise 80C31 interruptregisters for I2C ;interrupt (INTO/)
0003:	D2A8		51	SETB EXO ;Enable interrupt INTO/
0005:	D2AF		52	SETB EA \quad; Set global enable
0007:	D2B8		53	SETB PXO ; Priority level is '1'
0009:	D288		54	SETB ITO ; INTO/ on falling edge
			55	; Initialise PCF8584
000B:	120000	R	56	CALL I2C_INIT
			57	;
000E:	751500	R	58	MOV CHANNEL, \#00 ; Set Ad-channel
			59	;
			60	;Time must be read from PCD8583.
			61	;First write word address and control register of ; PCD8583.
0011:	D200	R	62	SETB DIR ;DIR='transmission'
0013:	750000	R	63	MOV BASE, \#TABLE ; Start address I2C data
0016:	750002	R	64	MOV NR_BYTES,\#02H ; Send 2 bytes
0019:	7500A2	R	65	MOV SLAVE,\#PCF8583W
001C:	E4		66	CLR A
001D:	F500	R	67	MOV TABLE,A \quad; Data to be sent (word ;address).
001F:	r501	R	68	MOV TABLE+1, A ; " (control
				;byte)
0021:	120000	R	69	CALL START ; Start transmission.
0024:	3000FD	R	70	FIN_1: JNB I2C_END,FIN_1 ; Wait till transmission
				;finished
			71	; Send word address before reading time
0027:	D200	R	72	REPEAT: SETB DIR ;'transmission
0029:	750000	R	73	MOV BASE, \#TABLE ; I2C data
002C:	7500A2	R	74	MOV SLAVE,\#PCF8583W
002F:	7401		75	MOV A, \#01
0031:	F500	R	76	MOV NR_BYTES,A ; Send 1 byte
0033:	F500	R	77	MOV TABLE, A ; Data to be sent is '1'
0035:	120000	R	78	CALL START istart I2C transmission
0038:	3000FD	- R	79	FIN_2: JNB I2C_END,FIN_2 ; Wait till transmission ;finished
			80	;
			81	; Time can now be read from PCD8583. Data read is
			82	; hundredths of sec's, sec's, min's and hr's
003B:	C200	R	83	CLR DIR ; DIR='receive'
003D:	750000	- R	84	MOV BASE,\#TABLE ; I2C table
0040:	750004	R R	85	MOV NR_BYTES,\#04; 4 bytes to receive
0043:	7500A3	R	86	MOV SLAVE, \#PCF8583R
0046:	120000	- R	87	CALL START ; Start I2C reception
0049:	3000FD	- \mathbf{R}	88	FIN_3: JNB I2C_END, FIN_3 ;Wait till finished
			89	;
			90	; Transfer data to R2...R5
004C:	7800	R	91	MOV RO,\#TABLE ; Set pointers
004E:	7902		92	MOV R1,\#02H ; Pointer R2
0050:	E6		93	TRANSFER:MOV A, @RO

\rightarrow

Interfacing the PCF8584 ${ }^{2}$ C -bus controller to 80C51 family microcontrollers

Interfacing the PCF8584 ${ }^{2}$ C -bus controller to 80C51 family microcontrollers

ASM51	TSW A	ASSEM		Demo program for PCF8584 I2C-routines
LOC	OBJ		LINE	SOURCE
00C4:	7600		189	MOV ER0,\#00 ;SAA1064 instruction byte
00C6:	08		190	INC RO
00C7:	7677		191	MOV CRO,\#77H ;SAA1064 control byte
00c9:	08		192	INC RO
00CA :	F6		193	mov erorn ; Channel number
00 CB :	E4		194	CLR A
00CC:	08		195	INC RO
OOCD:	F6		196	MOV ©R0, A ; Second digit
00CE:	08		197	INC RO
OOCF:	F6		198	MOV ERO,A ; Third digit
OODO:	08		199	INC RO
00D1:	F6		200	MOV GRO, A ; Fourth byte
			201	;
00D2:	2200	R	202	SETB DIR ; I2C transmission of channel ; number
00D4:	750000	R	203	MOV BASE, \#TABLE
00D7:	750006	R	204	MOV NR_BYTESS,\#06H
OODA:	750076	R	205	MOV SLAVE, \#SAA1064W
OODD:	120000	R	206	CALL START
			207	;
00E0:	3000FD	R	208	FIN_5: JNB I2C_END,FIN_5
00E3:	020027	R	209	JMP REPEAT ; Repeat clock and ad cycle ; again
			210	;
			211	;
			212	; Measure and display the value of an AD-channel
00E6:	120108	R	213	NEW_MEAS: CALL AD_VAL ; Do measurement
			214	; Wait till values are available
00E9:	3000 FD	R	215	FIN_6: JNB I2C_END, FIN_6
			216	; Relevant byte in TABLE+1. Transfer to AN_VAL
00EC:	7801	R	217	MOV R0, \#TABLE+1
00EE:	8616	R	218	MOV AN_VAL, QRO
00FO:	E516	R	219	MOV A,AN_VAL ; Channel value in accu for ; conversion
			220	;AN_VAL is converted to BCD value of the measured ; voltage.
			221	; Input value for CONvERT in accu
			222	; Address for MSByte in R1
00F2:	7917	R	223	MOV R1, \#CONVAL
00F4:	120154	R	224	CALL CONVERT
			225	; Convert 3 bytes of CONVAL to LED-segments
00F7:	900193	R	226	MOV DPTR, \#LED_TAB ; Base of segment table
00FA :	7817	R	227	MOV RO,\#CONVAL
00FC:	12018A	R	228	CALL SEG_LOOP
			229	; Display value of channel to led display
00FF:	12012C	- \mathbf{R}	230	CALL LED_DISP
0102:	3000FD	R	231	FIN_8: JNB I2C_END, FIN_8 ; Wait till I2C
				;transmission is onded
0105:	020027	R	232	JMP REPEAT ;Repeat clock and AD cycle
			233	;
			234 ;	;**
			235	; Routines used for AD converter.
			236	;
			237	;AIN reads an analog values from channel denoted by ; CHANNEL.

ASM51	TSW	ASSEM		Demo program for PCF8584 I2C-routines
LOC	OBJ		LINE	SOURCE
			238	; Send controlbyte:
0108:	D200	R	239	AD_VAL: SETB DIR ;I2C transmission
010A:	7800	R	240	MOV RO,\#TABLE ; Define control word
010C:	A615	R	241	MOV ERO, CHANNEL
010E:	750000	R	242	MOV BASE, \#TABLE ; Set base at table
0111:	750001	R	243	MOV NR_BYTES,\#01H ; Number of bytes to be ; send
0114:	75009 E	R	244	MOV SLAVE,\#PCF8591W ; Slave address PCF8591
0117:	120000	R	245	CALL START \quad; Start transmission of
011A:	3000 FD	\mathbf{R}	246	FIN_7: JNB I2C_END,FIN_7 ; Wait until tranmission is ;finished
			247	; Read 2 data bytes from AD-converter
			248	; First data byte is from previous conversion and not
			249	;relevant
011D:	C200	R	250	CLR DIR ;I2C reception
011F:	750000	R	251	MOV BASE,\#TABLE ; Bytes must be stored in ; TABLE
0122:	750002	R	252	MOV NR BYTES,\#02H; Receive 3 bytes
0125:	75009 F	R	253	MOV SLAVE, \#PCF8591R ; Slave address PCF8591
0128:	120000	R	254	CALL START
012B:	22		255	RET
			256	;
			257	; LED DISP displays the data of 3 bytes from address ; CONVAL
012C:			258	LED_DISP:
012C:	431780	R	259	ORL CONVAL,\#80H ; Set decimal point
012F:	7800	R	260	MOV RO,\#TABLE
0131:	7917	R	261	MOV R1,\#CONVAL
0133:	7600		262	MOV aro,\#00 ;SAA1064 instruction byte
0135:	08		263	INC RO
0136:	7677		264	MOV CR0,\#01110111B ; SAA1064 control byte
0138:	08		265	INC RO
0139:	7600		266	MOV ero,\#00 ; First Led digit
0138:	08		267	INC RO
013C:	120185	R	268	CALL GETBX ; Second digit
013F:	120185	R	269	CALL GETBY ; Third digit
0142:	120185	R	270	CALL GETBY ; Fourth digit
0145:	D200	R	271	SETB DIR ; I2C transmission
0147:	750000	R	272	MOV BASE,\#table
014A:	750006	R	273	MOV NR_BYTES,\#06
014D:	750076	R	274	MOV SLAVE,\#01110110B
0150:	120000	R	275	CALL START ; Start I2C transmission
0153:	22		276	RET
			277	;
			278	; CONVERT calculates the voltage of the analog value.
			279	; Analog value must be in accu
			280	; BCD result (3 bytes) is stored from address stored ;in R1
			281	; Calculation: AN_VAL*(5/256)
0154:	75F005		282	CONVERT: MOV B,\#05
0157:	A 4		283	mul ab
			284	;b2..b0 of reg. B : 2E+2..2E0
			285	;b7..b0 of accu : 2E-1..2E-8
0158:	A7F0		286	MOV QR1, B ; Store MSB (10E0-units)
015A:	09		287	INC R1

ASM51	TSW	ASSEMBLER	Demo program for PCF8584 I2C-routines
LOC	OBJ	LINE	SOURCE
015B:	7700	288	MOV GR1,\#00 ; Calculate 10E-1 unit
			; (10x-1 ia 19h)
015D:	B41C02	289	TEN_CH: CJNE A,\#19H+03H, V1 ; Check if accu <mo.11
0160:	8002	290	JMP TENS jaccu=0.11; update tens
0162:	4006	291	V1: JC NX_CON ;accu<0.11, update hundreds
0164:	C3	292	TENS: CLR C ; Calculate new value
0165:	9419	293	SUBE A, \#19H
0167:	07	294	INC OR1 Update BCD byte
0168:	$80 \mathrm{F3}$	295	JMP TEN CH
		296	; Correction may be neccessary. With 8 bits 10.1 ' is ; in fact 0.0976 .
		297	;A digit of '0N' may appear. Correct this by ; decrementing the digit.
		298	;The intermediate result result must be corrected ;with 10*(0.1-0.0976)
		299	, This is 06H
016A:	370A03	3300	NX_CON: CJIE QR1,\#OAR,PROC_CON , If digit is 'OX' ;then correct
016D:	17	301	DEC GR1
016E:	2419	302	ADD A, \#19H
0170:	09	303	PROC_CON:INC R1
0171:	7700	304	MOV ER1,\#00 ; Calculate 10E-2 units
0173:	840302	2305	HUND: CJNE A, \#03H, V2 ; Check if accu <= 10E-2
0176:	8002	306	JMP HUNS : ; accu=10区-2; update hundreds
0178:	4006	307	V2: JC FINISH ;accu<10E-2; conversion , finished
017A:	C3	308	HUNS: CLR C \quad Calculate new value
017B:	9403	309	SUBB A, \#03H
017D:	07	310	INC OR1 ; Update BCD byte
017E:	80F3	311	JMP HUND : \cdots
0180:	B70A01	1312	FINISH: CJNE QR1, \#OAH,FIN ; Check if result is 'OA'.
			\cdots; Then correct.
0183:	17	313	DEC ER1
0184:	22	314	FIN: RET
		315	;
		316	; CALLBY tranfers byte from QR1 to QR0
0185:	E7	317	GETBY: MOV A, eri
0186:	F6	318	MOV ERO,A
0187:	08	319	INC RO
0188:	09	320	INC R1.
0189:	22	321	RET
		322	;
		323	;SEG_LOOP Converts 3 values to segment values.
		324	; R0 containg address of source and destination
		325	; DPTR contains base of table
018A:	7903	326	SEG_LOOP: MOV R1,\#03 ;LOOD countex ...
018C:	E6	327	INLOOR: MOV A, eRO ; Get value to be displayed
018D:	93	328	MOVC A, CA+DPTR ; Get segment value from ;table
018E:	F6	329	MOV ero, A ; Store segment data
018F:	08	330	INC RO
0190:	D9FA	331	DJNZ R1, INLNOP
0192:	22	332	RET
		333	
		334	; \%

Interfacing the PCF8584 ${ }^{2} \mathrm{C}$-bus controller to 80C51 family microcontrollers

What is Teletext?

Author: Marc Schneider

WHAT IS TELETEXT?

Teletext is a system that was developed in the late '70s to deliver public information to television viewers in the comfort of their home. Since it's creation, Teletext has undergone several enhancements to improve it's flexibility, and yet maintain a low overall cost to the customer. In the 80's, new extensions were added to Teletext handle independent data services, and the format continues to expand to this day.
Multimedia computing is now discovering the benefits of having Teletext reception as another value added feature. With the ever increasing quest for more information on the desktop, applications can range from stock trading, electronic news, E-Mail, downloadable software,education, and customer service just to name a few.
Even though Teletext format has been enhanced quite a lot since it's original inception, the basic functionality is still very much the same. Here are a few examples of this:

Basic Teletext system overview

- Teletext is a format to transmit data within a video signal
- Can be multiplexed with the video, or not
- Data rate is a few MBit/s
- Accepted global standard (WST)
- Secure delivery data channel
- Data error checking
- Low cost
- Uni-directional
- Page format: $\mathbf{2 4}$ rows $\times \mathbf{4 0}$ columns

HOW IS IT ENCODED IN A VIDEO SIGNAL?

There are two common methods for encoding the Teletext data into a video stream. The most common is to use the Vertical Blanking Interval or VBI. This is a generally unused space located between the vertical sync pulse and the actual active video picture. Because of the limited number of available lines in the VBI, the actual amount of data that can be transmitted is limited to about $17.76 \mathrm{Kbits} / \mathrm{sec}$ times the number of transmitted lines. So, if we were to transmit 3 lines of Teletext data per field, that would work out to:
One horizontal line (525) of data $=37$ Bytes or $=296$ bits per line/field

296

$\times 60$ (fields per second)
17,760 bits/sec per line data rate $\times 3$ لlines/sec 53,280 bits/sec

So, a three line/field transmission has an effective data rate close to ISDN rates!

If, however, the broadcaster has a dedicated channel (cable, MDS, satellite, video LAN, etc.), it is then possible to put Teletext data on every line. In this case, the data through-output would increase to almost half of Ethernet rates!

One horizontal line (525) of data $=37$ Bytes or $=296$ bits per line/field

296 (fields per second)
$\times 60$ (1)
$\frac{17,760}{}$ bits/sec per line data rate
$\times 251 \quad$ (usable linesffield)
$4,457,760$ bits/sec data rate

Now the data rate has been increased to over 4.5Mbits/sec, half Ethernet speed!

What is Teletext?

WHERE CAN TELETEXT DATA RESIDE IN A VIDEO SIGNAL?

WHAT DOES THE DATA LOOK LIKE?

Each Video line use to convey the
Teletext data is called a Teletext Data Line.

What is Teletext?

625 LINE WST TELETEXT TRANSMISSION

525 LINE WST TELETEXT TRANSMISSION

What is Teletext?

HOW IS IT BROADCAST TO CUSTOMERS?

The most common way for Teletext to reach a large customer base is to send it using normal over-the-air broadcast television transmissions. Although this is the common approach, it is not the only method. Cable companies can distribute the data on a dedicated channel or add it to the VBI of an existing channel. Multi-point Distribution System operators (MMDS or wireless cable) can provide Teletext data via direct microwave transmissions to the customer. Satellite broadcasters can use the same approach as well. Figure 3 is an example.

And signal distribution isn't required to general off-air distribution. Teletext can also be used over a video local area network (VLAN) for supporting anything from printing devices, data servers, and even individual workstations. A simple way to provide secure data delivery in a growing multi-media environment and at a low cost.

Figure 3. A Broadcast transmission example

What is Teletext?

Figure 4. An example of remote corporate training

In Figure 4, an instructor at a corporate headquarters could be teaching a class locally while also delivering the same information to students at multiple remote sites. In addition to the normal video and audio transmissions, the instructor could send data specifically to individual students at the remote site (or sites) on demand over the same video link. Teletext offers a new way to add addition information to video training without affecting the current video distribution network.

What is Teletext?

WHAT ABOUT ERROR
 CORRECTION?

The WST standard provides for two basic layers of error correction for page format Teletext, Hamming code is used for addressing, and parity for character data. The Hamming correction can catch both single and double bit errors, while the parity checking can resolve single bit errors. For Packet 31 transmissions, there is the addition of a 16 bit CRC check added to the end of the data packet, although this is optional. Both page format Teletext and Packet 31 could be encoded with 8 bit data allowing any third party protection format to be used.

WHAT ARE TELETEXT PACKETS?

Packets are the actual data information with an assigned address. There are three basic types of packet in the WST standard, page headers, normal rows, and extension packets. Each has a specific assigned purpose and bit format:

PAGE HEADERS -

Packet Address 0

This packet contains page number and control information, plus 32 display characters including 'TIME'. It appears at the top of the display.

NORMAL ROWS -

Packet Address 1-23
These contain 32 bytes (40 bytes 625 line) of data defining a row of 32 (40) characters on the display. The address defines the vertical position of the row.

EXTENSION PACKETS -

Packet Address 24-31
Typically each has its own special function and is not directly displayed. They are used to enhance the performance of the more advanced decoders or to provide special data services.

There are a total of eight extension packet functions pre-defined under the WST standard. They are:

Packet Number	Function
Packet (row) 24	Page Extension
Packet (row) 25	Telesoftware
Packet (row) 26	 Page Related Redefinition
Packet (row) 27	Linked Pages (FLOF/FASTEXT)
Packet (row) 28	Page Related Redefinition
Packet (row) 29	Magazine Related Redefinition
Packet (row) 30	Broadcaster Data Services
Packet (row) 31	Independent Data Services (Multi-media)

With these extensions, Teletext can support a wide variety of functional services from programming a VCR to acquiring the latest software for a home or business computer.

EXTENSION PACKET PROCESSING

What is Teletext?

HOW DOES A DECODER FUNCTION?

There are two basic architectures to a WST decoder. The first is for standalone applications, as in a television set or a set-top decoder (Figure 5). These units are self contained and usually offer limited capabilities for extension packet handling. Generally the decoder is made up of a video input processor (VIP), the Teletext processor, some form of page memory storage for received data, a character generator to drive a CRT, and a character language font ROM for displaying the text in the native language the receiver is being used. These processors
offer a simple serial interface for communicating with the televisions microcontroller. Although the actual data usually can be removed via this interface, it is generally not recommend for performance reasons.

The second method for receiving Teletext data is to use a acquisition only decoder. This type of decoder relies on a host microprocessor to determine what happens to the received data once is has been acquired and error checked. At this point, the processor must handle all of the storage and display functions remaining to present the
data to the user. This is the preferred method used for teletext interacting with a personal computer. Because the host computer already has memory, disk, networking, and advanced display functions, there is no need to have these function duplicated in the Teletext receiver. (See Figure 6.)

Typically a decoder used in this method supports all of the packets described under the WST standard. The text processor is a minimal Teletext decoder only handling the error correction and acquisition functions. It is therefore quite flexible in supporting multiple packet format reception.

Figure 5.

Figure 6.

What is Teletext?

What Are some RECOMMENDED CONFIGURATIONS?

For basic level 1 Teletext reception in the 525 line television system, the standard configuration is comprised of the SAA5191 data slicer, SAA9042 WST Teletext decoder, a DRAM for local storage, and either a microcontroller as the control host or and I2C

UART to interface to an external host (i.e., a microcomputer). This solution will not decode Packet 31 transmissions but will decode all other extension packets.

Figure 7 demonstrates a standalone decoder with the acquisition and display sections of the SAA9042 timed from the incoming video signal. Although this will work quite well for set-top or computer add-in card applications,
it should be noted that in the absence of any incoming composite sync signal, or if the signal is very noisy, the field sync integrator in the acquisition section will not be able to detect the start of the field. Consequently the display section will not receive a reliable vertical trigger, and thus a stable text display cannot be guaranteed under all signal conditions.

Figure 7. Standalone Example (Direct Sync Mode Shown)

What is Teletext?

For acquisition only and Datacast reception (packet 31), the SAA5250 CMOS Interface for Data Acquisition and Control, or CIDAC, is a WST decoder designed for direct interfacing to a microprocessor host. Unlike the SAA9042, CIDAC only has one acquisition channel and support for only a $2 K \times 8$ static RAM for local buffering. But because CIDAC was intended to interface to a microprocessor, the need for most of the larger local storage and multiple acquisition channels are unnecessary in this application since the microcomputer host has superior storage and data transfer capabilities already. In the circuit shown in Figure 8, the SAA5231 is used purely as a data slicer since the CIDAC doesn't require a dot clock for display the VCO section of the SAA5231 is left unused. Because the CIDAC was design as a multi-Teletext format decoder, the chip was designed primarily for full field data reception. For VBI applications, it is suggested to add a simple circuit between the SAA5231 and the CIDAC that creates a VBI 'window'.

The purpose of the VBI window generator is simple. To aid the CIDAC in the reduction of invalid data being processed, and to provide the host microprocessor with a data valid interrupt so the microprocessor will not be required to poll the CIDAC on a regular basis to determine if new data has arrived.

The TDA4820T is a adaptive sync separator which provides the PLD with vertical and composite sync. With these signals at hand, the PLD simply counts the number of horizontal lines after the vertical sync period until the desired active video line for the window to open is found. Upon finding this, the PLD then allows the data from the SAA5231 to be passed onto the CIDAC, but not before it is gated with the composite blanking signal first. This has the result of passing only valid data for a select number of horizontal lines and pre-filtering out any sync or color burst information which could be confused as valid data.

The other function the PLD generates is a simple interrupt pulse for the microprocessor. This pulse can be generated before, during, or after the window closes. The choice is up to the PLD's designer and is important for the microprocessors best performance. In addition, it is recommended that the PLD designer add a hardware select line from the PLD to the microprocessor to allow it to select full field or VBI reception for fiexibility.

In conclusion, the WST Teletext format allows a system designer great flexibility while providing a low cost means to deliver secure data over a wide area network. Philips Semiconduciors has been providing complete Teletext solutions since the formats early beginning and as a customer you can look forward to continued innovative and cost effective solutions from Philips Semiconductors, World wide supplier of Teletext components.

Figure 8. An Example WST Packet 31 Decoder for Multi-Media Applications

Packet and Page Teletext data reception using the SAA5250

Authors: J.R. Kinghorn Philips Product Concept \& Applications Lab, Southampton England
A. Guenot Philips Semiconductors, Paris France
Pevised: M. T. Schneider Philips Product Concept \& Applications Lab, California

SUMMARY

Two methods of transmitting serial data in World System Teletext (WST) format are available. These are the independent data line or 'Packet 31' method, and the page format technique. For universal application in a subscription Teletext environment the receiving equipment must be able to accept both forms of transmission. The Multistandard acquisition circuit CIDAC (SAA5250) or CMOS Interface for Data Acquisition and Control, is available to simplify the receiver design.

INTRODUCTION

Recently there has been a great upsurge in interest in using Teletext to transmit serial data. This can be achieved without interfering with the normal Teletext service, and the data
can be used for many purposes. For instance, a nationwide one way data distribution service could provide customer support for a computer software manufacture, sending both new product announcements, software updates and bug fixes automatically.

At the receiving end, a variety of terminal equipment types can be envisaged depending on the application. A common requirement, however, is for a 'black box' which can be connected to an aerial input signal and deliver a parallel data output to a desktop computer. This unit can be largely transparent to the application, being the equivalent of a data link in a conventional wired computer installation. A block diagram of such an adapter unit is shown in Figure, 1.

The UHF or VHF aerial signal is passed
through the conventional television receiving circuitry of tuner, I.F., and demodulator stages to produce a baseband composite video signal (CVBS). This is applied to the Teletext data slicer and acquisition decoder, which provides a data output to the host computer rather than the usual text display output.

The Teletext decoder can use a microprocessor to format the data output and provide control of the system. Tuning in the local broadcast station and selection of the required service can be done through the controls on the adapter unit, or alternatively by sending commands from the host computer through a suitable interface logic. Facilities for descrambling the data and access control can be provided in the software of the adapter unit or in the host computer according to the particular requirements of a service.

Figure 1. Data Adapter Unit

Packet and Page Teletext data reception using the SAA5250

The Teletext Decoder

As mentioned earlier, the requirements for a Teletext decoder to receive serial data are quite different from a conventional decoder in a television set, or set-top decoder. To begin with, an RGB text display output is not usually required as perfectly adequate character generating capacity is available on the host computer's display. The data output is the main requirement; demanding reasonably direct access to the acquisition memory from the host. Facilities for access control and descrambling the data may be needed, together with special error-checking algorithms.

As a further complication, two entirely different transmission methods are used for serial data; the page format method and the independent data line or 'packet 31' method. Each of these methods has its advantages and disadvantages, but it appears likely that both will be used commercially.

If only page format data reception is required, a standard Teletext decoder chip can be used with appropriate control software, see Reference 1. However, the adapter designer may require a universal decoder capable of operating on either form of transmission. For reasons of economy, duplication of circuitry should be avoided if possible. On the other hand, good
performance (i.e. speed) and adaptability may be prerequisites in a competitive design.
The multistandard acquisition circuit CIDAC (SAA5250) provides a solution to these problems. Originally designed for the reception of the French ANTIOPE and the World System Teletext formats, it is equally capable of acquiring data using the independent data line transmission technique. The device can be programmed to operate in various modes and two of these are suitable for the independent data line and the page format transmissions respectively. A block diagram of a multistandard Teletext decoder for serial data is shown in Figure 2.
Composite video is supplied to a standard Philips data slicer (SAA5231 or SAA5191) circuit which performs adaptive data slicing and supplies serial data and clock to the CIDAC (SAA5250). The other section of the data slicer is concerned with display timing synchronization is not used. All of the CIDAC timing is derived from the 5.7273 Mhz (6.9375 Mhz in 625 line) data clock. Acquisition of the data is performed by the CIDAC circuit (SAA5250).

The received data is buffered in a standard low cost $2 K \times 8$ static RAM connected to the CIDAC. The chip performs appropriate prefix processing according to the operating mode selected, and the storage of particular
packets of data is under software control. Data is retrieved from the RAM via CIDAC's parallel interface to a host interface or a microcontroller.

If a microcontroller is used, the microcode is responsible for formatting the data into the form required to interface with the host computer (i.e. an RS-232 serial interface at 9600 baud). The microcontroller itself can be one of several standard types, 8051, 8049 , 6801, 6805, etc. Any controis (i.e. to select the service) can be implemented locally in the decoder using port pins of the microcontroller; alternatively if the output interface is made bi-directional, selections can be made using the host computer externally. Access controls and descrambling are dealt with using the appropriate software in the decoder's microcontroller acting on the corresponding received data.

Alternatively, these functions may be performed by the host computer, with the decoder simply acting as a transparent data link and no microcontroller is used in this configuration. The same hardware configuration can be used as a receiver for downloadable software, or as a standard acquisition unit for normal World System Teletext or pages with the host computer used as the display unit.

Packet and Page Teletext data reception using the SAA5250

The CIDAC Circuit

The CIDAC itself performs the acquisition functions and interfaces with the memory and host. A block diagram of the device is shown in Figure 3.

The received serial data from the data slicer is checked for framing code (which is programmed from the host) during a line timing window derived from the VCS sync signal. This timing window can be moved within limits under software control to compensate for the different framing code delays. After detection of the framing code, the information is converted into 8 bit parallel form. In addition, the VAL OUT output (pin 2) will reflect the position of the programmed framing window.

The functions performed by the data depend on the operating mode selected, and are controlled by the sequence controller circuit.

Some data bytes are Hamming protected, and these are passed through Hamming correction logic. Most of the operating modes have hardware recognition of a channel or magazine, so the appropriate input data is compared with the requested magazine number in the channel comparator. This ensures that only data from the selected magazines is loaded into memory, and that the acquisition process is not burdened with irrelevant data.

The format counter is used to count the number of bytes loaded into memory on each data line; this value can be loaded by the software. In long and short Didon (ANTIOPE) modes this information is taken from the broadcast format byte via the format transcoder.

Storage of the data in memory also depends on the selection of slow or fast mode. In slow mode, all data from the selected magazine is
stored in memory regardless of any further conditions. It is then up to the host software to search for the appropriate data by looking for a start-of-page flags, packet number recognition, etc. This method is suitable for modest operating speeds such as the packet 31 system, in which the host has no difficulty in keeping up with the overall data throughput.

Alternatively if fast mode is chosen, data is only stored after recognition by the CIDAC hardware of an appropriate 'start-of-page' flag. This flag depends on the system; codes SOH, RS for Didon, a bit in the PS byte for NABTS, or row 0 (page header) for World System Teletext. Using fast mode considerably simplifies the host's task in page recognition, so the position of the data to be checked becomes defined in memory. Fast mode is implemented by page flag detection circuitry in the sequence controller.

Packet and Page Teletext data reception using the SAA5250

Fast mode is suitable for the page format data transmission method, as the data may be mixed up with a large number of normal teletext pages and interleaved in time. With a suitably fast host, slow mode could be used but it should be remembered that the number of data lines transmitted might increase over time. Also, genuine full channel operation will be impossible in slow mode.

The external $2 \mathrm{~K} \times 8$ static RAM is used as a first-in-first-out (FIFO) memory so that the transmission order is carefully preserved. Flags associated with the FIFO controller allow the host to see whether the FIFO is empty, has a character for reading, or it is full. Writing to the memory depends on the reception of transmitted data. And a read cycle occurs when it's requested by the host.

The CIDAC memory interface has interleaved read and write cycles clocked at the transmission rate, so in principle the host could read the data as fast as it is coming into the FIFO (Approx. one byte/microsecond). Any standard $2 \mathrm{~K} \times 8$ Static RAM (i.e. 6116) can be connected to
the memory interface and the timing requirements are not very critical.
The interface to the host is an 8 bit parallel bus together with the appropriate handshaking control signals. Data and address are multiplexed on the bus in accordance with normal microprocessor practice. A feature of the CIDAC is the support of a MOTEL (Motorola/ntel) parallel (programmable) host interface.
The Intel protocol (i.e., 8051, 8049, etc.) latches the address with ALE, and has separate RD* and WR* pulses for reading and writing respectively. The Motorola protocol (i.e. 6801, 6805) has an AS pulse for latching addresses, a DS pulse every cycle, and a $R W^{*}$ signal to distinguish read and write cycles.

CIDAC distinguishes between these two protocols by looking at the state of the RD (DS) line during the ALE (AS) pulse and switches over automatically as necessary. This facility permits many types of host interfaces to be connected to CIDAC without extensive interface bus translation
components. Communication between the host and CIDAC is always initiated by the host.

Since CIDAC does not provide an interrupt function to the host, the host must poil to CIDAC to see when new data has arrived. However, the designer can generate a field interrupt easily by adding only a small amount of external logic.

Various write registers in CIDAC allow the selection of the operating mode, and the loading of the channel number. There are two registers which can be read by the host; the data register (which contains the next byte of data read from the FIFO memory by the CIDAC hardware), and a status register to indicate whether the FIFO memory is empty, normal, or full.

The rate of reading the FIFO depends entirely on the host, as it is asynchronous compared to the transmission. However, the software designer must ensure that, on average, the host reads the FIFO at least as fast as the data is arriving, otherwise the buffer can overflow.

Packet and Page Teletext data reception using the SAA5250

Data Formats

CIDAC is capable of receiving data in various formats, with options for Didon (ANTIOPE), NABTS, and World System Teletext reception. For the purpose of this paper, however, only two operating modes need concern us. These comprise the 'Didon medium prefix slow' mode, used for 'packet 31' transmissions and 'WST fast' mode for page format data reception (previously known as the UK 'CEEFAX' Teletext format).
These data formats are shown in Figure 4.

The Didon medium prefix format (Figure 4a) has simply two channel address bytes after the framing code, followed by user data. The channel bytes are each 8/4 Hamming protected and use the same algorithm for Didon and WST.

For reception of World System Teletext, CIDAC has a 'WST fast' mode (Figure 4b) with three bits of the first byte used as a channel address or 'magazine' number. The remaining bit and subsequent byte form five
bits corresponding to the row address. Detection of the Row 0 (page header) in fast mode is the page flag indicating the storage of subsequent data in the FIFO.
The reception software must examine the data at the start of the sequence to determine the page number. If the data is not the desired page, the software arranges a re-initialization of CIDAC to search for the next page header.

(a) DIDON Medium Prefix

$\begin{array}{l:l}\mathrm{S} & \text { CLOCK - SYNC BYTES } \\ \text { B } & \text { (RUN-IN) } \\ \text { (FRAMING CODE) } \\ \text { M, } & \text { BYTE SUNC BYTE } \\ \text { (FRAMAR } & \text { MAGAZINE \& ROW ADDRESS GROUP }\end{array}$
$\mathrm{M}, \mathrm{R}: \begin{aligned} & \text { MAGAZINE \& ROW ADDRESS } \\ & \text { (Tabulation bit also included in } 525 \text { line operation) }\end{aligned}$
(b) WST Prefix

Figure 4.

Packet and Page Teletext data reception using the SAA5250

Receiving Datacast

Let us consider the use of CIDAC for receiving packet 31 transmissions in more detail. The Datacast specification (Reference 2) defines four independent data channels using message bits XX01 in the first byte following the framing code. With the second byte set to 1111, this is equivalent to packet 31, or magazine 8,1,2, or 3 in conventional (WST) teletext terms. The format is show in Figure 5.

It will be recalled that CIDAC checks the first two bytes after the framing code in Didon medium Prefix mode, so this provides the means to select the data channel required. All subsequent bytes are stored in the FIFO and need to be processed by the host software. The Format Type byte (FT) indicates whether the Packet Repeat (RI) or Continuity Indicator (Cl) bytes are present. Next, the packet Address Length byte (AL) indicates to the host how many bytes following are used to identify the packet address.

Following the bytes allotted for the packet address comes the optional Repeat Indicator (RI). The RI value indicates the number of times the packet has been transmitted (i.e. first, second, third, etc., repeat of packet). The Continuity Indicator (CI), which is again optional, increments at each transmission of a packet to a given address. This allows the
host software to detect the omission of a packet in the sequence.
Following the 'prefix' bytes, there is a sequence of between 28 to 32 (36 in 625 line) user data bytes used to convey the serial data. The data can be represented as either 8 or 7 bit (with parity) data. CIDAC can be set up to enable or disable the parity checking feature. When parity is enabled, the last bit of each byte is used by the software to detect a parity error in the data.
A 16 bit cyclic redundancy check (CRC) follows the user data at the end of the packet. This allows the integrity of the user data and the continuity indicator (CI) byte to be checked for any errors that may have occurred in transmission. As for the host software, the functions it needs to perform during packet 31 reception fall into three broad categories of operation, they are:

Initialization

The initialization process for the CIDAC will need to select the proper operating mode. An example might be:

- Didon medium prefix slow mode
- No parity checking
- The desired data channel
- A framing code value
- Sync delay time \& sync pulse width.

This procedure will cause CIDAC to acquire all packet 31 transmissions for a specified data channel.

Recognition

A software routine must be written to handle the recognition of the desired packet address in the data stream. This involves checking the Address Length (AL) and packet address bytes to identify the desired service. If a correspondence is not found, the routine can rapidly unload the incorrect user data bytes from the FIFO (without processing it), before the next data packet arrives and the checking process is restarted.

Formatting \& Error Checking

The last step is to handle the formatting and error checking functions once the desired data packet is located. To do this, the routine has to:

- Check the Format Type (FT)
- The Repeat Indicator (RI) byte
-. The Continuity Indicator (CI) byte
- Handle CRC check on the Data

Figure 5. The Datacast Format

Packet and Page Teletext data reception using the SAA5250

If the Repeat Indicator is in use, the software should arrange temporary buffering of the multiple transmissions of data and make a choice on the basis of the comparisons, plus the CRC check, as to which data is valid. The data must only be sent to the host once from the decoder if the proper data sequence is to be preserved. The Repeat Indicator is used by the software routine to ensure that repeated data is not sent out to the host again. A simplified flow chart can be found in Figure 6.

Figure 6. CIDAC Acquisition Flowchart (1 of 2)

Packet and Page Teletext data reception using the SAA5250

Packet and Page Teletext data reception using the SAA5250

CONCLUSION

The CIDAC decoder can form the basis of an acquisition only Teletext decoder operating on both the 'page format' and the 'Packet31' types of transmission. With suitable software, a high performance and efficient design can be achieved.

REFERENCES

1. Tarrant, David R. 'Data Link Using Page-Format Teletext Transmissions', IERE, Electronic Delivery of Data and Software Conference. September 1986.
2. BBC Datacast Technical Specification, 1985.

Special Note: The SAA5243 (CCT) mentioned in Reference 1 is no longer in production. A suitable replacement can be found in the table below:

625 line only

SAA 5244A
SAA 5246A
SAA 5247
SAA 5248
SAA 5249
SAA 5254
SAA 5280
All of the above parts include a built-in data slicer, therefore no need for a SAA5231 data slicer.
525/625 line
SAA 9042 + SAA 5191
SAA5296

RECOMMENDED READING

'World System Teletext and Data
Broadcasting System Technical
Specification'. December 1987, United Kingdom Department of Trade and Industry, London England.
'Digital Video Signal Processing'. June 1988.
Philips Components publication No. 9398063 30011

Data Sheets for the Philips SAA5191 \&
SAA5231 Data Slicers (available from your local Philips Semiconductors Salesman). Data Sheet for the SAA5250 CMOS Interface for Data Acquisition and Control (CIDAC).
Data Book of the $I^{2} \mathrm{C}$ controlled television tuner front-end Modules, Philips Components publication No. 939818250011

Packet and Page Teletext data reception using the SAA5250

APPENDIX A

CIDAC Operating Modes for World System Teletext

1. WST (CEEFAX) Teletext Mode

Set up Magazine number in the 3 LSB's of Register 1.
SLOW mode: All data from magazine stored.
FAST mode: All data from magazine stored once Row 0 is detected.
2. DIDON Medium Prefix Mode (packet 31)

Set up magazine number in the 3 LSB's of Register 1.
Set up Row number in 4th LSB of Register 1 and the 4 LSB's of Register 2.
SLOW mode: All data from magazine with a specific packet number is stored.
FAST mode: Not valid for World System Teletext reception.
3. No Prefix Mode

No set up.
All data of every magazine and packet number is stored.

APPENDIX B

CIDAC Register Address Mapping
Below is the addressing definition for access to the CIDAC registers.

ADDRESS						ADDRESS CIDAC REGISTER
R	w	CS	DB2	DB1	DB0	
H	L	L	L	L	L	Write Register R0
H	L	L.	L	L	H	Write Register R1
H	L	L	L	H	L	Write Register R2
H	L	L	L	H	H	Write Register R3
H	L	L	H	L	L	Write Register R4
H	L	L	H	L	H	Write Register R5
H	L	L	H	H	L	Write Register R6 (used for CIDAC init only)
H	L	L	H	H	H	Write Register R7
L	H	L	L	L	L	Read Status Register
L	H	L	L	L	H	Read Data Register
L	H	L	L	H	L	Not Used
L	H	L	L	H	H	Not Used

Packet and Page Teletext data reception using the SAA5250

APPENDIX C

CIDAC Register Organization

CIDAC WRITE REGISTERS

FUNCTION	REGISTER	DATA BYTE							
		D7	D6	D5	D4	D3	D2	D1	D0
mode \& parity	00	X	X	X	mode	parity	prefix2	prefix 1	prefix0
format	01	val	fmt2	fmt 1	fmt0	fstdgt3	fstdgt2	fstdgt1	fstdgto
channel number	02	thdgt3	thdgt2	thdgt1	thdgt0	scdgt3	scdgt2	scdgt1	scdgt0
hamming	03	X	X	max5	$\max 4$	max3	$\max 2$	max1	max0
frame code	04	val7	val6	val5	val4	val3	val2	val1	valo
sync process	05	pol	del6	del5	del4	del3	del2	del1	del0
init register ${ }^{1}$	06	X	X	X	X	X	X	X	X
burst blanking	07	X	X	bst5	bst4	bst3	bst2	bst1	bst0

NOTE:

1. This is a fictitious register. Only the address needs to be accessed to reset CIDAC.

CIDAC READ REGISTERS

FUNCTION	REGISTER	DATA BYTE							
		D7	D6	D5	D4	D3	D2	D1	D0
FIFO status	00	X	X	X	X	X	DB2	DB1	DBo
FIFO data	01	D7	D6	D5	D4	D3	D2	D1	D0
NOT USED	02	X	X	X	X	X	X	X	X
NOT USED	03	X	X	X	X	X	X	X	X

APPENDIX D

Suggested Data Slicer Components for 625/525 Line Operation

The examples in this application note were designed for operation in both 625 and 525 line Teletext systems. Depending on which line standard is chosen, some of the peripherals commonly around the data slicer need to be adjusted for proper operation. The table below shows these values:

PIN NUMBER		PIN NAME	VALUE WITH SAA5250		VALUE WITH SAA9042	
SAA5191 OR SAA5231			625 LINE	525 LINE	625 LINE	
5	Store Amplitude	560 pF	470 pF	560 pF	470 pF	
8	Data Timing	470 pF	390 pF	330 pF	270 pF	
9	Store Phase	270 pF	220 pF	120 pF	100 pF	
11	Crystal	11.4545 MHz	13.875 MHz	11.4545 MHz	13.875 MHz	
12	Clock Filter	39 pF	27 pF	39 pF		

Packet and Page Teletext data reception using the SAA5250

CRYSTAL SPECIFICATION

$\begin{array}{ll}\text { Quartz Crystal } & \text { 11.4545MHz (525 line) } \\ & 13.875 \mathrm{MHz} \text { (625 line) }\end{array}$	
Nominal Frequency	11.4545 MHz
Frequency Tol @ $25^{\circ} \mathrm{C}$	+/- 50ppm
Temperature Stability	+/-30ppm
Temperature Range	-20 to $+70^{\circ} \mathrm{C}$
Load Capacitance (CL)	15pF
Shunt capacitance (Co)	5 pF typical, 7pF Max.
Motion Capacitance (C1)	19 fF typical
Resonance resistance (Rr)	10 Ohms typical, Max. 60 Ohms
Aging	+/-5ppm/year
Mode of operation	Fundamental
Drive Level	100μ Watts Correlation

SUPPLIERS

The crystals above can be ordered from the Philips Components Passives Group, the part numbers are:
432214304890 (13.875 MHz)
For 11.454, contact Philips Passives.
The Component Passive group can be reached at (803) 772-2500.

The crystals are also available from Ecliptek inc. Their part numbers are:

> ECX $-2384-11.454 \mathrm{MHz}$
> $E C X-2383-13.875 \mathrm{MHz}$
> ECX $-2382-13.500 \mathrm{MHz}$ (not used with the SAA5250, but listed for reference)

Ecliptek can be reached at (714) 433-1200. The contact sales representative is Mr. Rodney Mills.

Section 3

Functional Index of Products

CONTENTS

Analog-to-digital conversion

Analog-to-digital converter selection guide 3-3
TDA8703 8-bit high-speed analog-to-digital converter 3-790
TDA8706 6-bit analog-to-digital converter with multiplexer and clamp 3-803
TDA8707 Triple RGB 6-bit video analog-to-digital interface 3-813
TDA8708A Video analeg input interface 3-825
TDA8708B Video analog input interface 3-842
TDA8709A Video analog input interface 3-859
TDA8712; TDF8712 8-bit digital-to-analog converters 3-878
TDA8714 8-bit high-speed analog-to-digital converter 3-893
TDA8716 8-bit high-speed analog-to-digital converter 3-908
TDA8718 8-bit high-speed analog-to-digital converter 3-924
TDA8755 YUV 8-bit video low-power analog-to-digital interface 3-933
TDF8704 8-bit high-speed analog-to-digital converter 3-1033
TDA8758 YC 8-bit low-power analog-to-digital video interface 3-948
TDA8760 10-bit high-speed analog-to-digital converter 3-963

Auxiliary functions

PCF8574/PCF8574A Remote 8-bit I/O expander for 12C-bus 3-5
PCF8584 I^{2} C-bus controller 3-16
SAA1101 Universal sync generator (USG) 3-41
SAA5252 Line twenty-one acquisition and display (LITOD) 3-100
TDA2595 Horizontal combination 3-644
TDA4670 Picture signal improvement (PSI) circuit 3-675
TDA4680 Video processor with automatic cut-off and white level control 3-685
TDA4686 Video processor, with automatic cut-off control 3-701
TDA4820T Sync separation circuit for video applications 3-717
TDA8444/AT/T Octuple 6-bit DAC with $\mathrm{I}^{2} \mathrm{C}$-bus 3-722
TDA8446; TDA8446T Fast RGB/YC switch for digital decoding 3-731
TDA8540 4×4 video switch matrix 3-763
Analog color decoding
TDA3566A PAL/NTSC decoder 3-651
TDA4665 Baseband delay line 3-669
TDA8501
PAL/NTSC/SECAM decoder/sync processor 3-738
TDA9141 3-1010
Color decoding, encoding and clock ICs (digital)
SAA7110 One Chip Frontend 1 (OFC1) 3-120
SAA7110 programming example 3-184
SAA7151B Digital multistandard colour decoder with SCART interface (DMSD2-SCART) 3-202
SAA7157 Clock signal generator circuit for digital TV systems (SCGC) 3-252
SAA7183 Digital video encoder (square pixel with Macrovision) 3-302
SAA7187 Digital video encoder (DENC2-SQ) 3-332
SAA7188A Digital video encoder (DENC2-M) 3-359
SAA7188A programming example 3-385
SAA7191B Digital multistandard colour decoder, square pixel (DMSD-SQP) 3-387
SAA7194 Digital video decoder and scaler circuit (DESC) (short-form data sheet) 3-454
SAA7196 Digital video decoder, scaler, and clock generator (DESCPro) 3-457
SAA7197 Clock signal generator circuit for Desktop Video systems (SCGC) 3-511
SAA7199B Digital video encoder, GENLOCK-capable 3-517
SAA9051 Digital multistandard TV decoder 3-575
SAA9057B Clock signal generator circuit for Digital TV systems (CGC) 3-619

Digital-to-analog conversion

Digital-to-analog converter selection guide 3-4
SAA7165 Video enhancementand D/A processor (VEDA2) 3-276
SAA7169 . 35 MHz triple 9-bit D/A converterfor high-speed video 3-295
SAA9065 Video enhancement and D/A processor (VEDA) 3-626
TDA8702 8-bit video digital-to-analog converter 3-776
TDA8771 Triple 8-bit video digital-to-analog converter 3-984
TDA8772; TDA8772A Triple 8-bit video digital-to-analog converter 3-996
Digital video processing
SAA7116 Digital video to PCI interface 3-185
SAA7152 Digital video comb filter (DCF) 3-243
SAA7164 Video enhancement and D/A processor (VEDA3) 3-258
SAA7186 Digital video scaler 3-303
SAA7192A Digital colour space converter 3-418
Teletext
SAA5191 Teletext video processor 3-52
SAA5231 Teletext video processor 3-58
SAA5250 Interface for data acquisition and control (for multi-standard teletext systems) 3-69
SAA5296 Single chip economy 10 page teletext/TV microcontroller 3-114
SAA9042 Multi-standard Teletext IC for standard and features TV 3-549

A to D converter selection guide

Part	Resolution	Power	Convert Rate	Clamp	AGC	Number of Inputs	Outputs	Comments	Applications
TDA8703	8 bits	290 mW	40 MHz	No	No	One	Binary and Two's comp.	TTL compatible	General Purpose
TDA8706	6 bits (X3)	300 mW	20 MHz	Yes	No	Three multiplexed inputs	Binary TTL	Internal Reference	YUV, PIP applications
TDA8708AB	8 bits	365 mW	32 MHz	Yes	Yes	One of three	Binary and Two's comp.	Peak white is 248 for 8708A 255 for 8708B	Video decoding, frame grabbers
TDA8709A	8 bits	380 mW	32 MHz	Yes	No	One of three	Binary and Two's comp.	Ext. voltage gain control	Video signal and chroma proc.
TDA8714	8 bits	325 mW	75 MHz	No	No	One	Binary and Two's comp.	7.6 effective bits at 4.43MHz	High speed applications: radar, medical, physics, etc.
TDA8716	8 bits	780 mW	100 MHz	No	No	One	Binary ECL with overflow	Comp. ECL clock	Very high speed ECL applications
TDA8718	8 bits	1140mW	600 MHz	No	No	One	Binary ECL with overflow	Comp. ECL clock	Ultra high speed ECL applications
TDA8755	8 bits	565 mW	20 MHz	Yes	No	Three multiplexed inputs	Binary and Two's comp.	4:1:1 data encoder	YUV video conversion
TDA8758G	8 bits (X2)	475 mW	32 MHz	Yes	Yes	5	Two's comp.	TTL compatible white peak disable	Dual video A/D composite or S-Video
TDF8704	8 bits	365 mW	50 MHz	No	No	One	Binary and Two's comp.	$\begin{aligned} & -40,+85 \text { temp } \\ & \text { range } \end{aligned}$	Automotive/High temp. general purpose

D to A converter selection guide

Part	Resolution	Power	Convert Rate (Max.)	Number of DACs/Package	Comments	Applications
TDA8702	8 bits	250 mW	30 MHz	One	75Ω load	General purpose
TDA8712	8 bits	250 mW	50MHz	One	75Ω load	High speed general purpose
TDA8771	8 bits	175 mW	35 MHz	Three	3 volts p/p out into $1 \mathrm{~K} \Omega$	Triple output general purpose
TDA8772	8 bits	$\begin{array}{\|l\|} \hline 260 \mathrm{~mW} \\ 310 \mathrm{~mW} \end{array}$	$\begin{aligned} & 35 \mathrm{MHz} \\ & 85 \mathrm{MHz} \end{aligned}$	Three	75Ω load, separate blanking and sync inputs	RGB or YUV video with sync on signal
TDA7169	9 bits		35 MHz	Three	75Ω load	RGB or YUV video
TDA7165	8 bits		30 MHz	Three	Digital YUV to analog YUV converter with aperture and color improvement	Interfaces to RGB monitor drivers
TDA9065	8 bits		30 MHz	Three	Digital YUV to analog YUV converter with aperture improvement	Interfaces to RGB monitor drivers

GENERAL DESCRIPTION

The PCF8574 is a single-chip silicon gate CMOS circuit. It provides remote I/O expansion for the
 MAB8400 and PCF84CXX microcontroller families via the two-line serial bidirectional bus ($1^{2} \mathrm{C}$).
It can also interface microcomputers without a serial interface to the $1^{2} \mathrm{C}$-bus (as a slave function only). The device consists of an 8 -bit quasi-bidirectional port and an $1^{2} \mathrm{C}$ interface.
The PCF8574 has low current consumption and includes latched outputs with high current drive capability for directly driving LEDs. It also possesses an interrupt line (INT) which is connected to the interrupt logic of the microcomputer on the $I^{2} \mathrm{C}$-bus. By sending an interrupt signal on this line, the remote I/O can inform the microcomputer if there is incoming data on its ports without having to communicate via the $1^{2} \mathrm{C}$-bus. This means that the PCF8574 can remain a simple slave device.
The PCF8574 and the PCF8574A versions differ only in their slave address as shown in Fig.9.

Features

- Operating supply voltage
- Low stand-by current consumption
2.5 V to 6 V
- Bidirectional expander
- Open drain interrupt output
- 8 -bit remote $1 / O$ port for the $1^{2} \mathrm{C}$-bus
- Peripheral for the MAB8400 and PCF84CXX microcontroller families
- Latched outputs with high current drive capability for directly driving LEDs
- Address by 3 hardware address pins for use of up to 8 devices (up to 16 with PCF8574A)

Fig. 1 Block diagram.

PACKAGE OUTLINES

PCF8574P, PCF8574AP: 16-lead DIL; plastic (SOT38).
PCF8574T, PCF8574AT: 16-lead mini-pack; plastic (SO 16L; SOT162A).

PINNING

Fig. 2 Pinning diagram.

1 to 3	A0 to A2	address inputs
4 to 7	P0 to P3	
9 to 12	P4 to P7	8-bit quasi-bidirectional I/O port
8	$V_{\text {SS }}$	negative supply
13	INT	interrupt output
14	SCL	serial clock line
15	SDA	serial data line
16	$V_{\text {DD }}$	positive supply

Fig. 3 Simplified schematic diagram of each port.

CHARACTERISTICS OF THE $I^{2} \mathrm{C}$-BUS

The $I^{2} \mathrm{C}$-bus is for 2 -way, 2 -line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals.

Fig. 4 Bit transfer.

Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P).

Fig. 5 Definition of start and stop conditions.

CHARACTERISTICS OF THE I ${ }^{2}$ C-BUS (continued)

System configuration

A device generating a message is a "transmitter", a device receiving a message is the "receiver". The device that controls the message is the "master" and the devices which are controlled by the master are the "slaves".

Fig. 6 System configuration.

Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse, set up and hold times must be taken into account. A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Fig. 7 Acknowledgement on the $1^{2} \mathrm{C}$-bus.

Timing specifications

All the timing values are valid within the operating supply voltage and ambient temperature range and refer to $V_{I L}$ and $V_{\text {IH }}$ with an input voltage swing of $V_{\text {SS }}$ to $V_{D D}$.

parameter	symbol	min .	typ.	max.	unit
SCL clock frequency	${ }^{\text {f }}$ SCL	-	-	100	kHz
Tolerable spike width on bus	tsw	-	-	100	ns
Bus free time	${ }_{\text {t }}$ BUF	4.7	-	-	$\mu \mathrm{s}$
Start condition set-up time	${ }^{\text {t SU }}$; STA	4.7	-	-	$\mu \mathrm{s}$
Start condition hold time	thD; STA	4.0	-	-	$\mu \mathrm{s}$
SCL LOW time	t LOW	4.7	-	-	$\mu \mathrm{s}$
SCL HIGH time	${ }^{\text {t }}$ HIGH	4.0	-	-	$\mu \mathrm{s}$
SCL and SDA rise time	t_{r}	-	-	1.0	$\mu \mathrm{s}$
SCL and SDA fall time	t_{f}	-	-	0.3	$\mu \mathrm{s}$
Data set-up time	${ }^{\text {t }}$ SU; DAT	250	-	-	ns
Data hold time	thD; DAT	0	-	-	ns
SCL LOW to data out valid	${ }^{\text {t }}$ VD; DAT	-	-	3.4	$\mu \mathrm{s}$
Stop condition set-up time	${ }^{\text {tSU }}$ STO	4.0	-	-	$\mu \mathrm{S}$

PROTOCOL

| | START | BIT 7 | BIT 6 |
| :--- | :--- | :--- | :---: | :---: |
| | CONDITION | MSB | |
| (S) | (A7) | (A6) | |

BIT 0	ACKNOW-	STOP	
LSB	LEDGE	CONDITION	
(R/W)	(A)	(P)	

Fig. $81^{2} \mathrm{C}$-bus timing diagram.

준 FUNCTIONAL DESCRIPTION

$\stackrel{\rightharpoonup}{\mathbb{O}}$ Addressing (see Figs 9, 10 and 11)

(a) PCF8574.

(b) PCF8574A.

Fig. 9 PCF8574 and PCF8574A slave addresses.
Each bit of the PCF8574 I/O port can be independently used as an input or an output. Input data is transferred from the port to the microcomputer by the READ mode. Output data is transmitted to the port by the WRITE mode.

Fig. 10 WRITE mode (output port).

Interrupt (see Figs 12 and 13)

The PCF8574/PCF8574A provides an open drain output ($\overline{\mathrm{INT}}$) which can be fed to a corresponding input of the microcomputer. This gives these chips a type of master function which can initiate an action elsewhere in the system.

Fig. 12 Application of multiple PCF8574s with interrupt.
An interrupt is generated by any rising or falling edge of the port inputs in the input mode. After time $t_{i v}$ the signal INT is valid.
Resetting and reactivating the interrupt circuit is achieved when data on the port is changed to the original setting or data is read from or written to the port which has generated the interrupt. Resetting occurs as follows:

- In the READ mode at the acknowledge bit after the rising edge of the SCL signal.
- In the WRITE mode at the acknowledge bit after the HIGH-to-LOW transition of the SCL signal.

Each change of the ports after the resettings will be detected and after the next rising clock edge, will be transmitted as INT.
Reading from or writing to another device does not affect the interrupt circuit.

Fig. 13 Interrupt generated by a change of input to port P5.

Remote 8-bit I/O expander for $\mathrm{I}^{2} \mathrm{C}$-bus

FUNCTIONAL DESCRIPTION (continued)

Quasi-bidirectional I/O ports (see Fig. 14)

A quasi-bidirectional port can be used as an input or output without the use of a control signal for data direction. At power-on the ports are HIGH. In this mode only a current source to $V_{D D}$ is active. An additional strong pull-up to V_{DD} allows fast rising edges into heavily loaded outputs. These devices turn on when an output is written HIGH, and are switched off by the negative edge of SCL. The ports should be HIGH before being used as inputs.

Fig. 14 Transient pull-up current $\mathrm{I}_{\mathrm{OHt}}$ while P3 changes from LOW-to-HIGH and back to LOW.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	symbol	min.	max.	unit
Supply voltage range	V_{DD}	-0.5	+7.0	V
Input voltage range	V_{I}	$\mathrm{V}_{\mathrm{SS}}-0.5$	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
DC input current	$\pm \mathrm{I}_{\mathrm{I}}$	-	20	mA
DC output current	$\pm \mathrm{I}_{\mathrm{O}}$	-	25	mA
$\mathrm{~V}_{\mathrm{DD}}$ or V_{SS} current	$\pm \mathrm{I}_{\mathrm{DD}} \pm \mathrm{I}_{\mathrm{SS}}$	-	100	mA
Total power dissipation	$\mathrm{P}_{\mathrm{tot}}$	-	400	mW
Power dissipation per output	P_{O}	-	100	mW
Operating ambient temperature range	$\mathrm{T}_{\text {amb }}$	-40	+85	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-65	+150	${ }^{\circ} \mathrm{C}$

HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see 'Handling MOS Devices').

Remote 8-bit I/O expander for $\mathrm{I}^{2} \mathrm{C}$-bus

CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.5$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

parameter	conditions	symbol	min.	typ.	max.	unit
Supply						
Supply voitage		$V_{\text {DD }}$	2.5	-	6.0	v
Supply current	$V_{D D}=6 \mathrm{~V} ;$ no load; $V_{1}=V_{D D} \text { or }$					
operating	$\begin{aligned} & V_{S S} \\ & { }_{\text {fSCL }}=100 \mathrm{kHz} \end{aligned}$	IDD	-	40	100	$\mu \mathrm{A}$
standby		IDDO	-	2.5	10	$\mu \mathrm{A}$
Power-on reset level	note 1	$V_{\text {POR }}$	-	1.3	2.4	V
Input SCL; input/output SDA						
Input voltage LOW		$V_{\text {IL }}$	-0.5	-	$0.3 \mathrm{~V}_{\text {DD }}$	V
Input voltage HIGH		$V_{\text {IH }}$	$0.7 \mathrm{~V}_{\text {DD }}$	-	$V_{D D}+0.5$	V
Output current LOW	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	IOL	3	-	-	mA
Leakage current	$V_{1}=V_{D D} \text { or }$			-	1	$\mu \mathrm{A}$
Input capacitance (SCL, SDA)	$V_{\text {I }}=V_{S S}$	C_{1}	-	-	7	pF
I/O ports						
Input voltage LOW		$V_{\text {IL }}$	-0.5	-	$0.3 V_{D D}$	V
Input voltage HIGH		$V_{\text {IH }}$	0.7V $\mathrm{V}_{\text {DD }}$	-	$V_{\text {DD }}+0.5$	V
Maximum allowed input current through protection diode	$\begin{aligned} & V_{1} \geqslant V_{\text {DD }} \text { or } \\ & \leqslant V_{\text {SS }} \end{aligned}$	$\pm 1 / \mathrm{HL}$	-	-	400	$\mu \mathrm{A}$
Output current LOW	$\begin{aligned} & \mathrm{V}_{\mathrm{OL}}=1 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \end{aligned}$	${ }^{\text {IOL }}$	10	25	-	mA
Output current HIGH	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{SS}}$	${ }^{1} \mathrm{OH}$	30	-	300	$\mu \mathrm{A}$
Transient pull-up current HIGH during acknowledge (see Fig.14)	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{SS}} ; \\ & \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \end{aligned}$	-10	-	1	-	mA
Input/Output capacitance		$\mathrm{Cl}_{1 / \mathrm{O}}$	-	-	10	pF
Port timing (see Figs 10 and 11)	$C_{L}=\leqslant 100 \mathrm{pF}$					
Output data valid		t_{pv}	-	-	4	$\mu \mathrm{s}$
Input data set-up		t_{ps}	0	-	-	$\mu \mathrm{S}$
Input data hold		${ }_{t p h}$	4	-	-	$\mu \mathrm{s}$

parameter	conditions	symbol	min.	typ.	max.	unit
Interrupt INT						
Output current LOW	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	${ }^{1} \mathrm{OL}$	1.6	-	-	mA
Leakage current	$\begin{aligned} & V_{1}=V_{D D} \text { or } \\ & V_{S S} \end{aligned}$	$1 \mathrm{I}_{\mathrm{L}} \mathrm{l}$	-	-	1	$\mu \mathrm{A}$
$\overline{\text { INT timing }}$ (see Figs 11 and 13)	$C_{L}=\leqslant 100 \mathrm{pF}$					
Input data valid		$\mathrm{t}_{\text {iv }}$	-	-	4	$\mu \mathrm{s}$
Reset delay		t_{ir}	-	-	4	$\mu \mathrm{S}$
Select inputs A0, A1, A2						
Input voltage LOW		$V_{\text {IL }}$	-0.5	-	0.3V $V_{\text {D }}$	V
Input voltage HIGH		$V_{1 H}$	$0.7 V_{\text {DD }}$	-	$V_{\text {DD }}+0.5$	V
Input leakage current	$\begin{aligned} & \text { pin at } V_{D D} \text { or } \\ & V_{S S} \end{aligned}$	H_{L}	-	-	250	nA

Note to the characteristics

1. The power-on reset circuit resets the $I^{2} \mathrm{C}$-bus logic with $V_{D D}<V_{P O R}$ and sets all ports to logic 1 (with current source to $V_{D D}$).

Purchase of Philips $\left.\right|^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ patent to use the components in the $\mathrm{I}^{2} \mathrm{C}$-system provided the system conforms to the $I^{2} \mathrm{C}$ specifications defined by Philips.

$1^{2} \mathrm{C}$-bus controller

GENERAL DESCRIPTION

The PCF8584 is an integrated circuit designed in CMOS technology which serves as an interface between most standard parallel-bus microcontrollers/processors and the serial $I^{2} \mathrm{C}$-bus. The PCF8584 provides both master and slave functions. Communication with the $1^{2} \mathrm{C}$-bus is carried out on a byte-wise basis using interrupt or polled handshake. It controls all the $I^{2} \mathrm{C}$-bus specific sequencing, protocol, arbitration and timing. The PCF8584 allows parallel-bus systems to communicate bidirectionally with the $\mathrm{I}^{2} \mathrm{C}$-bus.

Features

- Parallel-bus $/ \mathrm{I}^{2} \mathrm{C}$-bus protocol converter
- Compatible with most parallel-bus processors including MAB8049, MAB8051, SCN68000 and Z80
- Automatic selection of bus interface
- Programmable interrupt vector
- Multi-master capability
- $1^{2} \mathrm{C}$-bus monitor mode
- Long-distance mode
- Operating supply voltage 4.5 to 5.5 V
- Operating temperature range -40 to $+85^{\circ} \mathrm{C}$

PACKAGE OUTLINES

PCF8584P: 20-lead DIL; plastic (SOT 146).
PCF8584T: 20-lead mini-pack; plastic (SO20; SOT163A).

Where:
() indicate the SCN68000 pin name designations.
$X=$ don't care.
Fig. 1 Block diagram.

$I^{2} \mathrm{C}$-bus controller

PINNING

Where:
() indicate the SCN68000 pin name designations.
Fig. 2 Pinning diagram.

Pin functions

pin	mnemonic	function	description
1	CLK	1	Clock input from microprocessor clock generator (internal pull-up).
2	SDA or SDA OUT	1/O	$1^{2} \mathrm{C}$-bus serial data input/output (open-drain). Serial data output in long-distance mode.
3	SCL or SCL IN	I/O	$1^{2} \mathrm{C}$-bus serial clock input/output (open-drain). Serial clock input in long-distance mode.
4	$\overline{\text { IACK }}$ or SDA IN	1	Interrupt acknowledge input (internal pull-up); when this signal is asserted the interrupt vector in Register S2 will be available at the bus port if the ENI flag is set. Serial data input in long-distance mode.
5	$\overline{\text { NT }}$ or SCL OUT	0	Interrupt output (open-drain); this signal is enabled by the ENI flag in Register S1. It is asserted, when the PIN flag is reset. (PIN is reset after one byte is transmitted or received over the $I^{2} \mathrm{C}$-bus). Serial clock output in long-distance mode.
6	A0	1	Register select input (internal pull-up); this input selects between the control/status register and the other registers. Logic 1 selects Register S 1 , logic 0 selects one of the other registers depending on bits loaded in ESO, ES1 and ES2 of Register S1.
7	DB0	I/O	
8	DB1	1/O	Bidirectional 8-bit bus port.
9	DB2	I/O	
10	$V_{S S}$		Negative supply voltage.

$\mathrm{I}^{2} \mathrm{C}$-bus controller

Pin functions (continued)

pin	mnemonic	function	description
11	DB3	I/O	
12	DB4	1/O	
13	DB5	1/0	Bidirectional 8-bit bus port.
14	DB6	I/O	
15	DB7	1/0	
16	$\overline{\mathrm{RD}}$ ($\overline{\mathrm{DTACK}}$)	$1(0)$	$\overline{\mathrm{RD}}$ is the read control input for MAB8049, MAB8051 or Z80-type processors. $\overline{\text { DTACK }}$ is the data transfer control output for 68000-type processors (open-drain).
17	$\overline{\text { CS }}$	1	Chip select input (internal pull-up).
18	$\overline{W R}(R / \bar{W})$	1	$\overline{W R}$ is the write control input for MAB8048, MAB8051 or Z80-type processors (internal pull-up). R/W control input for 68000-type processors.
19	$\frac{\overline{\text { RESET }} /}{\text { STROBE }}$	I/O	Reset input (open-drain); this input forces the $\mathrm{I}^{2} \mathrm{C}$-bus controller into a predefined state; all flags are reset, except PIN, which is set. Also functions as strobe output.
20	$V_{\text {DD }}$		Positive supply voltage.

FUNCTIONAL DESCRIPTION

General

The PCF8584 acts as an interface device between standard high-speed parallel buses and the serial 1^{2} C-bus. On the $I^{2} \mathrm{C}$-bus, it can act either as master or slave. Bidirectional data transfer between the $1^{2} \mathrm{C}$-bus and the parallel-bus microprocessor is carried out on a byte-wise basis, using either an interrupt or polled handshake. Interface to either $80 \times X$-type (e.g. MAB8048, MAB8051, Z80) or 68000type buses is possible. Selection of bus type is automatically performed (see Interface mode control).

Table 1 Control signals utilized by the PCF8584 for processor interfacing

type	R/和	$\overline{W R}$	$\overline{R D}$	$\overline{D T A C K}$	$\overline{\text { IACK }}$
MAB8049/51	NO	YES	YES	NO	NO
SCC68000	YES	NO	NO	YES	YES
Z80	NO	YES	YES	NO	YES

The structure of the PCF8584 is similar to that of the $\mathrm{I}^{2} \mathrm{C}$-bus interface section of the MAB8400-series of microcontrollers, but with a modified control structure. The PCF8584 has five internal register locations. Three of these (Own Address register S0', Clock register S2 and Interrupt Vector S3) are used for initialization of the PCF8584. Normally they are only written once directly after resetting of the PCF8584. The remaining two registers function as double registers (Data Buffer/Shift register S0, and Control/Status register S1) which are used during actual data transmission/reception. By using these double registers, which are separately write and read accessible, overhead for register access is reduced. S0 is a combination of a shift register and data buffer. S0 performs all serial-to-parallel interfacing with the $\mathrm{I}^{2} \mathrm{C}$-bus. S 1 contains $\mathrm{I}^{2} \mathrm{C}$-bus status information required for bus access and/or monitoring.

Interface mode control (IMC)

Selection of either an 80XX-mode or 68000 -mode interface is achieved by detection of the $\overline{W R} \cdot \overline{\mathrm{CS}}$ signal sequence. The concept takes advantage of the fact that the write control input is common for both types of interfaces. The chip is non-initialized after reset until register SO^{\prime} is accessed. An 80XXtype interface is default. If a HIGH-to-LOW transition of $\overline{W R}(R / \bar{W})$ is detected while $\overline{C S}$ is HIGH, the 68000 -type interface mode is selected and the DTACK output is enabled.

Note:

The very first access to the PCF8584 after a reset must be a write access to register SO' in order to set the appropriate interface mode.

FUNCTIONAL DESCRIPTION (continued)

Set-up Registers S0', S2 and S3

Own Address Register SO'

When addressed as a slave, this register is loaded with the 7 -bit $\mathrm{I}^{2} \mathrm{C}$-bus address to which the PCF8584 is to respond. The "Addressed As Slave" (AAS) bit in Status register S1 is set when this address is received. Programming of this register is accomplished via the parallel-bus when AO is LOW, with the appropriate bit combinations set in Control Status register S1 (S1 is written when AO is HIGH). Bit combinations for accessing all registers are given in Tables 4 and 5 . After reset SO^{\prime} has default address '00' Hex.

Clock Register S2

Register S2 provides control over chip clock frequency and SCL clock frequency. S20 and S21 provide a selection of 4 different $I^{2} \mathrm{C}$-bus SCL frequencies which are shown in Table 2.

Table 2 Register S2 selection of SCL frequency

bit		SCL approximate frequency
(kHz)		

S22, S23 and S24 are used for control of the internal clock prescaler. Due to the possibility of varying microprocessor clock signals, the prescaler can be programmed to adapt to 5 different clock rates, thus providing a constant internal clock. This is required to provide a stable time base for the SCL generator and the digital filters associated with the $I^{2} \mathrm{C}$-bus signals SCL and SDA. Selection for adaption to external clock rates is shown in Table 3. After reset, a clock frequency of 12 MHz is the default value.

Table 3 Register S2 selection of clock frequency

bit		clock frequency (MHz)	
S 24	S 23	S 22	
0	X	X	3
1	0	0	4.43
1	0	1	6
1	1	0	8
1	1	1	12

Where: $X=$ don't care.

$1^{2} \mathrm{C}$-bus controller

Interrupt Vector S3

The interrupt vector register provides an 8-bit user-programmable vector for vectored-interrupt microprocessors. The vector is sent to the bus port when an interrupt acknowledge signal is asserted and the ENI (enable interrupt) flag is set. Default vector values are as follows:

- Vector is '00' Hex in 80XX-mode
- Vector is 'OF'Hex in 68000-mode

On reset the PCD8584 is in the 80XX mode, thus the default interrupt vector becomes ' 00 ' Hex.

Interface Registers S0 and S1

Data Shift Register SO

SO acts as serial shift register interfacing to the $\mathrm{I}^{2} \mathrm{C}$-bus. SO is a combination of a shift register and a data buffer; parallel data is always written to the shift register and read from the data buffer. Serial data is shifted in/out the shift register, and in receiver mode the data from the shift register is copied to the data buffer during the acknowledge phase (see also PIN bit). All read and write operations to the I ${ }^{2} \mathrm{C}$-bus are done via this register.

Control/Status Register S1

Register S1 is accessed by a HIGH signal on register select input A0. To facilitate communication between the microcontroller/processor and the $I^{2} \mathrm{C}$-bus, register S 1 has separate read and write functions for all bit positions.

The write-only section has been split into 2 parts:

- The ESO (Enable Serial Output) enables or disables the serial output. When ESO is LOW, register access for initialization is possible. When ESO is HIGH, serial communication is enabled; communication with serial shift register S 0 is enabled and the S 1 bus status bits are made available for reading. Select control bits ES1 and ES2 control selection of other registers for initialization and control of normal operation. After these bits are programmed for access to the desired register (see Tables 4 and 5), the register is selected by a logic LOW level on register select pin AO.

Note:

With ESO $=0$, bits ENI, STA, STO and ACK of S1 can be read for test purposes.

FUNCTIONAL DESCRIPTION (continued)
Control/Status Register S1 (continued)
Table 4 Register access control; ESO = logic 0 (serial interface off)

A0	ES1	ES1	$\overline{\text { IACK }}$	operation
H	X	X	X	READ/WRITE CONTROL REGISTER (S1)
L	0	0	X	STATUS (S1) not available
L	0	1	X	READ/WRITE OWN ADDRESS (S0')
L	1	0	X	READ/WRITE INTERRUPT VECTOR (S3)

Table 5 Register access control; ESO = logic 1 (serial interface on)

AO	ES1	ES2	IACK	operation
H	X	X	H	WRITE CONTROL REGISTER (S1)
H	X	X	H	READ STATUS REGISTER (S1)
L	X	0	H	READ/WRITE DATA (SO)
L	X	1	H	READ/WRITE INTERRUPT VECTOR (S3)
X	0	X	L	READ INTERRUPT VECTOR (acknowledge cycle) X
	1	X	L	long-distance mode

Instruction control bits ENI, STA, STO and ACK are used in normal operation to enable the interrupt output ($\overline{\mathrm{NNT}}$), generate $\mathrm{I}^{2} \mathrm{C}$-bus START and STOP conditions, and program the acknowledge response, respectively. These possibilities are shown in Table 6.

Table 6 Instruction table for serial bus control

STA	STO	present mode	function	operation
1	0	SLV/REC	START	transmit START + address remain MST/TRM if $R / \bar{W}=\operatorname{logic} 0$; go to MST/REC if $R / \bar{W}=\operatorname{logic} 1$
1	0	MST/TRM	REPEAT START	same as for SLV/REC
0	1	MST/REC MST/TRM	STOP READ STOP WRITE	transmit stop go to SLV/REC mode (see note 1)
1	1	MST	DATA CHAINING	send STOP, START and address after last master frame without STOP sent (see note 2)
0	0	ANY	NOP	no operation (see note 3)

Notes to Table 6

1. In master-receiver mode, the last byte most be terminated with ACK bit HIGH ('"negativeacknowledge"; see $I^{2} \mathrm{C}$-bus specification).
2. If both STA and STO are set HIGH simultaneously in master mode, a STOP condition followed by a START condition + address will be generated. This allows "chaining" of transmissions without relinquishing bus control.
3. All other STA, STO mode combinations not mentioned in Table 6 are NOPs,

The instruction bits are defined as follows:

- STA, STO: These bits control the generation of the $I^{2} \mathrm{C}$-bus START condition + transmission of slave address and R/W bit, generation of repeated START condition, and generation of the STOP condition.
- ENI: This bit enables the external interrupt output $\overline{\mathrm{INT}}$, which is generated when the PIN bit is reset.
- ACK: This bit must be set normally to a ' 1 '. This causes the $I^{2} \mathrm{C}$-bus controller to send an acknowledge automatically after each byte (this occurs during the ninth clock pulse). The bit must be reset when the $I^{2} \mathrm{C}$-bus controller is operating in master/receiver mode, and requires no further data to be sent from the slave transmitter. This causes a negative acknowledge on the $1^{2} \mathrm{C}$-bus, which halts further transmission from the slave device.

FUNCTIONAL DESCRIPTION (continued)

$I^{2} \mathrm{C}$-bus status information

The read-only section consists of $\mathrm{I}^{2} \mathrm{C}$-bus status information. The functions are as follows:

- STS: When in slave-receiver mode, this flag is asserted when an externally generated STOP condition is detected (only used in slave-receiver mode).
- BER: Bus error. A misplaced START or STOP condition has been detected.
- LRB/ADO: Last Received Bit/Address 0 "General Call" Bit. This dual function status bit holds the value of the last received bit over the $I^{2} \mathrm{C}$-bus when $\mathrm{AAS}=0$. Normally this will be the value of the slave acknowledge; thus checking for slave acknowledgment is done via testing of the LRB bit. When AAS = 1 ("Address As Slave"), the $I^{2} \mathrm{C}$-bus controller has been addressed as a slave and this bit will be set if the slave address received was the "general call" address, or if it was the $I^{2} \mathrm{C}$-bus controller's slave address.
- AAS: "Addressed As Slave" bit. When acting as slave-receiver, this flag is set when an incoming address over the $I^{2} \mathrm{C}$-bus matches the value in Own Address register SO^{\prime}, or if the $\mathrm{I}^{2} \mathrm{C}$-bus "general call" address (' 00 " Hex) has been received.
- LAB: "Lost Arbitration" bit. This bit is set when, in multmaster operation, arbitration is lost to another master on the $\mathrm{I}^{2} \mathrm{C}$-bus.
- $\overline{\mathrm{BB}}$: "Bus Busy" bit. This is read-only flag indicating when the $\mathrm{I}^{2} \mathrm{C}$-bus is in use. A zero indicated that the bus is busy, and access is not possible. This bit is set/reset by STOP/START conditions.

PIN bit

The PIN bit "Pending Interrupt Not" is a read-only flag which is used to synchronize serial communication. Each time a serial data transmission is initiated (by setting the STA bit in the same register), the PIN will be set automatically. After successful transmission of one byte (9 clock pulses, including acknowledge), this bit will be automatically reset indicating a complete byte transmission. When the ENI bit is also set, the PIN flag triggers an external interrupt via the INT output when PIN is reset. When in receiver mode, the PIN bit is also reset on completion of each received byte. In polled applications, the PIN bit is tested to determine when a serial transmission has been completed. During register transfers the $\mathrm{I}^{2} \mathrm{C}$-bus controller Data Register SO and its internal shift register (not accessible directly), the $\mathrm{I}^{2} \mathrm{C}$-bus controller will delay serial transmission by holding the SCL line LOW until the PIN bit becomes set. In receiver mode, the PIN bit is automatically set when the data register SO is read. When the PIN bit becomes set all status bits will be reset, with exception of $\overline{\mathrm{BB}}$.

Multi-master operations

To avoid conflict between data and repeated START and STOP operations, multi-master systems have some limitations:

- Transmissions requiring a repeated START condition must have identical format among all potential masters for both read and write operations
- For correct arbitration masters may only attempt to send data simultaneously to the same location, if they use the same formats (i.e. number of data bytes, location of the repeated START, etc.). If this condition is designed not to occur, differing formats may be used.
 flags are reset (zero state), except the PIN flag, which is set. The $\overline{R E S E T}$ pin is also used for the STROBE output signal. Both functions are separated on-chip by a digital filter. The reset input signal has to be sufficiently long (minimum 30 clock cycles) to pass through the filter. The STROBE output signal is sufficiently short (8 clock cycles) to be blocked by the filter. For more detailed information on the Strobe function see Special function modes.

Comparison to the MAB8400 $1^{2} \mathrm{C}$-bus interface

The structure of the PCF8584 is similar to that of the MAB8400 series of microcontrollers, but with a modified control structure. Access to all $1^{2} \mathrm{C}$-bus control and status registers is done via the parallelbus port in conjunction with register select input AO, and control bits ESO, ES1 and ES2. The main differences are highlighted below.

Deleted functions

The following functions are not available in the PCF8584:

- Always selected (ALS flag)
- Access to the bit counter (BCO to BC2)
- Full SCL frequency selection (2 bits instead of 5 bits)
- The non-acknowledge mode (ACK flag)
- Asymmetrical clock (ASC flag)

Added functions

The following functions either replace the deleted functions or are completely new:

- Chip clock prescaler
- Assert acknowledge bit (ACK flag)
- Register selection bits (ES1 and ES2 flags)
- Additional status flags
- Automatic interface control between 80XX and 68000-type microprocessors
- Programmable interrupt vector
- Strobe generator
- Bus monitor function
- Long-distance mode (non- $\mathrm{I}^{2} \mathrm{C}$-bus mode; only for communication between remote parallel-bus processors)

Special function modes

Strobe

When the $1^{2} \mathrm{C}$-bus controller receives its own address (or the " 00 " Hex general call address) followed immediately by a STOP condition (i.e. no further data transmitted after the address), a strobe output signal is generated at the $\overline{\operatorname{RESET}} / \overline{\mathrm{STROBE}}$ pin (pin 19). The $\overline{\text { STROBE }}$ signal consists of a monostable output pulse (active LOW), eight clock cycles long (see Fig.10). It is generated after the STOP condition is received, preceded by the correct slave address. This output can be used as a bus access controller for multi-master parallel-bus systems (see Fig.14).

Long-distance mode

The long-distance mode provides a serial communication link between parallel processors using two or more $1^{2} \mathrm{C}$-bus controllers. This mode is selected by setting ES1 to logic 1 while the serial interface is enabled ($E S O=1$). In this mode the $1^{2} \mathrm{C}$-bus protocol is transmitted over 4 unidirectional lines, SDA, OUT, SCL IN, SDA IN and SCL OUT (pins 2, 3, 4 and 5). These communication lines should be connected to the line drivers/receivers for long distance applications. Specification for long distance transmission is then given by the chosen standard. Control of bus frequency, data transmission etc. is the same as in normal $I^{2} \mathrm{C}$-bus mode. After reading or writing data to shift register SO, long-distance mode must be initialized by setting ESO and ES1 to logic 1 . Because the interrupt output $\overline{\mathrm{INT}}$ is not available in this operating mode, data reception must be polled.

Monitor mode

When the 7-bit Own Address register SO^{\prime} is loaded with all zeros, the $\mathrm{I}^{2} \mathrm{C}$-bus controller acts as a passive $1^{2} \mathrm{C}$ monitor. The main features of the monitor mode are as follows:

- The controller is always selected
- The controller is always in the slave-receiver mode
- The controller never generates an acknowledge
- The controller never generates an interrupt request
- A pending interrupt condition does not force SCL LOW
- Received data is automatically transferred to the read buffer
- Bus traffic is monitored by the PIN bit, which is reset after the acknowledge bit has been transmitted and is set as soon as the first bit of the next byte is detected

$\mathrm{I}^{2} \mathrm{C}$-bus controller

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	symbol	min.	max.	unit
Supply voltage range (pin 20)	V_{DD}	-0.3	+7.0	V
Voltage range on any input *	$\mathrm{~V}_{1}$	-0.8	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
DC input current (any input)	$\pm \mathrm{I}_{\mathrm{I}}$	-	10	mA
DC output current (any output)	$\pm \mathrm{I}_{\mathrm{O}}$	-	10	mA
Total power dissipation	$\mathrm{P}_{\text {tot }}$	-	300	mW
Power dissipation per output	P_{O}	-	50	mW
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	-40	+85	o^{C}
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-65	+150	o^{C}

* Measured via a 500Ω resistor.

Note to the Ratings

Stresses above those listed in accordance with Absolute Maximum System may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating condition for extended periods may affect reliability.

HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is good practice to take normal precautions appropriate to handling MOS devices (see 'Handling MOS Devices').

CHARACTERISTICS

$V_{D D}=5 \pm 10 \% ; V_{S S}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85{ }^{\circ} \mathrm{C}$; unless otherwise specified

parameter	conditions	symbol	min .	typ.	max.	unit
Supply						
Supply voltage range		$V_{\text {DD }}$	4.5	5.0	5.5	V
Supply current standby	note 1	'DD1	-	-	2.5	$\mu \mathrm{A}$
operating	note 2	${ }^{\text {IDD2 }}$	-	-	1.5	mA
Inputs						
SCL, SDA						
Input voltage LOW	note 3	$V_{\text {IL } 1}$	0	-	0.8	v
Input voltage HIGH	note 3	$\mathrm{V}_{\text {IH1 }}$	2.0	-	$V_{\text {DD }}$	V
Input voltage LOW	note 4	$V_{\text {IL2 }}$	0	-	0.3V $V_{\text {DD }}$	V
Input voltage HIGH	note 4	$\mathrm{V}_{1 \mathrm{H} 2}$	0.7V $V_{\text {DD }}$	-	$V_{\text {DD }}$	v
Resistance to $\mathrm{V}_{\text {DD }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \text {; } \\ & \text { note } 5 \end{aligned}$	R_{i}	25	-	100	$k \Omega$
Outputs						
Output current LOW	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	${ }^{\prime} \mathrm{OL}$	3.0	-	-	mA
Output current HIGH	$\begin{aligned} & \mathrm{VOH}_{\mathrm{OH}}=2.4 \mathrm{~V} \text {; } \\ & \text { note } 6 \end{aligned}$	${ }^{-1} \mathrm{OH}$	2.4	-	-	mA
Leakage current	note 7	$\pm \mathrm{I}_{\text {LO }}$	-	-	1	$\mu \mathrm{A}$

Notes to the characteristics

1. $22 \mathrm{k} \Omega$ pull-ups on D0 to D 7 ; $10 \mathrm{k} \Omega$ pull-ups on SDA, $\mathrm{SCL}, \overline{\mathrm{RD}} ; \overline{\mathrm{RESET}}$ tied to V_{SS}; remaining pins open-circuit.
2. Same as note 1, but CLK waveform with 50% duty factor at 12 MHz .
3. CLK, $\overline{A C K}, A O, \overline{C S}, \overline{W R}, \overline{R D}, \overline{R E S E T}, T T L$ level inputs.
4. SDA, SCL, D0 to D7, CMOS level inputs.
5. CLK, $\overline{\mathrm{IACK}}, \mathrm{AO}, \overline{\mathrm{CS}}, \overline{W R}$.
6. DO to D7.
7. D0 to D7 3-state, SDA, SCL, $\overline{\mathrm{INT}}, \overline{\mathrm{RD}}, \overline{\mathrm{RESET}}$.

$\mathrm{I}^{2} \mathrm{C}$-bus controller

Timing specifications

All the timing values are valid within the operating supply voltage and ambient temperature range and refer to $V_{I L}$ and $V_{I H}$ with an input voltage swing of $V_{S S}$ to $V_{D D}$.

parameter	symbol	min.	typ.	max.	unit
$1^{2} \mathbf{C}$-bus timing					
SCL clock frequency	${ }^{\text {f }}$ SCL	-	-	100	kHz
Tolerable bus spike width	${ }^{\text {t }}$ W	-	-	100	ns
Bus free time	${ }_{\text {t }}$ BUF	4.7	-	-	$\mu \mathrm{s}$
Start condition set-up time	tSU; STA	4.7	-	-	$\mu \mathrm{s}$
Start condition hold time	thD; STA	4.0	-	-	$\mu \mathrm{s}$
SCL LOW time	t LOW	4.7	-	-	$\mu \mathrm{S}$
SCL HIGH time	${ }^{\text {tHIGH }}$	4.0	-	-	$\mu \mathrm{s}$
SCL and SDA rise time	t_{r}	-	-	1.0	$\mu \mathrm{S}$
SCL and SDA fall time	t_{f}	-	-	0.3	$\mu \mathrm{s}$
Data set-up time	${ }^{\text {t }}$ SU; DAT	250	-	-	ns
Data hold time	thD; DAT	0	-	-	ns
SCL LOW to data out valid	${ }^{\text {t }}$ VD; DAT	-	-	3.4	$\mu \mathrm{S}$
Stop condition set-up time	${ }^{\text {tSU }}$; STO	4.0	-	-	$\mu \mathrm{s}$

Parallel interface timing (see Figs 3 to 10)
All the timing limits are valid within the operating supply voltage and ambient temperature range and refer to $V_{I L}$ and $V_{I H}$ with an input voltage swing of $V_{S S}$ to $V_{D D}$.
$C_{L}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1.5 \mathrm{k} \Omega$ (connected to V_{DD}) for open-drain and high-impedance outputs, where applicable (for measurement purposes only).

parameter	figure	symbol	min.	typ.	max.	unit
Clock rise time	3	tr_{r}	-	-	6	ns
Clock fall time	3	t_{f}	-	-	6	ns
Input clock period (50\% duty factor)	3	${ }^{\text {t CLK }}$	83	-	333	ns
$\overline{\mathrm{CS}}$ set-up to $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ LOW	4	tSU1	30	-	-	ns
$\overline{\mathrm{CS}}$ hold from $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ HIGH	4	thD1	0	-	-	ns
AO set-up to $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ LOW	4	${ }^{\text {tSU2 }}$	10	-	-	ns
AO hold from $\overline{\mathrm{RD}}, \overline{\text { WR }}$ HIGH	4	$\mathrm{t}_{\mathrm{H} D 2}$	20	-	-	ns
$\overline{\text { WR pulse width }}$	4	tw1	230	-	-	ns
$\overline{\mathrm{RD}}$ pulse width	4	tw2	230	-	-	ns
Data set-up before $\overline{\text { WR HIGH }}$	4	${ }^{\text {t }}$ SU3	150	-	-	ns
Data valid after $\overline{\mathrm{RD}}$ LOW	4	${ }^{\text {t V D }}$	-	110	180	ns
Data hold after $\overline{\text { WR HIGH }}$	4	thD3	30	-	-	ns
Data bus floating after $\overline{\text { RD }}$ HIGH	4	${ }^{\text {t }}$ FL	70	-	-	ns
AO set-up to $\overline{\text { CS }}$ LOW	5 and 6	${ }^{\text {tSU }}$ ¢ 4	30	-	-	ns
R/ $\overline{W R}$ set-up to CS LOW	5 and 6	${ }^{\text {t }}$ SU5	30	-	-	ns
Data valid after CS LOW	5	tVD1	-	110	180	ns
$\overline{\text { DTACK }}$ LOW after CS LOW	5 and 6	$\mathrm{t}_{\mathrm{d} 1}$	-	3 t CLK +75	3 t CLK +150	ns
AO hold from CS HIGH	5 and 6	thD4	0	-	-	ns
R/VR hold from $\overline{\text { CS }}$ HIGH	5 and 6	thD5	0	-	-	ns
Data hold after CS HIGH	5	${ }^{\text {thD6 }}$	160	-	-	ns
$\overline{\text { DTACK }}$ HIGH from CS HIGH	5 and 6	$\mathrm{t}_{\mathrm{d} 2}$	-	100	120	ns
Data hold after $\overline{\text { CS }}$ HIGH	6	thD7	0	-	-	ns
Data set-up to $\overline{C S}$ LOW	6	${ }^{\text {t }}$ SU6	0	-	-	ns
$\overline{\text { INT }}$ HIGH from IACK LOW	7 and 8	t_{d}	-	130	180	ns
Data valid after $\overline{\text { IACK }}$ LOW	7 and 8	tVD2	-	140	190	ns

Parallel interface timing (continued)

parameter	figure	symbol	min.	typ.	max.	unit
IACK pulse width	7 and 8	tw3	230	-	-	ns
Data hold after $\overline{\text { ACK }} \mathrm{HIGH}$	7 and 8	thD8	100	-	-	ns
$\overline{\text { DTACK }}$ LOW from $\overline{\text { IACK }}$ LOW	8	$\mathrm{t}_{\mathrm{d} 4}$	-	$3{ }^{\text {CLLK }}+75$	$3 \mathrm{CLK}+150$	ns
$\overline{\text { DTACK }}$ HIGH from $\overline{\text { IACK }}$ HIGH	8	$\mathrm{t}_{\mathrm{d} 5}$	-	120	140	ns
Reset pulse width	9	tw4	${ }^{30} \mathrm{t}$ CLK	-	-	ns
Strobe pulse width	10	tw5	${ }^{81}$ CLK	$8^{\text {ct }}$ CLK +90	-	ns

Notes to parallel interface timing

1. A minimum of 6 clock cycles must elapse between consecutive parallel-bus accesses when the $1^{2} \mathrm{C}$-bus controller operates at 8 or 12 MHz . This may be reduced to 3 clock cycles for lower operating frequencies.
2. After reset the chip clock default is 12 MHz .

Fig. 3 Clock input timing.

Timing diagrams

Fig. 4 Bus timing ($80 X X$-mode); (a) write cycle, (b) read cycle.

Fig. 5 Bus timing; 68000-mode read cycle.

Fig. 6 Bus timing; 68000-mode write cycle.

Fig. 7 Interrupt timing; 80XX-mode.

Fig. 8 Interrupt timing; 68000-mode.

ax

Fig. 9 Reset timing.

Fig. 10 Strobe timing.

APPLICATION INFORMATION

Fig. 11 Application diagram using the MAB8048/MAB8051.

Fig. 12 Application diagram using the SCN68000.

Fig. 13 Application diagram using the 8088.

Fig. 14 STROBE as bus access controller.

Purchase of Philips $1^{2} \mathrm{C}$ components conveys a license under the Philips' $I^{2} \mathrm{C}$ patent to use the components in the $\mathrm{I}^{2} \mathrm{C}$-system provided the system conforms to the $I^{2} \mathrm{C}$ specifications defined by Philips.

FEATURES

- Programmable to seven standards
- Additional outputs to simplify signal processing
- Can be synchronized to an external sync. signal
- Option to select the 524/624 line mode instead of the 525/625 line mode
- Lock from subcarrier to line frequency

GENERAL DESCRIPTION

The SAA1101 is a Universal Sync Generator (USG) and is designed for application in video sources such as cameras, film scanners, video generators and associated apparatus. The circuit can be considered as a successor to the SAA1043 sync generator and the SAA1044 subcarrier coupling IC.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
$V_{D D}$	supply voltage range $($ pin 28)	4.5	5.5	V
I_{DD}	quiescent supply current	-	10	$\mu \mathrm{~A}$
$\mathrm{f}_{\mathrm{OSC}}$	clock oscillator frequency	-	24	MHz

ORDERING AND PACKAGE INFORMATION

EXTENDED	PACKAGE			
	PINS	PIN POSITION	MATERIAL	CODE
SAA1101P	28	DIL	plastic	SOT117
SAA1101T	28	SO28	plastic	SOT136A

Fig. 1 Block diagram.

Fig. 2 Pinning configuration; SOT117.

FUNCTIONAL DESCRIPTION

Generation of pulses

Generation of standard pulses such as sync, blanking and burst for TV systems: PAL B/G, PALN, PALM, SECAM and NTSC. In addition a number of non-standard pulses have been supplied to simplify signal processing. These signals include horizontal drive, vertical drive, clamp pulse, identification etc. It is possible to select the 524/624 line mode instead of the 525/625 line mode for all the above TV systems for applications such as robotics, games and computers.

PINNING

SYMBOL	PIN	\quad DESCRIPTION
FSI	1	subcarrier oscillator input, where $\mathrm{f}_{\text {max }}=5 \mathrm{MHz}$
FSO	2	subcarrier oscillator output
CS1	3	clock frequency selection - CMOS input
CS0	4	clock frequency selection - CMOS input
OSCI	5	clock oscillator input, where $\mathrm{f}_{\text {max }}=24 \mathrm{MHz}$
OSCO	6	clock oscillator output
VLE	7	vertical in-lock enable - CMOS input
PH	8	phase detector output - 3-state output
LM1	9	lock mode selection - CMOS input
LM0	10	lock mode selection - CMOS input
ECS	11	external composite sync. signal - CMOS Schmitt-trigger input
RR	12	frame reset - CMOS Schmitt-trigger input
SI	13	set identification, used to set the correct field sequence in PAL-mode. The correction (inversion of fH2) is done at the left-hand slope of the SI-pulse. Minimum pulse width is 800 ns. CMOS Schmitt-trigger input.
VSS	14	ground
ID	15	identification - push-pull output
BK	16	burst key (PAL/NTSC), chroma-blanking (SECAM) - push-pull output
CB	17	composite blanking - push-pull output
CS	18	composite sync. - push-pull output
CLP	19	clamp pulse - push-pull output
WMP	20	white measurement pulse - 3-state output
VD	21	vertical drive pulse - push-pull output
HD	22	horizontal drive pulse - push-pull output
NORM	23	used with X, Y and Z to select TV system; NORM = 0, 625/525 line mode (standard); NORM = 1, 624/524 line
mode - CMOS input		

Lock modes

The USG offers four lock modes:

- Lock from the subcarrier
- Slow sync. lock, external $H_{\text {ref }}$
- Slow sync. lock, internal $H_{r e f}$
- Fast sync. lock, internal $H_{\text {ref }}$

LOCK FROM SUBCARRIER

Lock from subcarrier to the line frequency for the above mentioned TV systems is given below; the horizontal frequency $\left(\mathrm{f}_{\mathrm{H}}\right)=15.625$ kHz for 625 line systems and 15.734264 kHz for 525 line systems.

SECAM (1 and 2)	$282 f_{H}$
PALN	$229.2516 f_{H}$
NTSC (1 and 2)	$227.5 f_{H}$
PALM	$227.25 f_{H}$
PAL B/G	$283.7516 f_{H}$

These relationships are obtained by the use of a phase locked loop and the internal programmed divider chain, see Fig. 3(a).

LOCK TO AN EXTERNAL SIGNAL SOURCE

The following methods can be used to lock to an external signal source:

1. Sync. lock slow; the line frequency is locked to an external signal. The line and frame information are extracted from the external sync. signal and used separately in the lock system. The line information is used in a phase-locked loop where external and internal line frequencies are compared by the same phase detector as is used for the subcarrier lock. The external frame information is compared with the internal frame in a slow lock system; mismatch
of internal and external frames will SELECTION OF LOCK MODE result in the addition or suppression of one line depending on the direction of the fault. The maximum lock time for frame lock is 6.25 s , see Fig. 3(b).
2. Sync. lock fast. A fast lock of frames is possible with a frame reset which is extracted out of the incoming external sync. signal, see Fig. 3(c).
3. Sync. lock with external reference. Lock of an external sync. signal to the line frequency with an external line reference to make possible a shifted lock. The subcarrier input is, in this case, used as an external input for the horizontal reference, see Fig. 3(d).

Lock mode is selected using the inputs LM0 and LM1 as illustrated in the Table below.

LMO	LM1	SELECTION
0	0	lock to subcarrier
0	1	slow sync. lock external $H_{\text {ref }}$
1	0	slow sync. lock internal $H_{\text {ref }}$
1	1	fast sync. lock internal $H_{\text {ref }}$

The different lock modes are illustrated by the following figures:

Selection of Clock Frequency

The clock frequency is selected using the CS0 and CS1 inputs as illustrated below.

CS0	CS1	FREQUENCY	625 LINES	525 LINES	UNITS
0	0	$160 f_{\mathrm{H}}$	2.5	2.517482	MHz
0	1	$320 f_{\mathrm{H}}$	5	5.034964	MHz
1	0	$960 f_{\mathrm{H}}$	15	15.104893	MHz
1	1	$1440 \mathrm{f}_{\mathrm{H}}$	22.5	22.657340	MHz

Where the horizontal frequency, $\mathrm{f}_{\mathrm{H}}=15.625 \mathrm{kHz}$ for 625 lines and 15.734264 kHz for 525 lines.

LOCK WITH HORIZONTAL AND VERTICAL SIGNALS
(slow lock modes only)
It is possible to use horizontal and vertical signals instead of composite sync signals. The connections in this situation are: the external horizontal signal is connected to the ECS input (pin 11) and the vertical signal to the RR input (pin 12). The HIGH time of the horizontal pulse must be less than $14.4 \mu \mathrm{~s}$, otherwise it will be detected as being a vertical pulse and will corrupt the vertical slow lock system.

Oscillators

The subcarrier oscillator has FSI as its input and FSO as its output. It is always used as a crystal oscillator with a series resonance crystal with parallel load capacitor. The maximum frequency, $f_{\max }=5 \mathrm{MHz}$ and the load capacitor, $C_{L}=10<C_{L}<35 \mathrm{pF}$.

The clock oscillator has OSCl as its input and OSCO as its output. It can be used with an LC oscillator or a series resonance crystal with parallel load capacitor (Fig.4). The maximum frequency, $\mathrm{f}_{\max }=24 \mathrm{MHz}$ and the load capacitor, $\mathrm{C}_{\mathrm{L}}=10<\mathrm{C}_{\mathrm{L}}<35 \mathrm{pF}$.

Selection of 625/525 (standard; interlaced mode) or 624/524 lines (non-interlaced mode)
Selection is achieved using the NORM input. When NORM $=0$, 625/ 525 (standard) lines are selected; when NORM $=1,624 / 524$ line are selected.

Output Dimensions

All push-pull outputs: standard output 2 mA .

White measurement pulse, WMP:
3 -state output 2 mA .
Phase detector, PH: 3-state output 2 mA .

Fig. 4 Crystal oscillator circuit.

Selection of TV System

Selection of the required TV system is achieved by the X, Y and Z inputs as illustrated by the following Table.

SYSTEM	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
SECAM1	0	0	0
PALN	0	0	1
NTSC1	0	1	0
PALM	0	1	1
SECAM2	1	0	0 (with identifier)
PAL B/G	1	0	1
NTSC2	1	1	0 (short blanking)

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{DD}	supply voltage	-0.5	+7	V
$\mathrm{~V}_{1}$	input voltage	-0.5	$\mathrm{~V}_{\mathrm{DD}}+0.5^{*}$	V
I_{1}	maximum input current	-	± 10	mA
l_{O}	maximum output current	-	± 10	mA
I_{DD}	maximum supply current in V_{DD}	-	25	mA
$\mathrm{P}_{\text {tot }}$	maximum power dissipation	-	400	mW
$\mathrm{~T}_{\text {stg }}$	storage temperature range	-55	+150	${ }^{\circ} \mathrm{C}$

* Input voltage should not exceed 7 V .

CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies						
$\begin{aligned} & V_{D D} \\ & I_{D D} \end{aligned}$	supply voltage supply current (quiescent)	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	4.5		$\begin{gathered} 5.5 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & V \\ & \mu \mathrm{~A} \end{aligned}$
Inputs						
± 1	input leakage current	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	-	-	100	nA
CMOS COMPATIBLE; X, Y, Z, NORM, CSO, CS1, LM0, LM1 AND VLE						
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	input voltage HIGH input voltage LOW		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$0.3 V_{D D}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
SCHMITT TRIGGER INPUTS; ECS, RR AND SI						
$\begin{aligned} & \mathrm{V}_{\mathrm{T}+} \\ & \mathrm{V}_{\mathrm{T}-} \\ & \mathrm{V}_{\mathrm{H}} \end{aligned}$	positive-going threshold negative-going threshold hysteresis		1 0.4	$\begin{aligned} & 2.5 \\ & 1.5 \\ & 1 \\ & \hline \end{aligned}$	4	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
OSCILLATOR INPUTS; OSCI AND FSI						
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	input voltage HIGH input voltage LOW		$0.7 \mathrm{~V}_{\mathrm{DD}}$ -		$0.3 \mathrm{~V}_{\mathrm{DD}}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Outputs PUSH-PULL OUTPUTS; CB, CS, BK, ID, HD, VD, CLP AND CLO						
V_{OH} V_{OL}	output voltage HIGH output voltage LOW	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \end{aligned}$	4.5	$\begin{aligned} & - \\ & - \end{aligned}$	0.5	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
OSCILLATOR OUTPUTS; OSCO AND FSO						
$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$	output voltage HIGH output voltage LOW	$\begin{aligned} & -\mathrm{I}_{\mathrm{O}}=0.75 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=0.75 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \end{aligned}$	4.5	-	0.5	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
3-STATE OUTPUTS; WMP AND PH						
$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \\ & \pm \mathrm{I}_{\mathrm{OZ}} \end{aligned}$	output voltage HIGH output voltage LOW OFF-state current	$\begin{aligned} & -\mathrm{I}_{\mathrm{O}}=2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	4.5 - -	-	$\begin{gathered} - \\ 0.5 \\ 50 \\ \hline \end{gathered}$	$\begin{aligned} & V \\ & V \\ & n A \end{aligned}$

OUTPUT WAVEFORMS

The output waveforms for the different modes of operation are illustrated by Figs 5 and 6 .

(1) $\mathrm{H}=1$ horizontal scan.

Fig. 5 Typical output waveforms for PAL/CCIR and SECAM. In the 624-line mode the output waveforms are identical to the first half picture of PAL/CCIR and are not interlaced.

(1) $\mathrm{H}=1$ horizontal scan.
(2) NTSC mode reset; the fourth half picture is identical to the second half picture for NTSC.

Fig. 6 Typical output waveforms for NTSC and PAL-M. In the 524-line mode the output waveforms are identical to the first half picture of NTSC and are not interlaced.

WAVEFORM TIMING

The waveform timing depends on the frequency of the oscillator input ($\mathrm{f}_{\mathrm{OSCl}}$). This is illustrated in the table below as the number (N) of oscillations at OSCI. The timings are derived from $N \times t_{\mathrm{OSCI}} \pm 100 \mathrm{~ns}$.
One horizontal scan $(\mathrm{H})=320 \times \mathrm{t}_{\mathrm{OSCl}}=1 / \mathrm{f}_{\mathrm{H}}$.
Where $\mathrm{t}_{\mathrm{OSCl}}=200 \mathrm{~ns}$ for PAL/SECAM and 198.6 ns for NTSC/PAL-M

SYMBOL	PARAMETER	PAL	NTSC	PAL-M	SECAM	UNIT	N
Composite sync (CS)							
$t_{\text {WSC1 }}$	horizontal sync pulse width	4.8	4.77	4.77	4.8	$\mu \mathrm{s}$	24
$t_{\text {WSC2 }}$	equalizing pulse width	2.4	2.38	2.38	2.4	$\mu \mathrm{s}$	12
$\mathrm{t}_{\text {WSC3 }}$	serration pulse width	4.8	4.77	4.77	4.8	$\mu \mathrm{s}$	24
-	duration of pre-equalizing pulses	2.5	3	3	2.5	H	-
-	duration of post-equalizing pulses	2.5	3	3	2.5	H	-
-	duration of serration pulses	2.5	3	3.5	2.5	H	-

Composite blanking (CB)
HORIZONTAL BLANKING PULSE WIDTH

$t_{\text {WCB }}$ ${ }^{t}$ WCB $t_{\text {WCB }}$	PAL/SECAM/PAL-M NTSC1 NTSC2	12	11.12 10.53^{*}	11.12 - -	12	$\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$	60 56 53
FRONT PORCH							
$\mathrm{t}_{\text {PCBCS }}$	front porch	1.6	1.59	1.59	1.6	$\mu \mathrm{s}$	8
DURATION OF VERTICAL BLANKING							
-	PAL/SECAM/PAL-M NTSC1 NTSC2	$25 \mathrm{H}+\mathrm{t}_{\mathrm{WCB}}$	$\begin{aligned} & 21 \mathrm{H}+t_{\text {WCB }} \\ & 19 \mathrm{H}+t_{\text {WCB }} \end{aligned}$	$21 \mathrm{H}+\mathrm{t}_{\mathrm{WCB}}$	$25 \mathrm{H}+\mathrm{t}_{\mathrm{WCB}}$	-	-

Burst key (BK) (not SECAM)

$t_{\text {WBK }}$	burst key pulse width	2.4	2.38	2.38	-	$\mu \mathrm{s}$	12
$\mathrm{t}_{\text {PCSBK }}$	CS to burst key delay	5.6	5.56	5.76	-	$\mu \mathrm{S}$	28
-	burst suppression	9	9	11	-	H	-

[^10]| SYMBOL | PARAMETER | PAL | NTSC | PAL-M | SECAM | UNIT | N |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Burst key (BK) (not SECAM) (continued) POSITION OF BURST SUPPRESSION | | | | | | | |
| | first half picture second half picture third half picture fourth half picture | H 623 to H 6 H 310 to H 318 H 622 to H 5 H 311 to H 319 | H 523 to H 6 H 261 to H 269 H 523 to H 6 H 261 to H 269 | H 523 to H 8 H 260 to H 270 H 522 to H 7 H 259 to H 269 | | | |
| Burst key (BK) (SECAM) | | | | | | | |
| $t_{\text {WBK }}$ $t_{\text {PBKCS }}$ | chroma pulse width CS to chroma delay | | | - | $\begin{aligned} & 7.2 \\ & 1.6 \end{aligned}$ | $\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$ | $\begin{array}{\|l\|} \hline 36 \\ 8 \end{array}$ |
| DURATION OF VERTICAL BL_ANKING | | | | | | | |
| | SECAM1 SECAM2 | | $\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$ | | note 1 note 2 | $-$ | |
| Clamp pulse (CLP) | | | | | | | |
| $t_{\text {WCLP }}$ tpCsClp | clamp pulse width CS to CLP delay | $\begin{aligned} & 2.4 \\ & 1.6 \end{aligned}$ | $\begin{aligned} & 2.38 \\ & 1.59 \end{aligned}$ | $\begin{aligned} & 2.38 \\ & 1.59 \end{aligned}$ | $\begin{aligned} & 2.4 \\ & 1.6 \end{aligned}$ | $\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$ | $\begin{aligned} & \hline 12 \\ & 8 \end{aligned}$ |
| Horizontal drive (HD) | | | | | | | |
| $t_{\text {WHD }}$ $t_{\text {PHDCS }}$ | pulse width CS to HD delay repetition period | $\begin{gathered} 7.2 \\ 0.8 \\ 64 \\ \hline \end{gathered}$ | $\begin{array}{r} 7.15 \\ 0.79 \\ 63.56 \\ \hline \end{array}$ | $\begin{array}{r} 7.15 \\ 0.79 \\ 63.56 \\ \hline \end{array}$ | $\begin{gathered} 7.2 \\ 0.8 \\ 64 \end{gathered}$ | $\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$ | $\begin{aligned} & 36 \\ & 4 \\ & - \end{aligned}$ |
| Vertical drive (VD) | | | | | | | |
| $t_{\text {PVDCS }}$ | VD duration CS to VD delay | $\begin{gathered} 10 \\ 1.6 \end{gathered}$ | $\begin{aligned} & 6 \\ & 1.59 \end{aligned}$ | $\begin{aligned} & 6 \\ & 1.59 \end{aligned}$ | $\begin{gathered} 10 \\ 1.6 \end{gathered}$ | $\begin{aligned} & \mathrm{H} \\ & \mu \mathrm{~s} \end{aligned}$ | 8 |
| White measurement pulse (WMP) | | | | | | | |
| - | pulse width CS to WMP delay duration of WMP | $\begin{aligned} & 2.4 \\ & 34.4 \\ & 10 \end{aligned}$ | $\begin{gathered} 2.38 \\ 34.16 \\ 9 \end{gathered}$ | $\begin{gathered} 2.38 \\ 34.16 \\ 9 \end{gathered}$ | $\begin{aligned} & 2.4 \\ & 34.4 \\ & 10 \end{aligned}$ | $\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mathrm{H} \end{aligned}$ | 12
 172
 - |

FEATURES

- Adaptive data slicer
- Crystal-controlled data clock regeneration with a bit rate of 6.9375 MHz
- Adaptive sync separator, horizontal phase detector and 13.5 MHz VCO to provide display phase locked loop (PLL)
- TV synchronization at teletext mode

GENERAL DESCRIPTION

The SAA5191 is a bipolar integrated circuit that extracts teletext data from the video signal (CVBS), regenerates the teletext clock (TTC) and synchronizes the text display to the television signals (VCS). This device operates in conjunction with the Digital Video Teletext (back-end) Decoder (DVTB - SAA9042A) or any other compatible device.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V_{P}	supply voltage (pin 16)	-	12	-	V
Ip	supply current	-	70	-	mA
$V{ }_{\text {i cVBS }}$	CVBS input signal on pin 27 (peak-to-peak value) at pin 2 LOW at pin 2 open-circuit	-	$\begin{array}{l\|l} 1 \\ 2.5 \end{array}$	-	$\begin{aligned} & V \\ & v \end{aligned}$
Vo	output signals TTC and TTD (peak-to-peak value, pins 14, 15)	2.5	3.5	4.5	V
$V_{\text {F13 }}$	13.5 MHz clock output signal (peak-to-peak value, pin 17)	1	2	3	V
$V_{\text {SYNC }}$	video sync output signal (peak-to-peak value, pin 1) SYNC output signal $\overline{T C S}$	200	450	$\begin{aligned} & 1 \\ & 650 \end{aligned}$	V mV
VCS	video composite sync level on output pin 25 LOW HIGH	2.4	-	$\begin{aligned} & 0.4 \\ & 5.5 \end{aligned}$	
$\mathrm{T}_{\text {amb }}$	operating ambient temperature	0	-	+70	${ }^{\circ} \mathrm{C}$

ORDERING AND PACKAGE INFORMATION

EXTENDED TYPE NUMBER	PACKAGE			
	PINS	PIN POSITION	MATERIAL	CODE
SAA5191	28	DIL	plastic	SOT117

Fig. 1 Block diagram.

Teletext video processor

PINNING

SYMBOL	PIN	DESCRIPTION
STTV	1	sync output signal to TV (positive or negative going)
VILS	2	level select input of video input (LOW equals 1 V)
$\mathrm{C}_{\text {filt }}$	3	video filtering capacitor of HF loss compensation
$\mathrm{C}_{\text {store }}$	4	HF storage capacitor
$\mathrm{C}_{\text {ampl }}$	5	amplitude capacitor
$\mathrm{C}_{\text {zero }}$	6	zero level capacitor
EXD	7	external data current input (1)
$\mathrm{C}_{\text {time }}$	8	data timing capacitor for the adaptive data slicer
$\mathrm{C}_{\text {CLK }}$	9	clock phase detector capacitor
$\overline{C B B}$	10	blanking insertion input
XTAL	11	13.875 MHz crystal (double of data rate)
CLF	12	6.9375 MHz clock frequency filter
GND	13	ground (0 V)
TTC	14	teletext clock output (for computer controlled teletext)
TTD	15	teletext data output (for computer controlled teletext)
V_{P}	16	+12 V supply voltage
F13	17	13.5 MHz VCO output (for sandcastle generation)
OSCO	18	oscillator output to series LC-circuit or crystal
$\mathrm{C}_{\mathrm{VCR}}$	19	short time constant capacitor at video recorder mode (2)
OSCl	20	oscillator input from series LC-circuit or crystal
$\mathrm{C}_{\text {hor }}$	21	horizontal phase capacitor / VCR mode
$\overline{\mathrm{PL}}$	22	sandcastle input (generated in CCT)
R_{T}	23	timing resistor for pulse generator
$\mathrm{C}_{\text {T }}$	24	timing capacitor for pulse generator
VCS	25	video composite sync output to CCT
$\mathrm{C}_{B L}$	26	black level capacitor
CVBS	27	composite video input signal from TV
$\overline{\text { TCS }}$	28	text-composite/scan-composite sync input (产SC/ $\overline{\mathbf{S C S}}$)

PIN CONFIGURATION

	MEH150	
STTV 1	SAA5191	28 TCS
VILS 2		27 CVBS
$\mathrm{c}_{\text {fin }} 3$		$26 \mathrm{C}_{B L}$
$\mathrm{C}_{\text {store }} 4$		25 vcs
$\mathrm{C}_{\text {ampl }} 5$		$24 . C_{T}$
$\mathrm{C}_{2010} 6$		$23 . \mathrm{R}_{\mathrm{T}}$
EXD 7		$22 \overline{P L}$
$\mathrm{C}_{\text {time }} 8$		21 chor
$\mathrm{C}_{\text {cLK }} 9$		20 OSCl
$\overline{C B B} \quad 10$		$19 . \mathrm{C}_{\mathrm{VCR}}$
XTAL 11		18 Osco
CLF 12		17 F 13
GND 13		$16 V_{p}$
TTC 14		15 TTD

Fig. 2 Pin configuration.

Notes to the pinning

(1) Sliced teletext data from external: active HIGH level (current), low impedance input.
(2) While the loop is locking up.

Teletext video processor

LIMITING VALUES

in accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{P}	supply voltage (pin 16)	0	13.2	V
$\mathrm{~V}_{5}$	voltage on pin 5	0	5.5	V
$\mathrm{~T}_{\text {stg }}$	storage temperature range	-20	125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range	0	+70	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS

$V_{P}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and measurements taken in Fig.3, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{P}	supply voltage range (pin 16)		10.8	12.0	13.2	V
I_{P}	supply current		50	70	105	mA
Video Input, sync separator and data slicer		$Z_{S} \leq 250 \Omega$				
VicVBS	input signal sync to white (peak-to-peak value, pin 27) sync amplitude (peak-to-peak value) data slicing level	$\begin{aligned} & V_{2}=L O W \\ & V_{2}=H I G H \\ & V_{2}=L O W \\ & V_{2}=H I G H \end{aligned}$	$\begin{aligned} & 0.7 \\ & 1.75 \\ & 0.1 \\ & 0.3 \\ & 0.75 \end{aligned}$	$\begin{aligned} & 1 \\ & 2.5 \\ & - \\ & 0.46 \\ & 1.15 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 3.5 \\ & 1 \\ & 0.7 \\ & 1.75 \end{aligned}$	V V V V V
V_{2}	input voltage LOW (pin 2) input voltage HIGH	open-circuit equals HIGH	$\begin{array}{\|l\|} \hline 0 \\ 2.0 \end{array}$		$\begin{aligned} & 0.8 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
I_{2}	input current LOW input current HIGH	$\mathrm{V}_{2}<5.5 \mathrm{~V}$	0		-150 1.	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
Teletext data output (TTD)						
V_{22}	phase lock pulse (PL) input voltage (peak-to-peak value, pin 22)	phase locked phase unlocked	$\begin{array}{l\|l} 0 \\ 3.9 \end{array}$		$\begin{aligned} & 3 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{0} TTD	data output signal on pin 15 (peak-to-peak value)		2.5	3.5	4.5	V
V_{15}	DC output voltage	mean level	3	4	5	V
C_{L}	load capacitance on pin 15		-	-	40	pF
t_{r}, t_{f}	rise and fall time		20	30	45	ns
Teletext clock output (TTC)						
V_{0} TTC	clock output signal on pin 14 (peak-to-peak value)		2.5	3.5	4.5	V
V_{14}	DC output voltage	mean level	3	4	5	V
C_{L}	load capacitance on pin 14		-	-	40	pF

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
t_{r}, t_{f}	rise and fall time		20	30	45	ns
${ }^{t} d$	delay time of falling edge relative to other edges of TTD		-	-	± 20	ns
Text/ scan composite sync input ($\overline{\mathrm{TCS}} / \overline{\mathrm{SCS}}$)						
V_{28}	input voltage LOW for TCS (pin 28) input voltage HIGH for $\overline{\text { TSC }}$ input voltage LOW for $\overline{\text { SCS }}$ input voltage HIGH for $\overline{\text { SCS }}$		$\begin{aligned} & 0 \\ & 2.0 \\ & 0 \\ & 3.5 \end{aligned}$		$\begin{aligned} & \hline 0.8 \\ & 7.0 \\ & 1.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \\ & v \end{aligned}$
l_{28}	input current	$\begin{aligned} & V_{28}=0 \text { to } 7 \mathrm{~V} \\ & V_{28}=10 \text { to } V_{P} \end{aligned}$	-40	-70	$\begin{aligned} & -100 \\ & \pm 5 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
SYNC output buffer						
Vo	CVBS sync output signal on pin 1 (peak-to-peak value) $\overline{T C S}$ output signal	$\begin{aligned} & R_{L 1}=1.2 \mathrm{k} \Omega \text { to } V_{P} \\ & R_{L 1}=1.2 \mathrm{k} \Omega \text { to } G N D \end{aligned}$	200	450	$\begin{aligned} & 1 \\ & 650 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{mV} \end{aligned}$
V_{1}	DC output voltage at positive sync signal DC output voltage at negative sync signal	$\begin{aligned} & R_{L 1}=1.2 \mathrm{k} \Omega \text { to } G N D \\ & R_{L 1}=1.2 \mathrm{k} \Omega \text { to } V_{P} \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.4 \\ & 10.1 \end{aligned}$	$\begin{array}{\|l\|} \hline 2.0 \\ 11.0 \\ \hline \end{array}$	$\begin{aligned} & V \\ & V \end{aligned}$
l_{1}	output current		-	-	± 3	mA
Video composite sync output (VCS)						
V_{25}	output voltage LOW (pin 25) output voltage HIGH		$\begin{array}{\|l\|} \hline 0 \\ 2.4 \\ \hline \end{array}$		$\begin{aligned} & 0.4 \\ & 5.5 \end{aligned}$	$\begin{aligned} & V \\ & V \end{aligned}$
l_{25}	output current LOW output current HIGH		$\begin{array}{\|l\|} \hline 0 \\ 0 \end{array}$		$\begin{array}{\|l\|} \hline 0.5 \\ -1.5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$t_{\text {d }}$	sync separator delay time		250	350	400	ns
Horizontal phase detector and 13.5 MHz VCO						
V_{10}	input voltage LOW ($\overline{\mathrm{CBB}}$), pin 10 blanking insertion HIGH	blanking inserted no blanking	$\begin{aligned} & 0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 0.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
l_{10}	input current		-	-	-5	$\mu \mathrm{A}$
Vo	13.5 MHz clock output signal (peak-to-peak value, pin 17)		1	2	3	V
V_{17}	DC output voltage	maximum swing	4	-	8.5	V
C_{L}	load capacitance on pin 17		-	- \quad.	40	pF
t_{r}, t_{f}	rise and fall time		10	-	30	ns

(1) inductance $15 \mu \mathrm{H}$ at $1 \mathrm{kHz}, \mathrm{C}_{\mathrm{o}}=2.2 \mathrm{pF}$. Adjust free-running frequency to $13.5 \pm 0.1 \mathrm{MHz}$ or apply 13.5 MHz quarz crystal as shown in additional drawing
(2) Crystal: $f=13.5 \mathrm{MHz}$ (e.g. Philips catalogue number 432214304101); adjustment tolerance $\pm 40 \cdot 10^{-6}$; load capacitance $C_{L}=22 \mathrm{pF}$; resonance resistance $R_{\mathrm{T}}=22 \mathrm{pF}$; typical motional capacitance $\mathrm{C}_{1}=23 \mathrm{fF}$;
static parallel capacitance $C_{0}=5.5 \mathrm{pF}$; trequency tolerance $\pm 30 \cdot 10^{-6}$ in temperature range $\mathrm{T}=-20$ to $+70^{\circ}$. Adjust free-running frequency to $13.5 \pm 0.5 \mathrm{MHz}$.
(3) Crystal: $f=13.875 \mathrm{MHz}$: adjustment tolerance $\pm 40 \cdot 10^{-6}$; load capacitance $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$; typical resonance resistance $R_{r}=15 \Omega$ (maximum 60Ω); typical motional capacitance $C_{1}=19 \mathrm{fF}$; static parallel capacitance $\mathrm{C}_{0}=5 \mathrm{pF}$; frequency tolerance $\pm 30 \cdot 10^{-6}$ in temperature range $T=-20$ to $+70^{\circ}$.
(4) Coil: Fixed inductance $15 \mu \mathrm{H} \pm 20 \%$, quality factor $\mathrm{Q}>20$.

Fig. 3 Test circuit and application circuit using LC-circuit or a crystal for VCO (clock F13).

GENERAL DESCRIPTION

The SAA5231 is a bipolar integrated circuit intended as a successor to the SAA5030. It extracts Teletext Data from the video signal, regenerates Teletext Clock and synchronizes the text display to the television syncs. The integrated circuit is intended to work in conjunction with CCT (Computer Controlled Teletext), EUROM or other compatible devices.

Features

- Adaptive data slicer
- Data clock regenerator
- Adaptive sync separator, horizontal phase detector and 6 MHz VCO forming display phase locked loop (PLL)

QUICK REFERENCE DATA

Supply voltage (pin 16)	$V_{C C}$	typ.	12 V
Supply current (pin 16)	I_{CC}	typ.	70 mA
Video input amplitude (pin 27) (peak-to-peak value) pin 2 LOW	$V_{27-13(p-p)}$	typ.	1 V
pin 2 HIGH	$V_{27-13(p-p)}$	typ.	$2,5 \mathrm{~V}$
Storage temperature range	$T_{\text {stg }}$	-20 to $+125{ }^{\circ} \mathrm{C}$	
Operating ambient temperature range	$T_{\text {amb }}$	0 to $+70{ }^{\circ} \mathrm{C}$	

PACKAGE OUTLINE

28-lead dual in-line; plastic (SOT117).

Fig. 1 Block diagram.

PINNING

Fig. 2 Pinning diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (pin 16)
Storage temperature range
Operating ambient temperature

VCC
$T_{\text {stg }}$
Tamb

$$
\begin{array}{r}
\max . \quad 13,2 \mathrm{~V} \\
-20 \text { to }+125{ }^{\circ} \mathrm{C} \\
0 \text { to }+700^{\circ} \mathrm{C}
\end{array}
$$

CHARACTERISTICS

$V_{C C}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ with external components as shown in application circuits unless otherwise stated.

parameter	symbol	min.	typ.	max.	unit
Supply (pin 16)					
Supply voltage	$V_{C C}$	10,8	12,0	13,2	v
Supply current	${ }^{\text {I CC }}$	50	70	105	mA
Video input and sync separator					
Video input amplitude (sync to white) (peak-to-peak value) video input select level LOW (pin 2)	$V_{27-13(p-p)}$	0,7	1	1,4	v
video input select level HIGH (pin 2)	$\mathrm{V}_{27-13(p-p)}$	1,75	2,5	3,5	V
Source impedance	$\left\|z_{s}\right\|$	-	-	250	Ω
Sync amplitude (peak-to-peak value)	$V_{27-13(p-p)}$	0,1	-	1	v
Video input level select					
Input voltage LOW	V_{2-13}	0	-	0,8	V
Input voltage HIGH	V_{2-13}	2,0	-	5,5	v
Input current LOW	I_{2}	0	-	-150	$\mu \mathrm{A}$
Input current HIGH	I_{2}	0	-	1	mA
Text composite sync input (TCS)					
Input voltage LOW	V_{28-13}	0	-	0,8	v
Input voltage HIGH	V_{28-13}	2,0	-	7,0	v
Scan composite sync input (SCS)					
Input voltage LOW	V_{28-13}	0	-	1,5	$\stackrel{\rightharpoonup}{V}$
Input voltage HIGH	V_{28-13}	3,5	-	7,0	v
Select video sync from pin 1					
Input current (pin 28)					
at $V_{28}=0$ to 7 V	I_{28}	-40	-70	-100	$\mu \mathrm{A}$
at $\mathrm{V}_{28}=10 \mathrm{~V}$ to V_{CC}	I_{28}	-5	-	+ 5	$\mu \mathrm{A}$
Video composite sync output (VCS)					
Output voltage LOW	V_{25-13}	0	-	0,4	v
Output voltage HIGH	V_{25-13}	2,4	-	5,5	V
D.C. output current LOW	I_{25}	-	-	0.5	mA
D.C. output current HIGH	125	-	-	-1,5	mA
Sync separator delay time	t_{d}	0,25	0,35	0,40	$\mu \mathrm{s}$

parameter	symbol	min.	typ.	max.	unit
Dual polarity buffer output					
TCS amplitude (peak-to-peak value)	$V_{1-13(p-p)}$	0,20	0,45	0,65	V
Video sync amplitude (peak-to-peak value)	$V_{1-13(p-p)}$	-	-	1	V
Output current	19	-3	-	+ 3	mA
D.C. output voltage					
R_{L} to ground (0 V)	v_{1-13}	1,0	1,4	2,0	V
R_{L} to $V_{C C}(12 \mathrm{~V})$	$v_{1.13}$	9,0	10,1	11,0	V
Sandcastle input pulse (PL/ $\overline{\mathrm{CBB}}$)					
Phase lock pulse (PL)					
PL on (LOW)	V_{22-13}	0	-	3	V
PL off (HIGH)	v_{22-13}	3,9	-	5,5	V
Blanking pulse (CBB)					
CBB on (LOW)	V_{22-13}	0	-	0,5	V
CBB off (HIGH)	V_{22-13}	1,0	-	5,5	V
Input current	l_{22}	-10	-	+ 10	$\mu \mathrm{A}$
Phase locked loop (PLL)					
Phase detector timing					
Pulse duration using composite video	t_{p}	2,0	2,4	2,8	$\mu \mathrm{s}$
using scan composite sync	t_{p}	3,0	3,5	4,0	$\mu \mathrm{s}$
time PL must be LOW to make VCO run-free	${ }_{t}$	100	-	-	$\mu \mathrm{s}$
6 MHz clock output (F6)					
A.C. output voltage (peak-to-peak value)	V_{17}-13(p-p)	1	2	3	V
A.C. and d.c. output voltage range	$\mathrm{V}_{17 \text {-13(max) }}$	4	-	8,5	V
Rise and fall time	$\mathrm{t}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	20	-	40	ns
Load capacitance	$\mathrm{C}_{17.13}$	-	-	40	pF
Video recorder mode input (VCR)					
VCR-mode on (LOW)	V_{10-13}	0	-	0,8	v
VCR-mode off (HIGH)	$\mathrm{V}_{10.13}$	2,0	-	$V_{\text {cc }}$	V
Input current	l_{10}	-10	-	+10	$\mu \mathrm{A}$

parameter	symbol	min.	typ.	max.	unit
Data slicer					
Data amplitude of video input (pin 27)					
\quad video input level select LOW (pin 2)	V_{27-13}	0,30	0,46	0,70	V
video input level select HIGH (pin 2)	V_{27-13}	0,75	1,15	1,75	V
Teletext clock output					
A.C. output voltage					
(peak-to-peak value)	$\mathrm{V}_{14-13(\mathrm{p}-\mathrm{p})}$	2,5	3,5	4,5	V
D.C. output voltage (centre)	V_{14-13}	3,0	4,0	5,0	V
Load capacitance	C_{L}	-	-	40	pF
Rise and fall times	$\mathrm{t}_{\mathrm{r}} ; \mathrm{t}_{\mathrm{f}}$	20	30	45	ns
Delay of falling edge relative to					
other edges of TTD	t_{d}	-20	0	+20	ns
Teletext data output					
A.C. output voltage					
(peak-to-peak value)					
D.C. output voltage (centre)	$\mathrm{V}_{15-13(\mathrm{p}-\mathrm{p})}$	2,5	3,5	4,5	V
Load capacitance	V_{15-13}	3,0	4,0	5,0	V
Rise and fall times	C_{L}	-	-	40	pF

APPLICATION INFORMATION

(1) Coil: $50 \mu \mathrm{H}$ at $1 \mathrm{kHz}, \mathrm{C}_{\mathrm{O}}=4 \mathrm{pF}$. Adjust the free-running frequency to $6000 \mathrm{kHz} \pm 30 \mathrm{kHz}$.

Fig. 3a Application circuit using L/C circuit in PLL.

(1) Quartz crystal e.g. catalogue number 432214304101 . Adjust the free-running frequency to $6000,2 \mathrm{kHz} \pm 0,2 \mathrm{kHz}$.

Fig. 3b Application circuit using quartz crystal in PLL.

COMPONENT SPECIFICATION

Specifications for crystal components for NTSC and PAL applications.

Quartz crystal 525 line (11.4545MHz); Figures 3a and 3b	
Nominal Frequency	11.4545 MHz
Frequency Tol @25 ${ }^{\circ} \mathrm{C}$	$\pm 50 \mathrm{ppm}$
Temperature Range	-20 to $+70^{\circ} \mathrm{C}$
Temperature Stability	$\pm 30 \mathrm{ppm}$
Load Capacitance (CL)	15 pF
Shunt Capacitance (Co)	5.0 pF typical, 7 pF maximum
Motion Capacitance (C1)	19 fF typical
Resonance Resistance (Rr)	10 Ohms typical, 60 Ohms maximum
Aging	$\pm 5 \mathrm{ppm} /$ year
Mode of operation	Fundamental
Drive Level	100μ Watts Correlation
Quartz crystal 565 line (13.875MHz); Figures 3a and 3b	
Nominal Frequency	13.8755 MHz
Frequency Tol @25 ${ }^{\circ} \mathrm{C}$	$\pm 50 \mathrm{ppm}$
Temperature Range	-20 to $+70^{\circ} \mathrm{C}$
Temperature Stability	$\pm 30 \mathrm{ppm}$
Load Capacitance (CL)	15 pF
Shunt Capacitance (Co)	5.0 pF typical, 7 pF maximum
Motion Capacitance (C1)	19 fF typical
Resonance Resistance (Rr)	10 Ohms typical, 60 Ohms maximum
Aging	$\pm 5 \mathrm{ppm} /$ year
Mode of operation	Fundamental
Drive Level	100μ Watts Correlation

Quartz crystal for VCO (6.00 MHz); Figures 3a and 3b
Nominal Frequency $\quad 6.00 \mathrm{MHz}$
Frequency Tol ${ }^{(25} 5^{\circ} \mathrm{C}$
$\pm 50 \mathrm{ppm}$
Temperature Range
Temperature Stability
Load Capacitance (CL)
Shunt Capacitance (Co)
Motion Capacitance (C1)
Resonance Resistance (Rr)
Aging
Mode of operation
Drive Level
-20 to $+70^{\circ} \mathrm{C}$
$\pm 50 \mathrm{ppm}$
20 pF
5.5 pF typical, 7 pF maximum

22 fF typical
10 Ohms typical, 60 Ohms maximum
$\pm 5 \mathrm{ppm} /$ year
Fundamental
100μ Watts Correlation
Fixed Inductance; Figures 3 a and 3 b
Inductance (L)
Quality Factor (Q)
$15 \mu \mathrm{H}$ at 1 KHz
20 (minimum)
Variable Inductance; Figure 3a
Inductance (L)
Static parallel capacitance (Co) $\quad 2.2 \mathrm{pF}$ typical
The Philips part numbers for these crystals are:
432214304890 (13.875 MHz)
As of this publication, there is no part number specified for the 11.4545 MHz crystal from Philips.
The Philips crystals can be obtained from:
Philips Components Passive Group, Phone (803) 772-2500
The crystals are also available from Ecliptek Inc. Their part numbers are:
ECX - $2384-11.4545 \mathrm{MHz}$
ECX - 2383-13.875MHz
Ecliptek can be reached at (714) 433-1200. The sales contact is Mr. Rodney Mills.
The $15 \mu \mathrm{H}$ inductor is available fro Toko, and they can be reached at (408)432-8281. The part number is:
119ANA 5873HM

The function is quoted against the corresponding pin number.

1. Synch output to TV

Output with dual polarity buffer, a load resistor to OV or +12 V selects positive-going of negative-going syncs.
2. Video input level select

When this pin is LOW a 1 V video input level is selected. When the pin is not connected it floats HIGH selecting a 2.5 V video input level.
3. HF filter

The video signal for the h.f.-loss compensator is filtered by a 15 pF capacitor connected to this pin.
4. Store h.f.

The h.f. amplitude is stored by a 1 nF capacitor connected to this pin.
5. Store amplitude

The amplitude for the adaptive data slicer is stored by a 470 pF capacitor connected to this pin.
6. Store zero level

The zero level for the adaptive data slicer is stored by a 22 nF capacitor connected to this pin.
7. External data input

Current input for sliced teletext data from external device.
Active HIGH level (current), low impedance input.
8. Data timing

A 270 pF capacitor is connected to this pin for timing of the adaptive data slicer.
9. Store phase

The output signal from the clock phase detector is stored by a 100 pF capacitor connected to this pin.
10. Video tape recorder mode (VCR)

Signal input to command PLL into short time constant mode. Not used in application circuit Fig. 3b or Fig. 3c.
11. Crystal

A 13.875 MHz crystal, $2 \times$ data rate, connected in series with a 15 pF capacitor is applied via this pin to the oscillator and divide-by-two to provide the 6.9375 MHz clock signal.
12. Clock filter

A filter for the 6.9375 MHz clock signal is connected to this pin.
13. Ground (0 V)
14. Teletext clock output (TTC)

Clock output for CCT (Computer Controlled Teletext).
15. Teletext data output (TTD)

Data output for CCT.
16. Supply voltage V_{CC} (+12V typ.)
17. Clock output (F6)

6 MHz clock output for timing and sandcastle generation in CCT.
18. Oscillator output (6 MHz)

A series resonant circuit is connected between this pin and pin 20 to control the nominal frequency of the VCO.
19. Filter 2

A filter with a short time constant is connected to this pin for the horizontal phase detector. It is used in the video recorder mode and while the loop is locking up.
20. Oscillator input (6 MHz)

See pin 18.
21. Filter 1

A filter with a long time constant is connected to this pin for the horizontal phase detector.
22. Sandcastle input pulse (PL/CBB)

This input accepts a sandcastle waveform, which is formed from PL and CBB from the CCT. Signal timing is shown in Fig. 4.
23. Pulse timing resistor

The current for the pulse generator is defined by a $68 \mathrm{k} \Omega$ resistor connected to this pin.
24. Pulse timing capacitor

The timing of the pulse generator is determined by a 220 pF capacitor connected to this pin.
25. Video composite sync output (VCS)

This output signal is for CCT.
26. Black level

The black level for the adaptive sync separator is stored by a 68 nF capacitor connected to this pin.
27. Composite video input (CVS)

The composite video signal is input via a $2.2 \mu \mathrm{~F}$ clamping capacitor to the adaptive sync separator.
28. Text composite sync input (TCS)/Scan composite sync input (SCS)

TCS is input from CCT or SCS from external sync circuit. SCS is expected when there is no load resistor at pin 1 . If pin 28 is not connected, the sync output on pin 1 will be the composite video input at pin 27 , internally buffered.

Fig. 4 Sandcastle waveform and timing.

Interface for data acquisition and control (for multi-standard teletext systems)

GENERAL DESCRIPTION

The SAA5250 is a CMOS Interface for Data Acquisition and Control (CIDAC) designed for use in conjunction with the Video Input Processor (SAA5230) in a multi-standard teletext decoder. The device retrieves data from a user selected channel (channel demultiplexer), as well as providing control signals and consecutive addressing space necessary to drive a 2 K bytes buffer memory.
The system operates in accordance with the following transmission standards:

- French Didon Antiope specification D2 A4-2 (DIDON)
- North American Broadcast Teletext specification (NABTS)
- U.K. teletext (CEEFAX)

Features

- $7,5 \mathrm{MHz}$ maximum conversion rate
- Three prefixes; DIDON, NABTS and U.K. teletext (CEEFAX)
- Mode without prefix
- Internal calculation of the validation (VAL) and colour burst blanking (CBB) signals, if programmed
- Programmable framing code and channel numbers
- Error parity calculation or not (odd parity)
- Hamming processing of the prefix byte
- Full channel or VBI reception
- Slow/fast mode (detection of page flags or not)
- Maximum/default format up to 63 bytes
- Addressing space of 2 K bytes of the static memory
- Multiplexed address/data information is compatible with Motorola or Intel microcontrollers
- CIDAC is 'MOTEL' compatible

PACKAGE OUTLINES

SAA5250P: 40-lead DIL; plastic (SOT-129).
SAA5250T: 40-lead mini-pack; plastic (VSO-40; SOT-158A).

Fig. 1 Block diagram.
Interface for data acquisition and control (for multi-standard teletext systems)

Fig. 2 Pinning diagram.

PINNING FUNCTION

mnemonic	pin no.	function
A10 and A0 to A9	1 and 30 to 39	Memory address outputs used by CIDAC to address a 2 K byte buffer memory
VAL OUT	2	Validation output signal used to control the location of the window for the framing code
VAL IN/SYNC	3	Validation input signal (line signal) used to give or calculate a window for the framing code detection
CBB	4	Colour burst blanking output signal used by the SAA5230 as a data slicer reset pulse
DCK	5	Data clock input, in synchronization with the serial data signal
SD	6	Serial data input, arriving from the demodulator
$\overline{M S}$	7	Chip enable output signal for buffer memory selection
WE	8	Write command output for the buffer memory
DB7 tc DE0	9 to 16	8 -bit three state input/output data/address bus used to transfer commands, data and status between the CIDAC registers and the CPU
ALE	17	Demultiplexing input signal for the CPU data bus
$\overline{C E}$	18	Chip enable input for the SAA5250
$\overline{W R}$	19	Write command input (when LOW)
$\mathrm{V}_{\text {SS }}$	20	ground
$\overline{R D}$	21	Read command input (when LOW)
D0 to D7	22 to 29	8 -bit three state input/output data bus used to transfer data between CIDAC and the buffer memory
VDD	40	+5 V power supply

FUNCTIONAL DESCRIPTION

Microcontroller interface

The microcontroller interface communicates with the CPU via the handshake signals DB7 - DBO, ALE, CS, $\overline{R D}, \overline{W R}$. The microcontroller interface produces control commands as well as programming the registers to write their contents or read incoming status/data information from the buffer memory. The details of the codes used to address the registers are given in Table 2.
The CIDAC is 'MOTEL' compatible (MOTEL compatible means it is compatible with standard Motorola or Intel microcontrollers). It automatically recognizes the microcontroller type (such as the 6801 or 8501) by using the ALE signal to latch the state of the $\overline{R D}$ input. No external logic is required.

Table 1 Recognition signals

CIDAC	$8049 / 8051$ timing 1	$6801 / 6805$ timing 2
$\frac{A L E}{\overline{R D}}$	$\frac{A L E}{\overline{W R}}$	$\frac{\overline{W D}}{\bar{W}}$

DEVELOPMENT DATA
Table 2 CIDAC register addressing

codes						function
R	W	CS	DB2	DB1	DBO	
1	0	0	0	0	0	write register RO
1	0	0	0	0	1	write register R1
1	0	0	0	1	0	write register R2
1	0	0	0	1	1	write register R3
1	0	0	1	0	0	write register R4
1	0	0	1	0	1	write register R5
1	0	0	1	1	0	write command register R6 (initialization command)
1	0	0	1	1	1	write register R7
0	1	0	0	0	0	read status
0	1	0	0	0	1	read data register
0	1	0	0	1	0	test (not used)
0	1	0	0	1	1	test (not used)

Interface for data acquisition and control (for multi-standard teletext systems)

Register organization

RO register
Table 3 RO Register contents

R04 slow/fast mode	R03 parity	RO2 to ROO used prefixes
$0=$ slow mode	0 = no parity control	$000=$ DIDON long
1 = fast mode	1 = odd parity	$001=$ DIDON medium
		$010=$ DIDON short
		$011=$ not used
		$100=$ U.K. teletext
		$1101 /$ NABTS
		$111 /$ without prefix

Fig. 3 Five prefixes.
All of the bytes (see Fig. 3) are Hamming protected. The hatched bytes are always stored in the memory in order to be processed by the CPU (see section 'Prefix processing'). In the mode without prefix all of the bytes which follow the framing code are stored in the memory until the end of the data packet, the format is then determined by the contents of the R3 register.
If R03 $=0$; no parity control is carried out and the 8 -bits of the incoming data bytes are stored in the fifo memory.
If RO3 $=1$; the 8 th bit of the bytes following the prefix (data bytes) represents the result of the odd parity control.
If R04 $=0$; the device operates in the slow mode. The CIDAC retrieves data from the user selected magazine (see section 'R1 and R2') and without searching for a start to a page stores the data into the FIFO memory.

If RO4 $=1$; the device operates in the fast mode. Prior to writing into the FIFO memory, the CIDAC searches for a start to a page which is variable due to the different prefixes:

- DIDON (long, medium and short): using the redundant bytes, SOH RS, X RS and SOH X (where X is a bit affected by a parity error)
- NABTS, the least significant bit of the PS byte is set to 1
- U.K. teletext, ROW = 0

R1 register

Table 4 R1 Register contents

R17 VAL IN/SYNC	R16 to R14 format table	R13 to R10 channel numbers (first digit)
$1=$ VAL	$000=$ list 1	first digit hexadecimal value
$0=$ SYNC	$001=$ list 2	
	$010=$ list 3	
$011=$ list 4		
$1 X X=$ maximum/default value used (R3)		

Note

$X=$ don't care
If VAL $\operatorname{IN} /$ SYNC $=1$; the line signal immediately produces a validation signal for the framing code detection.
If VAL OUT $=0$; the line signal is used as a starting signal for an internally processed validation signal (see Fig. 15). The framing code window width is fixed at 13 clock periods and the delay is determined by the contents of the R5 register (R 56 to R 50).
At any moment the user is able to ensure that the framing code window is correctly located. This is accomplished by the VAL OUT pin reflecting the internal validation signal. A CBB signal with programmable width (see section 'R7 register') can also be generated, this is used as a data slicer reset pulse by the SAA5230. The line signal is used as the starting point of the internal CBB signal width fixed by the contents of the R7 register.
If R16 $=0$; then bits R15 and R14 provide the format table number using DIDON long and short prefixes (see Table 6).
If $\mathrm{R} 16=1$; then the format is determined by the contents of the R3 register.
The bits R13 to R10 represent the first channel number to be checked in the prefix. In U.K. teletext mode only 3 bits are required, so $\mathrm{R} 13=\mathrm{X}$.

Interface for data acquisition and control (for multi-standard teletext systems)

Table 5 Format table

format byte B8, B6, B4 and B2	list 1	list 2	list 3	list 4
0000	0	0	0	0
0001	1	1	1	1
0010	2	2	2	2
0011	3	3	3	3
0100	4	5	6	7
0101	8	9	10	11
0110	12	13	14	15
0111	16	17	18	19
1000	20	21	22	23
1001	24	25	26	27
1010	28	29	30	31
1011	32	33	34	35
1100	36	37	38	39
1101	40	41	42	43
1110	44	45	46	47
1111	48	49	50	51

Note
$B 8=M S B$ and $B 2=L S B$.

R2 register
Table 6 R2 Register contents

R27 to R24	R23 to R20
channel number, third digit	channel number, second digit
(hexadecimal value, third digit)	(hexadecimal value, second digit)

Note
R27 and R23 = MSB and R24 and R20 = LSB
The R2 register provides the other two parts of the channel number (depending on the prefix) that require checking.

Interface for data acquisition and control (for multi-standard teletext systems)

R3 register

Table 7 R3 register contents

R35 to R30 6-bit format maximum/default value
$000000=0$
$000001=1$
-
-
$111111=63$

This 6 -bit byte gives:

- In the DIDON long and short mode, a maximum format in case of corrupted transmission (multiple errors on the Hamming corrector)
- A possible 63 -bit format for all types of prefix

fín register

Table 8 R4 register contents

R47 to R40
8-bit register used for storing the framing code value which will be compared with the third byte of each data line

R5 register
Table 9 R5 register contents

R57 negative/positive	R56 to R50 synchronization delay
$0=$ negative edge for sync signal $1=$ positive edge for sync signal	7 -bit sync delay, giving a maximum delay of $\left(2^{7}-1\right) \times 10^{6} \mu / \mathrm{s} / \mathrm{F}(\mathrm{Hz})$

Note

F = data clock acquisition frequency (DCK).
Using R57 it is possible to start the internal synchronization delay (tDVAL) on the positive or negative edge.

Interface for data acquisition and control (for multi-standard teletext systems)

R6 write command register

This is a fictitious register. Only the address code (see Table 2) is required to reset the CIDAC. See Table 11 for the status of the FIFO memory on receipt of this command.

R7 register

Table $10 \mathrm{R7}$ register contents
R75 to R70
6-bit register used to give a maximum colour burst blanking signal of:

$$
\left(2^{6}-1\right) \times 10^{6} \mu \mathrm{~s} / \mathrm{F}(\mathrm{~Hz})
$$

Note

$F=$ data clock acquisition frequency.
Fifo status register (read RO register)
Table 11 Fifo register contents

DB2 to DBO			
DB2 $=1$ memory empty	DB1 $=1$, data not present in the read data register	DBO $=0$ memory not full	

Once the relevant prefix and the right working modes have been given by the corresponding registers, a write command to the R 6 register enables the CIDAC to accept and process serial data.

Channel comparator

This is a four bit comparator which compares the three user hexadecimal defined values in R1 and R2 to the corresponding bytes of the prefix coming from the Hamming corrector. If the three bytes match, the internal process of the prefix continues. If they do not match the CIDAC returns to a wait state until the next broadcast data package is received.

FIFO memory controller

The FIFO memory contains all the necessary functions required for the control of the 11 -bit address memory (2 K byte). The functions contained in the FIFO memory are as follows:

- write address register (11-bits)
- read address register (11-bits)
- memory pointer (11-bits)
- address multiplexer (11-bits)
- write data register (8-bits)
- read data register (8-bits)
- data multiplexer
- control logic

The FIFO memory provides the memory interface with the following:

- .11-bit address bus (A10 to AO)
- 8 -bit data bus (D7 to DO)
- two control signals, memory select ($\overline{\mathrm{MS}}$) and write enable ($\overline{\mathrm{WE}}$)

Operation

The CIDAC uses the same clock signal for data acquisition and internal processing, this allows the CIDAC to have a write and a read cycle during each character period (see Fig. 13). The first half of the character period is a write cycle and the second half is a read cycle. Consequently, for an 8 MHz bit rate the maximum memory cycle time is 500 ns .
When the first data byte is written into the FIFO memory, thus transferred into the read register, the FIFO memory enters the status shown in Table 12.

Table 12 FIFO status

DB2 to DBO			
DB2 $=1$ memory empty	DB1 $=0$ data available	DBO $=0$ memory not full	

When the FIFO memory is full two events occur:

- the write address register points to the next address after the last written address
- when new data is to be written, the memory select signal output ceases

Memory interface

The memory interface contains all the buffers for the memory signals mentioned in the section 'FIFO memory controller'.

Page detection

This part of the CIDAC contains a parallel register with logic which detects (only in fast mode) a start of a page or data group (see section 'RO register').

Hamming correction (see Tables 13 and 14)
The Hamming correction provides (see section 'Prefix processing'):

- hexadecimal value of the Hamming code
- accept/reject code signal
- parity information

Table 13 Hamming correction (coding)

Hexadecimal notation	B 8	B 7	B 6	B 5	B 4	B 3	B 2	B 1
0	0	0	0	1	0	1	0	1
1	0	0	0	0	0	0	1	0
2	0	1	0	0	1	0	0	1
3	0	1	0	1	1	1	1	0
4	0	1	1	0	0	1	0	0
5	0	1	1	1	0	0	1	1
6	0	0	1	1	1	0	0	0
7	0	0	1	0	1	1	1	1
8	1	1	0	1	0	0	0	0
9	1	1	0	0	0	1	1	1
A	1	0	0	0	1	1	0	0
B	1	0	0	1	1	0	1	1
D	1	0	1	0	0	0	0	1
E	1	0	1	1	0	1	1	0
F	1	1	1	1	1	1	0	1

Note

$\mathrm{B} 7=\mathrm{B} 8 \oplus \mathrm{~B} 6 \oplus \mathrm{~B} 4$
$\mathrm{B} 5=\mathrm{B} 6 \oplus \mathrm{~B} 4 \oplus \overline{\mathrm{~B} 2}$
$\mathrm{B} 3=\mathrm{B} 4 \oplus \overline{\mathrm{~B} 2} \oplus \mathrm{~B} 8$
$\mathrm{B} 1=\overline{\mathrm{B} 2} \oplus \mathrm{~B} 8 \oplus \mathrm{~B} 6$
$\oplus=$ exclusive $O R$ gate function
$B 8, B 6, B 4$ and $B 2=$ data bits
$B 7, B 5, B 3$ and $B 1=$ redundancy bits
Table 14 Hamming correction (decoding)

A	B	C	D	interpretation	information
1	1	1	1	no error	accepted
0	0	1	0	error on B8	corrected
1	1	1	0	error on B7	accepted
0	1	0	0	error on B6	corrected
1	1	0	0	error on B5	accepted
1	0	0	0	error on B4	corrected
1	0	1	0	error on B3	accepted
0	0	0	0	error on B2	corrected
0	1	1	0	error on B1	accepted

Note

$A=B 8 \oplus B 6 \oplus B 2 \oplus B 1$
$C=B 6 \oplus B 5 \oplus B 4 \oplus B 2$
$B=B 8 \oplus B 4 \oplus B 3 \oplus B 2$
$D=B 8 \oplus B 7 \oplus B 6 \oplus B 5 \oplus B 4 \oplus B 3 \oplus B 2 \oplus B 1$

Interface for data acquisition and control (for multi-standard teletext systems)

Format processing

The format processing consists of two parts:

part 1

A format transcoder produces a 6 -bit code (up to 63) and uses the following as inputs:

- DIDON long and short prefixes;
hamming corrected code (4-bits)
accept/reject code condition
table number (see section 'R1 register', bits R15 and R14)
- Other prefixes ($\mathrm{R} 16=1$)
- 6-bit maximum/default format (see section 'R3 register')

part 2

A format counter operating at the character clock frequency which receives the 6 -bit code from the format transcoder and is used to check the data packet length following the prefix.

Serial/parallel converter

The serial/paraltel converter consists of three parts:

- An 8 -bit shift register which receives the SD input and operates at the bit frequency (DCK).
- An 8-bit parallel register used for storage.
- A framing code detection circuit. This logic circuit compares the 8 -bits of the R4 register with that of the serial register. If seven bits out of eight match (in coincidence with a validation window), it produces a start signal for a new teletext data line to the sequence controller.

Clock generation

The clock generator does the following:

- acts as a buffer for the DCK clock
- generates the character clock

As soon as a framing code has been detected, a divide by 8 counter is initialized and the character clock is started. The clock drives the following:

- sequence controller
- parallel registers
- format counter

Processing of VAL and CBB signals

The circuit has one input (VAL IN/SYNC) and two outputs (VAL OUT and CBB). The circuit consists of:

- 7-bit counter operating at DCK frequency which produces the framing code validation pulse delay
- 7-bit comparator which compares the contents of the R5 register (bits R56 to R50) to the bit counter
- a 6-bit counter operating at DCK frequency which produces the CBB pulse width
- 6-bit comparator which compares the contents of the R7 register (bits R75 to R70) to the bit counter
- control logic required to provide the start condition for the VAL signal and the CBB pulse width (on the negative or positive edge of the sync signal)
The CBB signal usefulness occurs when the associated video processor:
- has no sandcastle pulse to send back to the demodulator
- carries out the synchronization of the time base clock. In this event the CBB acts as a data slicer reset pulse
The VAL OUT is a control signal which reflects the internal framing code window.

Prefix processing (see Table 21)

Figs 4 to 9 show the acquisition flow charts for each prefix type coded in the RO register (bits R02 to ROO).

As soon as an initialization command is received by the CIDAC, a write command to the R6 register (only the address is significant), is ready to receive data from a dedicated channel number and store the data in the FIFO memory (explained in the following paragraphs, each paragraph being dedicated to an individual type of prefix).

DIDON long (see Fig. 4)

In this mode, the continuity index, format and data bytes are written into the FIFO memory. (In fast mode, information can be written into the FIFO memory only after a page detection.)

Table 15 Continuity index processing result

$D 7$	$D 6$	D 5	D 4	D 3	D 2	D 1	D 0
$\mathrm{~A} / \mathrm{R}$	X	X	X	$\mathrm{Cl3}$	$\mathrm{Cl2}$	$\mathrm{Cl1}$	$\mathrm{Cl0}$

Table 16 Format processing result

D7	D6	D5	D4	D3	D2	D1	D0
A / R	X	F5	F4	F3	F2	F1	F0

Note
$A / R=0$, if rejected
$A / R=1$, if accepted
$X=$ don't care

DIDON mediun (see Fig. 5)
Only data bytes are written into the FIFO memory. (In fast mode, information can be written into the FIFO memory only after a page detection.)

DIDON short (see Fig. 6)

In this mode, format and data bytes are written into the FIFO memory. (In fast mode, information can be written into the FIFO memory only after a page detection.)

Table 17 Format processing result

$D 7$	$D 6$	$D 5$	$D 4$	$D 3$	$D 2$	$D 1$	$D 0$
A / R	X	F5	F4	F3	F2	F1	F0

NABTS (see Fig. 7)

In this mode, the continuity index, packet structure and data bytes are written into the FIFO memory. (In fast mode, information can be written into the FIFO memory only after a page detection.)

DEVELOPMENT DATA
Table 18 Continuity index processing result

D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
$\mathrm{~A} / \mathrm{R}$	X	X	X	$\mathrm{Cl3}$	$\mathrm{Cl2}$	$\mathrm{Cl1}$	ClO

Table 19 Packet structure processing result

$D 7$	$D 6$	$D 5$	$D 4$	D 3	D 2	D 1	D 0
$\mathrm{~A} / \mathrm{R}$	X	X	X	PS3	PS2	PS1	PS0

U.K. teletext (see Fig. 8)

In this mode, the magazine and row address group (two bytes) and data bytes are written into the FIFO memory. (In fast mode, information can be written into the FIFO memory only after a flag detection.)

Table 20 Magazine and row address group processing results

$D 7$	$D 6$	$D 5$	$D 4$	$D 3$	$D 2$	$D 1$	$D 0$
A / R	X	X	RW4	RW3	RW2	RW1	RW0

Without prefix

All the data following the framing code are stored in the FIFO memory.

Table 21 Prefix processing

prefixes	construction of prefixes	bytes stored in FIFO memory during slow mode	bytes stored in FIFO memory during fast mode
DIDON long	A1, A2, A3, C1, F and D	CI, F and D	CI*, F* and D*
DIDON medium	A1, A2 and D	D	D *
DIDON short	A1, F and D	F and D	F* and D*
NABTS	A1, A2, A3 CI, PS and D	CI, PS and D	CI*, PS* and D*
U.K. teletext	MRAG and D	MRAG and D	MRAG* and D*
without prefix		all bytes of the data packet following the framing code are written into the FIFO memory	

Note

* = after page/flag detection

A1, A2, A3 are channel numbers
$\mathrm{CI}=$ continuity index
F = format
PS = packet structure
D = data
MRAG = magazine and row address group

Interface for data acquisition and control (for multi-standard teletext systems)

Fig. 5 DIDON (medium) acquisition flow chart.

Interface for data acquisition and control (for multi-standard teletext systems)

Fig. 6 DIDON (short) acquisition flow chart.

Interface for data acquisition and control (for multi-standard teletext systems)

Fig. 7 NABTS acquisition flow chart.

Interface for data acquisition and control (for multi-standard teletext systems)

Fig. 8 U.K. teletext acquisition flow chart.

Fig. 9 Without prefix acquisition chart.

Fig. 10 SD and DCK input circuitry.

Interface for data acquisition and control (for multi-standard teletext systems)

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	conditions	symbol	\min.	max.	unit
Supply voltage range		V_{DD}	$-0,3$	6,5	V
Input voltage range		V_{I}	$-0,3$	$\mathrm{~V}_{\mathrm{DD}^{+0,3}}$	V
Total power dissipation		$\mathrm{P}_{\text {tot }}$	-	400	mW
Operating ambient temperature range		$\mathrm{T}_{\mathrm{amb}}$	0	70	${ }^{\circ} \mathrm{C}$
Storage temperature range		$\mathrm{T}_{\mathrm{stg}}$	-20	+125	${ }^{\circ} \mathrm{C}$

D.C. CHARACTERISTICS (except SD and DCK)
$V_{D D}=5 \mathrm{~V} \pm 10 \% ; V_{S S}=0 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$, unless otherwise specified

parameter	conditions	symbol	min .	typ.	max.	unit
Supply voltage range		$V_{\text {DD }}$	4.5	5,0	5,5	v
Input voltage HIGH		$V_{\text {IH }}$	2	-	$V_{\text {DD }}$	v
Input voltage LOW		$V_{\text {IL }}$	-	-	0,8	v
Input leakage current		II	-	-	1,0	$\mu \mathrm{A}$
Output voltage HIGH	$\mathrm{I}_{\text {load }}=1 \mathrm{~mA}$	VOH	$V_{D D}-0,4$	-	-	v
Output voltage LOW	$y_{\text {load }}=4 \mathrm{~mA}$, at pins 9 to 16 and 22 to 29	V_{OL}	-	-	0.4	V
	$l_{\text {load }}=1 \mathrm{~mA}$ all other outputs	$\mathrm{V}_{\text {OL }}$	-	-	0,4	\checkmark
Power dissipation		P	-	5	-	mW
Input capacitance		C_{1}	-	-	7.5	pF

Interface for data acquisition and control (for multi-standard teletext systems)

SD and DCK D.C. CHARACTERISTICS (see Fig. 10)
$V_{D D}=5 \mathrm{~V} ; \mathrm{V}_{S S}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$, unless otherwise specified

parameter	conditions	symbol	min.	typ.	max.	unit
DCK	-					
Input voltage range (peak-to-peak value)		$V_{1(p-p)}$	2,0	-	-	V
Input current	$V_{1}=0$ to $V_{D D}$	1	5	-	200	$\mu \mathrm{A}$
Input capacitance		C_{1}	-	-	30	pF
External coupling capacitor		Cext	10	-	-	nF
SD						
D.C. input voltage range HIGH	note 1	$\mathrm{V}_{\text {IH }}$	2,0	-	-	v
D.C. input voltage range LOW	note 2	$V_{\text {IL }}$	-	-	0,8	v
A.C. input voltage (peak-to-peak value)		$V_{1(p-p)}$	2,0	-	-	V
Input leakage current	$V_{1}=0$ to $V_{\text {DD }}$	11	-	-	10	$\mu \mathrm{A}$
Input capacitance		C_{1}	-	-	30	pF
External coupling capacitor		$\mathrm{C}_{\text {ext }}$	10	-	-	$n \mathrm{~F}$

Interface for data acquisition and control (for multi-standard teletext systems)

A.C. CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$; Reference levels for all inputs and outputs, $\mathrm{V}_{\text {IH }}=2 \mathrm{~V} ; \mathrm{V}_{\text {IL }}=0,8 \mathrm{~V} ; \mathrm{V}_{\mathrm{OH}}=2,4 \mathrm{~V}$;
$V_{O L}=0,4 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ on DB7 to DBO; $\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$, unless otherwise specified

parameter	conditions	symbol	min.	typ.	max.	unit
Microcontroller interface	Figs 11 and 12					
Cycle time		${ }^{t} \mathrm{CY}$	400	-	-	ns
Address pulse width		${ }^{\text {t }}$ LHLL	50	-	-	ns
$\overline{R D}$ HIGH or $\overline{W R}$ to ALE HIGH	Fig. 11	${ }^{\text {t }}$ AHRD	0	-	-	ns
DS LOW to AS HIGH	Fig. 12	${ }^{\text {t }}$ AHRD	0	-	-	ns
ALE LOW to $\overline{R D}$ LOW or $\overline{W R}$ LOW	Fig. 11	${ }^{\text {t }}$ ALRD	30	-	-	ns
AS LOW to DS HIGH	Fig. 12	${ }^{\text {t }}$ ALRD	30	-	-	ns
Write pulse width		tWL	120	-	-	ns
Address and chip select set-up time		${ }^{\text {t }}$ ASL	10	-	-	ns
Address and chip select hold time		${ }^{\text {t }}$ AHL	20	-	-	ns
Read to data out period		${ }^{\text {t }} \mathrm{D}$ D	-	-	130	ns
Data hold after $\overline{\mathrm{RD}}$		${ }^{\text {t }}$ R	10	-	100	ns
R / \bar{W} to DS set-up time	Fig. 12	${ }^{\text {trwS }}$	40	-	-	ns
R / \bar{W} to DS hold time	Fig. 12	${ }^{\text {t }}$ RWH	10	-	-	ns
Data set-up time	write cycle	${ }^{\text {t }}$ W	50	-	-	ns
Data hold time	write cycle	twd	10	-	-	ns
Read pulse width	note 3	${ }^{\text {t }} \mathrm{LL}$	$\begin{aligned} & 150 \text { or } \\ & \text { DCK }+50 \end{aligned}$	-	-	ns

Interface for data acquisition and control (for multi-standard teletext systems)

parameter	conditions	symbol	min.	typ.	max.	unit
Memory interface	Fig. 13					
WE LOW to DCK falling edge						
$\overline{W E}$ HIGH to DCK falling edge		WEL TWEH	10 10	-	80 80	ns
$\overline{\mathrm{MS}}$ LOW to DCK rising edge		tMSL	10	-	80 80	ns
$\overline{\text { MS }}$ HIGH to DCK rising edge		${ }^{\text {tMSH }}$	10	-	85	ns
Address output from DCK rising edge		${ }^{t} A V$	10	-	120	ns
Data output from WE falling edge		${ }^{\text { }}$ DWL	0	-	10	ns
Data hold from $\overline{W E}$ rising edge		${ }^{\text {t }}$ DWH	0	-	-	ns
Address set-up time to data	note 4	${ }^{t} A D$	-	-	$\begin{aligned} & 3 \times \text { DCK } \\ & -110 \end{aligned}$	ns
$\overline{\text { WE }}$ pulse width	note 5	tWEW	$3 \times$ DCK	-		ns
$\overline{\mathrm{MS}}$ pulse width	note 6	${ }^{\text {t MSW }}$	$2 \times$ DCK	-	-	ns
Demodulator interface (see SD and DCK D.C. CHARACTERISTICS)	Fig. 14					
DCK LOW	conversion rate $<7,5 \mathrm{MHz}$	tDCKL	55	-	-	ns
DCK HIGH	conversion rate $<7,5 \mathrm{MHz}$	tDCKH	55	-	-	ns
Serial data set-up time		tSSD	0	-	-	ns
Serial data hold time		tHSD	30	-	-	ns
Validation signal set-up time		tSVALI	50	-	-	ns
Validation signal hold time		${ }^{\text {thVALI }}$	50	-	-	ns
Other I/O signals	Fig. 15					
User definable width as a multiple of DCK period		twCBB	0	-	63	DCK
Validation signal width	note 7	${ }^{\text {tWVAL }}$	X	12	X	DCK
User definable delay as a multiple of DCK period		tDVAL	0	-	127	DCK

Interface for data acquisition and control (for multi-standard teletext systems)

Notes to the characteristics

1. Unless R7 $=00$ the value given is unacceptable.
2. When $C B I$ signal is maintained at $O V(R 7=00)$ and if $S D$ input signal is correctly referenced to ground, no coupling capacitor is required.
3. DCK +50 is the DCK period plus 50 ns .
4. $3 \times$ DCK -110 is $3 \times$ DCK period -110 ns .
$5.3 \times$ DCK is $3 \times$ DCK period.
5. $2 \times$ DCK is $2 \times$ DCK period.
6. $X=$ irrelevant.

Interface for data acquisition and control (for multi-standard teletext systems)

READ CYCLE

Fig. 11 Timing diagram for microcontroller interface (Intel).

(1) ALE, $\overline{C S}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ and DB7 to DBO

Fig. 12 Timing diagram for microcontroller interface (Motorola).

Fig. 13 Timing diagram for memory interface.
(for multi-standard teletext systems)

Fig. 14 Timing diagram for demodulator interface.

Fig. 15 Timing diagram for all other I/O signals.

Line twenty-one acquisition and display (LITOD)

FEATURES

- Complete 'stand-alone' Line 21 decoder in one package
- On-chip display RAM allowing full page Text mode
- Enhanced character display modes
- Full colour captions
- RGB interface for standard colour decoder ICs
- Automatic handling of Field 2 data
- Automatic selection of $(1 \mathrm{H}, 1 \mathrm{~V}),(2 \mathrm{H}, 1 \mathrm{~V})$ or $(2 \mathrm{H}, 2 \mathrm{~V})$ scan modes
- Onboard OSD facility using Character generator
- RGB inputs to support existing OSD ICs
- $\mathrm{I}^{2} \mathrm{C}$-bus or 'stand-alone' pin control
- Automatic data-ready signal generation on data acquisition
- Can decode signals recorded on standard VHS and S-VHS tape.

GENERAL DESCRIPTION

The SAA5252 (LITOD) is a single-chip CMOS device, which will acquire, decode and display Line 21 Closed Captioning data from a 525 -line composite video signal. Operation as an On-Screen Display (OSD) device is also possible. Normal and line progressive scan modes are supported.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
$V_{\text {DD }}$	supply voltage	4.5	5.0	5.5	V
I_{DD}	supply current	-	30	-	mA
$\mathrm{V}_{\text {syn }}$	CVBS sync amplitude	0.1	0.3	0.6	V
$\mathrm{~V}_{\text {vid }}$	CVBS video amplitude	0.7	1.0	1.4	V
$\mathrm{~T}_{\text {amb }}$	operating ambient temperature	-20	-	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature	-55	-	+125	${ }^{\circ} \mathrm{C}$

ORDERING INFORMATION

TYPE NUMBER	PACKAGE			
	PINS	PIN POSITION	MATERIAL	CODE
SAA5252P	24	DIL	plastic	SOT101
SAA5252T	24	SO24L	plastic	SOT137-1

Line twenty-one acquisition and display (LITOD)

BLOCK DIAGRAM

Fig. 1 Block diagram.

Line twenty-one acquisition and display (LITOD)

PINNING

SYMBOL	PIN	DESCRIPTION
CVBS	1	composite video input; signal should be connected via a 100 nF capacitor
$1^{2} \mathrm{C} / \overline{\mathrm{DC}}$	2	input selects $1^{2} \mathrm{C}$ or Direct Control
SDA	3	serial data port for $I^{2} \mathrm{C}$-bus or mode select input for direct control
SCL	4	serial clock input for $1^{2} \mathrm{C}$-bus or mode select input for direct control
$\overline{\mathrm{DR}}$	5	data-ready signal to microcontroller (active-LOW) or mode select input for direct control
i.c.	6	internally connected; connect to $\mathrm{V}_{\text {ss }}$ for normal operation
V	7	vertical reference input for display timing
H	8	horizontal reference input for display timing
BLANIN	9	video blanking input from external OSD device
RIN	10	RED video input from external OSD device
GIN	11	GREEN video input from external OSD device
BIN	12	BLUE video input from external OSD device
B	13	BLUE video output
G	14	GREEN video output
R	15	RED video output
BLAN	16	video blanking output
RGBREF	17	input voltage defining output HIGH level for RGB pins for closed captioning output
$V_{\text {DD }}$	18	+5 V supply
$V_{S S}$	19	0 V ground
OSCOUT	20	oscillator output
OSCIN	21	oscillator input
OSCGND	22	oscillator ground
BLACK	23	video black level storage input; connected to V_{SS} via 100 nF capacitor
IREF	24	reference current input; connected to V_{SS} via $27 \mathrm{k} \Omega$ resistor

Line twenty-one acquisition and display (LITOD)

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{DD}	supply voltage (all supplies)		-0.3	+6.5	V
$V_{\text {Imax }}$	maximum input voltage (any input)	note 1	-0.3	$V_{D D}+0.5$	V
$V_{\text {Omax }}$	maximum output voltage (any output)	note 1	-	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{V}_{\text {dif }}$	difference between $\mathrm{V}_{\text {SS }}$ and OSCGND		-	± 0.25	V
IOK	DC input or output diode current		-	± 20	mA
$l_{\text {max }}$	maximum output current (each output)		-	± 10	mA
$\mathrm{T}_{\text {amb }}$	operating ambient temperature		-20	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature		-55	+125	${ }^{\circ} \mathrm{C}$
$V_{\text {es }}$	electrostatic handling human body model machine model	note 2 note 3	$\begin{aligned} & -2000 \\ & -200 \end{aligned}$	$\begin{aligned} & +2000 \\ & +200 \end{aligned}$	$\begin{aligned} & V \\ & v \end{aligned}$

Notes

1. This maximum value has an absolute maximum of 6.5 V independent of V_{DD}.
2. The human body model ESD simulation is equivalent to discharging a 100 pF capacitor via a $1.5 \mathrm{k} \Omega$ resistor, which produces a single discharge transient. Reference "Philips Semiconductors Test Method UZW-BO/FQ-A302 (similar to MIL-STD 883C method 3015.7)".
3. The machine model ESD simulation is equivalent to discharging a 200 pF capacitor via a resistor and series inductor with effective dynamic values of 25Ω and $2.5 \mu \mathrm{H}$, which produces a damped oscillating discharge. Reference "Philips Semiconductors Test Method UZW-BO/FQ-B302 (similar to EIAJIC-121 Test Method 20 condition C)".

Quality

This device will meet the requirements of the "Philips Semiconductors General Quality Specification UZW-BO/FQ-0601" in accordance with "Quality Reference Pocketbook (order number 9398510 34011)". This details the acceptance criteria for all Q \& R tests applied to the product.

Line twenty-one acquisition and display (LITOD)

CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=5$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-20$ to $+70^{\circ} \mathrm{C}$; unless otherwise specified.

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Supplies | | | | | | |
| V | Supply voltage | | 4.5 | 5.0 | 5.5 | V |
| I $_{\text {DDtot }}$ | total supply current | | - | 30 | - | mA |

Inputs

CVBS (PIN 1)

$V_{\text {syn }}$	sync voltage amplitude		0.1	0.3	0.6	V
$\mathrm{V}_{\text {vid }(p-p)}$	video voltage amplitude (peak-to-peak value)		0.7	1.0	1.4	V
$V_{\text {dat }}$	caption data voltage amplitude		0.25	0.35	0.49	V
$Z_{\text {source }}$	source impedance		-	-	250	Ω
V_{1}	input switching voltage level of sync separator		1.7	2.0	2.3	V
Z_{1}	input impedance		2.5	5	-	$\mathrm{k} \Omega$
C_{1}	input capacitance	.	-	-	10	pF
IREF (PIN 24)						
R_{24}	resistor to ground		-	27	-	k Ω
V_{24}	voltage on pin 24		-	$1 / 2 \mathrm{~V}_{\mathrm{DD}}$	-	V
H (PIN 8)						
V_{IL}	LOW level input voltage		-0.3	-	+0.8	V
V_{IH}	HIGH level input voltage		2.0	-	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{ILI}^{\text {l }}$	input leakage current	$V_{1}=0$ to $V_{D D}$	-10	-	+10	$\mu \mathrm{A}$
$I_{\text {max }}$	maximum input current		-1	-	+1	mA
Cl_{1}	input capacitance		-	-	10	pF
t_{r}	pulse rise time		-	-	5	$\mu \mathrm{S}$
$t_{\text {t }}$	pulse fall time		-	-	5	$\mu \mathrm{S}$
${ }_{\text {t }}$ W	pulse width scan mode 1 H scan mode 2 H		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 12 \\ & 6 \end{aligned}$	$\begin{aligned} & 63 \\ & 31 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$

V (PIN 7)						
$V_{\text {IL }}$	LOW level input voltage		-0.3	-	+0.8	V
$\mathrm{V}_{\text {IH }}$	HIGH level input voltage		2.0	-	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
I_{LI}	input leakage current	$V_{1}=0$ to $V_{D D}$	-10	-	+10	$\mu \mathrm{A}$
$I_{\text {max }}$	maximum input current		-1	-	+1	mA
C_{1}	input capacitance		-	-	10	pF
t_{r}	pulse rise time		-	-	5	ns
t_{f}	pulse fall time		-	-	5	ns
tw	pulse width		1	-	-	$\mu \mathrm{S}$

Line twenty-one acquisition and display (LITOD)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX	UNIT
RGBREF (PIN, 17)						
V_{1}	input voltage		-0.3	-	$V_{D D}$	V
${ }_{\text {L }}$	input leakage current	$V_{1}=0$ to $V_{D D}$	-10	-	+10	$\mu \mathrm{A}$
R, G AND B (PINS 15, 14 AND 13; NOTE 1)						
$V_{\text {IL }}$	LOW level input voltage		-0.3	-	0.8	V
$\mathrm{V}_{\text {IH }}$	HIGH level input voltage		2.0	-	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
Z_{1}	input impedance		2.5	5.0	-	k Ω
BLANIN (PIN 9)						
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		-0.3	-	0.8	V
$\mathrm{V}_{\text {IH }}$	HIGH level input voltage		2.0	-	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
I_{LI}	input leakage current	$\mathrm{V}_{1}=0$ to V_{DD}	-10	-	+10	$\mu \mathrm{A}$
t_{r}	input rise time	between 10% and 90%	-	-	80	ns
t_{f}	input fall time	between 90\% and 10\%	-	-	80	ns
$1^{2} \mathrm{C} / \overline{\text { DC }}$ (PIN 2)						
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		0	-	0.8	V
$\mathrm{V}_{\text {IH }}$	HIGH level input voltage		2.0	-	V_{DD}	V
$\mathrm{ILI}^{\text {I }}$	input leakage current	$V_{1}=0$ to $V_{D D}$	-10	-	+10	$\mu \mathrm{A}$
SCL (PIN 4)						
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		-0.3	-	1.5	V
V_{IH}	HIGH level input voltage		3.0	-	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{f}_{\text {clik }}$	clock frequency		0	-	100	kHz
t_{r}	input rise time	between 10\% and 90\%	-	-	2	$\mu \mathrm{s}$
t_{f}	input fall time	between 90\% and 10\%	-	-	2	$\mu \mathrm{s}$
ILI^{\prime}	input leakage current	$\mathrm{V}_{1}=0$ to V_{DD}	-10	-	+10	$\mu \mathrm{A}$
C_{1}	input capacitance		-	-	10	pF
Inputs/outputs						
Ceramic resonator (PINS 20, 21 and 22; see Fig.5)						
$\mathrm{f}_{\text {osc }}$	oscillator frequency		11.82	12	12.18	MHz
C0	parallel capacitance		-	5.35	-	pF
C1	series capacitance		-	37.4	-	pF
L1	series inductance		-	35.5	-	$\mu \mathrm{H}$
R1	series resistance		-	6	25	Ω
BLACK (PIN 23)						
C ${ }_{\text {black }}$	storage capacitor to ground		-	100	-	nF
$V_{\text {black }}$	black level voltage for nominal sync amplitude		1.8	2.15	2.5	V
I_{LI}	input leakage current	$V_{1}=0$ to $V_{D D}$	-10	-	+10	$\mu \mathrm{A}$

Line twenty-one acquisition and display (LITOD)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
SDA (PIN 3; OPEN DRAIN)						
V_{IL}	LOW level input voltage		-0.3	-	+1.5	V
$\mathrm{V}_{\text {IH }}$	HIGH level input voltage		3.0	-	$V_{D D}+0.5$	V
$\mathrm{I}_{\text {LI }}$	input leakage current	$V_{1}=0$ to $V_{D D}$	-10	-	+10	$\mu \mathrm{A}$
C_{1}	input capacitance		-	-	10	pF
t_{r}	input rise time	between 10\% and 90\%	-	-	2	$\mu \mathrm{s}$
t_{f}	input fall time	between 90\% and 10\%	-	-	2	$\mu \mathrm{s}$
V_{OL}	LOW level output voltage	$\mathrm{l}_{\mathrm{OL}}=3 \mathrm{~mA}$	0	-	0.5	V
t_{f}	output fall time	between 3 V and 1 V	-	-	200	ns
C_{L}	load capacitance		-	- .	400	pF
$\overline{\text { DR (PIN 5; OPEN DRAIN) }}$						
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		-0.3	-	+1.5	V
$\mathrm{V}_{\text {IH }}$	HIGH level input voltage		3.0	-	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {LI }}$	input leakage current	$\mathrm{V}_{1}=0$ to V_{DD}	-10	-	+10	$\mu \mathrm{A}$
V_{OL}	LOW level output voltage	$\mathrm{l}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	0	-	0.4	V
t_{f}	output fall time	between 4 V and 1 V with $3.3 \mathrm{k} \Omega$ to 5 V	-	-	50	ns
C_{L}	load capacitance		-	-	100	pF
Outputs						
R, G AND B (PINS 15, 14 AND 13; CAPTION MODE)						
V_{OL}	LOW level output voltage	$\mathrm{l}_{\mathrm{OL}}=+2 \mathrm{~mA}$	0	-	0.2	V
V_{OH}	HIGH level output voltage	$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	$V_{17}-0.3$	V_{17}	$\mathrm{V}_{17}+0.4$	V
Z_{O}	output impedance		-	-	200	Ω
C_{L}	load capacitance		-	-	50	pF
$t_{\text {r }}$	output rise time	between 10% and 90\%	-	-	10	ns
t_{f}	output fall time	between 90\% and 10\%	-	-	10	ns
BLAN (PIN 16)						
V_{OL}	LOW level output voltage	$\mathrm{l}_{\mathrm{OL}}=+2 \mathrm{~mA}$	0	-	0.4	V
V_{OH}	HIGH level output voltage	$\mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA}$	1.1	-	2.8	V
C_{L}	load capacitance		-	-	50	pF
t_{r}	output rise time	between 10\% and 90\%	-	-	10	ns
t_{f}	output fall time	between 90\% and 10\%	-	-	10	ns
$\mathrm{t}_{\text {skew }}$	skew delay time between display and R, G, B, BLAN		-	-	10	ns

Line twenty-one acquisition and display (LITOD)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{I}^{2} \mathrm{C}$ timing (see Fig.3)						
tLow	clock LOW time		4	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	clock HIGH time		4	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; }}$	data set-up time		250	-	-	ns
$\mathrm{t}_{\text {HD; }}$ DAT	data hold time		170	-	-	ns
$\mathrm{t}_{\text {Su; }}$ STO	set-up time from clock HIGH-to-STOP		4	-	-	$\mu \mathrm{S}$
$\mathrm{t}_{\text {BuF }}$	START set-up time following a STOP		4	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HD; }}$ STA	START hold time		4	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; STA }}$	START set-up time following clock LOW-to-HIGH transition		4	-	-	$\mu \mathrm{s}$
t_{r}	output rise time	between 10\% and 90\%	-	-	10	ns
t_{f}	output fall time	between 90\% and 10\%	-	-	10	ns

Note

1. These inputs are analog, V_{IL} and V_{IH} values are quoted as a guide for digital RGB users.

Fig. $3 \mathrm{I}^{2} \mathrm{C}$-bus timing diagram.

Line twenty-one acquisition and display

 (LITOD)
APPLICATION INFORMATION

(1) Value dependent on application.

Fig. 4 Application diagram.

Fig. 5 Ceramic resonator equivalent circuit.

Line twenty-one acquisition and display (LITOD)

DISPLAY GENERATOR

General Description

The displayed characters are defined on a 5-by-12 matrix within a 7-by-13 window, allowing one blank pixel either side of the character and a blank pixel row above. There are a number of display options available controlled by Register 1, or external pins in 'stand-alone' mode.

The three display modes are video, text and caption, the device is powered up in the video mode.

The display generator reads the Pre-amble Address Code (PAC) then the data associated with that row. Each character is then rounded after which it can be italicized and/or underlined, depending on the PAC or mid-row codes, before being passed on to the output circuitry. Figure 6 shows the character set.

Display of external On-Screen Display (OSD) facilities

The R, G, B and BLAN outputs of the display have the capability to be put in a 3-state mode allowing other OSD devices to take control of the television R, G, B and BLAN signals.
When the BLANIN is held HIGH then the R, G, B and BLAN outputs from display are disabled and the R, G, B and BLAN signals come directly from the RGBIN and BLANIN inputs. This will allow On-Screen Display to be placed on top of the captioning without any corruption, leaving the captions intact when the On-Screen Display is switched off (BLANIN goes LOW). In this form of operation the RGBIN and RGBOUT pins can be considered transparent; BLANIN goes through the normal output buffer to BLAN.

Table 1 Register map (WRITE).

REGISTER	D7	D6	D5	D4	D3	D2	D1	D0
00	DF $\overline{1} / 2$	$\begin{aligned} & \text { RGB, BLAN } \\ & +\mathrm{ve} /-\mathrm{ve} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & +\mathrm{ve} /-\overline{\mathrm{ve}} \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & +\mathrm{ve} /-\overline{\mathrm{ve}} \end{aligned}$	H3	H2	H1	H0
01	CLEAR	CH $2 \overline{1}$	NARROW WIDE	ACQ OFF	EN1	ENO	M1	M0
02	-	-	-	-	ROW3	ROW2	ROW1	ROW0
03	-	-	-	COL4	COL3	COL2	COL1	COLO
04	-	OSD6	OSD5	OSD4	OSD3	OSD2	OSD1	OSD0

Table 2 Register map (READ).

REGISTER	D7	D6	D5	D4	D3	D2	D1	D0
00	POR	0	0	0	F1/F2	EDS	PARITY SHUTDOWN	DATA READY
01	PARITY ERROR	DATA BIT 7	DATA $\text { BIT } 6$	DATA BIT 5	DATA BIT 4	DATA BIT 3	DATA BIT 2	DATA BIT 1
02	PARITY ERROR	DATA BIT 7	DATA BIT 6	DATA BIT 5	DATA BIT 4	DATA BIT 3	DATA BIT 2	DATA BIT 1

Line twenty-one acquisition and display

 (LITOD)

Fig. 6 Character set.

Line twenty-one acquisition and display (LITOD)

$I^{2} \mathrm{C}$ INTERFACE

Description of WRITE registers

The write subaddresses auto increment from 0 through to 4 at which point they stay until a new write subaddress is sent. Registers are set to all logic 0 at power-up.

Table 3 Register 0 WRITE (Control Byte 1).

BIT	DESCRIPTION
D0 to D3	H0 to H3 set the offset position from the start of the horizontal sync pulse, set to a nominal value on reset.
D4	Vertical sync pulse expected to be negative going logic 0 or positive-going logic 1.
D5	Horizontal sync pulse expected to be negative going logic 0 or positive-going logic 1.
D6	Video outputs will be positive going logic 0 or negative-going logic 1.
D7	Data field select. When set to logic 0 Field 1 is decoded, when set to logic 1 Field 2 is decoded.

Table 4 Register 1 WRITE (Control Byte 2).

BIT	DESCRIPTION
D0, D1	Display mode selection bits. Table 8 shows the possible display modes.
D2, D3	Enhanced caption mode selection bits. Table 9 shows the possible enhanced caption modes.
D4	When set to logic 1 acquisition of caption data is inhibited to allow the display to be used for On-Screen Display purposes.
D5	Acquisition window selection. When set to logic 0 only Line 21 is checked for caption data. When set to logic 1, lines 19 to 23 of both fields are checked, allowing encrypted video signals to be handled.
D6	User channel selection.
D7	Clears the page memory when set HIGH. The page memory will be within two fields (30 ms).

Table 5 Register 2 WRITE (On-Screen Display data row address).

BIT	DESCRIPTION
D0 to D3	Row 0 to 3 sets the row address for On-Screen Display. This stored value will be incremented by overflow increments of Register 3.

Table 6 Register 3 WRITE (On-Screen Display data column address).

BIT	DESCRIPTION
D0 to D4	Columns 0 to 4 sets the column address for On-Screen Display. This stored value will be incremented by writes to Register 4.

Table 7 Register 4 WRITE (On-Screen Display data).

BIT	DESCRIPTION
D0 to D6	OSD0 to OSD6, On-Screen Display data bits writing to this register causes Register 3 to increment its stored value.

Line twenty-one acquisition and display (LITOD)

Table 8 Display modes.

DISPLAY MODE OPTIONS	M1	M0
Video only	0	0
Text mode	0	$\mathbf{1}$
Normal caption mode	1	0
Enhanced caption mode	1	$\mathbf{1}$

Table 9 Enhanced caption modes.

ENHANCED CAPTION MODES	EN1	EN0
Enhanced caption modes	EN1	EN0
Shadowed character/Video background	0	0
Shadowed character/Mesh background	0	$\mathbf{1}$
Normal character/Video background	1	0
Normal character/Mesh background	$\mathbf{1}$	1

Description of READ registers

The read subaddresses auto increment from 0 through to 2 at which point they stay until a new read subaddress is sent. All the bits in Table 10 are reset to logic 0 after the register is read.

Table 10 Register 0 READ (status).

BIT	DESCRIPTION
D0	Data ready (new data has been acquired).
D1	Parity error shut-down, goes HIGH when SAA5252 has a parity shut-down condition.
D2	Indicates the following bytes are extended data service bytes.
D3	Indicates Field 1 or Field 2 data bytes.
D7	Indicates Power-On Reset (POR) has occurred, all ${ }^{2}$ C-bus write registers have been reset to logic 0.

Table 11 Register 1 READ (first data byte).

BIT	DESCRIPTION
D0 to D6	Data Bit 1 to Data Bit 7 (see note 1).
D7	Parity error flag bit. Bit goes HIGH when a parity error has occurred.

Note

1. In the Line 21, specification data bits are numbered D1 to D8.

Table 12 Register 2 READ (second data byte).

BIT	DESCRIPTION
D0 to D6	Data Bit 1 to Data Bit 7 (see note 1).
D7	Parity error flag bit. Bit goes HIGH when a parity error has occurred.

Note

1. In the Line 21, specification data bits are numbered D1 to D8.

Line twenty-one acquisition and display (LITOD)

Interface to microcontroller using $\mathrm{I}^{2} \mathrm{C}$-bus

The interface to the microcontroller is via the two-wire serial $1^{2} \mathrm{C}$-bus, and optionally by a Data-Ready signal ($\overline{\mathrm{DR}}$). On power up the microcontroller initializes the device by an $I^{2} \mathrm{C}$-bus WRITE to Registers 0
(Control Byte 1). The $\mathrm{l}^{2} \mathrm{C}$-bus subaddress is then auto incremented to point to Register 1 (Control Byte 2). These two registers configure the device to the users requirements.
If the device is to be used for data acquisition only, then there are three methods by which the microcontroller can be informed of the arrival of valid Line 21 data:

- It can poll the $\overline{\mathrm{DR}}$ pin, if the function has been enabled, and wait for it to go LOW.
- It can use the negative edge of the $\overline{\mathrm{DR}}$ signal to cause an interrupt.
- It can poll the Data Ready bit (bit D0 of the status byte, $\mathrm{I}^{2} \mathrm{C}$-bus READ Register 0).

When valid data is detected, the microcontroller must initiate an $I^{2} \mathrm{C}$-bus READ of Registers 0,1 and 2. The first and second data bytes from the most recently received Line 21 are in Register 1 and Register 2 respectively.
The $\overline{D R}$ pin, and the Data Ready bit (Status bit D0) will be cleared after any register has been read. POR is reset after Register 0 has been read.

‘STAND-ALONE’ (NON I²C-BUS) OPERATION

To set the SAA5252 for 'stand-alone' operation pin 2 $\left(1^{2} \mathrm{C} / \overline{\mathrm{DC}}\right)$ is tied LOW. This will change the operation of the SCL, SDA and DR pins to mode select inputs which will select as shown in Table 13.

In the caption mode the SAA5252 operates in the basic Normal character/Black background mode. This complies with the FCC ruling. In the Enhanced caption mode the set-up will be Shadowed character/Video background. SDA and SCL in the 'stand-alone' operation act as bits MO and M1 in Table 8.

Table 13 Stand-alone modes.

$\overline{\mathbf{D R}}$	SCL	SDA	MODE OF OPERATION	CHANNEL RECEPTION
0	0	0	Video mode	Channel 1
0	0	1	Text mode	Channel 1
0	1	0	Normal captions	Channel 1
0	1	1	Enhanced captions	Channel 1
1	0	0	Video mode	Channel 2
1	0	1	Text mode	Channel 2
1	1	0	Normal captions	Channel 2
1	1	1	Enhanced captions	Channel 2

Single chip economy 10 page teletext/ TV microcontroller

GENERAL DESCRIPTION

The SAA5296 is a ten page teletext decoder and TV control IC. The device will decode 625 line and 525 line based WST transmissions and provides tuner control functions and On Screen display (OSD) facilities. The teletext decoder hardware is a derivative of IVT1.1X and the TV control functionality is provided by an on-chip industry standard 80C51 microcontroller. A ten page static RAM is included on board providing a single chip teletext decoder and OSD display memory. The SAA5296 is intended for use as the central control mechanism in a television receiver.

The SAA5296 will be available as a mask programmed ROM version. An EEPROM version will also be available for software development. Both versions are available in a SDIL-52 package and QFP-80 package. The QFP-80 package also has the capability of external ROM.

FEATURES

General

- Complete Teletext decoder and TV control in a single integrated circuit
- +5 V power supply
- RGB interface to standard colour decoder ICs, push pull output drive
- Single crystal oscillator for teletext decoder, display and microcontroller

Text

- Ten page (10240×8) on board teletext and OSD memory
- Eastern European, Western European and Turkish language covered in one device
- 625 line and 525 line acquisition and display
- Acquisition and decoding of VPS data (EBU PDC System A)
- Simultaneous acquisition and storage of 10 teletext pages
- Double size, width and height character capability for OSD
- Enhanced display features including meshing, shadowing and additional display attributes
- Definable OSD border colours in TV mode
- Extension packet and Inventory page storage
- Automatic detection of Fastext
- Page clearing within one line
- Display clock derived internally to reduce peripheral components to a minimum

Packet 26 engine for real time processing of accented (and other) characters

- Page links in packet 27, and packet $8 / 30$ are Hamming decoded
- 260 characters in mask programmed ROM
- optional storage of packet 24 in display memory
- Video signal quality detection
- Automatic FRAME output control with manual override
- Slave synchronization
- Standby mode for teletext hardware

Microcontroller

- 80C51 instruction set
- 32Kbytes mask programmed ROM
- 768 bytes of RAM
- Eight 6-bit PWMs. One 14-bit PWM for tuning control
- Four ADCs implemented as 8 bit DAC and comparator with 4 multiplexed inputs
- 4 high current open drain port output
- Master and slave byte wide $\mathrm{I}^{2} \mathrm{C}$-bus

ORDERING INFORMATION

EXTENDED TYPE NUMBER	VERSION	PACKAGE			
		PINS	PIN POSITION	MATERIAL	CODE
SAA5296ZP/nnn (note 1)	ROM	52	SDIL	plastic	SOT247
SAA5296H/nnn (note 1)	Internal/External ROM	80	QFP	plastic	SOT318
SAA5296XP/NV	EEPROM	52	SDIL	plastic	SOT247
SAA5296H/NV	EEPROM	80	QFP	plastic	SOT318

NOTE:

1. nnn refers to the program mask number.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
$V_{\text {DD }}$	Supply voltage	4.5	5.0	5.5	V
I_{DD}	Supply current	-	115	-	mA
$\mathrm{I}_{\mathrm{DDS}}$	Supply current - standby text	-	30	40	mA
$\mathrm{f}_{\mathrm{CLK}}$	Clock frequency	-	12	-	MHz
$\mathrm{T}_{\text {amb }}$	Operating ambient temperature	-20	-	+70	${ }^{\circ} \mathrm{C}$

Figure 1. Block Diagram

Figure 2. Applications Diagram

PINNING

SYMBOL	$\begin{gathered} \text { PIN } \\ \text { (SDIL-52) } \end{gathered}$	$\begin{gathered} \text { PIN } \\ (\text { QFP-80 }) \end{gathered}$	DESCRIPTION
P2.0-P2.7	$\begin{aligned} & 1-8 \\ & 1 \\ & 2-8 \end{aligned}$	$\begin{aligned} & 77-80,9,8,1,2 \\ & 77 \\ & 78-80,9,8,1,2 \end{aligned}$	PORT 2: 8 bit open drain bidirectional port. Alternate functions include: TPWM (P2.0) - This is the output for the 14 -bit high precision PWM. PWM0-6 (P2.1-P2.7) - Outputs for the 6-bit PWMs 0 through 6.
P3.0-P3.4	$\left\{\begin{array}{l} 9-12,30 \\ 9-11 \\ 30 \end{array}\right.$	$\begin{aligned} & 3,5-7,44,46,48 \\ & 3,5-7 \\ & 44 \end{aligned}$	PORT 3 (Note 1): 5 bit open drain port. P3.0-P3.2 are inputs only. P3.3-P3.4 are bidirectional. Alternate functions include: ADC0-ADC3 (3.0-P3.3) - Inputs for the software ADC facility. PWM7 (P3.4) - Output for the 6-bit PWM 7.
VSSD	13	12	Digital ground
P0.0-P0.7	14-21	$\begin{aligned} & 14-16,20,21, \\ & 25-27 \end{aligned}$	PORT 0: 8 bit open drain bidirectional port. P 0.5 and P 0.6 have 10 mA current sinking capability at 0.5 V for direct drive of LEDs.
VSSA	22	27	Analog ground
CVBSO, CVBS1	23, 24	28, 29	CVBS input: This signal is applied via a 100nF capacitor. Maximum input 1V pp.
BLACK	25	30	Black level input: Input to store CVBS black level. A 100nF capacitor should be connected to VSSA.
IREF	26	31	IREF: Reference current for analog circuits. For correct operation, a 27 K resistor should be connected to VSSA.
FRAME	27	36	Frame output: For use in non-interlaced displays. During teletext off, teletext mixed with TV picture and subtitles this pin is inactive. In full teletext mode this pin provides a 25 Hz square wave.
TEST	28	37	Test: Test control pin.
COR	29	38	Contrast reduction: Open drain, active low output which allows selective contrast reduction of the television picture to enhance a mixed mode display.
RGBREF	31	39	RGB reference: Drive level reference for RGB outputs.
B	32	409	Blue: Dot rate character output of the blue color information. The high voltage level is defined by the RGBREF pin. Can source 4 mA .
G	33	41	Green: Dot rate character output of the green color information. The high voltage level is defined by the RGBREF pin. Can source 4 mA .
R	34	42	Red: Dot rate character output of the red color information. The high voltage level is defined by the RGBREF pin. Can source 4 mA .
VDS	35	43	Video/Data switch: Push-pull output for blanking the TV picture.
HSYNC	36	45	Horizontal sync: A dedicated input for a TTL-level version of the horizontal sync pulse. The polarity of this pulse is programmable by register 1 bit D1.
VSYNC	37	47	Vertical sync: A dedicated input for a TTL-level version of the horizontal sync pulse. The polarity of this pulse is programmable by register 1 bit DO .
VDDA	38	49	Analog power supply: 5 V supply for analog circuitry.
VDDT	39	51	Teletext power supply: 5 V supply for teletext digital circuitry.
OSCGND	40	56	Oscillator Ground: Ground for crystal oscillator.
XTALIN	41	57	Crystal Input: 12 MHz crystal oscillator input.
XTALOUT	42	58	Crystal Output: 12 MHz crystal oscillator output.
RESET	43	59	Reset: If this pin is high for 2 machine cycles (24 oscillator periods) while the oscillator is running, the SAA5290 is reset.
VDDM	44	62	Microcontroller power supply: 5 V supply for the microcontroller digital circuitry.

Single chip economy 10 page teletext/ TV microcontroller

SAA5296

SYMBOL	$\begin{gathered} \text { PIN } \\ \text { (SDIL-52) } \end{gathered}$	$\begin{gathered} \text { PIN } \\ (\text { QFP-80) } \end{gathered}$	DESCRIPTION
P1.0-P1.7	$\begin{array}{\|l} \hline 45-52 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \end{array}$	$\begin{array}{\|l\|} \hline 63,64,60,61, \\ 67,68,65,66 \\ 63 \\ 64 \\ 60 \\ 61 \\ 65 \\ 66 \end{array}$	PORT 1: 8 bit open drain bidirectional port. Alternate functions include: INT: 1 (P1.0) - external interrupt 1 T0 (P1.1) - counter/timer 0 INTO (P1.2) - external interrupt 0 T1 (P1.3) - counter/timer 1 SCL (P1.6) - serial clock input for ${ }^{2} \mathrm{C}$ C bus SDA (P1.7) - serial data port for $1^{2} \mathrm{C}$ bus
Ref+	-	50	Reft: Positive reference voltage for software ADC
Ref-	-	19	Ref-: Negative reference voltage for software ADC
RD	-	10	RD: External memory read strobe
WR	-	11	WF: External memory write strobe
PSEN	-	17	Program store enable output: Read strobe to external program memory.
ALE	-	18	Address Latch Enable: Output pulse for latching the low byte of the address during access to external memory.
EA	-	13	Address Latch Enable: Output pulse for latching the low byte of the address during access to external memory.
AD0-AD7	-	69-76	AD0 - AD7: External memory multiplexed low order address and data bus.
A8-A15	-	55-52, 35-32	A8 - A15: External memory high order address.

NOTE:

1. 7 bit open drain port QFP80 variant.

MICROCONTROLLER INTERFACING

The 80C51 CPU communicates with the peripheral functions using Special Function Registers (SFRs) which are addressed as direct RAM. The registers in the teletext decoder appear as normal SFRs in the microcontroller memory map, but are written to using a serial bus. This bus is controlled by dedicated hardware which uses a simple handshake system for software synchronization. The SFR map is given:

Address (hex)	8 bytes							
F8								
F0	B							
E8	SAD							
E0	ACC							
D8	S1CON	S1STA	S1DAT	S1ADR	PWM3	PWM4	PWM5	PWM6
D0	PSW		TDACL	TDACH	PWM7	PWM0	PWM1	PWM2
C8	TXT8	TXT9	TXT10	TXT11	TXT12	TXT14	TXT15	TXT16
C0	TXT0	TXT1	TXT2	TXT3	TXT4	TXT5	TXT6	TXT7
B8	TXT13	TXT17						
B0	P3							
A8	IE							
A0	P2							
98	SAD2							
90	P1							
88	TCON	TMOD	TL0	TL1	TH0	TH1		
$80 ~$	P0	SP	DPL	DPH				PCON

Single chip economy 10 page teletext/

TV microcontroller

The following SFRs are standard 8051 SFRs and their contents and application have not been changed for the SAA5296: ACC, B, PSW, PO, P1, P2, P3, PCON, TCON, TMOD, TL0, TH0, TL1, TH1, SP, DPL and DPH. SFRs S1CON, S1STA, S1ADR and S1DAT are standard P8xCE652 SFRs and their contents and application have not been changed for the SAA5296. The contents of the remaining registers are specific to the SAA5296 and are shown below:

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IE	EA	ES1	-	-	ET1	EX1	ET0	EX0
TXT0	X24 POSITION	DISPLAY X24	AUTO FRAME	DISABLE HDR ROLL	STATUS ROW ONLY	DISABLE FRAME	VPS ON	INV ON
TXT1	EXT PK OFF	8 BIT	ACQ OFF	X26	FULL FIELD	FIELD POLARITY	H POLARITY	V POLARITY
TXT2	-	REQ 3	REQ 2	REQ 1	REQ 0	SC2	SC1	SC0
TXT3	-	-	-	PRD4	PRD3	PRD2	PRD1	PRD0
TXT4	-	-	EAST/WEST	DISABLE DBL HT	B MESH ENABLE	C MESH ENABLE	TRANS ENABLE	SHADOW ENABLE
TXT5	BKGND OUT	BKGND IN	COR OUT	COR IN	TEXT OUT	TEXT IN	PICTURE ON OUT	PICTURE ON IN
TXT6	BKGND OUT	BKGND IN	COR OUT	COR IN	TEXT OUT	TEXT IN	PICTURE	PICTURE ON IN
TXT7	STATUS ROW TOP	CURSOR						
ON								

Digital multistandard colour decoder with 2 A/D converters

SHORT DESCRIPTION

The one chip frontend SAA7110 is a digital multistandard colour decoder (OCF1) on the basis of the digital TV-2 system with 2 integrated A / D converters, a clock generation circuit (CGC) and BCS- (Brightness, Contrast, Saturation) control.

FEATURES

- Six analog inputs (six times CVBS or three times Y/C or combinations)
- Three analog processing channels
- Three built in analog anti alias filters
- Analog signal adding of two channels
- Two Video CMOS 8-bit A/D- converters
- Full programmable static gain for the main channels or automatic gain control for the selected CVBS $/ Y$ channel
- Selectable signal (white) peak control
- Luminance and chrominance signal processing for standards PAL-B/G, NTSC-M, SECAM
- Full range HUE control
- Automatic detection of $50 / 60 \mathrm{~Hz}$ field frequency -> automatic switching between standards PAL and NTSC, SECAM forceable
- Horizontal and vertical sync detection for all standards
- Cross-colour reduction by chrominance comb filtering for NTSC or special cross-colour cancellation for SECAM
- UV signal delay lines for PAL to correct chrominance phase errors
- The YUV bus supports a data rate of: ($780 \times \mathrm{fh}$) for 60 Hz 12.2727 MHz (NTSC) ($944 \times \mathrm{fh}$) for 50 Hz 14.75 MHz (PAL/SECAM)
- Square pixel-format with $768 / 640$ active samples per line on the YUV bus
- CCIR 601 level compatible
- 4:2:2 and 4:1:1 YUV output formats in 8-bit resolution
- User programmable luminance peaking for aperture correction
- Compatible with memory-based features (line-locked clock, square pixel)
- Requires only one crystal (26.8 MHz) for all standards
- Real-time status information output (RTCO)
- Brightness Contrast Saturation control for the YUV-bus
- Negation of picture possible
- One user programmable general purpose switch on an output pin
- Switchable between on-chip Clock Generation Circuit (CGC) and external CGC (SAA7197)
- Power On Control
- $I^{2} \mathrm{C}$-bus controlled

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN	MAX	UNIT
V_{DD}	digital supply voltage range	4.5	5.5	V
$\mathrm{~V}_{\mathrm{DDA}}$	analog supply voltage range	4.75	5.25	V
$\mathrm{~T}_{\mathrm{amb}}$	ambient temperature range	0	70	${ }^{\circ} \mathrm{C}$

ORDERING AND PACKAGE INFORMATION

EXTENDED TYPE NUMBER	PACKAGE			
	PINS	PIN POSITION	MATERIAL	CODE
SAA7110	68	PLCC	Plastic	SOT188CG14

One Chip Frontend 1 (OFC1)
2. SYSTEM VIEW

FIGURE 2. SYSTEM VIEW

3. PINNING

TABLE 1. PINNING

| PIN NO. | SYMBOL | \||O|P| | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| 1 | SP | 1 | SHIFT PIN for testing; connect to ground in normal operation |
| 2 | AP | 1 | ACTION PIN for testing; connect to ground in normal operation |
| 3 | RTCO | 0 | Real Time Control Output. This pin is used to fit out serially the increments of the HPLL and FSC-PLL and an information of the PAL- or SECAM-sequence |
| 4 | IICSA | 1 | IIC Slave Address select ($0=9 \mathrm{Ch}$ (for write), 9Dh for read; 1=9Eh (for write), 9Fh for read) |
| 5 | SDA | 1/0 | $1^{2} \mathrm{C}$-bus SERIAL DATA input/output |
| 6 | SCL | 1 | $1^{2} \mathrm{C}$-bus SERIAL CLOCK input |
| 7 | RES1 | - | Reserved pin 1 (do not connect)) |
| 8 | RES2 | - | Reserved pin 2 (do not connect)) |
| 9 | RES3 | - | Reserved pin 3 (do not connect)) |
| 10 | $V_{\text {SSA4 }}$ | P | ground for analog input 4 |
| 11 | Al42 | 1 | analog input 42 |
| 12 | $\mathrm{V}_{\text {DDA } 4}$ | P | positive supply voltage (+5V) for analog input 4 |
| 13 | Al41 | 1 | analog input 41 |
| 14 | $\mathrm{V}_{\text {SSA3 }}$ | P | ground for analog input 3 |
| 15 | Al32 | 1 | analog input 32 |
| 16 | $\mathrm{V}_{\text {DDA3 }}$ | P | positive supply voltage (+5V) for analog input 3 |
| 17 | Al31 | I | analog input 31 |

TABLE 1. PINNING

| PIN NO. | SYMBOL | I\| O | P | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| 18 | $\mathrm{V}_{\text {SSA2 }}$ | P | ground for analog input 2 |
| 19 | Al22 | 1 | analog input 22 |
| 20 | $\mathrm{V}_{\text {DDA } 2}$ | P | positive supply voltage (+5 V) for analog input 2 |
| 21 | Al21 | 1 | analog input 21 |
| 22 | $\mathrm{V}_{\text {Sss }}$ | P | SUBSTRATE ground connection |
| 23 | AOUT | 0 | Analog test OUTput (do not connect). |
| 24 | $V_{\text {DDAO }}$ | P | positive supply voltage (+5V) for internal CGC (Clock Generation Circuit) |
| 25 | $\mathrm{V}_{\text {SSAO }}$ | P | ground for internal CGC |
| 26 | LFCO | 0 | LINE FREQUENCY CONTROL output signal; this is the analog clock control signal driving the external CGC. The frequency is a multiple of the actual line frequency (nominally $7.375 / 6.13636 \mathrm{MHz}$). The signal has triangular form with a 4bit accuracy. |
| 27 | $\mathrm{V}_{\text {DD5 }}$ | P | positive supply voltage (+5 V) |
| 28 | $\mathrm{V}_{\text {SS5 }}$ | P | ground |
| 29 | LLC | 1/O | LINE LOCKED CLOCK I/O (CGCE=1 \rightarrow output; CGCE=0 $->$ input); this is the system clock, its frequency is $1888^{*} \mathrm{f}_{\mathrm{h}}$ for $50 \mathrm{~Hz} / 625$ lines per field systems and $1560 \mathrm{k}_{\mathrm{h}}$ for $60 \mathrm{~Hz} / 525$ lines per field systems; or variable input clock up to 32 MHz in input mode. |
| 30 | LLC2 | 0 | Line Locked Clock output; $f_{\text {LLC }}=0.5 \times$ flLC $^{\prime}$ (CGCE=1 >> output; CGCE=0 -> High impedance) |
| 31 | CREF | 1/O | CLOCK REFERENCE I/O (CGCE=1 \rightarrow output; CGCE=0 $->$ input). This is a clock qualifier signal distributed by the internal or an external clock generator circuit (CGC). Using CREF all interfaces on the YUV bus are able to generate a bus timing with identical phase. |
| 32 | RESN | I/O | RESET active LOW I/O (CGCE=1 -> output; CGCE=0 -> input); sets the device into a defined state. All data outputs are in high impedance state. The $I^{2} \mathrm{C}$-bus is reset (waiting for start condition). Using the external CGC, the LOW period must be maintained for at least 30 LLC clock cycles. |
| 33 | CGCE | 1 | CGC Enable input signal, active HIGH; (CGCE=1 \rightarrow On chip CGC active; CGCE=0 -> External CGC mode: use SAA7197) |
| 34 | $\mathrm{V}_{\mathrm{DD4}}$ | P | positive supply voltage (+5 V) |
| 35 | $\mathrm{V}_{\text {SS4 }}$ | P | ground |
| 36 | HCL | 1/O | HORIZONTAL CLAMPING pulse I/O (programmable via IIC-bit PULIO, PULIO=1 \rightarrow output, PULIO $=0$-> input); this signal is used to indicate the black level clamping period for the analog input interface. The beginning and end of its HIGH period (only in the output mode) can be programmed via the $I^{2} \mathrm{C}$-bus register 03 h , 04 h in 50 Hz mode and registers 16 h , 17 h in 60 Hz mode, active HIGH . |
| 37 | HSY | 1/O | HORIZONTAL SYNC indicator signal I/O (programmable via IIC-bit PULIO, PULIO $=1$-> output, PULIO $=0 \rightarrow$ input); is used to indicate the sync tip part of the CVBS input signal for gain control purposes. This signal is fed to the analog interface. The beginning and end of its HIGH period (only in the output mode) can be programmed via the $\mathrm{I}^{2} \mathrm{C}$-bus register $01 \mathrm{~h}, 02 \mathrm{~h}$ in 50 Hz mode and registers 14 h , 15 h in 60 Hz mode, active HIGH . |

One Chip Frontend 1 (OFC1)

TABLE 1. PINNING

PIN NO.	SYMBOL	1 IO	DESCRIPTION
38	HS	0	HORIZONTAL SYNC output signal (programmable; the high period is 128 LLC clock cycles. The position of the positive slope is programmable in 8 LLC increments over a complete line ($=64 \mathrm{us}$) via $I^{2} \mathrm{C}$-bus register 05 h (50 Hz mode) or $18 \mathrm{~h}(60 \mathrm{~Hz}$ mode).
39	$\begin{aligned} & \text { PLIN } \\ & \text { (HL) } \end{aligned}$	0	PAL IDENTIFIER NOT output signal; marks for demodulated PAL signals the inverted line (PLIN=LOW) and a non inverted line (PLIN=HIGH) and for demodulated SECAM signals the DR line (PLIN=LOW) and the DB line (PLIN=HIGH). Select PLIN function via IIC-bit RTSE=0. (H-PLL LOCKED output signal; a HIGH state indicates that the internal PLL has locked; select HL function via $\mathrm{I}^{2} \mathrm{C}$-bit RTSE $=1$).
40	$\begin{aligned} & \text { ODD } \\ & \text { (VL) } \end{aligned}$	0	ODD/EVEN field identification (output); a HIGH state indicates the odd field. Select ODD function via IIC-bit RTSE=0. (VERTICAL LOCKED output signal; a HIGH state indicates that the internal VNL is in a locked state; select VL function via $1^{2} \mathrm{C}$-bit RTSE=1).
41	Vs	I/O	VERTICAL SYNC signal I/O (programmable via IIC-bit OEHV, OEHV=1 \rightarrow output, OEHV=0 -> input); this signal indicates the vertical sync with respect to the YUV output. The high period of this signal is approximate six lines if the vertical noise limiter (VNL) function is active. The positive slope contains the phase information for a deflection controller, e.g. TDA9150. In input mode, this signal is used to synchronize the vertical gain- and clamp-blanking stage, active HIGH.
42	HREF	0	HORIZONTAL REFERENCE output signal; this signal is used to indicate data on the digital YUV bus. The positive slope marks the beginning of a new active line. The HIGH period of HREF is either 768 Y samples or 640 Y samples long depending on the detected field frequency ($50 / 60 \mathrm{~Hz}$-mode). HREF is used to synchronize data multiplexer / demultiplexers. HREF is also present during the vertical blanking interval.
43	$\mathrm{V}_{\text {SS3 }}$	P	ground
44	$\mathrm{V}_{\text {DD3 }}$	P	positive supply voltage (+5 V)
45-50	Y (7-2)	0	Digital Y (luminance) output signal; higher 6 bits of the 8 -bit luminance output signal as part of the digital YUV bus (data rate LLC/2), or A/D2(3) output (data rate LLC/2) selectable via IIC-bit SQPB=1.
51	$\mathrm{V}_{\mathrm{SS} 2}$	P	ground
52	$\mathrm{V}_{\mathrm{DD} 2}$	P	positive supply voltage (+5V)
53-54	Y (1-0)	0	Digital Y (luminance) output signal; lower 2 bits of the 8 -bit luminance output signal as part of the digital YUV bus (data rate LLC/2), or A/D2(3) output (data rate LLC/2) selectable via IIC-bit SQPB=1
55-62	UV (7-0)	0	Digital UV (color difference) output signal; multiplexed color difference signal for U and V component of demodulated CVBS or Chroma signal. The format and multiplexing scheme can be selected via $1^{2} \mathrm{C}$-bus control. These signals are part of the digital YUV bus (data rate LLC/4), or A/D3(2) output (data rate LLC/2) selectable via IIC-bit SQPB=1
63	$\begin{aligned} & \text { FEIN } \\ & \text { (MUXC) } \end{aligned}$	1	FAST ENABLE INPUT signal (active LOW); this signal is used to control fast switching on the digital YUV bus. A HIGH at this input forces the IC to set its Y and UV outputs to the high impedance state.(Set IIC-bits MS24 and MS34 and MUYC to LOW to use the FEIN function). (MULTIPLEX COMPONENTS (input signal); control signal for the analog multiplexers for fast switching between locked Y/C signals or locked CVBS signals. FEIN automatically fixed to LOW (Digital YUV bus enabled), if one of the three MUXC functions are selected (MS24 or MS34 or MUYC = HIGH)

TABLE 1. PINNING

| PIN NO. | SYMBOL | I\|O|P| | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| 64 | GPSW
 (VBLK) | 0 | GENERAL PURPOSE SWITCH (output signal); the state of this signal is programmable via $\mathrm{I}^{2} \mathrm{C}$-bus register ODh, bit 1 ; select GPSW function via IIC-bit VBL$\mathrm{KA}=0$.
 (Vertical BLanK test output; select VBLK function via IIC-bit VBLKA $=1$) |
| 65 | XTAL | 0 | 26.8 MHz crystal oscillator output; not connected if TTL clock signal is used |
| 66 | XTALI | 1 | Input terminal for 26.8 MHz crystal oscillator or connection of external oscillator with TTL compatible square wave clock signal. |
| 67 | $V_{S S 1}$ | P | ground |
| 68 | $V_{\text {DD1 }}$ | P | positive supply voltage (+5V) |

FIGURE 3. PINNING OCF1-SAA7110

4. FUNCTIONAL DESCRIPTION

ANALOG INPUT PROCESSING

The OCF1 offers six analog signal inputs, two analog main channels with clamp circuit, analog amplifier, anti alias filter, and video CMOS ADC. A third analog channel also with clamp circuit, analog amplifier, anti alias filter can be added or switched to both main channels directly before the ADCs.

ANALOG CONTROL CIRCUITS

The clamp control circuit controls the proper clamping of the analog input signals. The coupling capacitor is also used to storage and filter the clamping voltage. The normal digital clamping level for luminance or CVBS signals is 64 and for chrominance signals 128.
The gain control circuits generate via $\left.\right|^{2} \mathrm{C}$ the static gain levels for the three analog amplifiers or controls one of these amplifiers automatically via a build in Automatic Gain Control AGC. The AGC is only used to amplify a CVBS or Y signal to the required signal amplitude, matched to the ADCs input voltage range.
The anti alias filters are adapted to the clock frequency.
The vertical blanking control circuit generates a $I^{2} \mathrm{C}$ programmable vertical blanking pulse. During the vertical blanking time gain and clamping control were frozen.
The fast switch control circuit is used for special applications.

CHROMINANCE PROCESSING

The 8-bit chrominance signal passes the input interface, the chrominance bandpass filter to eliminate DC components, and is finally fed to the multiplication inputs of a quadrature demodulator, where two subcarrier signals from the local oscillator (DTO1) with 90 degree phase shift are applied. The frequency is dependent on the present colour standard.
The multiplier operates as a quadrature demodulator for all PAL and NTSC signals; it operates as a frequency down mixer for SECAM signals.
The two multiplier output signals are converted to a serial UV data stream and applied to two lowpass filter stages, then to a gain controlled amplifier. A final multiplexed lowpass filter achieves, together with the preceding stages, the required bandwidth performance.
The from PAL and NTSC originated signal are applied to a comb filter.
The signal, originated from SECAM is fed through a clochefilter (0 Hz center frequency), a phase demodulator and a differentiator to obtain frequiency- demodulated colour-difference signals. The SECAM signal is fed after de-emphasis to a cross-over switch, to provide the both serial-transmitted colour-difference signals. These signals are fed to the BCS control and finally to the output formatter stage and to the output interface.

LUMINANCE PROCESSING

The 8 -bit luminance signal, a digital CVBS format or a luminance format (S-VHS, HI8), is fed through a switchable prefilter. High frequency components are emphasized to compensate for loss. The following chrominance trap filter ($\mathrm{f}_{0}=$ 4.43 MHz or $\mathrm{f}_{0}=3.58 \mathrm{MHz}$ center frequency selectable)
eliminates most of the colour carrier signal, therefore, it must be by-passed for S-Video (S-VHS, HI8) signals.
The high frequency components of the luminance signal can be "peaked" (control for sharpness improvement via $1^{2} \mathrm{C}$ bus) in two bandpass filters with selectable transfer characteristic.
A coring circuit with selectable characteristic improves the signal once more, this signal is then added to the original ('unpeaked') signal. A switchable amplifier achieves a common DC amplification, because the DC gains are different in both chrominance trap modes.
The improved luminance signal is fed via the variable delay compensation to the BCS-control and the output interface.

YUV-BUS, DIGITAL OUTPUTS

The 16 -bit YUV-bus transfers digital data from the output interfaces to a feature box, or a field memory, a digital colour space converter (SAA 7192 DCSC) or a Video enhancement and D/A processor (SAA7165 VEDA2). The outputs are controlled via the $I^{2} \mathrm{C}$ bus in normal selections, or they are controlled by an output enable chain (FEIN on pin 63).
The YUV data rate equals LLC2. Timing is achieved by marking each second positive rising edge of the clock LLC in conjunction with CREF (clock reference).
The output signals Y 7 to Y 0 are the bits of the digital luminance signal. The output signals UV7 to UV0 are the bits of the multiplexed colour difference signals ($B-Y$) and ($R-Y$). The frame in the format tables is the time, required to transfer a full set of samples: In case of 4:2:2 format two luminance samples are transmitted in comparison to one U and one V sample within the frame. The time frames are controlled by the HREF signal.
Fast enable is achieved by setting input FEIN to LOW. The signal is used to control fast switching on the digital YUVbus. High on this pin forces the Y and UV outputs to a highimpedance state.

SYNCHRONIZATION

The prefiltered luminance signal is fed to the synchronization stage. It's bandwidth is reduced to 1 MHz in a low-pass filter. The sync pulses are sliced and fed to the phase detectors to be compared with the sub-divided clock frequency.
The resulting output signal is applied to the loop filter to accumulate all phase deviations. Adjustable output signals (e. g. HCL and HSY) are generated according to analog frontend requirements. The output signals HS, VS, and PLIN are locked to the timing reference guaranteed between the input signal and the HREF signal as further improvements to the circuit may change the total processing delay. It is therefore not recommended to use them for applications, which ask for absolute timing accuracy to the input signais. The loop filter signal drives an oscillator to generate the line frequency control output signal LFCO.

CLOCK GENERATION CIRCUIT

The internal CGC generates all clock signals required in the one chip frontend. The output signal LFCO is a digital-to-analog converted signal provided by the horizontal PLL. It is the multiple of the line frequency:
$7.38 \mathrm{MHz}=472 \times \mathrm{f}_{\mathrm{H}}$ in 50 Hz systems

Abstract

$6.14 \mathrm{MHz}=360 \times \mathrm{f}_{\mathrm{H}}$ in $\mathbf{6 0 \mathrm { Hz } \text { systems }}$ Internally the LFCO signal is multiplied by factors 2 or 4 in the PLL circuit (including phase detector, loop filtering, VCO and frequency divider) to get the LLC and LLC2 output clock signals. The rectangular output clocks have a 50% duty factor. It's also possible to operate the OCF1 with an external CGC (SAA7197) providing the signals LLC and CREF for the OCF1. The selection of the intern/external CGC will be controlled by the CGCE input signal.

\section*{POWER-ON RESET}

Power-on reset is activated at power-on (only using internal CGC), when the supply voltage decreases below 3.5 V . The indicator output RESN is LOW for a time. The RESN signal can be applied to reset other circuits of the digital TV system.

RTCO OUTPUT

This real time control and status output signal contains serial information about actual system clock, subcarrier frequency and PAL/SECAM sequence. The signal can be used for various applications in external circuits, e. g. in a digital encoder to achieve "clean" encoding.

FIGURE 4. BLOCK PICTURE Analog Input and Analog Control Part

OLLL	(เО」О) L puəıuod diuつ әuО

5. CLAMP AND GAIN DESCRIPTION

CLAMPING

The coupling capacitance is used as clamp capacitance for each input. An internal digital clamp comparator generates the information about clamp-up or clamp-down. The clamping levels for the two A/D channels are adjustable over the 8 -bit range (1 to 254). Clamping time in normal use is set with the HCL pulse at the back porch of the video signal. The clamping pulse HCL is user adjustable.

GAIN CONTROL

The luminance AGC can be used for every channel were luminance or CVBS is coming in. AGC active time is the sync tip of the video signal. The sync tip pulse HSY is user adjustable. The AGC can be switched off and the gain for the three main input channels can be adjusted independently. Signal (white) peak control limits the gain at signal overshoots. The flow charts on this page and on the next page show more details of the AGC. The influence of supply voltage variation within the specified range is automatically eliminated by clamp and automatic gain control.

FIGURE 7. AUTOMATIC GAIN CONTROL RANGE

FIGURE 8. CLAMP AND GAIN FLOWCHART

FIGURE 9. LUMINANCE AGC FLOWCHART

One Chip Frontend 1 (OFC1)

6. LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134); all ground pins as well as all supply pins connected together.

TABLE 2. LIMITING VALUES

SYMBOL	PARAMETER	MIN	MAX	UNIT
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{amb}}$	Temperature under bias	-10	+80	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	Operating ambient temperature range	0	+70	${ }^{\circ} \mathrm{C}$
V_{DD}	Supply voltage digital	-0.5	+7.0	V
$\mathrm{~V}_{\mathrm{DDA}}$	Supply voltage analog	-0.5	+7.0	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage digital	-0.5	+7.0	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage analog	-0.5	+7.0	V
$\mathrm{~V}_{\text {diff }}$	Difference voltage $\mathrm{V}_{\text {SSAall }}-\mathrm{V}_{\text {SSall }}$	-	100	mV
$\mathrm{V}_{\text {ESD }}$	Electrostatic ${ }^{*}$ handling for all pins	-	± 2000	V
$\mathrm{P}_{\text {tot }}$	total power dissipation	-	2.5	W
Equivalent to discharging a 100pF capacitor through an $1.5 \mathrm{k} \Omega$ series resistor				

7. ELECTRICAL CHARACTERISTICS

TABLE 3. ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	$\begin{gathered} \hline \text { LIMITS } \\ \text { TYP } \end{gathered}$	MAX	UNIT
Supply						
$\mathrm{V}_{\text {DD1-5 }}$	digital supply voltage range		4.5	5	5.5	V
$\mathrm{l}_{\text {DD1-5 }}$	digital total supply current		-	-	250	mA
V ${ }_{\text {DDA }, 2-4}$	analog supply voltage range		4.75	5	5.25	V
$\mathrm{I}_{\text {DDA0, 2-4 }}$	analog total supply current		-	-	150	mA
Analog part						
$I_{\text {clamp }}$	clamp current	$\mathrm{V}_{\mathrm{i}}=1.25 \mathrm{~V}_{\text {DC }}$	-	± 2	-	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{i} \text { (pp) }}$	input voltage (AC coupling necessary)	$\mathrm{C}_{\text {coup }}=10 \mathrm{nF}$	0.5	1	1.38	V_{pp}
$\left\|Z_{i}\right\|$	input impedance	Iclamp off	200	-	-	k Ω
C_{i}	input capacitance		-	-	10	pF
a	channel crosstalk	$\mathrm{f}<5 \mathrm{MHz}$	-	-50	-	dB
$\mathrm{f}_{2.5}$ (max)	maximal harmonic distortion (Input signal: near full scale sinus)	at 4.0 MHz , gain $=0 \mathrm{~dB}$, $A A F=0 n$	-	t.b.d.	-	dB
$\mathrm{S} / \mathrm{N}\left(\mathrm{f}^{2} \mathrm{f}_{6}\right)$	signal-to-noise ratio (Input signal: near full scale sinus)	at 4.0 MHz , gain $=0 \mathrm{~dB}$, $A A F=0 n$	-	t.b.d.	-	dB

TABLE 3. ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	$\begin{array}{c\|} \hline \text { LIMITS } \\ \text { TYP } \end{array}$	MAX	UNIT
ADCs						
B	analog bandwidth	-3dB	-	15	-	MHz
$\Phi_{\text {diff }}$	differential phase (Amplifier and AAF=bypass)		-	2	-	deg
$\mathrm{G}_{\text {diff }}$	differential gain (Amplifier and $\mathrm{AAF}=$ bypass)		-	2	-	\%
${ }_{\text {fLIC }}$	clock rate ADC		11	-	16	MHz
DLE	DC differential linearity error		-	1/2	-	LSB
ILE	DC integral linearity error		-	1	-	LSB
Digital inputs						
VIL.IIC	input voltage LOW	SDA and SCL	-0.5	-	1.5	V
$\mathrm{V}_{\text {IH.IIC }}$	input voltage HIGH	SDA and SCL	3.0	-	$\mathrm{V}_{\text {D }}+0.5$	V
$\mathrm{V}_{\text {ILclocks }}$	input voltage LOW	clocks	-0.5	-	0.6	V
$\mathrm{V}_{\text {IH.LLC }}$	input voltage HIGH		2.4	-	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{V}_{\text {IH.XTALI }}$	input voltage HIGH		3.0	-	VDD+0.5	V
V_{IL}	input voltage LOW	other inputs	-0.5	-	0.8	V
V_{IH}	input voltage HIGH	other inputs	2.0	-	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
I_{LI}	input leakage current	-	-	-	10	mA
$\mathrm{C}_{\text {I.LLC }}$	input capacitance	clocks	-	-	10	pF
C_{1}	input capacitance	other inputs	-	-	8	pF
$\mathrm{C}_{1.10}$	input capacitance	I/O at high impedance	-	-	8	pF
Digital outputs						
$\mathrm{V}_{\text {LFCO }}$	output amplitude of LFCO (peak-to-peak value)	note 1	1.4	-	2.6	V
V_{OL}	output voltage LOW	note 2	0	-	0.6	V
V_{OH}	output voltage HIGH	note 2	2.4	-	V_{DD}	V
$V_{\text {OLClocks }}$	output voltage LOW	clocks	-0.5	-	0.6	V
$V_{\text {OHclocks }}$	output voltage HIGH	clocks	2.6	-	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
Clock input timing (LLC)						
$\mathrm{t}_{\text {LLC }}$	cycle time LLC		31	-	45	ns
δ	duty factor: $\mathrm{t}_{\text {LLCH }} / \mathrm{t}_{\text {LLC }}$		40	-	60	\%
$\mathrm{t}_{\text {r.LLC }}$	rise time	0.6 V to 2.4 V	-	-	5	ns
$\mathrm{t}_{\text {f.LLC }}$	fall time	2.4 V to 0.6V	-	-	5	ns
Control and CREF input timing (note 5)						
${ }_{\text {t }}$	input data set-up time		11	-	-	ns
$\mathrm{t}_{\text {HD.CREF }}$	input data hold-time		3	-	-	ns

TABLE 3. ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	LIMITS TYP	MAX	UNIT
$\mathrm{t}_{\text {HD.FEIN }}$	input data hold-time		3	-	-	ns
$\mathrm{t}_{\text {HD.other }}$	input data hold-time	Note 5	6	-	-	ns
Data and control output timing (note 3)						
$\mathrm{C}_{\text {L.data }}$	output load capacitance (data, HREF and VS)		15	-	50	pF
$\mathrm{C}_{\text {L.cont }}$	output load capacitance (control)		7.5	-	25	pF
$\mathrm{t}_{\text {OH.data }}$	output hold time	15 pF	13	-	-	ns
$t_{\text {PD. data }}$	propagation delay from negative edge of LLC (data, HREF and VS)	50 pF	-	-	29	ns
$t_{\text {PD.cont }}$	propagation delay from negative edge of LLC (control)	25 pF	-	-	29	ns
$t_{P Z}$	propagation delay from negative edge of LLC (to 3 -state)	Note 4	-	-	15	ns

Clock output timing (LLC, LLC2)

$\mathrm{C}_{\text {L.LLC }}$	output load capacitance		15	-	40	pF
$\mathrm{t}_{\text {LLC }}$	cycle time LLC		31.5	-	45	ns
$\mathrm{t}_{\text {LLC2 }}$	cycle time LLC2		63	-	90	ns
δ	duty factors: $\mathrm{t}_{\mathrm{LLCH}} / \mathrm{t}_{\mathrm{LLC}}$ and $\mathrm{t}_{\mathrm{LLC} 2 H} / \mathrm{t}_{\mathrm{LLC} 2}$		40	-	60	\%
t_{r}	rise time LLC, LLC2	0.6 V to 2.6 V	-	-	5	ns
t_{f}	fall time LLC, LLC2	2.6 V to 0.6 V	-	-	5	ns
$\mathrm{t}_{\mathrm{dLLC}}$ 2	delay time LLC out to LLC2 out	$\text { at } 1.5 \mathrm{~V}, 40 \mathrm{pF}$ Note 6	-	-	8	ns

Data qualifier output timing (CREF)

$\mathrm{t}_{\text {OH.CREF }}$	output hold time	15 pF	4	-	-	ns
$\mathrm{t}_{\text {PD.CREF }}$	propagation delay from posi- tive edge of LLC	40 pF	-	-	20	ns

Horizontal PLL

f_{Hn}	nominal line frequency	50 Hz field	-	15625	-	Hz
		60 Hz field	-	15734	-	Hz
$\mathrm{Df}_{\mathrm{H}} / \mathrm{f}_{\mathrm{Hn}}$	permissible static deviation	50 Hz field	-	-	5.6	$\%$
		60 Hz field	-	-	6.7	$\%$

Subcarrier PLL

f_{Hn}	nominal subcarrier frequency	PAL	-	4433618	-	Hz
		NTSC	-	3579545	-	Hz
$\mathrm{Df}_{\mathrm{H}} / \mathrm{f}_{\mathrm{Hn}}$	lock in range		400	-	-	Hz

TABLE 3. ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	$\begin{gathered} \hline \text { LIMITS } \\ \text { TYP } \end{gathered}$	MAX	UNIT
Crystal oscillator						
f_{n}	nominal frequency	3rd harmonic	-	26.8	-	Mhz
$\mathrm{Df} / \mathrm{f}_{\mathrm{n}}$	permissible deviation f_{n}		-	-	± 50	10^{-6}
	temperature deviation		-	-	± 20	10^{-6}
X1	crystal specification:					
	temperature range $\mathrm{T}_{\text {amb }}$		0	-	70	${ }^{\circ} \mathrm{C}$
	load capacitance C_{L}		8	-	-	pF
	series resonance resistor R_{S}		-	50	80	Ω
	motional capacitance C_{1}		-	$\begin{gathered} 1.1 \\ \pm 20 \% \end{gathered}$	-	fF
	parallel capacitance C_{0}		-	$\begin{gathered} 3.5 \\ \pm 20 \% \end{gathered}$	-	pF
	Philips catalogue number: 992252030004					

Notes to the characteristics:

1. The LFCO output level must be measured with a load circuit $10 \mathrm{k} \Omega$ in parallel to 15 pF .
2. The levels must be measured with load circuits, the loads used depend on the type of output stage. Control outputs (except HREF, VS); $1.2 \mathrm{k} \Omega$ at 3 V (TTL load), $\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$: data outputs (and HREF, VS); $1.2 \mathrm{k} \Omega$ at 3 V (TTL load), $C_{L}=50 \mathrm{pF}$.
3. Data output signals are YUV(15-0).

Control output signals are HREF, VS, HS, HSY, HCL, RTCO, PLIN(HL), ODD(VL), GPSWO(VBLK).
Effects of rise and fall times are included in the calculation of $t_{O H}, t_{P D}$ and $t_{P Z}$. Timings and levels refer to drawings and conditions shown in Fig. 8 on next page.
4. The minimum propagation delay from 3 -state to data active related to falling edge of LLC is Ons.
5. Other control input signals are CGCE, VS, IICSA, HCL, HSY.
6. LLC2 out is not active while $C G C E=0$

* Values to be fixed

One Chip Frontend 1 (OFC1)

8. TIMINGS

FIGURE 10. CLOCK/DATA TIMING

FIGURE 11. HORIZONTAL TIMING

Note: HRMV=1 and HRFS=0

FIGURE 12. HREF TIMING

FIGURE 13. VERTICAL TIMING

FIGURE 14. FEIN TIMING

TABLE 4. DIGITAL OUTPUT CONTROL

OEYC	FEIN	YUV(15:0)
0	0	Z
1	0	active
X	1	Z

10. REALTIME CONTROL OUTPUT

FIGURE 15. REAL TIME CONTROL OUTPUT

11. OUTPUT FORMATS

TABLE 5. 4:1:1 FORMAT

BUS SIG-	Pixel Byte Sequence							
Y7								
Y6								
Y5								
Y4								
Y3								
Y2								
Y1								
YO	Y0	YO						
UV7	U7	U5	U3	U1	U7	U5	U3	U1
UV6	U6	U4	U2	U0	U6	U4	U2	U0
UV5	V7	V5	V3	V1	V7	V5	V3	V1
UV4	V6	V4	V2	V0	V6	V4	V2	V0
UV3	0	0	0	0	0	0	0	0
UV2	0	0	0	0	0	0	0	0
UV1	0	0	0	0	0	0	0	0
UVO	0	0	0	0	0	0	0	0
Y FRAME	0	1	2	3	4	5	6	7
UV FRAME	0				4			
Note:								
	Data rate				Sample frequency			
Y	LLC2				LLC2			
U					LLC4			
V					LLC4			

TABLE 6. 4:2:2 FORMAT

BUS SIGNAL	Pixel Byte Sequence					
Y7						
Y6						
Y5						
Y4						
Y3						
Y2						
Y1						
YO	Y0	Y0	Y0	Y0	Yo	Yo
UV7	U7	V7	U7	V7	U7	V7
UV6	U6	V6	U6	V6	U6	V6
UV5	U5	V5	U5	V5	U5	V5
UV4	U4	V4	U4	V4	U4	V4
UV3	U3	V3	U3	V3	U3	V3
UV2	U2	V2	U2	V2	U2	V2
UV1	U1	V1	U1	V1	U1	V1
UV0	U0	Vo	U0	V0	U0	V0
Y FRAME	0	1	2	3	4	5
UV FRAME						
Note:						
	Data rate		Sample frequency			
Y	LLC2		LLC2			
U			LLC8			
V			LLC8			

12. PROCESSING DELAY

TABLE 7. PROCESSING DELAY (CVBSIN - YUVOUT)

FUNCTION	ANALOG DELAY (typical) AIN41 -> ADCIN(AOUT) (ns)		DIGITAL DELAY ADCIN(AOUT) -> YUVOUT (1/LLC) YDEL=0, CAD2/3=1]
	AFCCS $=0$	AFCCS $=1$	
without AMP + AAF	20		248
with AMP, without AAF	50		
with AMP + AAF (50 Hz)	50+25	50+50	
with AMP + AAF (60 Hz)	50+35	50+70	

One Chip Frontend 1 (OFC1)

13. YUV OUTPUT SIGNAL RANGE

FIGURE 16. YUV OUTPUT SIGNAL RANGE

14. OSCILLATOR APPLICATION

FIGURE 17. OSCILLATOR APPLICATION

(a) With Quartz Crystal
(b) With External Clock

15. CLOCK GENERATION CIRCUIT

The internal CGC generates the system clock LLC, LLC2 and the clock reference signal CREF. The internal generated LFCO (triangular waveform) is multiplied by four via the analog PLL (including phase detector, loop filter, VCO and frequency divider). The rectangular output signals have 50% duty factor.

FIGURE 18. CLOCK GENERATION CIRCUIT

16. CLOCK FREQUENCIES

TABLE 8. SYSTEM CLOCK FREQUENCIES (MHZ)

CLOCK	$\mathbf{5 0 H z}$	$\mathbf{6 0 H z}$
XTAL	26.8	
LLC	29.5	24.545454
LLC2	14.75	12.272727
LLC4	7.375	6.136136
LLC8	3.6875	3.068181

17. POWER-ON CONTROL

Power-on reset is activated at power-on (only using internal CGC) and if the supply voltage decreases below 3.5 V . The RESN signal can be applied to reset other circuits of the digital TV system.

FIGURE 19. POWER-ON CONTROL

TABLE 9. POWER-ON CONTROL SEQUENCE

INTERNAL POWER ON CONTROL SEQUENCE	PIN OUTPUT STATUS	FUNCTION
DIRECTLY AFTER POWER ON ASYNCHRONOUS RESET	Y(7:0), UV(7:0), RTCO, PLIN, ODD, GPSW, SDA, HREF, HS, VS, HCL, HSY $\rightarrow->$ high impedance state LLC, LLC2, CREF --> HIGH state	direct switching to high impedance (outputs) or input mode (//Os) for 20-200ms
START SYNCHRO- NOUS IIC RESET SEQUENCE	LLC, LLC2, CREF became active	starting IIC reset sequence
STATUS after IIC RESET	Y(7:0), UV(7:0), HREF, HS --> held in high impedance state VS, HCL, HSY --> held in input function mode	SAODh=7Dh (VTRC=0, RTSE=1, HRMV=1, SSTB=0, SECS=1), SAOEh $=00 \mathrm{~h}$ (HPLL $=0, \mathrm{OEHV}=0$, OEYC=0, CHRS=0, GPSW $1=0$), SA31h $=00 \mathrm{~h}$ (AOSL $(1: 0)=00$, WIRS $=0$, $W R S E=0, S Q P B=0, A F C C S=0, V B L-$ $K A=0$, PULIO $=0$)
STATUS after POWER ON CONTROL SEQUENCE	RTCO, PLIN, ODD, GPSW, SDA active	After power on (reset sequence) a complete IIC transmission is required!

18. IIC DESCRIPTION

19. IIC-BUS FORMAT

TABLE 10. IIC FORMAT

\mathbf{S}	SLAVEADDRESS	A	SUBADDRESS	A	DATA $^{(n \text { b bytes) }}{ }^{*}$	A	P

S	start condition
SLAVEADDRESS	1001 110Xb (IICSA=LOW) or 1001 111Xb (IICSA=HIGH)
A	acknowledge, generated by the slave
SUBADDRESS	subaddress byte, see reference table
DATA	data byte, see reference table
P	stop condition
X	read/write control bit $X=0$, order to write (the circuit is slave receiver) $X=1$, order to read (the circuit is slave transmitter)
SLAVEADDRESS	$\begin{aligned} & \text { 9Ch for write (IICSA=0) } \\ & \text { 9Dh for read (IICSA=0) } \\ & \text { 9Eh for write (IICSA=1) } \\ & 9 \text { Fh for read (ICSA=1) } \end{aligned}$
SUBADRESSES	00h-19h Decoder part 1Ah-1Fh reserved 20h-34h Frontend part
${ }^{*}$ If more than one byte DATA are transmitted, then auto-increment of the subadress is performed.	

19.1 IIC-BUS RECEIVER-TRANSMITTER OVERVIEW TABLE

TABLE 11. IIC OCF1

OCF1-Receiver			Slave-Addresses 10011100b, 9Ch [IICSA=0] 10011110b, 9Eh [IICSA=1]						
DMSD-SQP+BCS SLAVE RECEIVER (SU 00h-19h)									
REGISTER FUNC-	SUB	DATA BYTE							
	ADDR	D7	D6	D5	D4	D3	D2	D1	D0
Increment delay	00	$\begin{gathered} 007 \\ \text { IDEL7 } \end{gathered}$	$\begin{gathered} 006 \\ \text { IDEL6 } \end{gathered}$	$\begin{gathered} 005 \\ \text { IDEL5 } \end{gathered}$	$\begin{gathered} 004 \\ \text { IDEL4 } \end{gathered}$	$\begin{gathered} \hline 003 \\ \text { IDEL3 } \end{gathered}$	$\begin{gathered} \hline 002 \\ \text { IDEL2 } \end{gathered}$	$\begin{gathered} 001 \\ \text { IDEL1 } \end{gathered}$	$\begin{gathered} 000 \\ \text { IDELO } \end{gathered}$
Horizontal sync HSY begin 50 Hz	01	$\begin{gathered} 015 \\ \text { HSYB7 } \end{gathered}$	$\begin{gathered} 014 \\ \text { HSYB6 } \end{gathered}$	$\begin{gathered} 013 \\ \text { HSYB5 } \end{gathered}$	$\begin{gathered} 012 \\ \text { HSYB4 } \end{gathered}$	$\begin{gathered} 011 \\ \text { HSYB3 } \end{gathered}$	$\begin{gathered} 010 \\ \text { HSYB2 } \end{gathered}$	$\begin{gathered} 009 \\ \text { HSYB1 } \end{gathered}$	$\begin{gathered} 008 \\ \text { HSYBO } \end{gathered}$
Horizontal sync HSY stop 50 Hz	02	$\begin{gathered} 023 \\ \text { HSYS7 } \end{gathered}$	$\begin{gathered} 022 \\ \text { HSYS6 } \end{gathered}$	$\begin{gathered} 021 \\ \text { HSYS5 } \end{gathered}$	$\begin{gathered} 020 \\ \text { HSYS4 } \end{gathered}$	$\begin{gathered} 019 \\ \text { HSYS3 } \\ \hline \end{gathered}$	$\begin{gathered} 018 \\ \text { HSYS2 } \end{gathered}$	$\begin{gathered} 017 \\ \text { HSYS1 } \end{gathered}$	$\begin{gathered} 016 \\ \text { HSYSO } \end{gathered}$
Horizontal clamp HCL begin 50 Hz	03	$\begin{gathered} 031 \\ \text { HCLB7 } \end{gathered}$	$\begin{gathered} 030 \\ \text { HCLB6 } \end{gathered}$	$\begin{gathered} 029 \\ \text { HCLB5 } \end{gathered}$	$\begin{gathered} 028 \\ \text { HCLB4 } \end{gathered}$	$\begin{gathered} 027 \\ \text { HCLB3 } \end{gathered}$	$\begin{gathered} 026 \\ \text { HCLB2 } \end{gathered}$	$\begin{gathered} 025 \\ \text { HCLB1 } \end{gathered}$	$\begin{gathered} 024 \\ \text { HCLBO } \end{gathered}$
Horizontal clamp HCL stop 50 Hz	04	$\begin{gathered} 039 \\ \text { HCLS7 } \end{gathered}$	$\begin{gathered} 038 \\ \text { HCLS6 } \end{gathered}$	$\begin{gathered} 037 \\ \text { HCLS5 } \end{gathered}$	$\begin{gathered} 036 \\ \text { HCLS4 } \end{gathered}$	$\begin{gathered} 035 \\ \text { HCLS3 } \end{gathered}$	$\begin{gathered} 034 \\ \text { HCLS2 } \end{gathered}$	$\begin{gathered} 033 \\ \text { HCLS1 } \end{gathered}$	$\begin{gathered} 032 \\ \text { HCLSO } \end{gathered}$
Horizontal sync after PHI 150 Hz	05	$\begin{gathered} 047 \\ \text { HPHI7 } \end{gathered}$	$\begin{gathered} 046 \\ \text { HPHI6 } \end{gathered}$	$\begin{gathered} 045 \\ \text { HPHI5 } \end{gathered}$	$\begin{gathered} 044 \\ \text { HPHI4 } \end{gathered}$	$\begin{gathered} \hline 043 \\ \text { HPHI3 } \end{gathered}$	$\begin{gathered} 042 \\ \mathrm{HPHI2} \end{gathered}$	$\begin{gathered} 041 \\ \text { HPHI1 } \end{gathered}$	$\begin{gathered} 040 \\ \text { HPHIO } \end{gathered}$
Luminance control	06	$\begin{gathered} 055 \\ \text { BYPS } \end{gathered}$	$\begin{gathered} \hline 054 \\ \text { PREF } \end{gathered}$	$\begin{gathered} 053 \\ \text { BPSS1 } \end{gathered}$	$\begin{gathered} 052 \\ \text { BPSS0 } \end{gathered}$	$\begin{gathered} 051 \\ \text { CORI1 } \end{gathered}$	$\begin{gathered} 050 \\ \text { CORI0 } \end{gathered}$	$\begin{aligned} & 049 \\ & \text { APER1 } \end{aligned}$	$\begin{gathered} 048 \\ \text { APERO } \\ \hline \end{gathered}$
Hue control	07	$\begin{gathered} 063 \\ \text { HUEC7 } \end{gathered}$	$\begin{gathered} 062 \\ \text { HUEC6 } \end{gathered}$	$\begin{gathered} 061 \\ \text { HUEC5 } \end{gathered}$	$\begin{gathered} 060 \\ \text { HUEC4 } \end{gathered}$	$\begin{gathered} 059 \\ \text { HUEC3 } \end{gathered}$	$\begin{gathered} 058 \\ \text { HUEC2 } \end{gathered}$	$\begin{gathered} 057 \\ \text { HUEC1 } \end{gathered}$	$\begin{gathered} 056 \\ \text { HUECO } \end{gathered}$
Color Killer Threshold QUAM	08	$\begin{gathered} 071 \\ \text { CKTQ4 } \end{gathered}$	$\begin{gathered} 070 \\ \text { CKTQ3 } \end{gathered}$	$\begin{gathered} 069 \\ \text { CKTQ2 } \end{gathered}$	$\begin{gathered} 068 \\ \text { CKTQ1 } \end{gathered}$	$\begin{gathered} 067 \\ \text { CKTQO } \end{gathered}$	$\begin{aligned} & 066 \\ & X X X \end{aligned}$	$\begin{aligned} & 065 \\ & X X X \end{aligned}$	$\begin{aligned} & 064 \\ & x x x \end{aligned}$
Color Killer Thresh. SECAM	09	$\begin{gathered} 079 \\ \text { CKTS4 } \end{gathered}$	$\begin{gathered} 078 \\ \text { CKTS3 } \end{gathered}$	$\begin{gathered} 0077 \\ \text { CKTS2 } \end{gathered}$	$\begin{gathered} 076 \\ \text { CKTS1 } \end{gathered}$	$\begin{gathered} 075 \\ \text { CKTSO } \end{gathered}$	$\begin{aligned} & 074 \\ & x X X \end{aligned}$	$\begin{aligned} & 073 \\ & X X X \end{aligned}$	$\begin{aligned} & 072 \\ & x x x \end{aligned}$
Sensitivity PAL switch	OA	$\begin{gathered} 087 \\ \text { PLSE7 } \end{gathered}$	$\begin{gathered} 086 \\ \text { PLSE6 } \end{gathered}$	$\begin{gathered} 085 \\ \text { PLSE5 } \end{gathered}$	$\begin{gathered} 084 \\ \text { PLSE4 } \end{gathered}$	$\begin{gathered} 083 \\ \text { PLSE3 } \end{gathered}$	$\begin{gathered} 082 \\ \text { PLSE2 } \end{gathered}$	$\begin{gathered} 081 \\ \text { PLSE1 } \end{gathered}$	$\begin{gathered} 080 \\ \text { PLSEO } \end{gathered}$
Sensitivity SECAM switch	OB	$\begin{gathered} 095 \\ \text { SESE7 } \end{gathered}$	$\begin{gathered} 094 \\ \text { SESE6 } \end{gathered}$	$\begin{gathered} 093 \\ \text { SESE5 } \end{gathered}$	$\begin{gathered} 092 \\ \text { SESE4 } \end{gathered}$	$\begin{gathered} 091 \\ \text { SESE3 } \end{gathered}$	$\begin{gathered} 090 \\ \text { SESE2 } \end{gathered}$	$\begin{gathered} 089 \\ \text { SESE1 } \end{gathered}$	$\begin{gathered} 088 \\ \text { SESEO } \end{gathered}$
Gain Control Chrominance	OC	$\begin{gathered} 103 \\ \text { COLO } \end{gathered}$	$\begin{gathered} 102 \\ \text { LFIS1 } \end{gathered}$	$\begin{aligned} & 101 \\ & \text { LFIS } 0 \end{aligned}$	$\begin{aligned} & 100 \\ & x x x \end{aligned}$	$\begin{aligned} & 099 \\ & x x x \end{aligned}$	$\begin{aligned} & 098 \\ & x \times x \end{aligned}$	$\begin{aligned} & 097 \\ & x x x \end{aligned}$	$\begin{aligned} & 096 \\ & X X X \end{aligned}$
Standard/mode control	$0 \mathrm{D}^{*}$	$\begin{gathered} 111 \\ \text { VTRC } \end{gathered}$	$\begin{aligned} & 110 \\ & x X X \end{aligned}$	$\begin{aligned} & 109 \\ & x x x \end{aligned}$	$\begin{aligned} & 108 \\ & x X x \end{aligned}$	$\begin{gathered} \hline 107 \\ \text { RTSE } \end{gathered}$	$\begin{gathered} 106 \\ \text { HRMV } \end{gathered}$	$\begin{gathered} \hline 105 \\ \text { SSTB } \end{gathered}$	$\begin{gathered} \hline 104 \\ \text { SECS } \end{gathered}$
I/O and clock control	OE*	$\begin{aligned} & \hline 119 \\ & \text { HPLL } \end{aligned}$	$\begin{array}{r} 118 \\ X X X \end{array}$	$\begin{aligned} & 117 \\ & X X X \end{aligned}$	$\begin{aligned} & \hline 116 \\ & \text { OEHV } \end{aligned}$	$\begin{gathered} 115 \\ \text { OEYC } \end{gathered}$	$\begin{gathered} 114 \\ \text { CHRS } \end{gathered}$	$\begin{array}{r} 113 \\ x \times x \end{array}$	$\begin{gathered} 112 \\ \text { GPSW } \end{gathered}$
Control \#1	OF	$\begin{gathered} 127 \\ A \cup F D \end{gathered}$	$\begin{gathered} 126 \\ \text { FSEL } \end{gathered}$	$\begin{gathered} 125 \\ \text { SXCR } \end{gathered}$	$\begin{gathered} 124 \\ \text { SCEN } \end{gathered}$	$\begin{aligned} & 123 \\ & X X X \end{aligned}$	$\begin{gathered} 122 \\ \text { YDEL? } \end{gathered}$	$\begin{gathered} 121 \\ \text { YDEL1 } \end{gathered}$	$\begin{gathered} 120 \\ \text { YDELO } \end{gathered}$
Control \#2	10	$\begin{aligned} & 135 \\ & X X X \end{aligned}$	$\begin{array}{r} 134 \\ X X X \end{array}$	$\begin{array}{r} 133 \\ x x x \end{array}$	$\begin{array}{r} 132 \\ x x x \end{array}$	$\begin{array}{r} 131 \\ x X X \end{array}$	$\begin{gathered} 130 \\ \text { HRFS } \end{gathered}$	$\begin{gathered} 129 \\ \text { VNOI1 } \end{gathered}$	$\begin{gathered} 128 \\ \text { VNOIO } \end{gathered}$
Chroma gain reference	11	$\begin{gathered} 143 \\ \text { CHCV7 } \end{gathered}$	$\begin{gathered} 142 \\ \text { CHCV6 } \end{gathered}$	$\begin{gathered} 141 \\ \text { CHCV5 } \end{gathered}$	$\begin{gathered} 140 \\ \text { CHCV4 } \end{gathered}$	$\begin{gathered} 139 \\ \text { CHCV3 } \end{gathered}$	$\begin{gathered} 138 \\ \text { CHCV2 } \end{gathered}$	$\begin{gathered} 137 \\ \text { CHCV1 } \end{gathered}$	$\begin{gathered} 136 \\ \text { CHCV } \end{gathered}$
Chroma saturation	12	$\begin{aligned} & 151 \\ & x x x \end{aligned}$	$\begin{gathered} 150 \\ \text { SATN6 } \end{gathered}$	$\begin{gathered} 149 \\ \text { SATN5 } \end{gathered}$	$\begin{gathered} 148 \\ \text { SATN4 } \end{gathered}$	$\begin{gathered} 147 \\ \text { SATN3 } \end{gathered}$	$\begin{gathered} 146 \\ \text { SATN2 } \end{gathered}$	$\begin{gathered} 145 \\ \text { SATN1 } \end{gathered}$	$\begin{gathered} 144 \\ \text { SATNO } \end{gathered}$
Luminance contrast	13	$\begin{array}{r} 159 \\ X X X \end{array}$	$\begin{gathered} 158 \\ \text { CONT6 } \end{gathered}$	$\begin{gathered} 157 \\ \text { CONT5 } \end{gathered}$	$\begin{gathered} 156 \\ \text { CONT4 } \end{gathered}$	$\begin{gathered} 155 \\ \text { CONT3 } \end{gathered}$	$\begin{gathered} 154 \\ \text { CONT2 } \end{gathered}$	$\begin{gathered} 153 \\ \text { CONT1 } \end{gathered}$	$\begin{gathered} 152 \\ \text { CONTO } \end{gathered}$
Horizontal sync HSY begin 60 Hz	14	$\begin{gathered} 167 \\ \text { HS6B7 } \end{gathered}$	$\begin{gathered} 166 \\ \text { HS6B6 } \end{gathered}$	$\begin{gathered} 165 \\ \text { HS6B5 } \end{gathered}$	$\begin{gathered} 164 \\ \text { HS6B4 } \end{gathered}$	$\begin{gathered} 163 \\ \text { HS6B3 } \end{gathered}$	$\begin{gathered} 162 \\ \text { HS6B2 } \end{gathered}$	$\begin{gathered} 161 \\ \text { HS6B1 } \end{gathered}$	$\begin{gathered} 160 \\ \text { HS6BO } \end{gathered}$
Horizontal sync HSY stop 60 Hz	15	$\begin{gathered} 175 \\ \text { HS6S7 } \end{gathered}$	$\begin{gathered} 174 \\ \text { HS6S6 } \end{gathered}$	$\begin{gathered} 173 \\ \text { HS6S5 } \end{gathered}$	$\begin{gathered} 172 \\ H S 6 S 4 \end{gathered}$	$\begin{gathered} 171 \\ \text { HS6S3 } \end{gathered}$	$\begin{gathered} 170 \\ \text { HS6S2 } \end{gathered}$	$\begin{gathered} 169 \\ \text { HS6S1 } \end{gathered}$	$\begin{gathered} 168 \\ \text { HS6S0 } \end{gathered}$
Horizontal clamp HCL begin 60 Hz	16	$\begin{gathered} 183 \\ \mathrm{HC6B7} \end{gathered}$	$\begin{gathered} 182 \\ \text { HC6B6 } \end{gathered}$	$\begin{gathered} 181 \\ \text { HC6B5 } \end{gathered}$	$\begin{gathered} 180 \\ \text { HC6B4 } \end{gathered}$	$\begin{gathered} 179 \\ \text { HC6B3 } \end{gathered}$	$\begin{gathered} 178 \\ \text { HC6B2 } \end{gathered}$	$\begin{gathered} 177 \\ \text { HC6B1 } \end{gathered}$	$\begin{gathered} 176 \\ \text { HC6BO } \end{gathered}$

TABLE 11. IIC OCF1

Horizontal clamp HCL stop 60 Hz	17	191 HC6S7	190 HC6S6	189 HC6S5	188 HC6S4	187 HC6S3	186 HC6S2	185 HC6S1	184 HC6S0
Horizontal sync after PHI1 60 Hz	18	199 HP617	198 HP616	197 HP615	196 HP614	195 HP613	194 HP612	193 HP6I1	192 HP6I0
Luminance bright- ness	19	207 BRIG7	206 BRIG6	205 BRIG5	204 BRIG4	203 BRIG3	202 BRIG2	201 BRIG1	200 BRIG0

DUAD SLAVE RECEIVER (SU 20h-32h)

REGISTER FUNCTION	$\begin{gathered} \text { SUB } \\ \text { ADDR } \end{gathered}$	DATA BYTE							
		D7	D6	D5	D4	D3	D2	D1	D0
Analog Control \#1	20	$\begin{gathered} 007 \\ \text { AIND4 } \end{gathered}$			$\begin{gathered} 004 \\ \text { FUSE1 } \end{gathered}$	$\begin{gathered} 003 \\ \text { FUSEO } \end{gathered}$	002 AINS4	$\begin{gathered} 001 \\ \text { AINS3 } \end{gathered}$	000 AINS2
Analog Control \#2	21	$\begin{gathered} 015 \\ \text { VBCO } \end{gathered}$	014 MS34	$\begin{gathered} 013 \\ M \times 241 \end{gathered}$	$\begin{gathered} 012 \\ \text { MX240 } \end{gathered}$	$\begin{gathered} 011 \\ \text { MS24 } \end{gathered}$	$\begin{gathered} 010 \\ \text { REFS4 } \end{gathered}$	$\begin{gathered} 009 \\ \text { REFS3 } \end{gathered}$	$\begin{gathered} 008 \\ \text { REFS2 } \end{gathered}$
Mix Control \#1	22	$\begin{gathered} 023 \\ \text { GACO1 } \end{gathered}$	$\begin{gathered} 022 \\ \text { GACOO } \end{gathered}$	$\begin{gathered} \hline 021 \\ \text { CSEL } \end{gathered}$	$\begin{gathered} 020 \\ \text { YSEL } \end{gathered}$	019 MUYC	$\begin{gathered} 018 \\ \text { CLTS } \end{gathered}$	$\begin{gathered} 017 \\ M \times 341 \end{gathered}$	$\begin{gathered} 016 \\ M \times 340 \end{gathered}$
Clamp level Control 21	23	$\begin{gathered} 031 \\ \text { CLL217 } \end{gathered}$	$\begin{gathered} 030 \\ \text { CLL216 } \end{gathered}$	$\begin{gathered} 029 \\ \text { CLL215 } \end{gathered}$	$\begin{gathered} 028 \\ \text { CLL214 } \end{gathered}$	$\begin{gathered} 027 \\ \text { CLL213 } \end{gathered}$	$\begin{gathered} 026 \\ \text { CLL212 } \end{gathered}$	$\begin{gathered} 025 \\ \text { CLL211 } \end{gathered}$	$\begin{gathered} 024 \\ \text { CLL210 } \end{gathered}$
Clamp level Control 22	24	$\begin{gathered} 039 \\ \text { CLL227 } \end{gathered}$	$\begin{gathered} 038 \\ \text { CLL226 } \end{gathered}$	$\begin{gathered} 037 \\ \text { CLL225 } \end{gathered}$	$\begin{gathered} 036 \\ \text { CLL224 } \end{gathered}$	$\begin{gathered} 035 \\ \text { CLL223 } \end{gathered}$	$\begin{gathered} 034 \\ \text { CLL222 } \end{gathered}$	$\begin{gathered} 033 \\ \text { CLL221 } \end{gathered}$	$\begin{gathered} 032 \\ \text { CLL220 } \end{gathered}$
Clamp level Control 31	25	$\begin{gathered} 047 \\ \text { CLL317 } \end{gathered}$	$\begin{gathered} 046 \\ \text { CLL316 } \end{gathered}$	$\begin{gathered} 045 \\ \text { CLL315 } \end{gathered}$	$\begin{gathered} 044 \\ \text { CLL314 } \end{gathered}$	$\begin{gathered} 043 \\ C L L 313 \end{gathered}$	$\begin{gathered} 042 \\ \text { CLL312 } \end{gathered}$	$\begin{gathered} 041 \\ \text { CLL311 } \end{gathered}$	$\begin{gathered} 040 \\ \text { CLL310 } \end{gathered}$
Clamp level Control 32	26	$\begin{gathered} 055 \\ \text { CLL327 } \end{gathered}$	$\begin{gathered} 054 \\ \text { CLL326 } \end{gathered}$	$\begin{gathered} 053 \\ \text { CLL325 } \end{gathered}$	$\begin{gathered} 052 \\ \text { CLL324 } \end{gathered}$	$\begin{gathered} 051 \\ \text { CLL323 } \end{gathered}$	$\begin{gathered} 050 \\ \text { CLL322 } \end{gathered}$	$\begin{gathered} 049 \\ \text { CLL321 } \end{gathered}$	$\begin{gathered} 048 \\ \text { CLL320 } \end{gathered}$
Gain Control Analog \#1	27	$\begin{gathered} 063 \\ \text { HOLD } \end{gathered}$	$\begin{gathered} 062 \\ \text { GASL } \end{gathered}$	$\begin{gathered} 061 \\ \text { GA125 } \end{gathered}$	$\begin{gathered} 060 \\ \text { GAl24 } \end{gathered}$	$\begin{gathered} 059 \\ \text { GAl23 } \end{gathered}$	$\begin{gathered} 058 \\ \text { GAl22 } \end{gathered}$	$\begin{gathered} 057 \\ \text { GAl21 } \end{gathered}$	$\begin{gathered} 056 \\ \text { GAl20 } \end{gathered}$
White Peak Control	28	071 WIPE7	$\begin{gathered} 070 \\ \text { WIPE6 } \end{gathered}$	$\begin{gathered} 069 \\ \text { WIPE5 } \end{gathered}$	$\begin{aligned} & 068 \\ & \text { WIPE4 } \end{aligned}$	$\begin{gathered} 067 \\ \text { WIPE3 } \end{gathered}$	$\begin{gathered} 066 \\ \text { WIPE2 } \end{gathered}$	$\begin{gathered} 065 \\ \text { WIPE1 } \end{gathered}$	$\begin{gathered} 064 \\ \text { WIPEO } \end{gathered}$
Sync bottom Control	29	$\begin{gathered} 079 \\ \text { SBOT7 } \end{gathered}$	$\begin{gathered} 078 \\ \text { SBOT6 } \end{gathered}$	$\begin{gathered} 077 \\ \text { SBOT5 } \end{gathered}$	$\begin{aligned} & 076 \\ & \text { SBOT4 } \end{aligned}$	$\begin{gathered} 075 \\ \text { SBOT3 } \end{gathered}$	$\begin{gathered} 074 \\ \text { SBOT2 } \end{gathered}$	$\begin{gathered} 073 \\ \text { SBOT1 } \end{gathered}$	$\begin{gathered} 072 \\ \text { SBOTO } \end{gathered}$
Gain Control Analog \#2	2A	$\begin{gathered} 087 \\ \text { IWIP1 } \end{gathered}$	$\begin{gathered} 086 \\ \text { IWIPO } \end{gathered}$	$\begin{gathered} 085 \\ \text { GAl35 } \end{gathered}$	$\begin{gathered} 084 \\ \text { GAl34 } \end{gathered}$	$\begin{gathered} 083 \\ \text { GAl33 } \end{gathered}$	$\begin{gathered} 082 \\ \text { GAl32 } \end{gathered}$	$\begin{gathered} 081 \\ \text { GAl31 } \end{gathered}$	$\begin{gathered} 080 \\ \text { GAl30 } \end{gathered}$
Gain Control Analog \#3	2B	$\begin{gathered} 095 \\ \text { IGAI1 } \end{gathered}$	$\begin{gathered} 094 \\ \text { IGAIO } \end{gathered}$	$\begin{gathered} 093 \\ \text { GA145 } \end{gathered}$	$\begin{gathered} 092 \\ \text { GAl44 } \end{gathered}$	$\begin{gathered} 091 \\ \text { GA143 } \end{gathered}$	$\begin{gathered} 090 \\ \text { GAl42 } \end{gathered}$	$\begin{aligned} & .089 \\ & \text { GAl41 } \end{aligned}$	$\begin{gathered} 088 \\ \text { GAl40 } \end{gathered}$
MIX Control \#2	2C	$\begin{aligned} & 103 \\ & \text { CLS4 } \end{aligned}$	$\begin{aligned} & 102 \\ & x X x \end{aligned}$	$\begin{aligned} & 101 \\ & \text { CLS3 } \end{aligned}$	$\begin{aligned} & 100 \\ & \text { CLS2 } \end{aligned}$	$\begin{aligned} & 099 \\ & X X X \end{aligned}$	$\begin{aligned} & 098 \\ & X \times X \end{aligned}$	$\begin{gathered} 097 \\ \text { TWO3 } \end{gathered}$	$\begin{gathered} 096 \\ \text { TWO2 } \end{gathered}$
Integration value gain	2D	111 IVAL7	110 IVAL6	$\begin{gathered} 109 \\ \text { IVAL5 } \end{gathered}$	108 IVAL4	$\begin{gathered} 107 \\ \text { IVAL3 } \end{gathered}$	$\begin{gathered} 106 \\ \text { IVAL2 } \end{gathered}$	$\begin{gathered} 105 \\ \text { IVAL1 } \end{gathered}$	104 IVALO
Blank pulse V SET	2E	$\begin{gathered} 119 \\ \text { VBPS7 } \end{gathered}$	$\begin{gathered} 118 \\ \text { VBPS6 } \end{gathered}$	$\begin{gathered} 117 \\ \text { VBPS5 } \end{gathered}$	$\begin{gathered} 116 \\ \text { VBPS4 } \end{gathered}$	$\begin{gathered} \hline 115 \\ \text { VBPS3 } \end{gathered}$	$\begin{gathered} 114 \\ \text { VBPS2 } \end{gathered}$	$\begin{gathered} 113 \\ \text { VBPS1 } \end{gathered}$	$\begin{gathered} 112 \\ \text { VBPS0 } \end{gathered}$
Blank pulse V RESET	2 F	$\begin{gathered} \hline 127 \\ \text { VBPR7 } \end{gathered}$	$\begin{gathered} 126 \\ \text { VBPR } 6 \end{gathered}$	$\begin{gathered} 125 \\ \text { VBPR5 } \end{gathered}$	$\begin{gathered} 124 \\ \text { VBPR4 } \end{gathered}$	$\begin{gathered} 123 \\ \text { VBPR3 } \end{gathered}$	$\begin{gathered} \hline 122 \\ \text { VBPR2 } \end{gathered}$	$\begin{gathered} 121 \\ \text { VBPR1 } \end{gathered}$	$\begin{gathered} 120 \\ \text { VBPR } \end{gathered}$
ADCs Gain Control	30	$\begin{array}{r} 135 \\ X X X \end{array}$	$\begin{gathered} 134 \\ \text { WISL } \end{gathered}$	$\begin{gathered} 133 \\ \text { GAS3 } \end{gathered}$	$\begin{gathered} 132 \\ \text { GAD31 } \end{gathered}$	$\begin{gathered} 131 \\ \text { GAD30 } \end{gathered}$	$\begin{aligned} & 130 \\ & \text { GAS2 } \end{aligned}$	$\begin{gathered} 129 \\ \text { GAD21 } \end{gathered}$	$\begin{gathered} 128 \\ \text { GAD20 } \end{gathered}$
```MIX Control #3```	31*	$\begin{gathered} 143 \\ \text { AOSL1 } \end{gathered}$	$\begin{gathered} 142 \\ \text { AOSLO } \end{gathered}$	141 WIRS	$\begin{gathered} 140 \\ \text { WRSE } \end{gathered}$	$\begin{gathered} 139 \\ \text { SQPB } \end{gathered}$	$\begin{gathered} 138 \\ \text { AFCCS } \end{gathered}$	$\begin{gathered} 137 \\ \text { VBLKA } \end{gathered}$	$\begin{gathered} 136 \\ \text { PULIO } \end{gathered}$
Integrationvalue white peak	32	$\begin{gathered} 151 \\ \text { WVAL7 } \end{gathered}$	$\begin{gathered} 150 \\ \text { WVAL6 } \end{gathered}$	$\begin{gathered} 149 \\ \text { WVAL5 } \end{gathered}$	$\begin{gathered} 148 \\ \text { WVAL4 } \end{gathered}$	$\begin{gathered} 147 \\ \text { WVAL3 } \end{gathered}$	$\begin{gathered} 146 \\ \text { WVAL2 } \end{gathered}$	$\begin{aligned} & 145 \\ & \text { WVAL1 } \end{aligned}$	$\begin{aligned} & 144 \\ & \text { WVALO } \end{aligned}$
MIX Control \#4	33	$\begin{gathered} 159 \\ \text { OFTS } \end{gathered}$	$\begin{aligned} & 158 \\ & X X X \end{aligned}$	$\begin{gathered} 157 \\ \text { CHSB } \end{gathered}$	$\begin{aligned} & 156 \\ & X X X \end{aligned}$	$\begin{gathered} 155 \\ \text { CAD3 } \end{gathered}$	$\begin{aligned} & 154 \\ & \text { CAD2 } \end{aligned}$	$\begin{aligned} & 153 \\ & x X x \end{aligned}$	$\begin{aligned} & 152 \\ & X X X \end{aligned}$

TABLE 11. IIC OCF1

Gain Update Level	34	$\begin{gathered} 167 \\ \text { MUD2 } \end{gathered}$			$\begin{gathered} 166 \\ \text { MUD1 } \end{gathered}$	$\begin{gathered} 165 \\ \text { GUDL5 } \end{gathered}$	$\begin{gathered} 164 \\ \text { GUDL4 } \end{gathered}$	$\begin{gathered} 163 \\ \text { GUDL3 } \end{gathered}$	$\begin{gathered} 162 \\ \text { GUDL2 } \end{gathered}$	$\begin{gathered} 161 \\ \text { GUDL1 } \end{gathered}$	$\begin{gathered} 160 \\ \text { GUDL0 } \end{gathered}$
* Subadresses to be reset $->$ OD to 7 Dh , $0 E$ and 31 to 00 h after RESN $=0$ (CGCE=0) or POWER ON (CGCE=1) Note: All reserved XXX-bits must be set to LOW											
OCF1-Transmitter					Slave-Addresses 10011101b, 9Dh [IICSA=0] 10011111b, 9Fh [IICSA=1]						
BYTE NO. 0 (transmitted if SSTB $=0$ or after RESN has been 0 )											
VERSION STATUS BYTE				D7	D6	D5	D4	D3	D2	D1	D0
			ID7	ID6	ID5	ID4	ID3	1 D 2	ID1	IDO	
$\mathrm{ID}(7: 0) \quad \begin{aligned} & \text { Indicates the version number of the IC } \\ & \text { e.g. : SAA7110 V1 }=01 \mathrm{~h}\end{aligned}$											
BYTE NO. 1 (transmitted if SSTB = 1)											
STATUS BYTE FUNCTION			D7		D6	D5	D4	D3	D2	D1	D0
				STTC	HLCK	FIDT	GLIM	XXX	WIPA	ALTD	CODE
STTC Status Bit for horizontal time constant.    Status LOW: TV-time constant, HIGH: VCR-time-constant											
HLCK Status Bit for locked horizontal frequency.         Status LOW: locked, HIGH: unlocked											
FIDT Identification Bit for detected field frequency. Status LOW: $50 \mathrm{~Hz}, \mathrm{HIGH}: 60 \mathrm{~Hz}$											
GLIM Gain value for active luminance channel is limited (max or min), active HIGH											
XXX reserved											
WIPA White peak loop is activated, active HIGH											
ALTD	Status HIGH: Line-alternating color burst has been detected (PAL or SECAM)										
CODE	Status HIGH: Any color signal has been detected										

TABLE 12. IIC DETAIL SUOOh-04h(000-039)

\\|C-RECEIVER (SLAVE-ADDRESS 9Ch / 9Eh)									
DMSD-SQP SLAVE RECEIVER (SU OOh-19h)									
Subaddress 00 Increment delay IDEL									007-000
DECIMAL MULTIPLIER	DELAY TIME (STEP SIZE = 4/LLC)	CONTROL BITS*							
		IDEL7	IDEL6	IDEL5	IDEL4	IDEL3	IDEL2	IDEL1	IDELO
-1...	-4	1	1	1	1	1	1	1	1
... -195	-780 (max. value for 60 Hz systems)	0	0	1	1	1	1	0	1
... -236	-944 (max. value for 50 Hz systems)	0	0	0	1	0	1	0	0
... -256	-1024 (outside central counter)**	0	0	0	0	0	0	0	0
Where:   * A sign bit, designated A08 and internally set to HIGH, indicates values are always negative. ** The horizontal PLL does not operate in this condition. The system clock frequency is set to a value fixed by the last update and is within $+/-7.1 \%$ of the nominal frequency.									
Subaddress 01 Horizontal sync begin 50 Hz HSYB									015-008
DECIMAL MULTIPLIER	DELAY TIME (STEP SIZE = 2/LLC)	CONTROL BITS							
		HSYB7	HSYB6	HSYB5	HSYB4	HSYB3	HSYB2	HSYB1	HSYBO
+191...	-382	1	0	1	1	1	1	1	1
... -64	+128	1	1	0	0	, 0	0	0	0
Subaddress 02 Horizontal sync stop 50 Hz HSYS									023-016
DECIMAL MULTIPLIER	DELAY TIME (STEP   SIZE = 2/LLC)	CONTROL BITS							
		HSYS7	HSYS6	HSYS5	HSYS4	HSYS3	HSYS2	HSYS1	HSYSO
+191...	-382	1	0	1	1	1	1	1	1
... -64	+128	1	1	0	0	0	0	0	0
Subaddress 03 Horizontal clamp begin 50 Hz HCLB									031-024
DECIMAL MULTIPLIER	DELAY TIME (STEP SIZE = 2/LLC)	CONTROL BITS							
		HCLB7	HCLB6	HCLB5	HCLB4	HCLB3	HCLB2	HCLB1	HCLB0
+127...	-254	0	1	1	1	1	1	1	1
...-128	+256	1	0	0	0	0	0	0	0
Subaddress 04 Horizontal clamp stop 50 Hz HCLS									039-032
DECIMAL MULTIPLIER	DELAY TIME (STEP   SIZE = 2/LLC)	CONTROL BITS							
		HCLS7	HCLS6	HCLS5	HCLS4	HCLS3	HCLS2	HCLS1	HCLS0
+127...	-254	0	1	1	1	1	1	1	1
... -128	+256	1	0	0	0	0	0	0	0

TABLE 13. II DETAIL SU05h-06h(040-055)

Subaddress 05 Horizontal sync start after PHI1 50 Hz HPHI							047-040			
DECIMAL MULTIPLIER	DELAY TIME (STEP SIZE = 8/LLC		CONTROL BITS							
			HPHI7	HPHI6	HPHI5	HPHI4	HPHI3	HPHI2	HPHII	HPHIO
+127...	Forbid able range	ide availnter	0	1	1	1.	1	1	1	1
$\ldots+118$	Forbid able range	de availnter	0	1	1	1	0	1	1	0
+117...	$\begin{aligned} & -32 \mu \\ & \text { value } \end{aligned}$	gative	0	1	1	1	0	1	0	1
... -118	$\begin{array}{\|l\|} \hline+31.7 \\ \text { value } \\ \hline \end{array}$	positive	1	0	0	0	1	0	1	0
-119...	Forb able range	ide availnter	1	0	0	0	1	0	0	1
... -128	$\begin{aligned} & \text { Forbid } \\ & \text { able } \\ & \text { range } \end{aligned}$	ide availunter	1	0	0	0	0	0	0	0
Subaddress 06 Luminance control										055-048
Aperture factor APER										049-048
APERTURE FACTOR			CONTROL BITS							
			APER1				APERO			
0 0			0				0			
1 0.25			0				1			
20.5			1				0			
3 - 1			1				1			
Corner correction CORI							050			
			CONTROL BITS CORI							
0 0 (OFF)			0				0			
1 1			0				1			
2			1				0			
3 3			1				1			
Aperture bandpass (center frequency) BPSS   BANDPASS CENTER FREQ.							053-052			
			CONTROL BITS							
50 Hz		Hz	BPSS1				BPSS0			
4.6 MHz		Mhz	0				0			
4.3 MHz		MHz	0				1			
3.0 MHz		MHz	1				0			
3.2 MHz		MHz	1				1			

TABLE 13. II DETAIL SU05h-06h(040-055)

Prefilter active PREF	
PREFILTER	CONTROL BIT PREF
Bypassed	0
Active	1
Chrominance trap bypass BYPS	
CHROMA TRAP	MODE
Active	CVBS
Bypassed	S-Video

TABLE 14. II DETAIL SU07h-0Bh(056-095)


TABLE 14. II DETAIL SU07h-OBh(056-095)

Subaddress OB SECAM switch sensitivity SESE								095-088
SENSITIVITY	CONTROL BITS							
	SESE7	SESE6	SESE5	SESE4	SESE3	SESE2	SESE1	SESE0
LOW	1	1	1	1	1	1	1	1
MEDIUM	1	0	0	0	0	0	0	0
HIGH	0	0	0	0	0	0	0	0
Sensitivity HIGH means immediate sequence correction								

TABLE 15. IIC DETAIL SUOCh-0Eh(096-119)

Subaddress OC Gain control chrominance			103-096
AGC (Automatic Gain Control) - loop filter LFIS			102-101
AGC - LOOP FILTER TIME CONSTANT	CONTROL BITS		
	LFIS1	LFISO	
Slow	0	0	
Medium	0	1	
Fast	1	0	
Actual chroma gain 'frozen'	1	1	
Color on COLO		.	103
COLOUR ON	CONTROL BIT COLO		
Automatic color killer	0		
Color forced on	1		
Subaddress OD Standard/mode control			111-104
SECAM mode bit SECS			104
FUNCTION	CONTROL BIT SECS		
other standards	0		
SECAM	1		
Status Byte select SSTB			105
FUNCTION	CONTROL BIT SSTB		
Statusbyte is Byte 0 (see Transmitter)	0		
Statusbyte is Byte 1 (see Transmitter)	1		
HREF-POSITION select HRMV			106
FUNCTION	CONTROL BT HRMV		
HREF position like SAA7191   (8 LLC2 later)	0		
HREF normal position	1		

One Chip Frontend 1 (OFC1)

TABLE 15. IIC DETAIL SUOCh-OEh(096-119)

Real-time-outputs-mode select RTSE			
FUNCTION	CONTROL BIT RTSE		
PLIN switched to output pin 39   ODD switched to output pin 40	0		
HL switched to output pin 39   VL switched to output pin 40	1		
TVNCR-mode select VTRC	CONTROL BIT VTRC		
FUNCTION	0		
TV mode	1		
VTR mode	111		
Subaddress 0E I/O and clock control	CONTROL BIT GPSW		
General purpose switch GPSW	0		
FUNCTION			$119-112$
switches directly pin 64 GPSW   (application dependent) [VBLKA $=0$ 0	112		

TABLE 16. IIC DETAIL SUOEh-OFh(114-127)

Select chrominance input CHRS		114
FUNCTION	CONTROL BIT CHRS	
controlled by BYPS (subadress 06)	0	
chroma input is $\mathrm{CHR}(7: 0)$	1	
Output enable YUV-data OEYC		115
FUNCTION	CONTROL BIT OEYC	
YUV-bus high impedance/input	0	
Output YUV-bus active	1	
Output enable horizontal/vertical sync OEHV		116
FUNCTION	CONTROL BIT OEHV	
HS, HREF and VS high impedance/inputs	0	
Output HS, HREF and VS active	1	
Horizontal PLL clock HPLL		119
FUNCTION	CONTROL BIT HPLL	
PLL closed	0	
PLL open, horizontal frequency fixed	1	

TABLE 16. IIC DETAIL SUOEh-OFh(114-127)

Subaddress OF Control number 1			127-120
Luminance delay compensation YDEL			122-120
LUMINANCE DELAY COMPENSATION (steps in 2/LLC)	CONTROL BITS		
	YDEL2	YDEL1	YDELO
0	0	0	0
3	0	1	1
-4	1	0	0
Enable or disable of sync and clamp pulses (HSY, HCL) SCEN			124
FUNCTION	CONTROL BIT SCEN		
Disable sync and clamp (set to HIGH)	0		
Enable sync and clamp	1		
SECAM cross color reduction SXCR			125
FUNCTION	CONTROL BIT SXCR		
Reduction OFF	0		
Reduction ON	1		
Field selection FSEL			126
FUNCTION	CONTROL BIT FSEL		
$50 \mathrm{~Hz}, 625$ lines	0		
$60 \mathrm{~Hz}, 525$ lines	1		
Automatic field detection AUFD			127
FUNCTION	CONTROL BIT AUFD		
Field state direct controlled via FSEL	0		
Automatic field detection	1		

TABLE 17. IIC DETAIL SU10h-13h(128-158)

Subaddress 10 Control number 2			135-128
Vertical noise reduction VNOI			129-128
FUNCTION	CONTROL BITS		
	VNOII	VNOIO	
Normal mode	0	0	
Searching mode	0	1	
Free running mode	1	0	
Vertical noise reduction bypassed	1	1	
HREF select HRFS			130
FUNCTION			
HREF matched to YUV output			
HREF matched to CVBS input			

One Chip Frontend 1 (OFC1)

TABLE 17. IIC DETAIL SU10h-13h(128-158)


TABLE 18. IIC DETAIL SU14h-18h(160-199)

Subaddress 14 Horizontal sync begin 60 Hz HS6B
167-160

DECIMAL MULTIPLIER	DELAY TIME (STEP   SIZE = 2/LLC)	CONTROL BITS							
		HS6B7	HS6B6	HS6B5	HS6B4	HS6B3	HS6B2	HS6B1	HS6B0
+191...	-382	1	0	1	1	1	1	1	1
... -64	+128	1	1	0	0	0	0	0	0

Subaddress 15 Horizontal sync stop 60 Hz HS6S
175-168

DECIMAL MULTIPLIER	DELAY TIME (STEP SIZE $=2 /$ LLC $)$	CONTROL BITS							
		HS6S7	HS6S6	HS6S5	HS6S4	HS6S3	HS6S2	HS6S1	HS6S0
+191...	-382	1.	0	1	1	1.	1	1	1
... -64	+128	1	1	0	0	0	0	0	0

TABLE 18. IIC DETAIL SU14h-18h(160-199)

Subaddress 16 Horizontal clamp begin 60 Hz HC6B									183-176
DECIMAL MULTIPLIER	DELAY TIME (STEP SIZE = 2/LLC)	CONTROL BITS							
		HC6B7	HC6B6	HC6B5	HC6B4	HC6B3	HC6B2	HC6B1	HC6B0
+127...	-254	0	1	1	1	1	1	1	1
... -128	+256	1	0	0	0	0	0	0	0
Subaddress 17 Horizontal clamp stop 60 Hz HC6S									191-184
DECIMAL MULTIPLIER	DELAY TIME (STEP SIZE = 2/LLC)	CONTROL BITS							
		HCL67	HC6S6	HC6S5	HC6S4	HC6S3	HC6S2	HC6S1	HC6SO
+127...	-254	0	1	1	1	1	1	1	1
... -128	+256	1	0	0	0	0	0	0	0
Subaddress 18 Horizontal sync start after PHI1 60 Hz HP6I									199-192
DECIMAL MULTIPLIER	DELAY TIME (STEP SIZE $=8 /$ LLC	CONTROL BITS							
		HP617	HP6I6	HP615	HP614	HP613	HP612	HP611	HP610
+127...	Forbidden; outside available central counter range	0	1	1	1	1	1	1	1
... +98	Forbidden; outside available central counter range	0	1	1	0	0	0	1	0
+97...	-32 $\mu \mathrm{s}$ (max. negative value)	0	1	1	0	0	0	0	1
... -97	$+31.7 \mu \mathrm{~s}$ (max. positive value)	1	0	0	1	1	1	1	1
-98...	Forbidden; outside available central counter range	1	0	0	1	1	1	1	0
... -128	Forbidden; outside available central counter range	1	0	0	0	0	0	0	0

TABLE 19. IIC DETAIL SU19h(200-207)

Subaddress 19 Luminance brightness control								207-200
OFFSET	CONTROL BITS							
	BRIG7	BRIG6	BRIG5	BRIG4	BRIG3	BRIG2	BRIG1	BRIGO
255 (bright)	1	1	1	1	1	1	1	1
139 (CCIR-level)	1	0	0	0	1	0	1	1
128	1	0	0	0	0	0	0	0
0 (dark)	0	0	0	0	0	0	0	0

TABLE 20. IIC DETAIL SU20h(000-006)


TABLE 21. IIC DETAIL SU20h-21h(007-015)

Analog input disable 4 AIND4	CONTROL BIT AIND4
FUNCTION	0
Analog inputs 4 enabled	1
Analog inputs 4 disabled	007

TABLE 21. IIC DETAIL SU20h-21h(007-015)

Subaddress 21 Analog control \#2			015-008
Reference select channel 2 REFS2			008
FUNCTION	CONTROL BIT REFS2		
Automatic clamping active	0		
Reference level selected	1		
Reference select channel 3 REFS3			009
FUNCTION	CONTROL BIT REFS3		
Automatic clamping active	0		
Reference level selected	1		
Reference select channel 4 REFS4			010
FUNCTION	CONTROL BIT REFS4		
Automatic clamping active	0		
Reference level selected	1		
MUXC select channel 24 MS24			011
FUNCTION	CONTROL BIT MS24		
Analog MUX2 controlled by MX24	0		
Analog MUX2 controlled by MUXC	1		
Analog MUX2 control MX24			013-012
FUNCTION	CONTROL BITS MX24(1:0)		
	MX241	MX240	
ADDER mode	0	0	
ch2 on, ch4 off	0	1	
ch2 off, ch4 on	1	0	
both off	1	1	
MUXC select channel 34 MS34			014
FUNCTION	CONTROL BIT MS34		
Analog MUX3 controlled by MX34	0		
Analog MUX3 controlled by MUXC	1		
Vertical blanking control off VBCO			015
FUNCTION	CONTROL BIT VBCO		
vertical blanking on	0		
vertical blanking off	1		

TABLE 22. IIC DETAIL SU22h-23h(016-031)

Subaddress 22 Mix control \#1			023-016
Analog MUX3 control MX34			017-016
FUNCTION	CONTROL BITS MX34(1:0)		
	MX341	MX340	
ADDER mode	0	0	
ch3 on, ch4 off	0	1	
ch3 off, ch4 on	1	0	
both off	1	1	
Clamp function test CLTS			018
FUNCTION	CONTROL BIT CLTS		
normal clamp mode	0		
CLAAn, CLAUn adjusted via CLL32 value for testing (do not use)			
Fast digital multiplexing channel $2 / 3$ active MUYC			019
FUNCTION	CONTROL BIT MUYC		
normal mode on CHR channel	0		
multiplex mode on CHR channel for test purpose only (do not use)	1		
Luminance select YSEL	.		020
FUNCTION	CONTROL BIT YSEL		
AD converter $2->$ CVBS	0		
AD converter $3->$ CVBS	1		
Chrominance select CSEL			021
FUNCTION	CONTROL BIT CSEL		
AD converter $3->$ CHR (MUXC not inverse (MUYC=1))	0		
AD converter 2 -> CHR (MUXC inverse (MUYC=1))	1		
Automatic gain control GACO			023-022
	CONTROL BITS GACO(1:0)		
FUNCTION	GACO1	GACOO	
- automatic gain control off	0	0	
automatic gain control channel 2	0	1	
- automatic gain control channel 3	1	0	
automatic gain control channel 4	1	1	

One Chip Frontend 1 (OFC1)

TABLE 22. IIC DETAIL SU22h-23h(016-031)

Subaddress 23 Clamp level control 21 CLL21								031-024
DE	CONTROL BITS							
DECIMAL CLAMP LEVEL	CLL217	CLL216	CLL215	CLL214	CLL213	CLL212	CLL211	CLL210
1...	0	0	0	0	0	0	0	1
... 64...	0	1	0	0	0	0	0	0
... 128...	1	0	0	0	0	0	0	0
... 254	1	1	1	1	1	1	1	0

TABLE 23. IIC DETAIL SU24h-SU27h(032-063)

Subaddress 24 Clamp level control 22 CLL22								039-032
DECIMAL CLAMP LEVEL.	CONTROL BITS							
	CLL227	CLL226	CLL225	CLL224	CLL223	CLL222	CLL221	CLL220
1...	0	0	0	0	0	0	0	1
... 64...	0	1	0	0	0	0	0	0
... 128...	1	0	0	0	0	0	0	0
... 254	1	1	1	1	1	1	1	0
Subaddress 25 Clamp level control 31 CLL31								047-040
DECIMAL CLAMP LEVEL	CONTROL BITS							
	CLL317	CLL316	CLL315	CLL314	CLL313	CLL312	CLL311	CLL310
1...	0	0	0	0	0	0	0	1
... 64...	0	1	0	0	0	0	0	0
... 128...	1	0	0	0	0	0	0	0
... 254	1	1	1	1	1	1	1	0
Subaddress 26 Clamp level control 32 CLL32								055-048
DECIMAL CLAMP LEVEL	CONTROL BITS							
	CLL327	CLL326	CLL325	CLL324	CLL323	CLL322	CLL321	CLL320
1...	0	0	0	0	0	0	0	1
... 64...	0	1	0	0	0	0	0	0
... 128...	1	0	0	0	0	0	0	0
... 254	1	1.	1	1	1	1	1	0

## One Chip Frontend 1 (OFC1)

TABLE 23. IIC DETAIL SU24h-SU27h(032-063)


TABLE 24. IIC DETAIL SU28h-2Bh(064-093)


## One Chip Frontend 1 (OFC1)

TABLE 24. IIC DETAIL SU28h-2Bh(064-093)


TABLE 25. IIC DETAIL SU2Bh-2Eh(094-119)

Integration factor normal gain IGAI		
FUNCTION	CONTROL BITS IGAI(1:0)	
	IGAI1	IGAIO
slow	0	0
1	0	1
1	1	0
fast	1	1

TABLE 25. IIC DETAIL SU2Bh-2Eh(094-119)


TABLE 26. IIC DETAIL SU2Fh-31h(120-143)


TABLE 27. IIC DETAIL SU31h-33h(137-154)


## One Chip Frontend 1 (OFC1)

TABLE 27. IIC DETAIL SU31h-33h(137-154)

Subaddress 33 Mix control \#4		$159-152$
Clock select AD2 CAD2		154
FUNCTION	CONTROL BIT CAD2	
LLC	0	
for test purpose only (do not use)	1	
LLC/2		

TABLE 28. IIC DETAIL SU33h-34h(155-167)


FIGURE 20. SOURCE SELECTION OVERVIEW


TABLE 29. SOURCE SELECTION MANAGEMENT example table

INPUT	EXAMPLE1		EXAMPLE2		EXAMPLE3		EXAMPLE4	
	SIGNAL	MODE	SIGNAL	MODE	SIGNAL	MODE	SIGNAL	MODE
AIN21	CVBS1	0	CVBS1	0	Y1	6	Y1	6
AIN22	CVBS2	1	C2	7	C2	7	CVBS2	1
AIN31	CVBS3	2	Y2		Y2		CVBS3	2
AIN32	CVBS4	3	C3	8	C3	8	CVBS4	3
AIN41	CVBS5	4	Y3		Y3		CVBS5	4
AIN42	CVBS6	5	CVBS6	5	C1		C1	6

One Chip Frontend 1 (OFC1)

TABLE 30. SOURCE SELECTION MANAGEMENT example sheets


TABLE 31. SOURCE SELECTION MANAGEMENT IIC control

MODE	0	1	2	3	4	5	6	7	8	9
AIND4	1	1	1	1	0	0	0	1	0	
AIND3	1	1	0	0	1	1	1	0	0	
AIND2	0	0	1	1	1	1	0	0	1	
FUSE1   FUSEO	$\begin{aligned} & 1 \\ & 1 \end{aligned}$									
AINS4	X	X	X	X	1	0	0	X	1	
AINS3	X	X	1	0	X	X	0	1	0	
AINS2	1	0	X	X	X	X	1	0	X	
VBC0	0									
MS34	0									
MX241	0	0	X	X	X	X	0	0	1	
MX240	1	1	X	X	X	X	1	1	0	
MS24	0									
REFS4	1	1	1	1	0	0	0	1	0	
REFS3	1	1	0	0	1	1	1	0	0	
REFS2	0	0	1	1	1	1	0	0	1	
$\begin{array}{\|l} \text { GACO1 } \\ \text { GACOO } \end{array}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
CSEL	X	X	X	X	X	X	0	1	0	
YSEL	0	0	1	1	1	1	0	1	0	
MUYC	0									0
CLTS	0									0
MX341	X	X	0	0	1	1	1	0	0	
MX340	X	X	1	1	0	0	0	1	1	
CLS4	X	X	X	X	1	1	1	X	0	
GABL	0									
CLS3	X	X	0	0	0	0	1	0	1	
CLS2	0	0	X	X	X	X	0	1	X	
4 LSB	0011									0011
BYPS	0	0	0	0	0	0	1	1	1	
SU20h	D9h	D8h	BAh	B8h	7Ch	78h	59h	9Ah	3Ch	
SU21h	16h	16h	05h	05h	03h	03h	12h	14h	21h	
SU22h	40h	40h	91h	91h	D2h	D2h	42h	B1h	C1h	
SU2Ch	03h	03h	03h	03h	83h	83h	A3h	13h	23h	
SU06h	0XXXXXXX						1XXXXXXX			
SU30h*	44h	44h	60h	60h	60h	60h	44h	60h	44h	
Note: CLL21=65d, CLL22=128d, CLL31=65d, CLL32=128d, GAI4=15d, GAl3=15d, GAI2=15d; X set to 0 *Optional: values for AD-gain (+2LSB's gain resolution) active [not active: for all modes 40h]										

FIGURE 21. ANTI-ALIAS FILTER CURVE


### 19.4 CORING FUNCTION

TABLE 32. CORING


## One Chip Frontend 1 (OFC1)

### 19.5 LUMINANCE FILTER CURVES

TABLE 33. LUMINANCE FILTER CURVES


Luminance control SU06h, $50 \mathrm{~Hz} / \mathrm{CVBS}$ mode, prefilter on, coring off


TABLE 33. LUMINANCE FILTER CURVES


TABLE 33. LUMINANCE FILTER CURVES



One Chip Frontend 1 (OFC1)

TABLE 33. LUMINANCE FILTER CURVES


TABLE 33. LUMINANCE FILTER CURVES


One Chip Frontend 1 (OFC1)

## 20. IIC START SETUP

The following values are optimized for the EBU colour bar ( $100 \%$ white and $75 \%$ chrominance amplitude) input signal. The decoder output signal level fulfilis the CCIR Rec. 601 specification. The input of $100 \%$ color bar level is possible, but the signal (white) peak function reduces the digital luminance output. With another setup it is possible to proceed $100 \%$ color bar signal without luminance amplitude reduction. The way is to modify the AD input range for this input level by reducing the gain reference value (SBOT >06h) and adjusting the digital Y output level with contrast and brightness control.
. TABLE 34. IIC START SETUP

SUB	NAME		FUNCTION	VALUES(bin)								(hex)	
			7	6	5	4	3	2	1	0	start		
00	IDEL(7:0)			Increment delay	0	1	0	0	1	1	0	0	4C
01	HSYB(7:0)		Horizontal sync HSY begin 50Hz	0	0	1	1	1	1	0	0	3C	
02	HSYS(7:0)		Horizontal sync HSY stop 50Hz	0	0	0	0	1	1	0	1	OD	
03	HCLB(7:0)		Horizontal clamp HCL begin 50 Hz	1	1	1	0	1	1	1	1	EF	
04	HCLS(7:0)		Horizontal clamp HCL stop 50Hz	1	0	1	1	1	1	0	1	BD	
05	HPHI(7:0)		Horizontal sync after PHI1 50Hz	1	1	1	1	0	0	0	0	F0	
06	BYPS, PREF, BPSS(1:0), BFBY, CORI(1:0), APER(1:0)		Luminance control	0	0	0	0	0	0	0	0	00	
07	HUEC(7:0)		Hue control	0	0	0	0	0	0	0	0	00	
08	CKTQ(4:0), XXX		Colour killer threshold PAL	1	1	1	1	1	X	X	X	F8	
09	CKTS(4:0), XXX		Colour killer threshold SECAM	1	1	1	1	1	X	X	X	F8	
OA	PLSE(7:0)		PAL switch sensitivity	0	1	1	0	0	0	0	0	60	
OB	SESE(7:0)		SECAM switch sensitivity	0	1	1	0	0	0	0	0	60	
OC	COLO, LFIS(1:0), XXXXX		Gain control chrominance	0	0	0	X	X	X	X	X	00	
OD	VTRC, XXX, RTSE, HRMV, SSTB, SECS		Standard/Mode control	0	X	X	X	0	1	1	0	06	
OE	HPLL, XX, OEHV, OEYC, CHRS, X, GPSW		I/O and clock control	0	X	X	1	1	0	X	0	18	
OF	AUFD, FSEL, SXCR, SCEN, X, YDEL(2:0)		Control \#1	1	0	0	1	X	0	0	0	90	
10	XXXXX, HRFS, VNOI(1:0)		Control \#2	X	X	X	X	X	0	0	0	00	
11	CHCV(7:0)	PAL	Chroma gain reference	0	1	0	1	1	0	0	1	59	
		NTSC		0	0	1	0	1	1	0	0	2C	
12	SATN(7:0)		Chroma saturation	0	1	0	0	0	0	0	0	40	
13	CONT(7:0)		Luminance contrast	0	1	0	0	0	1	1	0	46	
14	HS6B(7:0)		Horizontal sync HSY begin 60Hz	0	1	0	0	0	0	1	0	42	
15	HS6S(7:0)		Horizontal sync HSY stop 60Hz	0	0	0	1	1	0	1	0	1A	
16	HC6B(7:0)		Horizontal clamp HCL begin 60 Hz	1	1	1	1	1	1	1	1	FF	
17	HC6S(7:0)		Horizontal clamp HCL stop 60 Hz	1	1	0	1	1	0	1	0	DA	
18	HP6I(7:0)		Horizontal sync after PHI1 60Hz	1	1	1	1	0	0	0	0	F0	
19	BRIG(7:0)		Luminance brightness	1	0	0	0	1	0	1	1	8B	
1A-1F	reserved												

TABLE 34. IIC START SETUP

20	AIND4, AIND3, AIND2, FUSE(1:0), AINS4, AINS3, AINS2		Analog control \#1	1	1	0	1	1	0	0	1	D9
21	VBCO, MS34, MX24(1:0), MS24, REFS4, REFS3, REFS2		Analog control \#2	0	0	0	1	0	1	1	0	16
22	GACO(1:0), CSEL, YSEL, MUYC, CLTS, MX34(1:0)		Mix control \#1	0	1	0	0	0	0	0	0	40
23	CLL21(7:0)		Clamp level control channel 21	0	1	0	0	0	0	0	1	41
24	CLL22(7:0)		Clamp level control channel 22	1	0	0	0	0	0	0	0	80
25	CLL31(7:0)		Clamp level control channel 31	0	1	0	0	0	0	0	1	41
26	CLL32(7:0)		Clamp level control channel 32	1	0	0	0	0	0	0	0	80
27	HOLD, GASL, GAI2(5:0)		Gain control analog \#1	0	1	0	0	1	1	1	1	4F
28	WIPE(7:0)		White peak control	1	1	1	1	1	1	1	0	FE
29	SBOT (7:0)		Sync bottom control	0	0	0	0	0	0	0	1	01
2A	IWIP(1:0), GAI3(5:0)		Gain control analog \#2	1	1	0	0	1	1	1	1	CF
2B	$\operatorname{IGAI}(1: 0), \mathrm{GAl4}(5: 0)$		Gain control analog \#3	0	0	0	0	1	1	1	1	OF
2 C	CLS4, X, CLS3, CLS2, XX, TWO3, TWO2		Mix control \#2	0	X	0	0	X	X	1	1	03
2D	IVAL(7:0)		Integration value gain	0	0	0	0	0	0	0	1	01
2E	VBPS(7:0)	50 Hz	Vertical blanking pulse SET	1	0	0	1	1	0	1	0	9A
		60 Hz		1	0	0	0	0	0	0	1	81
2 F	VBPR(7:0)	50 Hz	Vertical blanking pulse RESET	0	0	0	0	0	0	1	1	03
		60 Hz		0	0	0	0	0	0	1	1	03
30	$\begin{aligned} & \text { X, WISL, GAS3, GAD3(1:0), } \\ & \text { GAS2, GAD2(1:0) } \end{aligned}$		ADCs gain control	X	1	0	0	0	0	0	0	44
31	AOSL(1:0), WIRS, WRSE, SQPB, AFCCS, VBLKA, PULIO		Mix control \#3	0	1	1	1	0	1	0	1	75
32	WVAL(7:0)		Integration value white peak	0	0	0	0	0	0	1	0	02
33	OFTS, $X$, CHSB, $X$, CAD2, CAD3, XX		Mix control \#4	1	X	0	X	1	1	X	X	8C
34	MUD2, MUD1, GUDL(5:0)		Gain update level	0	0	0	0	0	0	1	1	03

Note: Values recommended for a CVBS (PAL or NTSC) signal, input AI21 via AVD channel 2 (MODE 0), and 4:2:2 CCIR output signal level; all X values must be set to LOW; HPHI and HP6| $\rightarrow$ application dependent.

One Chip Frontend 1 (OFC1)

## 21. APPLICATION SHEET

FIGURE 22. OCF1 APPLICATION SHEET


Note: Unused analog inputs should be not connected!

One Chip Frontend 1 (OFC1)
21.1 APPLICATION WITH EXTERNAL CGC

FIGURE 23. APPLICATION WITH EXTERNAL CGC


The OCF1 supports for special applications the use of an external Clock Generator Circuit (CGC, SAA7197). For normal operation the build in CGC fulfills all requirements.

One Chip Frontend 1 (OFC1)
22. STARTUP, SOURCE SELECT AND STANDARD DETECTION FLOW EXAMPLE

FIGURE 24. SOFTWARE FLOW EXAMPLE


MODE 0 Startup and STANDARD Procedure	
SUB 00 WRITE	
4C 3C OD EF BD F0 0	0000
F8 $\begin{array}{llllllll}\text { F8 } & 60 & 60 & 00 & 06 & 1\end{array}$	1890
002 C 404642 la F	FF DA
F0 8B 000000000	0000
D9 17404180418	80 4F
FE 01 CF OF 03018	8103
4475018803	
SUB 21 WRITE 16	IREFS OFF CLAMP AKTIV
READ 1	!Status?
\#STANDARD	
IF 1 exx0xxx00	! NO COLOR
THEN GOTO BW_50Hz	
ENDIF	
IF 1 exx $1 \times \mathrm{xx} 00$	INO COLOR
THEN GOTO BW_60Hz	
ENDIF	
SUB 06 WRITE 00	
ENDIF	
IF 1 exxixxxxx	! 60 Hz
THEN GOTO NTSC	
ENDIF	
IF 1 exxoxxxxx	150Hz
THEN GOTO PAL	
ENDIF	
\#BW_50Hz	
PRINT "BLACK\&WHITE"	
SUB 06 WRITE 80	
SUB 2E WRITE 9A	!VBPS
GOTO STOP	
\#BW_60Hz	
PRINT "BLACK\&WHITE"	
SUB 06 WRITE 80	
SUB 2E WRITE 81	!VBPS
GOTO STOP	
\#NTSC	
SUB OD WRITE 06	1SECS -> 0
SUB 11 WRITE 2C	1 CHCV
SUB 2E WRITE 81	!VBPS
PRINT "NTSC"	$\cdots$
GOTO STOP	
\#PAL	
SUB OD WRITE 06	1sECS $\rightarrow$ - 0
SUB 11 WRITE 59	! CHCV
SUB 2E WRITE 9A	!VBPS
PAUSE \% 150	1150 ms
IF 1 exxoxxx01	

```
THEN GOTO SECAM
ELSE PRINT "PAL"
GOTO STOP
```

\#SECAM
SUB OD WRITE 07 ISECS -> 1
PRINT "SECAM"
GOTO STOP
\#STOP

MODE 0 Source Select Procedure

SLAVE 878
SUB 06 WRITE 00 !CVBS MODE 0
SUB 20 WRITE D9 IAI2l ACTIVE
SUB 21 WRITE 17 !REFS ON
SUB 22 WRITE 40 IAD2->LUMA and CHROMA
SUB 2C WRITE 03 ICLAMP SELECT
SUB 30 WRITE 44 IGain AD2 active
SUB 31 WRITE 75 1AOSL -> 01b
SUB 21 WRITE 16 IREFS OFF CLAMP AKTIV

MODE 1 Source Select Procedure
SLAVE 878 !OCF1
SUB 06 WRITE 00 ICVBS MODE 1
SUB 20 WRITE D8 LAI22 ACTIVE
SUB 21 WRITE 17 IREFS ON
SUB 22 WRITE 40 IAD2->LUMA and CHROMA
SUB 2C WRITE 03 ICLAMP SELECT
SUB 30. WRITE 44 IGain AD2 active
SUB 31 WRITE 75 !AOSL -> 01b
SUB 21 WRITE 16 IREFS OFF CLAMP AKTIV

MODE 2 Source Select Procedure

SLAVE 878			IOCF1		
SUB 0	06 WRITE	00	! CVBS	MODE 2	
SUB 2	20 WRITE	BA	tAI31	ACTIVE	
SUB 2	21 WRITE	07	IREFS	ON	
SUB 2	22 WRITE	91	1AD3->	LUMA and	CHROMA
SUB 2	2C WRITE	03	ICLAMP	SELECT	
Sub 3	30 WRITE	60	IGain	AD3 activ	
SUB 3	31 WRITE	B5	!AOSL	-> 10b	
SUB 2	21 WRITE	05	IREFS	OFF CLAMP	AKTI

MODE 3 Source Select Procedure

## SLAVE 878 IOCF1

SUB 06 WRITE 00 !CVBS MODE 3
SUB 20 WRITE B8 IAI32 ACTIVE
SUB 21 WRITE 07 !REFS ON
SUB 22.WRITE 91 IAD3->LUMA and CHROMA
SUB 2C WRITE 03 ICLAMP SELECT
SUB 30 WRITE 60 !Gain AD3 active


MODE 5 Source Select Procedure

SLAVE $\% 78$	!OCF1
SUB 06 WRITE 00	!CVBS MODE 5
SUB 20 WRITE 78	!AI41 ACTIVE
SUB 21 WRITE 07	!REFS ON
SUB 22 WRITE D2	!AD3->LUMA and CHROMA
SUB 2C WRITE 83	!CLAMP SELECT
SUB 30 WRITE 60	!Gain AD3 active
SUB 31 WRITE B5	!AOSL $\rightarrow$ 10b
SUB 21 WRITE 03	!REFS OFF CLAMP AKTIV

MODE 6 Source Select Procedure

SLAVE 878	!OCF1
SUB 06 WRITE 80	!Y+C MODE 6
SUB 20 WRITE 59	!AI21=Y, AI42=C
SUB 21 WRITE 17	!REFS ON
SUB 22 WRITE 42	!AD2->LUMA, AD3->CHR
SUB 2C WRITE A3	!CLAMP SELECT
SUB 30 WRITE 44	!Gain AD2 active
SUB 31 WRITE 75	!AOSL -> 01
SUB 21 WRITE 12	!REFS OFF CLAMP AKTIV

MODE 7 Source Select Procedure

SLAVE $\% 78$	!OCF1
SUB 06 WRITE 80	!Y+C MODE 7
SUB 20 WRITE 9A	!AI31=Y, AI22=C
SUB 21 WRITE 17	!REFS ON
SUB 22 WRITE B1	!AD3->LUMA, AD2->CHR
SUB 2C WRITE 13	!CLAMP SELECT
SUB 30 WRITE 60	!Gain AD3 aCtive
SUB 31 WRITE B5	!AOSL -> 10b
SUB 21 WRITE 14	!REFS OFF CLAMP AKTIV

MODE 8 Source Select Procedure

SLAVE 878
SUB 06 WRITE 80 SUB 20 WRITE 3C
! OCF1
!Y+C MODE 8
! $\mathrm{AI} 41=\mathrm{Y}, \mathrm{AI} 32=\mathrm{C}$

```
SUB 21 WRITE 27 IREFS ON
```

SUB 21 WRITE 27 IREFS ON
SUB 22 WRITE C1 !AD2->LUMA, AD3->CHR
SUB 2C WRITE 23 !CLAMP SELECT
SUB 30 WRITE 44 !Gain AD2 active
SUB 31 WRITE 75 !AOSL -> 01
SUB 21 WRITE 21 IREFS OFF CLAMP AKTIV
IREFS OFF CLAMP AKTIV

```

\section*{SAA7110 programming example}

\section*{SAA7110 PROGRAMMING EXAMPLE}

Slave address is 9 C (IICSA=0) or 9E (IICSA=1)

\section*{FEATURES}
- Full multistandard video input capability (with Philips Video Decoder Chipset)
- Image resolution up to \(768 \times 576\) (full PAL or SECAM resolution)
- Data formats:
- RGB 15 packed
- RGB 24 packed
- YUV 16 packed; CCIR 601 4:2:2
- YUV 9 planar; Indeo® DVI compatible
- YUV 12 planar
- YUV 16 planar
- Capture Chipset:
- SAA7151B (CCIR decoder)
- SAA7191B (square pixel decoder)
- SAA7196 (square pixel decoder with scaler and clock)
- SAA7110 (one chip decoder)
- SAA7186 (digital video scaler)
- 1024 byte FiFO memory size
- Programmable minimum burst transfer size
- Even and odd fields can be sent to independent destinations
- Zero wait state PCI burst writes
- Field rate sent to target can be throttled (field masking)
- 160-pin plastic quad flat pack
- Power consumption approximately 1.0 Watt

\section*{APPLICATIONS}
- Real-time video capture to graphics RAM and/or CPU RAM
- PCl multi-media designs
- Feed video to all relevant PC destinations (frame buffers and SW/HW codecs)

\section*{GENERAL DESCRIPTION}

The SAA7116 is a video capture IC that serves as an interface between the Philips video capture chipset and the PCl bus. The digitized video which can incorporate filtering, scaling and translation is presented to the IC in one of three formats: RGB 5:5:5, YUV 4:2:2, or RGB 8:8:8. The SAA7116 contains FIFOs to decouple the real time video data stream from the PCl bus and provides DMA channels to deliver the video data in packed format (i.e., for local display) and in planar format (i.e., for compression). The SAA7116 is both a PCl bus master and slave. It operates in master mode to transfer video data across the PCI bus and operates in slave mode to program local registers.

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
EXTENDED \\
TYPE NUMBER
\end{tabular}} & PINS & PIN POSITION & MATERIAL & CODE \\
\cline { 2 - 5 } & 160 & QFP & Plastic & SOT225 \\
\hline
\end{tabular}

BLOCK DIAGRAM

©indeo is a registered trademark of Intel Corporation.

\section*{PIN CONFIGURATION}

\section*{PIN DESCRIPTIONS}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{SYMBOL \({ }^{3}\)} & \multirow[t]{2}{*}{PIN NUMBER} & \multicolumn{2}{|r|}{SIGNAL TYPE} & \multirow[t]{2}{*}{DESCRIPTION} \\
\hline & & \[
\begin{array}{|c|}
\hline \text { INPUT/ } \\
\text { OUTPUT } \\
\text { TYPE² }
\end{array}
\] & SIGNAL DIRECTION & \\
\hline \multicolumn{5}{|l|}{PCI Address and Data Pins} \\
\hline AD0 & 107 & 3-State & 1/O & Address and Data are multiplexed on the same PCl pins. bit 0 \\
\hline AD1 & 106 & 3-State & I/O & Address and Data are multiplexed on the same PCl pins. bit 1 \\
\hline AD2 & 104 & 3-State & 1/0 & Address and Data are multiplexed on the same PCl pins. bit 2 \\
\hline AD3 & 101 & 3-State & I/O & Address and Data are multiplexed on the same PCl pins. bit 3 \\
\hline AD4 & 100 & 3-State & 1/O & Address and Data are multiplexed on the same PCl pins. bit 4 \\
\hline AD5 & 97 & 3-State & 1/0 & Address and Data are multiplexed on the same PCl pins. bit 5 \\
\hline AD6 & 95 & 3-State & I/O & Address and Data are multiplexed on the same PCl pins. bit 6 \\
\hline AD7 & 94 & 3-State & 1/0 & Address and Data are multiplexed on the same PCl pins. bit 7 \\
\hline AD8 & 90 & 3-State & 1/0 & Address and Data are multiplexed on the same PCI pins. bit 8 \\
\hline AD9 & 89 & 3-State & I/O & Address and Data are multiplexed on the same PCl pins. bit 9 \\
\hline AD10 & 87 & 3-State & 1/O & Address and Data are multiplexed on the same PCl pins. bit 10 \\
\hline AD11 & 85 & 3-State & 1/O & Address and Data are multiplexed on the same PCl pins. bit 11 \\
\hline AD12 & 84 & 3-State & 1/0 & Address and Data are multiplexed on the same PCl pins. - bit 12 \\
\hline AD13 & 82 & 3-State & 1/O & Address and Data are multiplexed on the same PCl pins. bit 13 \\
\hline AD14 & 78 & 3-State & 1/0 & Address and Data are multiplexed on the same PCl pins. bit 14 \\
\hline AD15 & 77 & 3-State & 1/0 & Address and Data are multiplexed on the same PCl pins. \(\quad\) bit 15 \\
\hline AD16 & 54 & 3-State & I/O & Address and Data are multiplexed on the same PCl pins. \(\quad\) bit 16. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{SYMBOL \({ }^{3}\)} & \multirow[t]{2}{*}{PIN NUMBER} & \multicolumn{2}{|r|}{SIGNAL TYPE} & \multirow[t]{2}{*}{DESCRIPTION} \\
\hline & & INPUT/ OUTPUT TYPE \({ }^{2}\) & SIGNAL DIRECTION & \\
\hline AD17 & 52 & 3-State & 1/0 & Address and Data are multiplexed on the same PCI pins. bit 17 \\
\hline AD18 & 51 & 3-State & 1/0 & Address and Data are multiplexed on the same PCI pins. bit 18 \\
\hline AD19 & 49 & 3-State & 1/0 & Address and Data are multiplexed on the same PCl pins. bit 19 \\
\hline AD20 & 47 & 3-State & 1/0 & Address and Data are multiplexed on the same PCI pins. bit 20 \\
\hline AD21 & 46 & 3-State & 1/0 & Address and Data are multiplexed on the same PCI pins. bit 21 \\
\hline AD22 & 44 & 3-State & \(1 / 0\) & Address and Data are multiplexed on the same PCI pins. bit 22 \\
\hline AD23 & 42 & 3-State & 1/0 & Address and Data are multiplexed on the same PCI pins. bit 23 \\
\hline AD24 & 36 & 3-State & 1/0 & Address and Data are multiplexed on the same PCI pins. bit 24 \\
\hline AD25 & 34 & 3-State & 1/O & Address and Data are multiplexed on the same PCI pins. bit 25 \\
\hline AD26 & 33 & 3-State & 1/0 & Address and Data are multiplexed on the same PCI pins. bit 26 \\
\hline AD27 & 31 & 3-State & 1/0 & Address and Data are multiplexed on the same PCI pins. bit 27 \\
\hline AD28 & 29 & 3-State & \(1 / 0\) & Address and Data are multiplexed on the same PCl pins. bit 28 \\
\hline AD29 & 28 & 3-State & \(1 / 0\) & Address and Data are multiplexed on the same PCl pins. bit 29 \\
\hline AD30 & 26 & 3-State & \(1 / 0\) & Address and Data are multiplexed on the same PCI pins. bit 30 \\
\hline AD31 & 24 & 3-State & 1/0 & Address and Data are multiplexed on the same PCI pins. bit 31 \\
\hline C/BE3\# & 38 & 3-State & 1/0 & Bus Command and Byte Enables are multiplexed on the same PCI pins. Lane 3 \\
\hline C/BE2\# & 56 & 3-State & \(1 / 0\) & Bus Command and Byte Enables are multiplexed on the same PCI pins. Lane 2 \\
\hline C/BE1\# & 75 & 3-State & 1/0 & Bus Command and Byte Enables are multiplexed on the same PCI pins. Lane 1 \\
\hline C/BEO\# & 92 & 3-State & 1/0 & Bus Command and Byte Enables are multiplexed on the same PCI pins. Lane 0 \\
\hline PAR & 73 & 3-State & 1/0 & Parity is even parity across AD[31..0] and C/BE[3..0]\#. PAR is stabel and valid one
clock after the address phase. clock after the address phase. \\
\hline \multicolumn{5}{|l|}{PCI Interface Control Pins} \\
\hline FRAME\# & 57 & s/t/s & 1/0 & Cycle Frame is driven to indicate the beginning and duration of an access. \\
\hline IRDY\# & 62 & s/t/s & 1/0 & Intiator Ready indicates the ability to complete the current data phase of the transaction as busmark. \\
\hline TRDY\# & 63 & s/t/s & //O & Target Ready indicates the ability to complete the current data phase of the transaction as receiver. \\
\hline STOP\# & 68 & s/t/s & 1/0 & Stop indicates the current target is requesting the master to stop the current transaction. \\
\hline IDSEL & 39 & 1 & 1 & Initialization device Select is used as a chip select during configuration read and write transactions. \\
\hline DEVSEL\# & 67 & s/t/s & 1/0 & Device Select, when actively driven, indicates the driving device has decoded its address as the target of the current access. \\
\hline \multicolumn{5}{|l|}{PCI System Control Pins} \\
\hline PRST\# & 17 & 1 & 1 & PCI Reset on PCI bus. If PRST\# is asserted, all PCl output signals are 3-stated. \\
\hline PCLK & 18 & 1 & 1 & PCI Clock provides timing for all transactions on PCl and is an input. All other PCl signals, except PRST\#, INTA\#, INTB\#, INTC\# AND INTD\#, are sampled on the rising edge of PCLK, and all other timing parameters are defined with respect to this edge. \\
\hline INT_PINO & 110 & 1 & 1 & Interrupt address designation, defines PCI interrupt number. Do not connect. \\
\hline INT_PIN1 & 111 & 1 & 1 & Interrupt address designation, defines PCI interrupt number. Do not connect. \\
\hline INT_PIN2 & 112 & 1 & 1 & Interrupt address designation, defines PCI interrupt number. Do not connect. \\
\hline INT\# & 16 & OD & 0 & PCI Interrupt is used to request an interrupt. Interrupt number is defined by interrupt address pins 110, 111, 112. \\
\hline REQ\# & 23 & 3-State & 0 & Request to the arbitor, that this device desires use of the bus. \\
\hline GNT\# & 19 & 3-State & 1 & Grant indicates that access to the bus has been granted. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{SYMBOL \({ }^{3}\)} & \multirow[t]{2}{*}{PIN NUMBER} & \multicolumn{2}{|r|}{SIGNAL TYPE} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{DESCRIPTION}} \\
\hline & & INPUT/ OUTPUT TYPE \({ }^{2}\) & SIGNAL DIRECTION & & \\
\hline \multicolumn{6}{|l|}{Video Pins} \\
\hline VRO31 & 158 & 1 & 1 & Video Data from Video input source, e.g., SAA7196 & bit 31 \\
\hline VRO30 & 157 & 1 & 1 & Video Data from Video input source, e.g., SAA7196 & bit 30 \\
\hline VRO29 & 156 & 1 & 1 & Video Data from Video input source, e.g., SAA7196 & bit 29 \\
\hline VRO28 & 155 & 1 & 1 & Video Data from Video input source, e.g., SAA7196 & bit 28 \\
\hline VRO27 & 154 & 1 & I & Video Data from Video input source, e.g., SAA7196 & bit 27 \\
\hline VRO26 & 153 & 1 & 1 & Video Data from Video input source, e.g., SAA7196 & bit 26 \\
\hline VRO25 & 152 & 1 & 1 & Video Data from Video input source, e.g., SAA7196 & bit 25 \\
\hline VRO24 & 151 & 1 & 1 & Video Data from Video input source, e.g., SAA7196 & bit 24 \\
\hline VRO23 & 150 & 1 & 1 & Video Data from Video input source, e.g., SAA7196 & bit 23 \\
\hline VRO22 & 149 & 1 & 1. & Video Data from Video input source, e.g., SAA7196 & bit 22 \\
\hline VRO21 & 148 & 1 & 1 & Video Data from Video input source, e.g., SAA7196 & bit 21 \\
\hline VRO20 & 147 & 1 & 1 & Video Data from Video input source, e.g., SAA7196 & bit 20 \\
\hline VRO19 & 146 & 1 & 1 & Video Data from Video input source, e.g., SAA7196 & bit 19 \\
\hline VRO18 & 145 & 1 & 1 & Video Data from Video input source, e.g., SAA7196 & bit 18 \\
\hline VRO17 & 144 & I & 1 & Video Data from Video input source, e.g., SAA7196 & bit 17 \\
\hline VRO16 & 139 & 1 & 1 & Video Data from Video input source, e.g., SAA7196 & bit 16 \\
\hline VRO15 & 138 & 1 & 1 & Video Data from Video input source, e.g., SAA7196 & bit 15 \\
\hline VRO14 & 137 & 1 & 1 & Video Data from Video input source, e.g., SAA7196 & bit 14 \\
\hline VRO13 & 133 & 1 & 1 & Video Data from Video input source, e.g., SAA7196 & bit 13 \\
\hline VRO12 & 132 & 1 & 1 & Video Data from Video input source, e.g., SAA7196 & bit 12 \\
\hline VRO11 & 131 & 1 & 1 & Video Data from Video input source, e.g., SAA7196 & bit 11 \\
\hline VRO10 & 130 & 1 & 1 & Video Data from Video input source, e.g., SAA7196 & bit 10 \\
\hline VRO9 & 129 & 1 & 1 & Video Data from Video input source, e.g., SAA7196 & bit 9 \\
\hline VRO8 & 128 & 1 & 1 & Video Data from Video input source, e.g., SAA7196 & bit 8 \\
\hline \multicolumn{6}{|l|}{Video Control} \\
\hline PXQ & 123 & 1 & 1 & Pixel Qualifier, e.g., from VRO0 of SAA7196 & \\
\hline LQN & 124 & 1 & 1 & Line Qualifier, e.g., from VRO1 of SAA7196 & \\
\hline VGT & 126 & 1 & 1 & Vertical Gate signal, e.g., from VRO5 of SAA7196 & \\
\hline HGT & 125 & 1 & 1 & Horizontal Gate signal, e.g., from VRO4 of SAA719 & \\
\hline SDA & 13 & OC & 1/0 & Data signal of \(1^{2} \mathrm{C}\) bus & \\
\hline SCL & 12 & OC & I/O & Clock signal of \(\mathrm{I}^{2} \mathrm{C}\) bus, single master operation only & \\
\hline OE & 127 & 1 & 1 & Odd-even field indicator, e.g., from VRO6 of SAA71 & \\
\hline VCLK & 7 & 1 & 1 & Video input clock, e.g., same as VCLK pin of SAA7 & \\
\hline VRSTN\# & 9 & 1 & 0 & Video Reset; to reset video capture device, e.g., SA & \\
\hline TN & 117 & 1 & 1 & Test Pin, pull high or leave unconnected for normal & \\
\hline PO & 118 & 1 & 0 & Test Pin, don't connect. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{SYMBOL \({ }^{3}\)} & \multirow[t]{2}{*}{PIN NUMBER} & \multicolumn{2}{|r|}{SIGNAL TYPE} & \multirow[t]{2}{*}{DESCRIPTION} \\
\hline & & INPUT/ TYPE \({ }^{2}\) & SIGNAL DIRECTION & \\
\hline \multicolumn{5}{|l|}{Miscellaneous} \\
\hline VCC5 & \(1,2,8\),
15,20,
25,30,
35,40,
43,48,
53,58,
61,64,
66,71,
76,81,
83,88,
93,98,
99,105,
113,119,
120,134,
140,143 & - & \% & Supply power \\
\hline GND & \begin{tabular}{l}
10, 11, \\
21, 22, \\
27, 32, \\
37, 41, \\
45, 50, \\
55, 59, \\
60, 65, \\
69, 74, \\
79, 80, \\
86, 91, \\
96, 102, \\
103, 108, \\
109, 121, \\
122, 135, \\
141, 142, \\
159, 160
\end{tabular} & & . & Ground \\
\hline NC & \[
\begin{gathered}
3,4,5,6, \\
14,70, \\
72,114, \\
115,116, \\
161
\end{gathered}
\] & & - & No Connection \\
\hline
\end{tabular}

\section*{NOTES:}
2. PCl Signal Type Definitions:

Input is a standard input-only signal.
0 Totem Pole Output is a standard active driver.
3 -State \(\quad 3\)-State is a bi-directional, 3 -State input/output pin.
s/t/s Sustained 3-State is an active log 3-State signal owned and driven by one and only one agent at a time. The agent that drives an \(\mathrm{s} / \mathrm{/}\) s pin low must drive it high for at least one clock before letting it float. A new agent cannot start driving a s/t/s signal any sooner than one clock after the previous owner 3 -states it. A pullup is required to sustain the inactive state until another agent drives it, and must be provided by the contral resource.
OD Open Drain allows multiple devices to share as a wire-OR.
OC Open Collector
3. The symbol \# at the end of a signal name indicates that the active state occurs when the signal is at a low voltage.

\subsection*{1.0 INTRODUCTION}

\subsection*{1.1 Global Overview}

Figure 3 is a block diagram of a Multimedia System. The SAA7116 IC along with the Philips video capture chipset provide the solution for the Capture portion of this diagram.

The SAA7116 is a video capture IC that serves as an interface between the Philips video capture chipset and the PCl bus. The Philips video capture chipset provides digitized, translated, filtered and scaled data to the SAA7116 IC in one of three formats: RGB 5-5-5, YUV 4:2:2, or RBG 8-8-8. The SAA7116 contains FIFOs to decouple the real time input video data stream from the PCI bus and provides DMA channels to deliver the video data in packed format (i.e., for local display) and planar format (i.e., for compression).
The SAA7116 is both a PCl bus master and slave. It operates in master mode to transfer
video data across the PCl bus and operates in slave mode to program local control registers of SAA7116.

\subsection*{1.1.1 Input Interface Description}

The Philips video capture chipset receives an NTSC, PAL, SECAM composite interlaced or non-interlaced analog video signal, provides analog to digital conversion, NTSC to RGBYUV translation, and image filtering and scaling. The Philips video capture chipset, e.g., TDA8708A and SAA7196, outputs the video data to the SAA7116 IC in one of three formats: YUV 4:2:2 (16 bit), RGB 5-5-5 (15 bit) or RGB 8-8-8 (24 bit).

\subsection*{1.1.2 Output Interface Requirements} During active capturing of video data, the master PCl state machine will request the bus once image data has been received and an appropriate address has been generated. It will generate burst writes of video data onto the PCl bus to frame buffer memory or
system memory as specified by the local DMA channel control registers.
There are six DMA address registers. The DMA address and stride registers can be programmed to send even and odd fields of an interlaced video stream to the same location or even fields to one location and odd fields to another. Data is transferred in both packed and planar modes. Data format and resolution can be programmed on a field by field basis.

\subsection*{1.2 Reference Documents}

Philips Desktop Video Data Handbook 1994
PCI Local Bus Specification Obtain from PCI Special Interest Group
(503)696-6111 - Help Line
(800)433-5177 - USA only documentation
(503)797-4207 - outside USA documentation

Figure 3. Multimedia System Configuration

\subsection*{2.0 FUNCTIONAL DESCRIPTIONS}

\subsection*{2.1 Block Diagram}

The Block Diagram on page 3-185 illustrates the main design partitions of the SAA7116 IC. Signal polarities are not indicated on any of the diagrams. Please rrefer to Pin Description.

\subsection*{2.2 FIFO}

The FIFO block accepts data from the Philips Video Decoder or Scaler in three different pixel formats (YUV16, RGB16, and RGB24), assembles this data into 32 -bit words, buffers the data in a FIFO memory, and, in conjunction with the PCl bus master control logic, transmits the image data on to the PCl bus.
The FIFO Input Control Logic samples LNQ and PXQ to determine if the data driven by the Video Decoder or Scaler is valid and should be written into the FIFO.
Active to inactive transitions on HGT and VGT indicate an end of line (EOL) or end of field/frame (EOF) has occurred.

\subsection*{2.2.1 Pixel FIFO}

The pixel FIFO acts as a buffer between the slow, steady pixel data stream generated by the Video Decoder or Scaler and the fast, "bursty" PCl bus.

\subsection*{2.3 Address Generator}

The Address Generator provides the DMA address to be driven onto PCl for a bus cycle. There are 6 DMA address registers: 3 even registers and 3 odd registers. Each DMA register has an associated stride register.

\subsection*{2.4 Address/Data multiplexer}

The Address/Data MUX controls whether address and a bus command or data and byte enables are driven onto the PCI bus. It is controlled by the Master Control Logic.

\subsection*{2.5 Master Control Block}

The Master Control Block orchestrates the flow of address and data onto the PCI bus during master cycles.

Once a DMA address is generated, the Master Control Logic asserts REQ to the PCI
bus and waits for the assertion of GNT. Once GNT is asserted, the Master Control Block asserts FRAME, and drives the address and bus command onto the PCI bus. On the subsequent clock, the Master Control Logic switches the Address/Data MUX to drive data and byte enables and asserts IRDY. The SAA7116 supports 0 WS burst writes.

\subsection*{2.6 Master Latency Timer}

The Master Latency Timer is an 8 bit counter. When the Master Control Logic asserts FRAME, the Master Latency Timer/Counter is enabled. If FRAME is de-asserted before the counter expires, the Master Latency Timer is meaningless. If the counter expires before the de-assertion of FRAME, or other STOP condition is asserted, and GNT is deasserted, the bus cycle will be terminated.

\subsection*{2.7 Slave Logic}

The Slave Logic decodes PCl cycles to memory and configuration registers. Some of these local registeres are transmitted on the \(1^{2} \mathrm{C}\) interface to the \(\mathrm{I}^{2} \mathrm{C}\)-controlled ICs of the video capture IC set.

Digital video to PCl interface

\subsection*{2.8 Programmable Registers of SAA7116}

\section*{REGISTER TYPES}

RO \(x\). Read-only with value \(x\). Writing to this type of register has no effect.
RW Read/write. All bits are initialized to 0 upon hardware reset.
RS Read/set. This register type may be read, or be set to 1 by writing a 1 into the corresponding bit location. Writing 0 has no effect. Events internal to SAA7116 can cause this register type to be reset to 0 . All bits are initialized to 0 upon hardware reset:

RR Read/reset. This register type may be read, or be reset to 0 by writing a 1 into the corresponding bit location. Writing 0 has no effect. Events internal to the SAA 7116 can cause this register type to be set to 1. All bits are initialized to 0 upon hardware reset.

\section*{NOTES:}
1. All bit positions not listed in the following register description are of type RO Ob.
2. Registers marked with an * are actively used while capture is enabled, and should only be changed when the SAA7116 capture is inactive.
\(0^{*}\) registers can be changed during even field capture.
\(e^{*}\) registers can be changed during odd field capture.
3. Register types marked with ** are used during \(\mathrm{I}^{2} \mathrm{C}\) cycles, and should only be changed when the \(I^{2} \mathrm{C}\) controller is inactive.
2.8.1 PCl Configuration Registers

\subsection*{2.8.2 Memory Registers}

NOTE: Memory registers are accessed through PCl control base memory address register 10 h with appropriate offset shown below.

Digital video to PCI interface

Digital video to PCI interface

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum Rating system (IEC 134).
\begin{tabular}{|l|l|c|c|c|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & MIN. & MAX & UNIT \\
\hline\(V_{D D}\) & Supply voltage & -0.5 & 6.5 & V \\
\hline \(\mathrm{~V}_{\mathbf{I}}\) & DC input voltage on all pins & -0.5 & \(\mathrm{~V}_{\mathrm{DD}}\) & V \\
\hline \(\mathrm{I}_{\mathrm{DD}}\) & Supply current & - & 200 & mA \\
\hline \(\mathrm{P}_{\text {tot }}\) & Total power dissipation & 0 & 1 & W \\
\hline \(\mathrm{~T}_{\text {stg }}\) & Storage temperature range & -65 & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & Operating ambient temperature range & 0 & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{V}_{\text {ESD }}\) & Electrostatic handling \({ }^{1}\) for all pins & - & \(\pm 2000\) & V \\
\hline
\end{tabular}

NOTES:
1. Equivalent to discharging a 150 pF capacitor through a \(1.5 \mathrm{k} \Omega\) series resistor.

DC CHARACTERISTICS
\(V_{D D}=4.75\) to \(5.25 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=0\) to \(70^{\circ} \mathrm{C}\), unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITION & MIN. & MAX. & UNIT \\
\hline \(V_{D D}\) & Supply voltage & & 4.75 & 5.25 & \(\checkmark\) \\
\hline \(I_{P}\) & Total supply current & Inputs LOW; no output loads & & 200 & mA \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & Input HIGH voltage & & 2.0 & \(\mathrm{V}_{\mathrm{Cc}+}+0.5\) & V \\
\hline \(\mathrm{V}_{\mathrm{IL}}\) & Input LOW voltage & & -0.5 & 0.8 & \(V\) \\
\hline \(\mathrm{IIH}^{\prime}\) & Input HIGH leakage current & \begin{tabular}{l}
\[
\mathrm{V}_{\mathrm{iN}}=2.7 \mathrm{~V}
\] \\
Note 1
\end{tabular} & & 70 & \(\mu \mathrm{A}\). \\
\hline \(\mathrm{If}_{\text {L }}\) & Input LOW leakage current & \begin{tabular}{l}
\[
\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}
\] \\
Note 1
\end{tabular} & & -70 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & Output HIGH voltage & I \({ }_{\text {OUT }}=-2 \mathrm{~mA}\) & 2.4 & & V \\
\hline \(\mathrm{V}_{\text {OL }}\) & Output LOW voltage & \[
\begin{aligned}
& \text { lout }=3 \mathrm{~mA}, 6 \mathrm{~mA} \\
& \text { Note } 2
\end{aligned}
\] & & 0.55 & V \\
\hline \(\mathrm{C}_{\text {IN }}\) & Input pin capacitance & & & 10 & pF \\
\hline \(\mathrm{C}_{\text {CLK }}\) & CLK pin capacitance & & 5 & 12 & pF \\
\hline \(\mathrm{C}_{\text {IDSEL }}\) & IDSEL pin capacitance & & & 8 & pF \\
\hline \(L_{\text {pin }}\) & Pin inductance & & & 20 & nH \\
\hline \multicolumn{6}{|l|}{3-State Outputs} \\
\hline 10 off & High-impedance output current & & - & \(\pm 70\) & \(\mu \mathrm{A}\) \\
\hline \(C_{1}\) & High-impedance output capacitance & & - & 8 & pF \\
\hline \multicolumn{6}{|l|}{\(1^{2} \mathrm{C}\)-bus, SDA and SCL} \\
\hline \(\mathrm{V}_{\text {IL }}\) & Input voltage LOW & & -0.5 & 1.5 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & Input voltage HIGH & & 3 & \(\mathrm{V}_{\mathrm{DD}}+0.5\) & V \\
\hline In & Input current & & - & \(\pm 10\) & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\text {ACK }}\) & Output current on SDA pin & Acknowledge & 3 & - & mA \\
\hline VOL & Output voltage at Acknowledge & \(\mathrm{I}_{\text {SDA }}=3 \mathrm{~mA}\) & - & 0.4 & V \\
\hline
\end{tabular}

\section*{NOTES}
1. Input leakage currents include Hi -Z output leakage for all bi-directional buffers with 3 -State outputs.
2. Signals without pullup resistors must have 3 mA low output current. Signals requiring pull up must have 6 mA .

\section*{AC CHARACTERISTICS}
\(V_{D D}=4.75\) to \(5.25 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=0\) to \(70^{\circ} \mathrm{C}\), unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS \({ }^{1}\) & MIN. & MAX. & UNIT \\
\hline \({ }_{\text {t }}^{\text {cyc }}\) & CLK cycle time & & 30 & \(\infty\) & ns \\
\hline \(\mathrm{t}_{\text {HIGH }}\) & CLK HIGH time & & 12 & & ns \\
\hline tow & CLK LOW time & & 12 & & ns \\
\hline - & CLK slew rate & & 1 & 4 & V/ns \\
\hline \(t_{\text {vaL }}\) & CLK to signal valid delay - bussed signals & & 2 & 11 & ns \\
\hline \(t_{\text {VaL }}(\mathrm{ptp})\) & CL.K to signal valid delay - point-to-point & & 2 & 12 & ns \\
\hline ton & Float to acitve delay & & 2 & 11 & ns \\
\hline toff & Active to float delay & & & 28 & ns \\
\hline \(\mathrm{t}_{\text {Su }}\) & Input set up time to CLK - bused signals & & 7 & & ns \\
\hline \(\mathrm{t}_{\text {Su }}\) (ptp) & Input set up time to CLK - point-to-point & & 10 & & ns \\
\hline \({ }_{\text {t }}\) & Input hold time from CLK & & 0 & & ns \\
\hline \(\mathrm{t}_{\text {RST }}\) & Reset active time after power stable & & 1 & & ms \\
\hline \(\mathrm{t}_{\text {RST-CLK }}\) & Reset active time after CLK stable & & 100 & & \(\mu s\) \\
\hline \(t_{\text {fst-OFF }}\) & Reset active to output float delay & & & 40 & ns \\
\hline \multirow[t]{3}{*}{\({ }^{\prime} \mathrm{OH}(\mathrm{AC)}\)} & \multirow[t]{2}{*}{Switching current HIGH} & \(0<V_{\text {OUT }} \leq 1.4\) & -44 & & mA \\
\hline & & \(1.4<V_{\text {OUT }}<2.4\) & \[
\frac{-44+\left(V_{\text {out }}-1.4\right)}{0.024}
\] & \[
\begin{gathered}
11.9^{*}\left(V_{\text {OUT }}-5.25\right) \\
*\left(V_{\text {OUT }}+2.45\right)
\end{gathered}
\] & mA \\
\hline & (Test point) & \(\mathrm{V}_{\text {OUT }}=3.1\) & & -142 & mA \\
\hline \multirow[t]{3}{*}{\(\mathrm{l}_{\text {OL(AC) }}\)} & \multirow[t]{2}{*}{Switching current LOW} & \(\mathrm{V}_{\text {OUT }} \geq 2.2\) & 95 & & mA \\
\hline & & \(2.2>\mathrm{V}_{\text {OUT }}>0.55\) & \[
\frac{V_{\text {OUT }}}{0.023}
\] & \[
\begin{aligned}
& 78.5^{*} V_{\text {OUT }} \\
& { }^{*}\left(4.4-V_{\text {OUT }}\right)
\end{aligned}
\] & mA \\
\hline & (Test point) & \(V_{\text {OUT }}=0.71\) & & 206 & mA \\
\hline \({ }^{\text {ICL }}\) & Low clamp current & \(-5<\mathrm{V}_{\text {IN }} \leq-1\) & \(\frac{-25+\left(V_{\text {IN }}+1\right)}{0.015}\) & & mA \\
\hline \(t_{\text {R }}\) & Unloaded output rise time & 0.4 V to 2.4 V & 1 & 5 & V/ns \\
\hline \(\mathrm{t}_{\mathrm{F}}\) & Unloaded output fall time & 2.4 V to 0.4 V & 1 & 5 & V/ns \\
\hline
\end{tabular}

NOTE:
1. Timing measurement conditions meets the PCI Local Bus specifications.

\section*{1. FEATURES}
- 8-bit performance on chip for lumihance and chrominance signal processing for PAL, NTSC and SECAM standards
- Separate 8-bit luminance and 8bit chrominance input signals from Y/C, CVBS, S-Video (S-VHS or Hi8) sources
- SCART signal insertion by means of RGB/YUV convertion; fast switch handling
- Horizontal and vertical sync detection for all standards
- Real time control output RTCO
- Fast sync recovery of vertical blanking for VCR signals (bottom flutter compensation)
- Controls via the \(\mathrm{I}^{2} \mathrm{C}\)-bus
- User programmable aperture correction (horizontal peaking)
- Cross-colour reduction by chrominance comb-filtering (NTSC) or by special cross-colour cancellation (SECAM)
- 8-bit quantization of output signals in 4:1:1 or 4:2:2 formats
- 720 active samples per line
- The YUV bus supports a data rate of 13.5 MHz (CCIR 601).
- \((864 \times \mathrm{f} H)\) for 50 Hz
- \(\left(858 \times \mathrm{f}_{\mathrm{H}}\right)\) for 60 Hz
- Compatible with memory-based features (line-locked clock)
- One 24.576 MHz crystal oscillator for all standards

\section*{3. QUICK REFERENCE DATA}
\begin{tabular}{|l|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & MIN. & TYP. & MAX. & UNIT \\
\hline\(V_{\text {DD }}\) & \begin{tabular}{l}
supply voltage \\
(pins 5, 18, 28, 37 and 52)
\end{tabular} & 4.5 & 5 & 5.5 & V \\
\hline IDD \(^{\text {SD }}\) & \begin{tabular}{l}
total supply current \\
(pins 5, 18, 28, 37 and 52)
\end{tabular} & - & 100 & 250 & mA \\
\hline\(V_{1}\) & input levels & \multicolumn{3}{|c|}{ TTL-compatible } \\
\hline\(V_{O}\) & output levels & \multicolumn{3}{|c|}{ TTL-compatible } \\
\hline\(T_{\text {amb }}\) & operating ambient temperature & 0 & - & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{4. ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
EXTENDED
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } TYPE NUMBER & PINS & PIN POSITION & MATERIAL & CODE \\
\hline SAA7151B & 68 & mini-pack PLCC & plastic & SOT188 \\
\hline
\end{tabular}

\section*{2. GENERAL DESCRIPTION}

The SAA7151B is a digital multistandard colour-decoder having two 8-bit input channels, one for CVBS or \(Y\), the other for chrominance or time-multiplexed colour-difference signals.

Fig. 1 Block diagram (application circuits see Figures 17, 18 and 19)

\section*{Digital multistandard colour decoder with SCART interface (DMSD2-SCART)}

\section*{6. PINNING}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline SP & 1 & connected to ground (shift pin for testing) \\
\hline AP & 2 & connected to ground (action pin for testing) \\
\hline RESN & 3 & reset, active-LOW \\
\hline CREF & 4 & clock reference, sync from external to ensure in-phase signals on the Y-, CUV- and YUV-bus \\
\hline \(\mathrm{V}_{\text {DD1 }}\) & 5 & +5 V supply input 1 \\
\hline cuvo CUV1 CUV2 CUV3 CUV4 CUV5 CUV6 CUV7 & \[
\begin{gathered}
\hline 6 \\
7 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12 \\
13
\end{gathered}
\] & chrominance input data bits CUV7 to CUV0 (digitized chrominance signals in two's complement format from a S-Video source (S-VHS, Hi8) or time-multiplexed colour-difference signals from a YUV(RGB) source or both in combination) \\
\hline \begin{tabular}{l}
CVBS0 \\
CVBS1 \\
CVBS2 \\
CVBS3
\end{tabular} & \[
\begin{aligned}
& 14 \\
& 15 \\
& 16 \\
& 17
\end{aligned}
\] & CVBS lower input data bits CVBS3 to CVBSO (CVBS with luminance, chrominance and all sync information in two's complement format) \\
\hline \(V_{\text {DD2 }}\) & 18 & +5 V supply input 2 \\
\hline \(\mathrm{V}_{\text {SS } 1}\) & 19 & ground 1 (V) \\
\hline \begin{tabular}{l}
CVBS4 \\
CVBS5 \\
CVBS6 \\
CVBS7
\end{tabular} & \[
\begin{aligned}
& 20 \\
& 21 \\
& 22 \\
& 23 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
CVBS upper input data bits CVBS7 to CVBS4 \\
(CVBS with luminance, chrominance and all sync information in two's complement format)
\end{tabular} \\
\hline GPSW1 & 24 & status bit output FSST0 or port 1 output for general purpose (programmable by subaddress 0C) \\
\hline GPSW2 & 25 & status bit output FSST1 or port 2 output for general purpose (programmable by subaddress OC) \\
\hline HCL & 26 & black level clamp pulse output (begin and stop programmable), e.g. for TDA8708A (ADC) \\
\hline LL27 & 27 & line-locked system clock input signal (27 MHz) \\
\hline \(\mathrm{V}_{\text {DD3 }}\) & 28 & +5 V supply input 3 \\
\hline HSY & 29 & hor. sync pulse reference output (begin and stop programmable), e.g. for gain adj.TDA8708A (ADC) \\
\hline Vs & 30 & vertical sync output signal (Fig.10) \\
\hline HS & 31 & horizontal sync output signal (Fig. 14; start point programmable) \\
\hline RTCO & 32 & real time control output; serial increments of HPLL and FSCPLL and status PAL or SECAM sequence (Fig.9) \\
\hline XTAL & 33 & 24.576 MHz clock output (open-circuit for use with external oscillator) \\
\hline XTALI & 34 & 24.576 MHz connection for crystal or external oscillator (TTL compatible squarewave) \\
\hline
\end{tabular}

\section*{Digital multistandard colour decoder with SCART interface (DMSD2-SCART)}

Fig. 2 Pin configuration.

\section*{7. FUNCTIONAL DESCRIPTION}

\section*{System configuration}

The SAA7151B system processes digital TV signals with line-locked clock in PAL, SECAM and NTSC standards (CVBS or S-Video) as well as RGB signals coming from a SCART/peri-TV connector: The different source signals are switched, if necessary matrixed and converted (Fig. 3 and Table 1). 8 -bit CVBS data (digitized composite video) and 8-bit UV data (digitized chrominance and/or time-multiplexed colour-difference signals) are fed to the SAA7151B. The data rate is 27 MHz .

\section*{Chrominance processing}

The 8-bit chrominance input signal (signal "C" out of CVBS or Y/C in Fig.4a) is fed via the input interface to a bandpass filter for eliminating the DC component, then to the quadrature demodulator. Subcarrier signals from the local oscillator (DTO1) with 90 degree phase shift are applied to its multiplier inputs. The frequency depends on set TV standard.
The multipliers operate as a quadrature demodulator for all PAL and NTSC signals; it operates as a frequency down-mixer for SECAM
signals.
The two multiplier output signals are converted to a serial UV data stream and applied to two low-pass filter stages, then to a gain controlled amplifier. A final multiplexed low-pass filter achieves, together with the preceding stages, the required bandwidth performance. The from PAL and NTSC originated signals are applied to a comb-filter. The signals, originated from SECAM, are fed through a cloche filter \((0 \mathrm{~Hz}\) centre frequency), a phase demodulator and a differentiator to obtain frequency-demodulated colour-difference signals.

\section*{Digital multistandard colour decoder with SCART interface (DMSD2-SCART)}

Fig. 3 System configuration, RGB fast switch interface included (SCART).

The SECAM signals are fed after de-emphasis to a cross-over switch, to provide the both serial-transmitted colour-difference signals. These signals are finally fed via the fast switch to the output formatter stages and to the output interface. Chrominance signals are output in parallel (4:2:2) on the YUV-bus. The data rate of \(Y\) signal (pixel rate) is 13.5 MHz. UV signals have a data rate of \(13.5 \mathrm{MHz} / 2\) for the 4:2.2 format (Table 2) respectively 13.5 MHz/4 for the 4:1.1 format (Table 3)

\section*{Component processing and SCART interface control}

The 8-bit multiplexed colour-difference input signal (signal CUV, Fig.1, out of matrixed RGB in Fig.3) is fed via the input interface to a chrominance stop filter (UV signal only can pass through; Figures 20 to 22). Here it is clamped and fed to the offset compensation which can be enabled or disabled via the \(\mathrm{I}^{2} \mathrm{C}\)-bus.

For matrixed RGB signals - the full screen SCART mode and the fast insertion mode (blanking/switching) are selectable. The chrominance stop filter is automatically bypassed in full screen SCART mode.

Full screen RGB mode (SCART):
The CUV digital input signal (7-0) consists of time-multiplexed samples for \(U\) and \(V\). An offset correction for both signals is applied to correct external clamping errors. An internal timing correction compensates for slight differences in timing during sampling. The \(U\) and \(V\) signals are delay-compensated and fed to the output formatter. The format 4:2:2 or 4:1:1 is generated by a switchable filter.
The control signals for the front end (Figures 3 and 18) MUXC, status bits FSST1, FSST0 (outputs GPSW2, GPSW1) and FSO are generated by the SAA7151B.

Table 1 SCART interface control (Fig.3)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline MODE & FSO & CONN GPSW 2 & ECTION GPSW 1 & MUXC & \begin{tabular}{l}
chroma output \\
of TDA8446 \\
to TDA8709A
\end{tabular} & TDA8709A selected input & \begin{tabular}{l}
CUV \\
(7-0)
\end{tabular} & luminance fast switch TDA8446 & input selector (via \(\mathrm{I}^{2} \mathrm{C}\)-bus) TDA8540 \\
\hline RGB only & \[
\left[\begin{array}{l}
0 \\
0
\end{array}\right.
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1
\end{aligned}
\] & high-Z & VIN2 & UN & sync (RGB) & sync (RGB) \\
\hline Y/C or CVBS only & \[
0
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1
\end{aligned}
\] & C & VIN1 & C & Y (Y/C) or CVBS & \(Y(Y / C)\) or CVBS \\
\hline Fast switch & \[
0
\] & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1
\end{aligned}
\] & C & VIN2 & \[
\begin{aligned}
& 0.5(C+U) / \\
& 0.5(C+V)
\end{aligned}
\] & \(Y(Y / C)\) or CVBS & Y (Y/C) or CVBS \\
\hline & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1
\end{aligned}
\] & \multicolumn{5}{|c|}{not used} \\
\hline \multirow[t]{2}{*}{RGB only} & \[
\left\lvert\, \begin{aligned}
& 1 \\
& 1
\end{aligned}\right.
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1
\end{aligned}
\] & high-Z & VIN2 & U/V & Y (RGB) & sync (RGB) \\
\hline & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1
\end{aligned}
\] & \multicolumn{5}{|c|}{not used} \\
\hline Fast switch & \[
1 .
\] & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1
\end{aligned}
\] & C & VIN2 & \[
\begin{aligned}
& 0.5(\mathrm{C}+\mathrm{U}) / \\
& 0.5(\mathrm{C}+\mathrm{V})
\end{aligned}
\] & \(Y\) (RGB) & \(\mathrm{Y}(\mathrm{Y} / \mathrm{C})\) or CVBS \\
\hline & 1 & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1
\end{aligned}
\] & \multicolumn{5}{|c|}{not used} \\
\hline
\end{tabular}

\section*{Fast insertion mode:}

Fast insertion is applied by
FSI pulse to ensure correct timing. The RGB source signal is matrixed into UV and inserted into the CVBS or Y/C source signal after two field periods if FSI pulses are received.
The output FSO is set to HIGH during a determined insertion window (screen plain minus \(6 \%\) of horizontal and vertical deflection). Switch over depends on the phase of FSI in relation to the valid pixel sequence depending on the phase-different weighting factors. They are applied to the original and the inserted UV data (Figures 5 and 6)
The control signals for the front end (Table 1) MUXC, FSO, status bits FSST1 and FSST0 (outputs GPSW2 and GPSW1) are generated by the SAA7151B.
The amplitude of chrominance and
colour-difference signals are scaled down by factor 2 to avoid overloading of the chrominance analog-to-digital converter. The amplitudes are reduced in the TDA8446 by signals on lines GPSW2 and GPSW1.

\section*{Luminance processing}

The luminance input signal, a digital CVBS format or an 8-bit luminance format (S-Video), is fed through a sample rate converter to reduce the data rate to 13.5 MHz (Fig.4b).
Sample rate is converted by means of a switchable pre-filter. High frequency components are emphasized to compensate for loss in the following chrominance trap filter. This chrominance trap filter (\(f_{0}=4.43 \mathrm{MHz}\) or \(f_{0}=3.58 \mathrm{MHz}\) centre frequency selectable) eliminates the most of the colour carrier signal, therefore, it must be bypassed for S-Video signals.

The high frequency components of the luminance signal can be "peaked" in two bandpass filters with selectable transfer characteristic. A coring circuit (\(\pm 1\) LSB) can improve the signal , this signal is then added to the original signal. A switchable amplifier achieves a common DC amplification, because the DC gains are different in both chrominance trap modes. Additionally, a cut-off sync pulse is generated for the original signal in both modes.

\section*{Synchronization}

The luminance output signal is fed to the synchronization stage. Its bandwidth is reduced to 1 MHz in a low-pass filter (sync pre-filter). The sync pulses are sliced and fed to the phase detectors to be compared with the sub-divided clock frequency. The resulting output signal is applied to the loop filter to

Fig.4(a) Detailed block diagram; continued in Fig.4(b).
from luminance

\footnotetext{
glsIL \(\angle \forall \forall S\)
}

Digital multistandard colour decoder
with SCART interface (DMSD2-SCART) SAA7151B
accumulate all phase deviations. There are three groups of output timing signals:
a. signals related to data output signals (HREF)
b. signals related to the input signals (HSY, and HCL)
c. signals related to the internal sync phase

All horizontal timings are derived from the main counter, which represents the internal sync phase.
The HREF signal only with its critical timing is phase-compensated in relationship to the data output signal. Future circuit improvements could slightly influence the processing delays of some internal stages to achieve a changed timing due to the timing groups \(b\) and \(c\).
The HREF signal only controls the data multiplexer phase and the data output signals.

Table 2 for the 4:2:2 format (720 pixels per line). The quoted frequencies are valid on the YUVbus. The time frames are controlled by the HREF signal.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline OUTPUT & \multicolumn{6}{|l|}{PIXEL BYTE SEQUENCE} \\
\hline Yo (LSB) & YO & Yo & Yo & Yo & Yo & Yo \\
\hline Y1 & Y1 & Y1 & Y1 & Y1 & Y1 & Y1 \\
\hline Y2 & Y2 & Y2 & Y2 & Y2 & Y2 & Y2 \\
\hline Y3 & Y3 & Y3 & Y3 & Y3 & Y3 & Y3 \\
\hline Y4 & Y4 & Y4 & Y4 & Y4 & Y4 & Y4 \\
\hline Y5 & Y5 & Y5 & Y5 & Y5 & Y5 & Y5 \\
\hline Y6 & Y6 & Y6 & Y6 & Y6 & Y6 & Y6 \\
\hline Y7 (MSB) & Y7 & Y7 & Y7 & Y7 & Y7 & Y7 \\
\hline UV0 (LSB) & U0 & Vo & U0 & Vo & U0 & Vo \\
\hline UV1 & U1 & V1 & U1 & V1 & U1 & V1 \\
\hline UV2 & U2 & V2 & U2 & V2 & U2 & V2 \\
\hline UV3 & U3 & V3 & U3 & V3 & U3 & V3 \\
\hline UV4 & U4 & V4 & U4 & V4 & U4 & V4 \\
\hline UV5 & U5 & V5 & U5 & V5 & U5 & V5 \\
\hline UV6 & U6 & V6 & U6 & V6 & U6 & V6 \\
\hline UV7(MSB) & U7 & V7 & U7 & V7 & U7 & V7 \\
\hline \(Y\) frame & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline UV frame & 0 & & 2 & & 4 & \\
\hline
\end{tabular}

All timings of the following diagrams are measured with nominal input signals, for example coming from a pattern generator. Processing delay times are taken between input and data output, respectively between internal sync reference (main counter \(=0\)) and the rising edge of HREF.

\section*{Line locked clock frequency}

LFCO is required in an external PLL (SAA7157) to generate the line-locked clock frequency LL27 and CREF.

\section*{YUV-bus, digital outputs}

The 16-bit YUV-bus transfers digital data from the output interfaces to a feature box, or to the digital-to-analog converter (DAC). Outputs are controlled via the \(\mathrm{I}^{2} \mathrm{C}\)-bus in normal selections, or they are controlled by output enable chain (FEIN, pin 64). The YUV-bus data rate 13.5 MHz . Timing is achieved by marking each
second positive rising edge of the clock LL27 synchronized by CREF.

YUV-bus formats

\section*{4:2:2 and 4:1:1}

The output signals Y 7 to Y 0 are the bits of the digital luminance signal. The output signals UV7 to UV0 are the bits of the digital colour-difference signal. The frames in the Tables 2 and 3 are the time to transfer a full set of samples. In case of \(4: 2: 2\) format two luminance samples are transmitted in comparision to one U and one \(V\) sample within one frame. The time frames are controlled by the HREF signal, which determines the correct UV data phase. The YUV data outputs can be enabled or set to 3-state position by means of the FEIN signal. FEIN = LOW enables the output; HIGH on this pin forces the \(Y\) and \(U N\) outputs to a high-impedance state (Fig,5).

Table 3 for the \(4: 1: 1\) format (720 pixels per line). The quoted frequencies are valid on the YUV-bus. The time frames are controlled by the HREF signal.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline OUTPUT & \multicolumn{8}{|l|}{PIXEL BYTE SEQUENCE} \\
\hline YO (LSB) & Yo \\
\hline Y1 & Y1 \\
\hline Y2 & Y2 \\
\hline Y3 & Y3 \\
\hline Y4 & Y4 \\
\hline Y5 & Y5 \\
\hline Y6 & Y6 \\
\hline Y7 (MSB) & Y7 \\
\hline UV0 (LSB) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline UV1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline UV2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline UV3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline UV4 & V6 & V4 & V2 & Vo & V6 & V4 & V2 & Vo \\
\hline UV5 & V7 & V5 & V3 & V1 & V7 & V5 & V3 & V1 \\
\hline UV6 & U6 & U4 & U2 & U0 & U6 & U4 & U2 & U0 \\
\hline UV7 (MSB) & U7 & U5 & U3 & U1 & U7 & U5 & U3 & U1 \\
\hline \(Y\) frame & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline UV frame & 0 & & & & 4 & & & \\
\hline
\end{tabular}

\section*{Digital multistandard colour decoder with SCART interface (DMSD2-SCART)}

\section*{Signal levels (Figures 11 and 12)}

The nominal input and output signal levels are defined by a colour bar signal with \(75 \%\) colour, \(100 \%\) saturation and \(100 \%\) luminance amplitude (EBU colour bar).

\section*{CUV-bus input format}

The CUV-bus transfers the digital chrominance/colour-difference
signals from the ADC to the SAA7151B (Fig.5; Table 1):
- normal mode for digital chrominance transmission.
- UV colour-difference mode for colour-difference signals UV (out of matrixed RGB signals)
- FS mode (fast switch mode; UV inserted into chrominance signal C with addition of the two signal spectra).

\section*{RTCO output}

The RTCO output signal (Fig.9) contains serialized information about actual clock frequency, subcarrier frequency and PAL/SECAM sequence. This signal may preferably be used with the frequency-locked digital video encoder SAA7199B.

\section*{Digital multistandard colour decoder} with SCART interface (DMSD2-SCART)

UV colour-difference mode (UV pixel byte sequence)

Fast switch mode (data insertion)

MEH332-2

Fig. 6 CUV input formats.
(1) each second sample only after a MUXC change is taken for down-sampling to 13.5 MHz to reduce cross-talk components between \(U\) and \(V\) signals.

Fig. 7 Addition of weighted components.

Fig. 8 Weighting factors of fast switching for 4:2:2 and 4:1:1 formats.

Notes: 1. All levels are related to EBU colour bar.
2. Values in decimal at \(100 \%\) luminance and \(75 \%\) chrominance amplitude.

Fig. 12 Input and output signal ranges in DTV mode (digital TV).

\section*{Digital multistandard colour decoder} with SCART interface (DMSD2-SCART)

Fig. 13 Input and output signal ranges in CCIR mode.

\section*{Digital multistandard colour decoder with SCART interface (DMSD2-SCART)}

Fig. 14 Horizontal sync and clamping timing for \(50 / 60 \mathrm{~Hz}\) (signals HSY, HCL, HREF and HS).

\section*{8. LIMITING VALUES}

In accordance with the Absolute Maximum Rating ystem (IEC 134); ground pins 19, \(35,38,51\) and 67 as well as supply pins \(5,18,28,37\) and 52 connected together.
\begin{tabular}{|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\mathrm{DD}}\) & supply voltage (pins \(5,18,28,37,52\)) & -0.5 & 7.0 & V \\
\hline \(V_{\text {diff }}\) GND & difference voltage \(\mathrm{V}_{\text {SS }}-\mathrm{V}_{\text {SS(1 to 4) }}\) & - & \(\pm 100\) & mV \\
\hline \(V_{1}\) & voltage on all inputs & -0.5 & \(\mathrm{V}_{\mathrm{DD}^{+0.5}}\) & V \\
\hline \(\mathrm{V}_{\mathrm{O}}\) & voltage on all outputs (10 max \(=20 \mathrm{~mA}\)) & -0.5 & \(\mathrm{V}_{\mathrm{DD}}+0.5\) & V \\
\hline \(P_{\text {tot }}\) & total power dissipation & - & 2.5 & W \\
\hline \(\mathrm{T}_{\text {stg }}\) & storage temperature range & -65 & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(T_{\text {amb }}\) & operating ambient temperature range & 0 & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{V}_{\text {ESD }}\) & electrostatic handling* for all pins & - & \(\pm 2000\) & V \\
\hline
\end{tabular}
9. CHARACTERISTICS \(V_{D D}=4.5\) to \(5.5 \mathrm{~V} ; T_{a m b}=0\) to \(70^{\circ} \mathrm{C}\) unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(V_{D D}\) & supply voltage range (pins \(5,18,28,37,52\)) & & 4.5 & 5 & 5.5 & V \\
\hline IDD & total supply current (pins 5, 18, 28, 37, 52) & \(V_{D D}=5 \mathrm{~V}\); inputs LOW; outputs not connected & - & 100 & 250 & mA \\
\hline \multicolumn{7}{|l|}{\(\mathrm{I}^{2} \mathrm{C}\)-bus, SDA and SCL (pins 40 and 41)} \\
\hline \(V_{\text {IL }}\) & input voltage LOW & & -0.5 & - & 1.5 & V \\
\hline \(V_{1 H}\) & input voltage HIGH & & 3 & - & \(\mathrm{V}_{\mathrm{DD}}+0.5\) & V \\
\hline \(\mathrm{I}_{40,41}\) & input current & & - & - & \(\pm 10\) & \(\mu \mathrm{A}\) \\
\hline \({ }_{\text {ACK }}\) & output current on pin 40 & acknowledge & 3 & - & - & mA \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & output voltage at acknowledge & \(\mathrm{I}_{40}=3 \mathrm{~mA}\) & - & - & 0.4 & V \\
\hline \multicolumn{7}{|l|}{Data, clock and control inputs (pins 3, 4, 6 to 17, 20 to 23, 27, 34, 64 and 68); Figures 12 and 13} \\
\hline \[
\begin{aligned}
& V_{I L} \\
& V_{I H}
\end{aligned}
\] & LL27 input voltage (pin 27) & \[
\begin{aligned}
& \text { LOW } \\
& \mathrm{HIGH}
\end{aligned}
\] & \[
\begin{aligned}
& -0.5 \\
& 2.4
\end{aligned}
\] & & \[
\begin{array}{|l|}
\hline 0.6 \\
\mathrm{~V}_{\mathrm{DD}}+0.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& V_{I L} \\
& V_{I H} \\
& \hline
\end{aligned}
\] & other input voltages & \[
\begin{aligned}
& \text { LOW } \\
& \mathrm{HIGH}
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline-0.5 \\
2.0
\end{array}
\] & - & \[
\begin{array}{|l|}
\hline 0.8 \\
V_{D D^{+}} .0 .5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
\] \\
\hline leak & input leakage current & & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{3}{*}{\(C_{1}\)} & \multirow[t]{3}{*}{input capacitance} & data inputs; note 1 & - & - & 8 & pF \\
\hline & & I/O high-impedance & - & - & 8 & pF \\
\hline & & clock inputs & - & - & 10 & pF \\
\hline \({ }^{\text {t SU.DAT }}\) & input data set-up time & Fig. 15 & 11 & - & - & ns \\
\hline thD.DAT & input data hold time & & 3 & - & - & ns \\
\hline
\end{tabular}
* Equivalent to discharging a 100 pF capacitor through a \(1.5 \mathrm{k} \Omega\) series resistor.; inputs and outputs are protected against electrostatic discharge in normal handling. Normal precautions appropriate to handle MOS devices is recommended ("Handling MOS Devices").
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{YUV-bus, HREF and VS outputs (pins 30, 42, 45 to 50 and pins 53 to 62), Figures 9 and 12 to 13} \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & output voltage LOW & notes 1 and 2 & 0 & - & 0.6 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & output voltage HIGH & & 2.4 & - & \(V_{\text {DD }}\) & V \\
\hline \(C_{L}\) & load capacitor & & 15 & - & 50 & pF \\
\hline \multicolumn{7}{|l|}{LFCO output (pin 36)} \\
\hline \(V_{0}\) & output signal (peak-to-peak value) & note 2 & 1.4 & - & 2.6 & V \\
\hline \(V_{36}\) & output voltage range & * & 1 & - & \(\mathrm{V}_{\mathrm{DD}}\) & V \\
\hline \multicolumn{7}{|l|}{Control outputs (pins 24 to 26, 29, 31, 32, 33, 39, 63, 65 and 66); Fig.11, 14 and 15} \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & output voltage LOW & notes 1 and 2 & 0 & - & 0.6 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & output voltage HIGH & & 2.4 & - & \(V_{D D}\) & V \\
\hline \(C_{L}\) & load capacitor & & 7.5 & - & 25 & pF \\
\hline \multicolumn{2}{|l|}{Timing of YUV-bus and control outputs} & \multicolumn{5}{|l|}{Figures 9 and 11} \\
\hline \({ }^{\mathrm{OH}}\) & output signal hold time & YUV, HREF, VS at \(C_{L}=15 \mathrm{pF}\); controls at \(\mathrm{C}_{\mathrm{L}}=7.5 \mathrm{pF}\) & \[
\begin{aligned}
& 13 \\
& 13 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& \text { ns } \\
& \text { ns }
\end{aligned}
\] \\
\hline tos & output set-up time & YUV, HREF, VS at \(C_{L}=50 \mathrm{pF}\); controls at \(\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}\) & \[
\begin{aligned}
& 20 \\
& 20
\end{aligned}
\] & & - & \[
\begin{aligned}
& \text { ns } \\
& \text { ns }
\end{aligned}
\] \\
\hline \({ }^{\text {t }}\) SZ & data output disable transition time & to 3-state condition & 22 & - & - & ns \\
\hline tzs & data output enable transition time & from 3-state condition & 20 & - & - & ns \\
\hline \multicolumn{7}{|l|}{Chrominance PLL} \\
\hline \(\mathrm{f}_{\mathrm{c}}\) & catching range & & \(\pm 400\) & - & - & Hz \\
\hline \multicolumn{2}{|l|}{Crystal oscillator} & \multicolumn{5}{|l|}{Figures 17 and 18; note 3} \\
\hline \(f_{n}\) & nominal frequency & 3rd harmonic & - & 24.576 & - & MHz \\
\hline \(\Delta f / f_{n}\) & permissible deviation \(f_{n}\) temperature deviation from \(f_{n}\) & . & & & \[
\begin{array}{|l|}
\hline \pm 50 \\
\pm 20 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 10^{-6} \\
& 10^{-6}
\end{aligned}
\] \\
\hline X1 & \begin{tabular}{l}
crystal specification: \\
temperature range \(\mathrm{T}_{\mathrm{amb}}\) \\
load capacitance \(C_{L}\) \\
series resonance resistance \(R_{S}\) \\
motional capacitance \(\mathrm{C}_{1}\) \\
parallel capacitance \(\mathrm{C}_{0}\)
\end{tabular} & & 0
8
-
- & \[
\left\lvert\, \begin{array}{|l|}
\hline- \\
- \\
40 \\
1.5 \pm 20 \% \\
3.5 \pm 20 \% \\
\hline
\end{array}\right.
\] & 70
-
80
- & \begin{tabular}{l}
\({ }^{\circ} \mathrm{C}\) \\
pF \\
\(\Omega\) \\
fF \\
pF
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{2}{|l|}{Line locked clock input LL27 (pin 27)} & \multicolumn{5}{|l|}{Fig. 8 and 15} \\
\hline tLL27 & cycle time & note 4 & 35 & - & 39 & ns \\
\hline \(t_{p}\) & duty factor & \(\mathrm{tLLL27H}^{\text {/t }}\) LL27 & 40 & 50 & 60 & \% \\
\hline \(\mathrm{t}_{\mathrm{r}}\) & rise time & & - & - & 5 & ns \\
\hline \(\mathrm{t}_{\mathrm{f}}\) & fall time & & - & - & 6 & ns \\
\hline
\end{tabular}

Notes to the characteristics
1. Data output signals are \(Y 7\) to \(Y 0\) and UV7 to UVO. All other are control output signals.
2. Levels are measured with load circuit. YUV-bus, HREF and VS outputs with \(1.2 \mathrm{k} \Omega\) in parallel to 50 pF at 3 V (TTL load); LFCO output with \(10 \mathrm{k} \Omega\) in parallel to 15 pF and other outputs with \(1.2 \mathrm{k} \Omega\) in parallel to 25 pF at 3 V (TTL load).
3. Recommended crystal: Philips 432214305291.
4. \(t_{S U}, t_{H D}, t_{O H}\) and \(t_{O D}\) include \(t_{r}\) and \(t_{f}\).

Table 4 High-impedance control for YUV-bus (Fig.15)
\begin{tabular}{|lll|ll|}
\hline OEDY & OEDC & FEIN & Y(7:0) & UV(7:0) \\
\hline 0 & 0 & 0 & \(Z\) & \(Z\) \\
0 & 1 & 0 & \(Z\) & active \\
1 & 0 & 0 & active & \(Z\) \\
1 & 1 & 0 & \(Z\) & \(Z\) \\
\(X\) & \(X\) & 1 & \(Z\) & \(Z\) \\
\hline
\end{tabular}

\section*{Digital multistandard colour decoder} with SCART interface (DMSD2-SCART)

MEM550
Fig. 15 Data input and output timing diagram.

Fig. 17 Application of SAA7151B.

Fig. 18 Application of input signal selecting (SCART interface).

\footnotetext{

}

\section*{10. \({ }^{2} \mathrm{C}\)-bus format}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline\(S\) & SLAVE ADDRESS & A & SUBADDRESS & A & DATAO & \(A\) & & DATAn & A & P \\
\hline
\end{tabular}
\begin{tabular}{lll}
S & \(=\) & start condition \\
SLAVE ADDRESS & \(=\) & 1000101 X (IICSA \(=\) LOW) or 1000111 X (IICSA \(=\) HIGH) \\
A & \(=\) & acknowledge, generated by the slave \\
SUBADDRESS* & \(=\) & subaddress byte (Table 5) \\
DATA & \(=\) & data byte (Table 5) \\
P & & \\
\(X\) & \(=\) & \begin{tabular}{l}
read/write control bit \\
\(X=0\), order to write (the circuit is slave receiver)
\end{tabular} \\
& & \(X=1\), order to read (the circuit is slave transmitter)
\end{tabular}
* If more than 1 byte DATA are transmitted, then auto-increment of the subaddress is performed.

Remarks: - Prior to reset of the IC all outputs are undefined.
- After power-on reset, the control register 12 (hex) is set to 00 (hex).

Table \(5 \quad I^{2} \mathrm{C}\)-bus; DATA for status byte (X in address byte \(=1\); slave address 8 B (hex) at IICSA \(=\) LOW or 8 F (hex) at IICSA \(=\mathrm{HIGH}\))
\begin{tabular}{|l|l|lllllll|}
\hline \multicolumn{1}{|c|}{ FUNCTION } & & \multicolumn{6}{c|}{ DATA } & D3 \\
& & D7 & D6 & D5 & D4 & D3 & D2 & D1 \\
D0 \\
\hline status byte & & STTC & HLCK & FIDT & FSST1 & FSST0 CDET2 CDET1 CDET0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Function of the bits: STTC & \multicolumn{5}{|l|}{Status time constant (to be used for gogical combfilter SAA7152) \(0=\) TV mode; 1 = VCR mode} \\
\hline HLCK & Horizontal PLL information: & \multicolumn{4}{|l|}{\(0=\) HPLL locked; \(1=\) HPLL unlocked} \\
\hline FIDT & Field information: & \multicolumn{4}{|l|}{\(0=50 \mathrm{~Hz}\) system detected; \(1=60 \mathrm{~Hz}\) system detected} \\
\hline \multirow[t]{5}{*}{FSST1 to FSST0} & \multirow[t]{5}{*}{Fast swiching output mode:} & \multicolumn{4}{|l|}{FSST1 FSST0 \({ }^{\text {a }}\) mode} \\
\hline & & 0 & 0 & \multicolumn{2}{|l|}{RGB; FSI \(=\mathrm{HIGH}(\) pin 68)} \\
\hline & & 0 & 1 & \multicolumn{2}{|l|}{Y/C; FSI = LOW (pin 68)} \\
\hline & & 1 & 0 & \multicolumn{2}{|l|}{fast switching (toggle)} \\
\hline & & 1 & 1 & \multicolumn{2}{|l|}{not used} \\
\hline \multirow[t]{9}{*}{CDET2 to CDETO} & \multirow[t]{5}{*}{Identified colour standard} & \multicolumn{2}{|l|}{CDET2 CDET2} & CDET2 & standard \\
\hline & & 0 & 0 & 0 & PAL-B/G, -H, -I; 50 Hz \\
\hline & & 0 & 0 & 1 & PAL-N; 50 Hz \\
\hline & & 0 & 1 & 0 & SECAM; 50 Hz \\
\hline & & 0 & 1 & 1 & PAL-M; 60 Hz \\
\hline & & 1 & 0 & 0 & PAL 4.43; 60 Hz \\
\hline & & 1 & 0 & 1 & NTSC-M; 60 Hz \\
\hline & & 1 & 1 & 0 & NTSC 4.43; 60 Hz \\
\hline & & 1 & 1 & 1 & black/white \\
\hline
\end{tabular}

Digital multistandard colour decoder with SCART interface (DMSD2-SCART)

Table \(61^{2} \mathrm{C}\)-bus; subaddress and data bytes for writing (X in address byte \(=0\); slave address 8 A (hex) at IICSA = LOW or 8E at IICSA = HIGH)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{|l|l}
function & subaddr \\
\hline
\end{tabular} & subaddress byte & D7 & D6 & D5 & \[
\begin{aligned}
& \text { date } \\
& \text { D4 }
\end{aligned}
\] & D3 & D2 & D1 & DO \\
\hline \multirow[t]{3}{*}{increment delay H-sync HSY begin H-sync HSY stop} & 00 & IDEL7 & IDEL6 & IDEL5 & IDEL4 & IDEL3 & IDEL2 & IDEL1 & IDELO \\
\hline & 01 & HSYB7 & HSYB6 & HSYB5 & HSYB4 & HSYB3 & HSYB2 & HSYB1 & HSYB0 \\
\hline & 02 & HSYS7 & HSYS6 & HSYS5 & HSYS4 & HSYS3 & HSYS2 & HSYS1 & HSYSO \\
\hline \multirow[t]{3}{*}{H-clamp HCL begin H-clamp HCL stop H-sync after PHI1} & 03 & HCLB7 & HCLB6 & HCLB5 & HCLB4 & HCLB3 & HCLB2 & HCLB1 & HCLB0 \\
\hline & 04 & HCLS7 & HCLS6 & HCLS5 & HCLS4 & HCLS3 & HCLS2 & HCLS1 & HCLSO \\
\hline & 05 & HPHI7 & HPHI6 & HPHI5 & HPHI4 & HPHI3 & HPHI2 & HPHI1 & HPHIO \\
\hline \multirow[t]{3}{*}{luminance control hue control miscellaneous controls \#1} & 06 & BYPS & PREF & BPSS1 & BPSSO & BFBY & CORI & APER1 & APERO \\
\hline & 07 & HUEC7 & HUEC6 & HUEC5 & HUEC4 & HUEC3 & HUEC2 & HUEC1 & HUECO \\
\hline & 08 & CSTD2 & CSTD1 & CSTDO & CKTQ4 & CKTQ3 & CKTQ2 & CKTQ1 & CKTQ0 \\
\hline \multirow[t]{3}{*}{miscellaneous controls \#2 PAL switch sensitivity SECAM switch sensitivity} & 09 & OSCE & LFIS1 & LFISO & CKTS4 & CKTS3 & CKTS2 & CKTS 1 & CKTSO \\
\hline & OA & PLSE7 & PLSE6 & PLSE5 & PLSE4 & PLSE3 & PLSE2 & PLSE1 & PLSEO \\
\hline & OB & SESE7 & SESE6 & SESE5 & SESE4 & SESE3 & SESE2 & SESE1 & SESEO \\
\hline \multirow[t]{3}{*}{miscellaneous controls \#3 miscellaneous controls \#4 miscellaneous controls \#5} & \({ }^{\circ} \mathrm{C}\) & FSAU & GPSI2 & GPSI1 & CGFX & AMPF3 & AMPF2 & AMPF1 & AMPFO \\
\hline & OD & COLO & CHSB & GPSW0 & SUVI & SXCR & FSDL2 & FSDL1 & FSDLO \\
\hline & OE & CCIR & COFF & OEHS & OEVS & UVSS & CHRS & CDMO & CDPO \\
\hline \multirow[t]{2}{*}{miscellaneous controls \#6 miscellaneous controls \#7} & OF & AUFD & FSEL & HPLL & SCEN & VTRC & MUIV & FSIV & WIND \\
\hline & 10 & ASTD & OFTS & IPBP & CDVI & YDEL3 & YDEL2 & YDEL1 & YDELO \\
\hline \multirow[t]{2}{*}{chroma gain reference miscellaneous controls \#8} & 11 & CHCV7 & CHCV6 & CHCV5 & CHCV4 & CHCV3 & CHCV2 & CHCV1 & CHCVO \\
\hline & 12 & OEDY & OEDC & VNOI1 & VNOIO & BFON & BOFL2 & BOFL1 & BOFLO \\
\hline
\end{tabular}

Function of the bits of Table 6
\begin{tabular}{|c|c|c|c|}
\hline IDEL7 to IDELO & \multicolumn{3}{|l|}{Increment delay time , step size \(=4 / \mathrm{LL27}=148 \mathrm{~ns}{ }^{*}\)} \\
\hline \multirow[t]{10}{*}{"00"} & D7 D6 D5 D4 D3D2D1 D0 & decimal multiplier & note \\
\hline & \(\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\) & -1 to -110 & minimum -148 ns \\
\hline & \(\begin{array}{lllllllll}1 & 0 & 0 & 1 & 0 & 0 & 1 & 0\end{array}\) & & \(-16.3 \mu \mathrm{~s}\) (outside available range) \\
\hline & \(\begin{array}{llllllll}1 & 0 & 0 & 1 & 0 & 0 & 0 & 1\end{array}\) & \[
-111 \text { to }-214
\] & \(-16.44 \mu \mathrm{~s}\) \\
\hline & \(\begin{array}{llllllll}0 & 0 & 1 & 0 & 1 & 0 & 1 & 0\end{array}\) & -111 to -214 & \(-31.7 \mu \mathrm{~s}\) (maximum value at FSEL \(=1\)) \\
\hline & \(\begin{array}{llllllll}0 & 0 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\) & -215 & \(-31.85 \mu \mathrm{~s}\) (outside central counter range at FSEL \(=1{ }^{* *}\)) \\
\hline & \(\begin{array}{llllllll}0 & 0 & 1 & 0 & 1 & 0 & 0 & 0\end{array}\) & -216 & -32.0 \(\mu \mathrm{s}\) (maximum value at FSEL \(=0\) **) \\
\hline & \[
\begin{array}{llllllll}
0 & 0 & 1 & 0 & 0 & 1 & 1 & 1
\end{array}
\] & -217 to -256 & \(-32.148 \mu \mathrm{~s}\) (outside central counter range at \(\operatorname{FSEL}=0\) **) \\
\hline & 00000000000 & & \(-37.9 \mu\) (outside central counter **) \\
\hline & \begin{tabular}{l}
* an internal sign-bit D8 set to \\
** H-PLL does not operate in th fixed by the last update and
\end{tabular} & IGH indicates that a condition; the syste within \(\pm 7.1 \%\) of the & values are always negative n clock frequency is set to a value nominal frequency. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline HSYB7 to HSYBO HSYS7 to HSYSO "01" and "02" & \begin{tabular}{l}
Horizontal sync begin, step size \(=2 /\) LL \(27=74 \mathrm{~ns}\) \\
Horizontal sync stop, step size \(=2 /\) LL27 \(=7.4\) ns
\end{tabular} \\
\hline HCLB7 to HCLB0 HCLS7 to HCLS0 "03" and "04" & \begin{tabular}{l}
Horizontal clamp begin, step size \(=2 / L L 27=74 n s\) \\
Horizontal clamp stop, step size \(=2 / L L 27=74 \mathrm{~ns}\)
\end{tabular} \\
\hline HPHI7 to HPHIO "05" & Horizontal sync start, step size \(=8 / \mathrm{LL} 27=296 \mathrm{~ns}\) \\
\hline \begin{tabular}{l}
BYPS \\
"06" \\
PREF
\end{tabular} & \begin{tabular}{l}
Input mode select bit: \(0=\) CVBS mode (chroma trap active) 1 = S-Video mode (chroma trap by-passed) \\
Use of pre-emphasis (to be used if chrominance trap is active): \(0=\) pre-filter bypassed; \(1=\) pre-filter on
\end{tabular} \\
\hline BPSS1 to BPSS0 & Aperture bandpass to select different centre frequencies (Figures 23 to 38): \\
\hline
\end{tabular}

\section*{Digital multistandard colour decoder} with SCART interface (DMSD2-SCART)
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
"06" continued \\
BFBY \\
CORI \\
APER1 to APERo
\end{tabular} & \begin{tabular}{l}
Bandfilter bypass switching: \(\quad 0=\) bandfilter active; \(1=\) bandfilter bypassed \\
Coring function: \(0 \quad=\quad\) coring off; \(1= \pm 1\) LSB coring \\
Aperture factor (Figures 23 to 38):
\end{tabular} \\
\hline HUET to HUEO "07" & Hue control from \(+178.6^{\circ}\) to \(-180.0^{\circ}\), equals data bytes 7 F to 80 (hex); \(0^{\circ}\) equals 00. \\
\hline CSTD2 to CSTDO "08" & Forced colour standard of input signal; \\
\hline CKTQ4 to CKTQ0 & Colour killer threshold QAM (PALNTSC): \\
\hline \[
\begin{aligned}
& \text { OSCE } \\
& \text { "09" }
\end{aligned}
\] & External UV offset compensation: \(0=\) disabled; \(1=\) enabled \\
\hline LFIS1 to LFIS0 & Chrominance gain control (AGC filter): \\
\hline CKTS4 to CKTSO & Colour killer threshold SECAM as previously described under CKTQ subaddress"08" \\
\hline
\end{tabular}

Digital multistandard colour decoder with SCART interface (DMSD2-SCART)
\begin{tabular}{|c|c|}
\hline PLSE7 to PLSEO "OA" & PAL switch sensitivity from LOW to HIGH (HIGH means immediate sequence correction), equals FF to 00 (hex), MEDIUM equals 80. \\
\hline SESE7 to SESEO "OB" & SECAM switch sensitivity from LOW to HIGH (HIGH means immediate sequence correction), equals FF to 00 (hex), MEDIUM equals 80. \\
\hline FSAU; GPSI2, and GPSI1
"0C" & Set port outputs (general purpose switching, internal) \\
\hline CGFX & Chrominance gain pre-determination: \(0=\) gain controlled via loop; 1 = gain set by AMPF \\
\hline AMPF3 to AMPFo & Chrominance amplification factor \\
\hline \begin{tabular}{l}
COLO \\
"OD"
CHSB \\
GPSWO \\
SUVI \\
SXCR
\end{tabular} & \\
\hline FDSL2 to FDSL0 & Fast switching delay adjustment in 37 ns steps: \\
\hline
\end{tabular}

Digital multistandard colour decoder with SCART interface (DMSD2-SCART)

\section*{Digital multistandard colour decoder} with SCART interface (DMSD2-SCART)

Fig. 20 Frequency response of chroma stop filter in colour-difference mode for 50 Hz PAL. Filter is only active in fast switching mode, but bypassed in RGB mode. The selected filter is dependent on actual detected colour standard.

Fig. 21 Frequency response of chroma stop filter in colour-difference mode for 60 Hz NTSC. Filter is only active in fast switching mode, but bypassed in RGB mode. The selected filter is dependent on actual detected colour standard.

Fig. 22 Frequency response of chroma stop filter in colour-difference mode for 50 Hz SECAM. Filter is only active in fast switching mode, but bypassed in RGB mode. The selected filter is dependent on actual detected colour standard.

Digital multistandard colour decoder with SCART interface (DMSD2-SCART)

Fig. 23 Maximum luminance peaking control as a function of four different aperture centre frequencies controllable by subaddress byte 06; aperture factor 1; coring off; chroma trap on; pre-filter on; and bandfilter on.

Fig.24 3.8 MHz luminance peaking control as a function of four different aperture factors controllable by subaddress byte 06; coring off; chroma trap on; pre-filter on and bandfilter on.

\section*{Digital multistandard colour decoder with SCART interface (DMSD2-SCART)}

Fig. 25 Maximum luminance peaking control as a function of four different aperture centre frequencies controllable by subaddress byte 06; aperture factor 1; coring off; chroma trap on; pre-filter off ; and bandfilter on.

Fig.26 4.1 MHz luminance peaking control as a function of four different aperture factors controllable by subaddress byte 06; coring off; chroma trap on; pre-filter off and bandfilter on.

Fig. 27 Maximum luminance peaking control as a function of four different aperture centre frequencies controllable by subaddress byte 06; aperture factor 1; coring off; chroma trap on; pre-filter on ; and bandfilter on.

Fig. 28 3.8 MHz luminance peaking control as a function of four different aperture factors controllable by subaddress byte 06 ; coring off; chroma trap on; pre-filter on and bandfilter on.

Fig. 29 Maximum luminance peaking control as a function of four different aperture centre frequencies controllable by subaddress byte 06; aperture factor 1; coring off; chroma trap on; pre-filter off ; and bandfilter on.

Fig. 30 4.1 MHz luminance peaking control as a function of four different aperture factors controllable by subaddress byte 06; coring off; chroma trap on; pre-filter off and bandfilter on.

\section*{Digital multistandard colour decoder with SCART interface (DMSD2-SCART)}

Fig.31 4.1 MHz luminance peaking control control as a function of four different aperture factors controllable by subaddress byte 06; pre-filter off; coring off and bandpass filter on.

Fig.33 4.1 MHz luminance peaking control control as a function of four different aperture factors controllable by subaddress byte 06 ; pre-filter off; coring off and bandpass filter on.

Fig. 32 2.6 MHz luminance peaking control control as a function of four different aperture factors controllable by subaddress byte 06; pre-filter off; coring off and bandpass filter on.

Fig. 34 2.6 MHz luminance peaking control control as a function of four different aperture factors controllable by subaddress byte 06; pre-filter off; coring off and bandpass filter on.

\section*{Digital multistandard colour decoder} with SCART interface (DMSD2-SCART)

Fig. 35 4.1 MHz luminance peaking control in 50 Hz / S-VHS mode as a function of four different aperture factors controllable by subaddress byte 06.

Fig. 36 4.1 MHz luminance peaking control in 60 Hz / S-VHS mode as a function of four different aperture factors controllable by subaddress byte 06.

Fig. 38 Maximum luminance peaking control in 60 Hz / S-VHS mode as a function of four aperture centre frequencies controllable by subaddress byte 06 .

Purchase of Philips' \(1^{2} \mathrm{C}\) components conveys a license under the Philips \(1^{2} \mathrm{C}\) patent to use the components in the \(\mathrm{I}^{2} \mathrm{C}\)-system provided the system conforms to the \(\mathrm{I}^{2} \mathrm{C}\) specifications defined by Philips.

\section*{Digital multistandard colour decoder} with SCART interface (DMSD2-SCART)

\section*{11. PROGRAMMING EXAMPLE}

Coefficients to set operation for application circuits Figures 17, 18 and 19. Values recommended for PAL CVBS input signal and 4:2:2 CCIR output signal (all numbers of the Table 6 are hex values).

Table 7 Recommended default values (note 1)
\begin{tabular}{|c|c|c|c|}
\hline SUBADDRESS & BIT NAME & FUNCTION & Value (HEX) \\
\hline \[
\begin{aligned}
& 00 \\
& 01 \\
& 02
\end{aligned}
\] & \[
\begin{aligned}
& \operatorname{IDEL}(7-0) \\
& \operatorname{HSYB}(7-0) \\
& \operatorname{HSYS}(7-0)
\end{aligned}
\] & increment delay horizontal sync HSY begin horizontal sync HSY stop & \[
\begin{aligned}
& 4 D \\
& 3 D \\
& 3 D
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 03 \\
& 04 \\
& 05
\end{aligned}
\] & \begin{tabular}{l}
HCLB(7-0) \\
HCLS(7-0) \\
HPHI(7-0)
\end{tabular} & horizontal clamping HCL begin horizontal clamping HCL stop horizontal sync after PHI1 & \[
\begin{aligned}
& \text { F3 } \\
& \text { C6 } \\
& \text { FB }
\end{aligned}
\] \\
\hline 06 & \begin{tabular}{l}
BYPS, PREF, BPSS(1-0) \\
BFBY, CORI, APER(1-0)
\end{tabular} & luminance bandwidth control: & 02 (note 2) \\
\hline 07 & HUEC(7-0) & hue control (0 degree) & 00 \\
\hline 08 & \(\operatorname{CSTD}(2-0), \mathrm{CKTQ}(4-0)\) & miscellanous controls \#1 & 09 \\
\hline 09 & OSCE, LFIS(1-0),CKTS(4-0) & miscellanous controls \#2 & C0 \\
\hline OA & PLSE(7-0) & PAL switch sensitivity & 4D \\
\hline OB & SESE(7-0) & SECAM switch sensitivity & 40 \\
\hline OC & FSAU, GPSI(2-1), CGFX, AMPF(3-0) & miscellanous controls \#3 & 80 \\
\hline OD & COLO, CHSB, GPSWO, SUVI, SXCR, FSDL(2-0) & miscellanous controls \#4 & 60 \\
\hline OE & CCIR, COEF, OEHS, OEVS UVSS, CHRS, CDMO, CDPO & miscellanous controls \#5 & B4 \\
\hline OF & AUFD, FSEL, HPLL, SCEN, VTRC, MUIV, FSIV, WIND & miscellanous controls \#6 & 9 F \\
\hline 10 & ASTD, OFTS, IPBP, CDVI, YDEL(3-0) & miscellanous controls \#7 & CO \\
\hline 11 & CHCV(7-0) & nominal chrominance gain & 4F \\
\hline 12 & OEDY, OEDC, VNOI(1-0), BFON, BOFL(2-0) & miscellanous controls \#8 & C2 \\
\hline
\end{tabular}

\section*{Notes to Table 7}

1 Slave address is \(8 A\) (hex) at IICSA \(=\) LOW or \(8 E\) (hex) at IICSA \(=\mathrm{HIGH}\).
2 Dependent on applications (Figures 23 to 38)

\section*{1. FEATURES}
- Comb filter circuit for luminance and chrominance separation
- Applicable for standards

PAL B/G, M and N
PAL 4.43 (525 lines; 60 Hz)
NTSC \(M\) and N
NTSC 4.43 (50 and 60 Hz)
- Luminance and chrominance bypasses with short delay in case of no filtering
- Line-locked system clock; CCIR-compatible
- \(1^{2} \mathrm{C}\)-bus controlled

\section*{2. GENERAL DESCRIPTION}

The CMOS digital comb filter circuit is located between video analog-todigital converters and the video multistandard decoder SAA7151B (not applicable for SAA7191B). The two-dimensional filtering is only appropriate for standard signals from a source with constant phase relationship between subcarrier signal and horizontal frequency. The comb-filter has to be switched off for VTR signals and for separate VBS and and \(C\) signals. In VCR and S-Video operation the luminance

\section*{3. QUICK REFERENCE DATA}
\begin{tabular}{|l|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & MIN. & TYP. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\text {DD }}\) & supply voltage (pins 11, 34, 44) & 4.5 & 5.0 & 5.5 & V \\
\hline \(\mathrm{I}_{\mathrm{P}}\) & total supply current & - & 85 & 180 & mA \\
\hline \(\mathrm{~V}_{\mathrm{i}}\) & input levels & \multicolumn{3}{|c|}{ TTL-compatible } & \\
\hline \(\mathrm{V}_{0}\) & output levels & \multicolumn{3}{|c|}{ TTL-compatible } & \\
\hline LL27 & typical system clock frequency & - & 27 & - & MHz \\
\hline \(\mathrm{T}_{\mathrm{amb}}\) & \begin{tabular}{l}
operating ambient temperature \\
range
\end{tabular} & 0 & - & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{4. ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
EXTENDED \\
TYPE NUMBER
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline SAA7152 & 44 & PLCC & plastic & SOT187 \\
\hline
\end{tabular}
low-pass and the chrominance bandpass parts can still be used for noise reduction purposes.
The processing delay is \(21 \times\) LL27 clocks in active mode or \(3 \times\) LL27 in short delay bypass mode (BYPS =1).

\section*{Digital video comb filter (DCF)}

\section*{5. BLOCK DIAGRAM}

Fig. 1 Block diagram.

\section*{6. PINNING}
\begin{tabular}{|l|c|l|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline RESN & 1 & reset input; active-LOW \\
\hline LL27 & 2 & line-locked system clock input (27 MHz) \\
\hline CIN0 & 3 & \\
CIN1 & 4 & \\
CIN2 & 5 & \\
CIN3 & 6 & \\
CIN4 & 7 & chrominance input data bits CIN0 to CIN7 \\
CIN5 & 8 & \\
CIN6 & 9 & \\
CIN7 & 10 & \\
\hline
\end{tabular}

Digital video comb filter (DCF)
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline \(\mathrm{V}_{\mathrm{DD} 1}\) & 11 & +5 V supply input 1 \\
\hline \(\mathrm{V}_{\text {SS1 }}\) & 12 & ground \(1(0 \mathrm{~V}\)) \\
\hline CVBSO & 13 & \\
\hline CVBS 1 & 14 & \\
\hline CVBS2 & 15 & \\
\hline CVBS3 & 16 & \\
\hline CVBS4 & 17 & CVBS input data bits 0 to 7 \\
\hline CVBS5 & 18 & \\
\hline CVBS6 & 19 & \\
\hline CVBS7 & 20 & \\
\hline SP & 21 & connected to ground (shift pin for testing) \\
\hline AP & 22 & connected to ground (action pin for testing) \\
\hline SDA & 23 & \({ }^{2} \mathrm{C}\)-bus data line \\
\hline SCL & 24 & \({ }^{2} \mathrm{C}\) - bus clock line \\
\hline YOUT7 & 25 & \\
\hline YOUT6 & 26 & \\
\hline YOUT5 & 27 & \\
\hline YOUT4 & 28 & \\
\hline YOUT3 & 29 & luminance (\(Y\)) output data bits 7 to 0 \\
\hline YOUT2 & 30 & \\
\hline YOUT1 & 31 & \\
\hline YOUTO & 32 & \\
\hline \(\mathrm{V}_{\text {SS2 }}\) & 33 & ground \(2(0 \mathrm{~V}\)) \\
\hline \(V_{\text {DD2 }}\) & 34 & +5 V supply input 2 \\
\hline COUT7 & 35 & \\
\hline COUT6 & 36 & \\
\hline COUT5 & 37 & \\
\hline COUT4 & 38 & \\
\hline COUT3 & 39 & chrominance (C) output data bits 7 to 0 \\
\hline COUT2 & 40 & \\
\hline COUT1 & 41 & \\
\hline COUTO & 42 & \\
\hline \(\mathrm{V}_{\text {SS3 }}\) & 43 & ground 3 (0 V) \\
\hline \(\mathrm{V}_{\text {DD3 }}\) & 44 & +5 V supply input 3 \\
\hline
\end{tabular}

Fig. 2 Pin configuration.

Fig. 3 System environment.

\section*{Digital video comb filter (DCF)}

\section*{7. \(1^{2} \mathrm{C}-\mathrm{BUS}\) FORMAT}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline S & SLAVE ADDRESS & A & SUBADDRESS & A & DATAO & A & DATAn & A & P \\
\hline S & = & \multicolumn{8}{|c|}{start condition} \\
\hline SLAV & ADDRESS & \multicolumn{8}{|c|}{\[
10110010 \text { (B2 h) }
\]} \\
\hline A & \(=\) & \multicolumn{8}{|c|}{acknowledge, generated by the slave} \\
\hline SUB & DRESS* & \multicolumn{8}{|c|}{subadress byte (Table 1)} \\
\hline DATA & = & \multicolumn{8}{|c|}{data byte (Table 1)} \\
\hline P & = & \multicolumn{8}{|c|}{stop condition} \\
\hline X & \(=\) & \multicolumn{8}{|c|}{\begin{tabular}{l}
read/write control bit \\
\(X=0\), order to write (the circuit is slave receiver) \\
\(X=1\), order to read (the circuit is slave transmitter)
\end{tabular}} \\
\hline
\end{tabular}
* If more than 1 byte DATA are transmitted, then auto-increment of the subaddress is performed.

Table \(11^{2} \mathrm{C}\)-bus; subaddress and data bytes for writing (after \(\mathrm{X}=0\) in address byte)
\begin{tabular}{|l|c|ccccc|cccc|}
\hline \multicolumn{1}{|c|}{ FUNCTION } & SUBADDRESS & D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\hline Controls & 00 & BYPS & CSEL & CCMB & YCMB & TAPS & CFRQ & NLIN & LLEN \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Function of the bits of Table 1:} \\
\hline BYPS & Select bypass with a short delay; all other functions are disabled: \(0=\) no bypass; \(\quad 1=\) comb filter bypassed (delay is 3 LLC) \\
\hline CSEL & Input mode select: \(0=\) CVBS selected; \(1=Y / C\) selected \\
\hline CCMB & \begin{tabular}{l}
Select comb filtering: \(0=\) chrominance is bandpassed; \\
\(1=\) chrominance is comb-filtered
\end{tabular} \\
\hline YCMB & \begin{tabular}{l}
Enable chrominance substruction from CVBS signal: \\
\(0=\) disabled, CVBS \(/\) signal is only low-passed \\
\(1=\) enabled (chrominance trap or comb filtering)
\end{tabular} \\
\hline TAPS & \begin{tabular}{l}
Selects tap for switching Y and C to adder: \\
\(0=\) for bandpass/low-pass combination \\
\(1=\) for comb filter active
\end{tabular} \\
\hline CFRQ & Select centre frequency and matching factor of chrominance filter:
\[
0=4.43 \mathrm{MHz} ; \quad 1=3.58 \mathrm{MHz}
\] \\
\hline NLIN & \begin{tabular}{l}
Select delay (number of lines): \(\quad 0=4\)-line comb filter for standard PAL \\
\(1=2\)-line comb filter for standard NTSC
\end{tabular} \\
\hline LLEN & Selects the number of clocks for each line delay:
\[
\begin{aligned}
& 0=1728 \text { clocks (} 625 \text { lines); } 50 \mathrm{~Hz} \text {) } \\
& 1=1716 \text { clocks (} 525 \text { lines; } 60 \mathrm{~Hz} \text {) }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Digital video comb filter (DCF)}

Fig. 4 Frequency response of bandpass filters 1 and 2 with CFRQ-bit \(=1\).

Fig. 5 Frequency response of bandpass filters 1 and 2 with CFRQ-bit \(=0\).

Fig. 6 Frequency response of low-pass filter with CFRQ-bit \(=1\).

Fig. 7 Frequency response of low-pass filter with CFRQ-bit \(=0\).

Purchase of Philips' \(1^{2} \mathrm{C}\) components conveys a license under the Philips \(1^{2} \mathrm{C}\) patent to use the components in the \(1^{2} \mathrm{C}\)-system provided the system conforms to the \(1^{2} \mathrm{C}\) specifications defined by Philips.

Digital video comb filter (DCF)

\section*{8. LIMITING VALUES}

In accordance with the Absolute Maximum Rating System (IEC 134).
\begin{tabular}{|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & \multicolumn{1}{|c|}{ MIN. } & MAX. & UNIT \\
\hline \(\mathrm{V}_{\mathrm{DD}}\) & supply voltage (pins 11, 34, 44) & -0.5 & 7.0 & V \\
\hline \(\mathrm{~V}_{\mathrm{I}}\) & voltage on all inputs & -0.5 & \(\mathrm{~V}_{\mathrm{DD}^{+0.5}}\) & V \\
\hline \(\mathrm{~V}_{\mathrm{O}}\) & voltage on all outputs (lo max \(=20 \mathrm{~mA})\) & -0.5 & \(\mathrm{~V}_{\mathrm{DD}}+0.5\) & V \\
\hline \(\mathrm{P}_{\text {tot }}\) & total power dissipation & - & 1.0 & W \\
\hline \(\mathrm{~T}_{\text {stg }}\) & storage temperature range & -65 & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature range & 0 & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{V}_{\text {ESD }}\) & electrostatic handling* for all pins & - & \(\pm 2000\) & V \\
\hline
\end{tabular}
* Equivalent to discharging a 100 pF capacitor through a \(1.5 \mathrm{k} \Omega\) series resistor.; inputs and outputs are protected against electrostatic discharge in normal handling. Normal precautions appropriate to handle MOS devices is recommended ("Handling MOS Devices").

\section*{9. CHARACTERISTICS}
\(\mathrm{V}_{\mathrm{DD} 1}\) to \(\mathrm{V}_{\mathrm{DD} 3}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=0\) to \(70^{\circ} \mathrm{C}\) and measurements taken in Fig. 1 unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\mathrm{DD}}\) & supply voltage range (pins 11, 34, 44) & & 4.5 & 5 & 5.5 & V \\
\hline \({ }^{\text {IDD }}\) & total supply current (pins 11, 34, 44) & \(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}\); inputs LOW; outputs not connected & - & 85 & 180 & mA \\
\hline \multicolumn{7}{|l|}{I2C-bus, SDA and SCL (pins 23 and 24)} \\
\hline \(V_{\text {IL }}\) & input voltage LOW & , & -0.5 & - & 1.5 & V \\
\hline \(\mathrm{V}_{1 \mathrm{H}}\) & input voltage HIGH & & 3 & - & \(\mathrm{V}_{\mathrm{DD}}+0.5\) & V \\
\hline \(\mathrm{I}_{23,24}\) & input current & & - & - & \(\pm 10\) & \(\mu \mathrm{A}\) \\
\hline tack & output current on pin 23 & acknowledge & 3 & - & - & mA \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & output voltage at acknowledge & \(\mathrm{l}_{23}=3 \mathrm{~mA}\) & - & - & 0.4 & V \\
\hline \multicolumn{7}{|l|}{Data and clock inputs (pins 2 to 10 and pins 13 to 20)} \\
\hline \(V_{\text {IL }}\) & LL27 input voltage (pin 2) & LOW & -0.5 & - & 0.6 & V \\
\hline \(V_{\text {IH }}\) & & High & 2.4 & - & \(\mathrm{V}_{\mathrm{DD}}+0.5\) & V \\
\hline \(V_{\text {IL }}\) & other input voltages & LOW & -0.5 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & & HIGH & 2.0 & - & \(\mathrm{V}_{\mathrm{DD}}+0.5\) & V \\
\hline I leak & input leakage current & & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{\(\mathrm{C}_{1}\)} & \multirow[t]{2}{*}{input capacitance} & data inputs & - & - & 8 & pF \\
\hline & & clock inputs & - & - & 10 & pF \\
\hline tsu.DAT & input data set-up time & Fig. 8 & 11 & - & - & ns \\
\hline thD.DAT & input data hold time & & 3 & - & - & ns \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Data outputs (pins 25 to 32 and pins 35 to 42)} \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & output voltage LOW & & 0 & - & 0.6 & V \\
\hline VOH & output voltage HIGH & & 2.4 & - & \(V_{D D}\) & V \\
\hline \(\mathrm{C}_{\mathrm{L}}\) & load capacitor & & 8 & - & 25 & pF \\
\hline \multicolumn{2}{|l|}{Timing of data outputs} & \multicolumn{5}{|l|}{Fig. 8} \\
\hline \(\mathrm{t}_{\mathrm{OH}}\) & output signal hold time from positive edge of LL27 & \(C_{L}=8 \mathrm{pF}\) & 3 & - & - & ns \\
\hline tod & output delay from positive edge of LL27 & \(C_{L}=25 \mathrm{pF}\) & - & - & 32 & ns \\
\hline \multicolumn{2}{|l|}{Line locked clock input LL27 (pin 2)} & \multicolumn{5}{|l|}{Fig. 8} \\
\hline tLL27 & cycle time & note 1 & 35 & - & 39 & ns \\
\hline \(\mathrm{t}_{\mathrm{p}}\) & duty factor & \(\mathrm{tLL27H}^{\text {/t LL27 }}\) & 40 & 50 & 60 & \% \\
\hline \(\mathrm{t}_{\mathrm{r}}\) & rise time & & - & - & 5 & ns \\
\hline \(t_{\text {f }}\) & fall time & & - & - & 6 & ns \\
\hline
\end{tabular}

\section*{Note to the characteristics}
1. \(t_{S U}, t_{H D}, t_{O H}\) and \(t_{O D}\) include \(t_{r}\) and \(t_{f}\).

Fig. 8 Data input and output timing.

\section*{Clock signal generator circuit \\ for digital TV systems (SCGC)}

\section*{FEATURES}
- Clock generation suitable for digital TV systems (line-locked)
- PLL frequency multiplier to generate 4 times of input frequency
- Dividers to generate clocks LL1.5A, LL1.5B, LL3A and LL3B (4th and 2nd multiples of input frequency)
- PLL mode or VCO mode selectable
- Reset control and power fail detection
- Suitable for applications with feature box and picture memory

GENERAL DESCRIPTION
The SAA 7157 generates all clock signals required for a digital TV system suitable for the SAA715x family and the SAA7199B (DENC). The circuit operates in either the phase-locked loop mode (PLL) or voltage controlled oscillator mode (VCO).

QUICK REFERENCE DATA
\begin{tabular}{|l|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & MIN. & TYP. & MAX. & UNIT \\
\hline\(V_{\text {DDA }}\) & analog supply voltage (pin 5) & 4.5 & 5.0 & 5.5 & V \\
\hline\(V_{\text {DDD }}\) & digital supply voltage (pins 8, 17) & 4.5 & 5.0 & 5.5 & V \\
\hline\(I_{\text {DDA }}\) & analog supply current & 3 & - & 9 & mA \\
\hline\(I_{\text {DDD }}\) & digital supply current & 10 & - & 60 & mA \\
\hline \(\mathrm{~V}_{\text {LFCO }}\) & \begin{tabular}{l}
LFCO input voltage \\
(peak-to-peak value)
\end{tabular} & 1 & - & \(V_{\text {DDA }}\) & V \\
\hline\(f_{\mathrm{i}}\) & input frequency range & 6.0 & - & 7.25 & MHz \\
\hline \(\mathrm{V}_{\mathrm{I}}\) & \begin{tabular}{l}
input voltage LOW \\
input voltage HIGH
\end{tabular} & \begin{tabular}{l}
0 \\
2.0
\end{tabular} & - & 0.8 & V \\
\hline \(\mathrm{~V}_{\mathrm{O}}\) & \begin{tabular}{l}
output voltage LOW \\
output voltage HIGH
\end{tabular} & 0 & - & 0.6 & V \\
\hline \(\mathrm{~T}_{\text {amb }}\) & \begin{tabular}{l}
operating ambient temperature \\
range
\end{tabular} & 0.6 & - & \(\mathrm{V}_{\mathrm{DDD}}\) & V \\
\hline
\end{tabular}

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
EXTENDED \\
TYPE NUMBER
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline SAA7157 & 20 & DIL & plastic & SOT146 \\
\hline SAA7157T & 20 & mini-pack (SO20) & plastic & SOT163A \\
\hline
\end{tabular}

\section*{Clock signal generator circuit} for digital TV systems (SCGC)

Fig. 1 Block diagram.

\section*{FUNCTION DESCRIPTION}

The SAA7157 generates all clock signals required for a digital TV system suitable for the SAA715x family consisting of an 8-bit analog-to-digital converter (ADC8), digital video multistandard decoder (DMSD2) and video enhancement and D/A processor circuit (VEDA). Optional extras (feature box, video memory etc.) can be driven via external buffers, advantageous for a digital TV system based on display standard conversion concepts. The 6.75 MHz input signal LFCO (triangular waveform) coming from the DMSD or LFCO2 is multiplied to 27 MHz by the PLL (including phase detector, loop filter, VCO and frequency divider) and output on LL1.5A (pin7) and LL1.5B (pin 10). The 13.5 MHz frequencies are generated by dividers using ratio of 1:2 and are output on LL3A (pin 14) and LL3B (pin 20).

The rectangular output signals have 50 \% duty factor. Outputs with equal frequency may be connected together externally. The clock outputs go HIGH during power-on reset (and chip enable) to ensure that no output clock signals are available before the PLL has locked-on.

\section*{Mode select MS}

The LFCO input signal is directly connected to the VCO at MS \(=\) HIGH. The circuit operates as an oscillator and frequency divider. This function is not tested.

\section*{Source select LFCOSEL}

Line frequency control signal (LFCO) is selected by LFCOSEL input. LFCOSEL = LOW: signal from LFCO (pin 11) is selected. LFCOSEL = HIGH: signal from LFCO2 (pin 19) is selected. This function is not tested.

\section*{Chip enable CE}

The buffer outputs are enabled and

RESN is set to HIGH by CE \(=\) HIGH (Fig.4).
\(C E=\) LOW sets the clock outputs
HIGH and RESN output LOW.

\section*{CREF output}

TV2 digital clock reference output signal. Clock qualifier signal to TV system with 2 times of LFCO or LFCO2 frequency.

\section*{Power-on reset}

Power-on reset is activated at power-on, when the supply voltage decreases below 3.5 V (Fig.4) or when chip enable is done. The indicator output RESN is LOW for a time determined by capacitor on pin 3. The RESN signal can be applied to reset other circuits of this digital TV system.
The LFCO or LFCO2 input signals have to be applied before RESN becomes HIGH.

\section*{PINNING}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline MS & 1 & mode select input (LOW = PLL mode) \\
\hline CE & 2 & chip enable /reset (HIGH = outputs enabled) \\
\hline PORD & 3 & power-on reset delay, dependent on external capacitor \\
\hline \(V_{\text {SSA }}\) & 4 & analog ground (0 V) \\
\hline \(V_{\text {DDA }}\) & 5 & analog supply voltage (+5 V) \\
\hline \(\mathrm{V}_{\text {SSD1 }}\) & 6 & digital ground \(1(0 \mathrm{~V})\) \\
\hline LL1.5A & 7 & line-locked clock output signal 1.5A (4 times f \(\mathrm{f}_{\text {LFCO }}\)) \\
\hline \(V_{\text {DDD1 }}\) & 8 & digital supply voltage 1 (+5 V) \\
\hline \(\mathrm{V}_{\text {SSD2 }}\) & 9 & digital ground \(2(0 \mathrm{~V}\)) \\
\hline LL1.5B & 10 & line-locked clock output signal 1.5B (4 times filfCO) \\
\hline LFCO & 11 & line-locked frequency control input signal 1 \\
\hline RESN & 12 & reset output (active-LOW, Fig.4) \\
\hline \(V_{\text {SSD3 }}\) & 13 & digital ground \(3(0 \mathrm{~V}\)) \\
\hline LL3A & 14 & line-locked clock output signal 3A (2 times flfco) \\
\hline CREF & 15 & clock reference output, qualifier signal (2 times f LFCO) \\
\hline LFCOSEL & 16 & LFCO source select (LOW = LFCO selected)* \\
\hline \(V_{\text {DDD2 }}\) & 17 & digital supply voltage \(2(+5 \mathrm{~V})\) \\
\hline \(V_{\text {SSD4 }}\) & 18 & digital ground \(4(0 \mathrm{~V})\) \\
\hline LFCO2 & 19 & line-locked frequency control input signal \(2^{*}\) \\
\hline LL3B & 20 & line-locked clock output signal 3B (2 times flFCO) \\
\hline
\end{tabular}

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum Rating System (IEC 134); ground pins as well as supply pins together connected.
\begin{tabular}{|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & MIN. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\text {DDA }}\) & analog supply voltage (pin 5) & -0.5 & 7.0 & V \\
\hline \(\mathrm{~V}_{\text {DDD }}\) & digital supply voltage (pins 8 and 17) & -0.5 & 7.0 & V \\
\hline \(\mathrm{~V}_{\text {diff }}\) GND & difference voltage \(\mathrm{V}_{\mathrm{DDA}}-\mathrm{V}_{\mathrm{DDD}}\) & - & \(\pm 100\) & mV \\
\hline \(\mathrm{V}_{\mathrm{O}}\) & output voltage (l \(\mathrm{OM}=20 \mathrm{~mA})\) & -0.5 & \(\mathrm{~V}_{\mathrm{DDD}}\) & V \\
\hline\(P_{\text {tot }}\) & total power dissipation (DIL20) & 0 & 1.1 & W \\
\hline \(\mathrm{~T}_{\text {stg }}\) & storage temperature range & -65 & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{amb}}\) & operating ambient temperature range & 0 & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{V}_{\text {ESD }}\) & electrostatic handling** for all pins & - & tbf & V \\
\hline
\end{tabular}

\section*{PIN CONFIGURATION}
\begin{tabular}{|c|c|c|c|}
\hline \[
\text { ms } 1
\] & \multirow{10}{*}{SAA7157} & 20 & LL3B \\
\hline CE 2 & & 19 & LFCO2 \\
\hline PORD 3 & & 18 & \(V_{\text {SSD4 }}\) \\
\hline \(v_{\text {SSA }} 4\) & & 17 & \(V_{\text {DDD } 2}\) \\
\hline \(V_{\text {DOA }} 5\) & & 16 & LFCOSEL \\
\hline \(v_{\text {SSDI }}{ }^{6}\) & & 15 & CREF \\
\hline L1.5A 7 & & 14 & Ll3A \\
\hline \(V_{D D D 1} 8\) & & 13 & \(\mathrm{V}_{\text {SSD }}\) \\
\hline \(V_{\text {SSD2 }} 9\) & & 12 & RESN \\
\hline L1.5B 10 & & 11 & LFCO \\
\hline
\end{tabular}

Fig. 2 Pin configuration.

\footnotetext{
* MS and LFCO2 functions are not tested. LFCO2 is a multiple of horizontal frequency.
** Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is recommended to take normal handling precautions appropriate to "Handling MOS devices ".
}

\section*{Clock signal generator circuit}
for digital TV systems (SCGC)

\section*{CHARACTERISTICS}
\(\mathrm{V}_{\mathrm{DDA}}=4.5\) to \(5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DDD}}=4.5\) to \(5.5 \mathrm{~V} ; \mathrm{f}_{\mathrm{LFCO}}=6.0\) to 7.25 MHz and \(\mathrm{T}_{\mathrm{amb}}=0\) to \(70^{\circ} \mathrm{C}\) unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(V_{\text {DDA }}\) & analog supply voltage (pin 5) & & 4.5 & 5.0 & 5.5 & V \\
\hline \(V_{\text {DDD }}\) & digital supply voltage (pins 8 and 17) & & 4.5 & 5.0 & 5.5 & V \\
\hline IDDA & analog supply current (pin 5) & & 3 & - & 9 & mA \\
\hline IDDD & digital supply current (\(\mathrm{l}_{8}+\mathrm{l}_{17}\)) & note 1 & 10 & - & 60 & mA \\
\hline \(V_{\text {reset }}\) & power-on reset threshold voltage & Fig. 4 & - & 3.5 & - & V \\
\hline \multicolumn{7}{|l|}{Input LFCO (pin 11)} \\
\hline \(\mathrm{V}_{11}\) & DC input voltage & & 0 & - & \(V_{\text {DDA }}\) & V \\
\hline \(V_{i}\) & input signal (peak-to-peak value) & & 1 & - & \(V_{\text {DDA }}\) & V \\
\hline \(\mathrm{f}_{\mathrm{LFCO}}\) & input frequency range & & 6.0 & - & 7.25 & MHz \\
\hline \(\mathrm{C}_{11}\) & input capacitance & & - & - & 10 & pF \\
\hline
\end{tabular}

Inputs MS, CE, LFCOSEL and LFCO2 (pins 1, 2, 16 and 19); note 3
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{\text {IL }}\) & input voltage LOW & & 0 & - & 0.8 & V \\
\hline \(\mathrm{~V}_{\mathrm{IH}}\) & input voltage HIGH & & 2.0 & - & \(V_{\mathrm{DDD}}\) & V \\
\hline \(\mathrm{f}_{\text {LFCO2 }}\) & input frequency range for LFCO2 & & 6.0 & - & 7.25 & MHz \\
\hline \(\mathrm{I}_{\mathrm{LI}}\) & input leakage current & \begin{tabular}{l}
LFCOSEL \\
others
\end{tabular} & 50 & - & 150 & \(\mu \mathrm{~A}\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & & - & - & 10 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

Output RESN (pin 12)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{V}_{\mathrm{OL}}\) & output voltage LOW & \(\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}\) & 0 & - & 0.4 & V \\
\hline \(\mathrm{~V}_{\mathrm{OH}}\) & output voltage HIGH & \(\mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}\) & 2.4 & - & \(\mathrm{V}_{\mathrm{DDD}}\) & V \\
\hline \(\mathrm{t}_{\mathrm{d}}\) & RESN delay time & \(\mathrm{C}_{3}=0.1 \mu \mathrm{~F} ;\) Fig.4 & 20 & - & 200 & ms \\
\hline
\end{tabular}

\section*{Output CREF (pin 15)}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{V}_{\mathrm{OL}}\) & output voltage LOW & \(\mathrm{l}_{\mathrm{OL}}=2 \mathrm{~mA}\) & 0 & - & 0.6 & V \\
\hline \(\mathrm{~V}_{\mathrm{OH}}\) & output voltage HIGH & \(\mathrm{l}_{\mathrm{OH}}=-0.5 \mathrm{~mA}\) & 2.4 & - & \(\mathrm{V}_{\mathrm{DDD}}\) & V \\
\hline \(\mathrm{f}_{\mathrm{CREF}}\) & output frequency CREF & Fig.3 & - & \(2 \mathrm{f}_{\mathrm{LFCO}}(2)\) & MHz \\
\hline \(\mathrm{C}_{\mathrm{L}}\) & output load capacitance & & 15 & - & 40 & pF \\
\hline \(\mathrm{t}_{\mathrm{SU}}\) & set-up time & Fig.3; note 1 & 12 & - & - & ns \\
\hline \(\mathrm{t}_{\mathrm{HD}}\) & hold time & Fig.3; note 1 & 4 & - & - & ns \\
\hline
\end{tabular}

Output signals LL1.5A, LL1.5B, LL3A and LL3B (pins 7, 10, 14, and 20); note 3
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{V}_{\mathrm{OL}}\) & output voltage LOW \\
\(\mathrm{V}_{\mathrm{OH}}\) & output voltage HIGH & \begin{tabular}{l}
\(\mathrm{IOL}=2 \mathrm{~mA}\) \\
\(\mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}\)
\end{tabular} & \begin{tabular}{l}
0 \\
2.6
\end{tabular} & - & 0.6 & V \\
\(\mathrm{~V}_{\mathrm{DDD}}\)
\end{tabular} V \begin{tabular}{l}
V \\
\hline \(\mathrm{t}_{\text {comp }}\)
\end{tabular}

\section*{Clock signal generator circuit} for digital TV systems (SCGC)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multirow[t]{4}{*}{\(\mathrm{f}_{\mathrm{LL}}\)} & output frequency LL1.5A & Fig. 3 & - & \multicolumn{2}{|l|}{4 flFCO(2)} & MHz \\
\hline & output frequency LL1.5B & & - & \multicolumn{2}{|l|}{\(4 \mathrm{f}_{\mathrm{LFCO}}(2)\)} & MHz \\
\hline & output frequency LL3A & & - & \multicolumn{2}{|l|}{\(2 \mathrm{fLFCO}(2)\)} & MHz \\
\hline & output frequency LL3B & & - & \multicolumn{2}{|l|}{\(2 \mathrm{fLFCO}(2)\)} & MHz \\
\hline \(t_{r}, t_{f}\) & rise and fall times & note 1; Fig. 3 & - & - & 5 & ns \\
\hline \(t_{\text {LL }}\) & duty factor LL1 .5A, LL1.5B, LL3A and LL3B (mean values) & note 1; Fig.3; at 1.5 V level & 43 & 50 & 57 & \% \\
\hline
\end{tabular}

\section*{Notes to the characteristics}
1. \(f_{\text {LFCO }}=7.0 \mathrm{MHz}\) and output load 40 pF (Fig.3). \(\mathrm{V}_{\text {SSA }}\) and \(\mathrm{V}_{\text {SSD }}\) short connected together.
2. \(t_{\text {comp }}\) is the rise time from LOW of all clocks to HIGH of all clocks (Fig.3) including rise time, skew and jitter components. Measurements taken between 0.6 V and 2.6 V . Skew between two LLx clocks will not deviate more than \(\pm 2 \mathrm{~ns}\) if output loads are matched within \(20 \%\).
3. MS and LFCO2 functions not tested.

Fig. 3 Output timing.

Fig. 4 Reset procedure.

Fig. 5 Internal circuit.

\section*{1. FEATURES}
- CMOS circuit to enhance video data and to convert luminance and colour-difference signals from digital-to-analog
- 16-bit parallel input for 4:1:1 and 4:2:2 YUV data
- Data clock input LLC (line-locked clock) for a data rate up to 45 MHz
-8-bit luminance and 8-bit multiplexed colour-difference formats (optional 7-bit formats)
- MC input to support various clock and pixel rates
- Formatter for YUV input data; 4:2:2 format, 4:1:1 format and filter characteristics selectable
- HREF input to determine the active line (number of pixels)
- Controllable peaking of luminance signal
- Coring stage with controliable threshoid to eliminate noise in luminance signal
- Interpolation filter suitable for both formats to increase the data rate in chrominance path
- Polarity of colour-difference signals
selectable
- Separate digital-to-analog converters (9-bit resolution for \(Y\); 8 -bit for colour-difference signals)
- \(1 \mathrm{~V}(\mathrm{p}-\mathrm{p}) / 75 \Omega\) outputs realized by two resistors
- No external adjustments
- All functions controlled via \(\mathrm{I}^{2} \mathrm{C}\)-bus

\section*{2. QUICK REFERENCE DATA}
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN. & TYP. & MAX. & UNIT \\
\hline \(V_{\text {DDD }}\) & supply voltage digital part & 4.5 & 5 & 5.5 & V \\
\hline \(V_{\text {DDA }}\) & supply voltage analog part. & 4.75 & 5 & 5.25 & V \\
\hline IDD & total supply current & - & - & 160 & mA \\
\hline \(V_{\text {IL }}\) & input voltage LOW on YUV-bus & -0.5 & - & 0.8 & V \\
\hline \(V_{1 H}\) & input voltage HIGH on YUV-bus & 2 & - V \({ }_{\text {D }}\) & +0.5 & V \\
\hline \(\mathrm{f}_{\text {LLC }}\) & input data rate & - & - & 45 & MHz \\
\hline \(\mathrm{V}_{\mathrm{O}} \mathrm{Y}, \mathrm{CD}\) & output signal \(\mathrm{Y}, \pm(\mathrm{R}-\mathrm{Y})\) and \(\pm(B-Y)\) (peak-to-peak value) & - & 2 & - & V \\
\hline \(R_{\text {L Y,CD }}\) & output load resistance & 125 & - & - & \(\Omega\) \\
\hline ILE & DC integral linearity error in output signal (8-bit data) & - & - & 1 & LSB \\
\hline DLE & DC differential error in output signal (8-bit data) & - & - & 0.5 & LSB \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature range & 0 & - & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{3. ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
EXTENDED \\
TYPE NUMBER
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline SAA7164 & 44 & PLCC & plastic & SOT187 \\
\hline
\end{tabular}

\section*{5. PINNING}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline REFL \({ }_{\text {Y }}\) & 1 & low reference of luminance DAC (connected to \(\mathrm{V}_{\text {SSA1 }}\)) \\
\hline \(\mathrm{C}_{Y}\) & 2 & capacitor for luminance DAC (high reference) \\
\hline SUB & 3 & substrate (connected to \(\mathrm{V}_{\text {SSA } 1}\)) \\
\hline UVO & 4 & \\
\hline UV1 & 5 & \\
\hline UV2 & 6 & \\
\hline UV3 & 7 & UV signal input bits UV7 to UVO (digital colour-difference sign \\
\hline UV4 & 8 & UVig \\
\hline UV5 & 9 & \\
\hline UV6 & 10 & \\
\hline UV7 & 11 & \\
\hline \(\mathrm{V}_{\text {DDD1 }}\) & 12 & +5 V digital supply voltage 1 \\
\hline \(\mathrm{V}_{\text {SSD1 }}\) & 13 & digital ground 1 (0 V) \\
\hline YO & 14 & \\
\hline Y1 & 15 & \\
\hline Y2 & 16 & \\
\hline Y3 & 17 & Y signal input bits Y 7 to YO (digital luminance signal) \\
\hline Y4 & 18 & \\
\hline Y5 & 19 & \\
\hline Y6 & 20 & \\
\hline Y7 & 21 & \\
\hline MS2 & 22 & mode select 2 input for testing chip \\
\hline MS1 & 23 & mode select 1 input for testing chip \\
\hline MC & 24 & data clock CREF (13.5 MHz e. g.); at MC = HIGH the LLC divider-by-two is inactive \\
\hline LLC & 25 & line-locked clock signal (LL27 = 27 MHz) \\
\hline HREF & 26 & data clock for YUV data inputs (for active line 768 Y or 640 Y long) \\
\hline RESN & 27 & reset input (active LOW) \\
\hline SCL & 28 & \(1^{2} \mathrm{C}\)-bus clock line \\
\hline SDA & 29 & \({ }^{2} \mathrm{C}\)-bus data line \\
\hline \(\mathrm{V}_{\text {SSD2 }}\) & 30 & digital ground \(2(0 \mathrm{~V})\) \\
\hline V \(\mathrm{V}_{\text {DDD2 }}\) & 31 & +5 V digital supply voltage 2 \\
\hline \(\mathrm{V}_{\text {DDA1 }}\) & 32 & +5 V analog supply voltage for buffer of DAC 1 \\
\hline (R-Y). & 33 & \(\pm(\mathrm{R}-\mathrm{Y})\) output signal (analog signal) \\
\hline \(\mathrm{V}_{\text {SSA1 }}\) & 34 & analog ground \(1(0 \mathrm{~V}\)) \\
\hline
\end{tabular}

Video enhancement and D/A processor (VEDA3)
\begin{tabular}{|l|c|l|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline\(V_{S S A 2}\) & 35 & analog ground 2 (O V) \\
\hline (B-Y) & 36 & \(\pm(\mathrm{B}-\mathrm{Y})\) output signal (analog colour-difference signal) \\
\hline V \(_{\text {DDA2 }}\) & 37 & +5 V analog supply voltage for buffer of DAC 2 \\
\hline\(V_{\text {SSA3 }}\) & 38 & analog ground 3 (0 V) \\
\hline\(Y\) & 39 & Y output signal (analog luminance signal) \\
\hline V \(_{\text {DDA3 }}\) & 40 & +5 V analog supply voltage for buffer of DAC 3 \\
\hline CUR & 41 & current input for analog output buffers \\
\hline\(V_{\text {DDA4 }}\) & 42 & supply and reference voltage for the three DACs \\
\hline\(C_{U V}\) & 43 & capacitor for chrominance DACs (high reference) \\
\hline REFLUV & 44 & low reference of chrominance DACs (connected to \(\mathrm{V}_{\text {SSA1 }}\)) \\
\hline
\end{tabular}

PIN CONFIGURATION

Fig. 2 Pin configuration.

\section*{FUNCTIONAL DESCRIPTION}

The CMOS circuit SAA7164 processes digital YUV-bus data up to a data rate of 45 MHz . The data inputs \(Y 7\) to YO and UV7 to UV0 (Fig.1) are provided with 8-bit data. The data of digital colour-difference signals U and V are in a multiplexed state (serial in 4:2:2 or 4:1:1 format; Tables 2 and 3).
Data is read with the rising edge of LLC (line-locked clock) to achieve a data rate of LLC at MC \(=\mathrm{HIGH}\) only. If MC is supplied with the frequency CREF (LLC/2 for example), data is read only at every second rising edge (Fig.3). The 7-bit YUV data are also supported by means of the R78-bit (R78 = 0). Additionally, the luminance data format is converted for internal use into a two's complement format by inverting MSB. The Y input byte (bits Y 7 to Y 0) represent luminance information; the UV input byte (bits UV7 to UVO) one of the two digital colour-difference signals in 4:2:2 format (Table 2).

The HREF input signal (HREF = HIGH) determines the start and the end of an active line (Fig.3), the number of pixels respectively. The analog output \(Y\) is blanked at HREF \(=\) LOW, the \((B-Y)\) and (\(R-Y\)) outputs are in a colourless state. The blanking level can be set by the BLV-bit.
The SAA7164 controllable via the \({ }^{2}\) ²-bus

\section*{Y and UV formatters}

The input data formats are formatted into the internally used processing formats (separate for 4:2:2 and 4:1:1 formats). The IFF, IFC and IFL bits control the input data format and determine the right interpolation filter (Figures 10 to 13).

\section*{Peaking and coring}

Peaking is applied to the Y signal to compensate several bandwidth reductions of the external pre-processing. \(Y\) signals can be improved to obtain a better sharpness.

Table 1 LLC and MC configuration modes in DMSD applications
\begin{tabular}{|l|l|l|}
\hline PIN & INPUT SIGNAL & COMMENT \\
\hline LLC & \begin{tabular}{l}
LLC (LL27) \\
CREF
\end{tabular} & \begin{tabular}{l}
The data rate on YUV-bus is half the clock rate \\
on pin LLC, e. g. in SAA7151B, SAA7191 and \\
SAA7191B single scan operation.
\end{tabular} \\
\hline LLC & \begin{tabular}{l}
LLC (LL27) \\
MC = HIGH
\end{tabular} & \begin{tabular}{l}
The data rate on YUV-bus must be identical to \\
the clock rate on pin LLC, e. g. in double scan \\
applications.
\end{tabular} \\
\hline LLC & \begin{tabular}{l}
LLC2/LL3 \\
MC = HIGH
\end{tabular} & \begin{tabular}{l}
The data rate on YUV-bus must be identical to \\
The clock rate on pin LLC, e. g. SAA9051 single \\
Scan operation.
\end{tabular} \\
\hline
\end{tabular}

Note: YUV data are only latched with the rising edge of LLC at MC \(=\mathrm{HIGH}\).

There are the two switchable bandpass filters BF1 and BF 2 controlled via the \(I^{2} \mathrm{C}\)-bus by the bits BP1, BP0 and BFB. Thus, a frequency response is achieved in combination with the peaking factor \(K\) (Figures 5 to \(9 ; K\) is determined by the bits BFB, WG1 and WGO).
The coring stage with controllable threshold (4 states controlled by CO1 and COO bits) reduces noise disturbances (generated by the bandpass gain) by suppressing the amplitude of small high-frequent signal components. The remaining high-frequent peaking component is available for a weighted addition after coring.

Table 2 Data format \(4: 2: 2\). (Fig.3)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline INPUT & \multicolumn{6}{|l|}{PIXEL BYTE SEQUENCE} \\
\hline YO (LSB) & Y0 & Yo & Yo & Yo & Yo & Yo \\
\hline Y1 & Y1 & Y1 & Y1 & Y1 & Y1 & Y1 \\
\hline Y2 & Y2 & Y2 & Y2 & Y2 & Y2 & Y2 \\
\hline Y3 & Y3 & Y3 & Y3 & Y3 & Y3 & Y3 \\
\hline Y4 & Y4 & Y4 & Y4 & Y4 & Y4 & Y4 \\
\hline Y5 & Y5 & Y5 & Y5 & Y5 & Y5 & Y5 \\
\hline Y6 & Y6 & Y6 & Y6 & Y6 & Y6 & Y6 \\
\hline Y7 (MSB) & Y7 & Y7 & Y7 & Y7 & Y7 & Y7 \\
\hline UVo (LSB) & U0 & Vo & Uo & Vo & U0 & Vo \\
\hline UV1 & U1 & V1 & U1 & V1 & U1 & V1 \\
\hline UV2 & U2 & V2 & U2 & V2 & U2 & V2 \\
\hline UV3 & U3 & V3 & U3 & V3 & U3 & V3 \\
\hline UV4 & U4 & V4 & U4 & V4 & U4 & V4 \\
\hline UV5 & U5 & V5 & U5 & V5 & U5 & V5 \\
\hline UV6 & U6 & V6 & U6 & V6 & U6 & V6 \\
\hline UV7(MSB) & U7 & V7 & U7 & V7 & U7 & V7 \\
\hline \(Y\) frame & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline UV frame & 0 & & 2 & & 4 & \\
\hline
\end{tabular}

\section*{Interpolation}

The chrominance interpolation filter consists of various filter stages, multiplexers and de-multiplexers to increase the data rate of the colour-difference signals by a factor of 2 or 4 . The switching of the filters by the bits IFF, IFC and IFL is described previously. Additional signal samples with significant amplitudes between two consecutive signal samples of the low data rate are generated. The time-multiplexed \(U\) and \(V\) samples are stored in parallel for converting.

\section*{Data switch}

The digital signals are adapted to the conversation range. U and V data have 8-bit formats again; Y can have 9 bits dependent on peaking. Blanking and switching to colourless level is applied here. Bits can be inverted by INV-bit to change the polarity of colour-difference output signals.

\section*{Digital-to-analog converters}

Conversion is separate for \(Y, U\) and V . The converters use resistor chains with low-impedance output buffers. The minimum output voltage is 200 mV to reduce integral

Table 3 Data format 4:1:1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INPUT & \multicolumn{8}{|l|}{PIXEL BYTE SEQUENCE} \\
\hline YO & YO \\
\hline Y1 & Y1 \\
\hline Y2 & Y2 \\
\hline Y3 & Y3 \\
\hline Y4 & Y4 \\
\hline Y5 & Y5 \\
\hline Y6 & Y6 \\
\hline Y7 & Y7 \\
\hline UVO & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline UV1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline UV2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline UV3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline UV4 & V6 & V4 & V2 & Vo & V6 & V4 & V2 & Vo \\
\hline UV5 & V7 & V5 & V3 & V1 & V7 & V5 & V3 & V1 \\
\hline UV6 & U6 & U4 & U2 & U0 & U6 & U4 & U2 & U0 \\
\hline UV7 & U7 & U5 & U3 & U1 & U7 & U5 & U3 & U1 \\
\hline \(Y\) frame & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline UV frame & \multicolumn{4}{|l|}{0} & \multicolumn{4}{|l|}{4} \\
\hline
\end{tabular}
non-linearity errors. The analog signal, without load on output pin, is between 0.2 and 2.2 V floating. An application for \(1 \mathrm{~V} / 75 \Omega\) on outputs is shown in Fig.1.
Each digital-to-analog converter has its own supply and ground pins suitable for decoupling. The reference voltage, supplying the resistor chain of all three DACs, is the supply voltage \(\mathrm{V}_{\text {DDA4 }}\). The current into pin 41 is 0.3 mA ; a larger current improves the bandwidth but increases the integral non-linearity.

Video enhancement and D/A processor (VEDA3)
7. LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).
\begin{tabular}{|l|l|l|l|l|}
\hline SYMBOL & PARAMETER & MIN. & MAX. & UNIT \\
\hline\(V_{\text {DDD1 }}\) & supply voltage range (pin 12) & -0.3 & 7 & V \\
\hline \(\mathrm{~V}_{\text {DDD2 }}\) & supply voltage range (pin 31) & -0.3 & 7 & V \\
\hline \(\mathrm{~V}_{\text {DDA1 }}\) & supply voltage range (pin 32) & -0.3 & 7 & V \\
\hline \(\mathrm{~V}_{\text {DDA2 }}\) & supply voltage range (pin 37) & -0.3 & 7 & V \\
\hline \(\mathrm{~V}_{\text {DDA3 }}\) & supply voltage range (pin 40) & -0.3 & 7 & V \\
\hline \(\mathrm{~V}_{\text {DDA4 }}\) & supply voltage range (pin 42) & -0.3 & 7 & V \\
\hline \(\mathrm{~V}_{\text {diff }}\) GND & difference voltage \(\mathrm{V}_{\text {SSD }}-\mathrm{V}_{\text {SSA }}\) & - & \(\pm 100\) & mV \\
\hline \(\mathrm{V}_{\mathrm{n}}\) & \begin{tabular}{l}
voltage on all input pins 4 to 11, \\
14 to 27 and 41
\end{tabular} & -0.3 & \(\mathrm{~V}_{\mathrm{DDD}}\) & V \\
\hline \(\mathrm{V}_{\mathrm{n}}\) & \begin{tabular}{l}
voltage on analog output pins 33, \\
\(36 ~ a n d ~ 39 ~\)
\end{tabular} & -0.3 & \(\mathrm{~V}_{\mathrm{DDD}}\) & V \\
\hline \(\mathrm{P}_{\text {tot }}\) & total power dissipation & 0 & tbf & mW \\
\hline \(\mathrm{T}_{\text {stg }}\) & storage temperature range & -55 & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline\(T_{\text {amb }}\) & operating ambient temperature range & 0 & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{V}_{\text {ESD }}\) & electrostatic handling* for all pins & \(\pm 2000\) & - & V \\
\hline
\end{tabular}
* Equivalent to discharging a 100 pF capacitor through a \(1.5 \mathrm{k} \Omega\) series resistor.
8. THERMAL RESISTANCE
\begin{tabular}{|l|c|c|}
\hline SYMBOL & PARAMETER & THERMAL RESISTANCE \\
\hline\(R_{\text {th } \mathrm{j}-\mathrm{a}}\) & from junction-to-ambient in free air & 46 KW \\
\hline
\end{tabular}

Video enhancement and D/A processor (VEDA3)

\section*{9. CHARACTERISTICS}
\(\mathrm{V}_{\mathrm{DDD}}=4.5\) to \(5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DDA}}=4.75\) to 5.25 V ; \(\mathrm{LLC}=\mathrm{LL} 27 ; \mathrm{MC}=\mathrm{CREF}=13.5 \mathrm{MHz} ; \mathrm{T}_{\mathrm{amb}}=0\) to \(70^{\circ} \mathrm{C}\); measurements taken in Fig. 1 unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(V_{\text {DDD1 }}\) & supply voltage range (pin 12) & for digital part & 4.5 & 5 & 5.5 & V \\
\hline \(V_{\text {DDD2 }}\) & supply voltage range (pin 31) & for digital part & 4.5 & 5 & 5.5 & V \\
\hline \(\mathrm{V}_{\text {DDA1 }}\) & supply voltage range (pin 32) & for buffer of DAC 1 & 4.75 & 5 & 5.25 & V \\
\hline \(V_{\text {DDA2 }}\) & supply voltage range (pin 37) & for buffer of DAC 2 & 4.75 & 5 & 5.25 & V \\
\hline \(V_{\text {DDA3 }}\) & supply voltage range (pin 40) & for buffer of DAC 3 & 4.75 & 5 & 5.25 & V \\
\hline \(\mathrm{V}_{\text {DDA4 }}\) & supply voltage range (pin 42) & DAC reference voltage & 4.75 & 5 & 5.25 & V \\
\hline IDDD & supply current (lodit \(+l_{\text {DDD }}\)) & for digital part & - & - & 140 & mA \\
\hline IDDA & supply current (IDDA1 to IDDA4) & for DACs and buffers & - & - & 20 & mA \\
\hline
\end{tabular}

YUV-bus inputs (pins 4 to 11 and 14 to 21)
Figures 3 and 4
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{I L}\) & input voltage LOW & & -0.5 & - & 0.8 & \(V\) \\
\hline\(V_{I H}\) & input voltage \(H I G H\) & & 2.0 & - & \(V_{D D D}+0.5\) & \(V\) \\
\hline\(C_{\mid}\) & input capacitance & & \(V_{1}=H I G H\) & - & - & 10 \\
\hline\(I_{L I}\) & input leakage current & & - & - & 4.5 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

Inputs MS1, MS2, MC, LLC, HREF and RESN (pins 22 to 27)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{I L}\) & input voltage LOW & & -0.5 & - & 0.8 & V \\
\hline \(\mathrm{~V}_{1 \mathrm{H}}\) & input voltage HIGH & & 2.0 & - & \(\mathrm{V}_{\mathrm{DDD}}+0.5\) & V \\
\hline \(\mathrm{C}_{1}\) & input capacitance & \(\mathrm{V}_{\mathrm{I}}=\mathrm{HIGH}\) & - & - & 10 & pF \\
\hline \(\mathrm{I}_{\mathrm{LI}}\) & input leakage current & & - & - & 4.5 & \(\mu \mathrm{~A}\) \\
\hline \(\mathrm{~V}_{24}\) & \begin{tabular}{l}
MC input voltage for LL27 \\
CREF signal on MC input
\end{tabular} & \begin{tabular}{l}
27 MHz data rate \\
CREF data rate; note 1
\end{tabular} & -2.0 & - & - & \(V_{\mathrm{DDD}}+0.5\) \\
& V \\
\hline
\end{tabular}

I2C-bus SCL and SDA (pins 28 and 29)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{1 L}\) & input voltage LOW & & -0.5 & - & 1.5 & V \\
\hline \(\mathrm{~V}_{1 H}\) & input voltage HIGH & & 3.0 & - & \(\mathrm{V}_{\mathrm{DDD}}+0.5\) & V \\
\hline \(\mathrm{I}_{1}\) & input current & \(\mathrm{V}_{\mathrm{I}}=\) LOW or HIGH & - & - & \(\pm 10\) & \(\mu \mathrm{~A}\) \\
\hline \(\mathrm{~V}_{\mathrm{OL}}\) & SDA output voltage LOW (pin 29) & \(\mathrm{I}_{29}=3 \mathrm{~mA}\) & - & - & 0.4 & V \\
\hline \(\mathrm{I}_{29}\) & output current & during acknowledge & 3 & - & - & mA \\
\hline
\end{tabular}

Digital-to-analog converters (pins 1, 2, 41, 42, 43 and 44)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{\text {DAC }}\) & \begin{tabular}{l}
input reference voltage for internal \\
resistor chains (pin 42)
\end{tabular} & & 4.75 & 5 & 5.25 & V \\
\hline l CuR & input current (pin 41) & \(\mathrm{R}_{41-42}=15 \mathrm{k} \Omega\) & - & 300 & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{1,44}\) & reference voltage LOW & pin connected to \(\mathrm{V}_{\text {SSA1 }}\) & - & 0 & - & V \\
\hline \(\mathrm{C}_{\mathrm{L}}\) & \begin{tabular}{l}
external blocking capacitor to \(\mathrm{V}_{\text {SSA1 }}\) \\
for reference voltage HIGH (pins 2 and 43)
\end{tabular} & & - & 0.1 & - & \(\mu \mathrm{F}\) \\
\hline
\end{tabular}

\section*{Video enhancement and D/A processor (VEDA3)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(f_{\text {LLC }}\) & data conversation rate (clock) & Fig. 3 & - & - & 45 & MHz \\
\hline Res & resolution & luminance DAC chrominance DACs & & \[
\begin{aligned}
& 9 \\
& 8
\end{aligned}
\] & & bit bit \\
\hline ILE & DC integral linearity error & 8-bit data & - & - & 1.0 & LSB \\
\hline DLE & DC differential error & 8-bit data & - & - & 0.5 & LSB \\
\hline \multicolumn{7}{|l|}{\(\mathbf{Y}, \pm(\mathbf{R}-\mathbf{Y})\) and \(\pm\) (B-Y) analog outputs (pins 39, 33 and 36)} \\
\hline \(V_{0}\) & output signal voltage (peak-to-peak value) & without load & - & 2 & - & V \\
\hline \(V_{33,36,39}\) & output voltage range & without load; note 2 & 0.2 & - & 2.2 & V \\
\hline \(V_{39}\) & output blanking level & Y output; note 3 & - & 16 & - & LSB \\
\hline \(V_{33,36}\) & output no-colour level & \(\pm(\mathrm{R}-\mathrm{Y}), \pm(\mathrm{B}-\mathrm{Y})\); note 4 & - & 128 & - & LSB \\
\hline \(\mathrm{R}_{33,36,39}\) & internal serial output resistance & & - & 25 & - & \(\Omega\) \\
\hline \(\mathrm{R}_{\mathrm{L} 33,36,39}\) & output load resistance & external load & 125 & - & - & \(\Omega\) \\
\hline B & output signal bandwidth & \(-3 \mathrm{~dB}\) & 20 & - & - & MHz \\
\hline \(t_{d}\) & signal delay from input to Y output & & - & tbf & - & ns \\
\hline \multicolumn{2}{|l|}{LLC timing (pins 25)} & \multicolumn{5}{|l|}{LLC; Fig. 3} \\
\hline tLLC & cycle time & & 22.2 & 37 & 41 & ns \\
\hline \(\mathrm{t}_{\mathrm{pH}}\) & pulse width & & 40 & 50 & 60 & \% \\
\hline \(\mathrm{t}_{\mathrm{r}}\) & rise time & & - & - & 5 & ns \\
\hline \(t_{f}\) & fall time & & - & - & 6 & ns \\
\hline \multicolumn{2}{|l|}{YUV-bus timing (pins 4 to 11 and 14 to 21)} & \multicolumn{5}{|l|}{Fig. 5} \\
\hline \(\mathrm{t}_{\text {SU }}\) & input data set-up time & & 6 & - & - & ns \\
\hline \(\mathrm{t}_{\mathrm{HD}}\) & input data hold time & & 3 & - & - & ns \\
\hline \multicolumn{2}{|l|}{MC timing (pin24)} & \multicolumn{5}{|l|}{Fig. 5} \\
\hline \({ }_{\text {t }}\) SU & input data set-up time & & 6 & - & - & ns \\
\hline \({ }_{\text {thD }}\) & input data hold time & & 3 & - & - & ns \\
\hline \multicolumn{7}{|l|}{RESN timing (pin 27)} \\
\hline tsu & set-up time after power-on or failure & active LOW; note 5 & \(4 \times \mathrm{tLLC}\) & - & - & ns \\
\hline
\end{tabular}

\section*{Notes to the characteristics}
1. YUV-bus data is read at MC = HIGH (pin 24) clocked with LLC (Fig.5). Data is read only with every second rising edge of LLC when CREF = LLC/2 on MC-pin 24.
2. 0.2 to 2.2 V ouput voltage range at 8 -bit DAC input data. The data word can increase to 9 -bit dependent on peaking factor.
3. The luminance signal is set to the digital black level: 16 LSB for BLV-bit \(=0 ; 0\) LSB for BLV-bit \(=1\).
4. The chrominance amplitudes are set to the digital colourless level of 128 LSB.
5. The circuit is prepared for a new data initialization.

Fig. 4 YUV-bus data and CREF timing.
\begin{tabular}{|l|l|l|}
\hline PROCESSING DELAY & LLC CYCLES & REMARKS \\
\hline \begin{tabular}{l}
YUV digital input \\
to \\
YUV analog output
\end{tabular} & 44 & at MC \(=" 1 "\) \\
\hline
\end{tabular}

Video enhancement and D/A processor (VEDA3)

\section*{10. \(I^{2} \mathrm{C}\)-BUS FORMAT}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline\(S\) & SLAVE ADDRESS & A & SUBADDRESS & A & DATAO & \(A\) & & DATAn & \(A\) & \(P\) \\
\hline
\end{tabular}
\begin{tabular}{lll}
S & \(=\) & start condition \\
SLAVE ADDRESS & \(=\) & 1011111 X \\
A & \(=\) & acknowledge, generated by the slave \\
SUBADDRESS* & \(=\) & subaddress byte (Table 4) \\
DATA & \(=\) & data byte (Table 4) \\
P & \\
\(X\) & \(=\) & read/write condrol bit \\
\(X\) & \\
& & \(X=0\), order to write (the circuit is slave receiver)
\end{tabular}
* If more than 1 byte DATA are transmitted, then auto-increment of the subaddress is performed.

Table \(41^{2} \mathrm{C}\)-bus transmission
\begin{tabular}{|l|l|l|lllllllll|}
\hline \multirow{2}{|c|}{ FUNCTION } & \multicolumn{2}{|c|}{ SUBADDRESS } & D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\hline Peaking and coring & 01 & 0 & CO1 & CO0 & BP1 & BP0 & BFB & WG1 & WG0 \\
Input formats; interpolation & 02 & IFF & IFC & IFL & 0 & 0 & 0 & 0 & 0 \\
Input/output setting & 03 & 0 & 0 & 0 & 0 & DRP & BLV & R78 & INV \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Bit functions in data bytes:} \\
\hline \multirow[t]{5}{*}{CO1 to COO} & \multirow[t]{5}{*}{Control of coring threshold:} & CO 1 & COO & & \\
\hline & & 0 & 0 & & coring off \\
\hline & & & 1 & & small noise reduction \\
\hline & & 1 & 0 & & medium noise reduction \\
\hline & & 1 & 1 & & high noise reduction \\
\hline \multirow[t]{7}{*}{\(\mathrm{BP} 1, \mathrm{BP} 0\) and BFB} & \multirow[t]{7}{*}{Bandpass filter selection:} & BP1 & BPO & BFB & \\
\hline & & 0 & 0 & 0 & characteristic Fig. 5 \\
\hline & & 0 & 1 & 0 & characteristic Fig. 6 \\
\hline & & 1 & 0 & 0 & characteristic Fig. 7 \\
\hline & & & 1 & 0 & characteristic Fig. 8 \\
\hline & & 0 & 0 & 1 & BF1 filter bypassed Fig. 9 \\
\hline & & X & X & 1 & not recommended \\
\hline
\end{tabular}

Purchase of Philips \({ }^{2}{ }^{2} \mathrm{C}\) components conveys a license under the Philips \({ }^{1} I^{2} \mathrm{C}\) patent to use the components in the \(\mathrm{I}^{2} \mathrm{C}\)-system provided the system conforms to the \(\mathrm{I}^{2} \mathrm{C}\) specifications defined by Philips.

Fig. 5 Peaking frequency response with \(\mathrm{I}^{2} \mathrm{C}\)-bus control bits \(\mathrm{BP} 1=0 ; \mathrm{BPO}=0\) and \(\mathrm{BFB}=0\) :
(1) \(K=1\); (2) \(K=1 / 2\); (3) \(K=1 / 4\) and (4) \(K=1 / 8\).

Fig. 6 Peaking frequency response with \(\mathrm{I}^{2} \mathrm{C}\)-bus control bits \(\mathrm{BP} 1=0 ; \mathrm{BPO}=1\) and \(\mathrm{BFB}=0\) : (1) \(K=1\); (2) \(K=1 / 2\); (3) \(K=1 / 4\) and (4) \(K=1 / 8\).

Fig. 7 Peaking frequency response with \(\mathrm{I}^{2} \mathrm{C}\)-bus control bits \(\mathrm{BP} 1=1 ; \mathrm{BPO}=0\) and \(\mathrm{BFB}=0\) : (1) \(K=1\); (2) \(K=1 / 2\); (3) \(K=1 / 4\) and (4) \(K=1 / 8\).

Fig. 8 Peaking frequency response with \(\mathrm{I}^{2} \mathrm{C}\)-bus control bits \(\mathrm{BP} 1=1 ; \mathrm{BP} 0=1\) and \(\mathrm{BFB}=0\) : (1) \(K=1\); (2) \(K=1 / 2\); (3) \(K=1 / 4\) and (4) \(K=1 / 8\).

Fig. 9 Peaking frequency response with \(1^{2} \mathrm{C}\)-bus control bits \(\mathrm{BP} 1=0 ; \mathrm{BPO}=0\) and \(\mathrm{BFB}=1\); bandpass filter BF1 bypassed and peaking off; (1) \(K=1\); (2) \(K=1 / 2\); (3) \(K=1 / 4\).

Fig. 10 Interpolation filter with \(\mathrm{I}^{2} \mathrm{C}\)-bus control bits IFF \(=0\); IFC \(=0\) and IFL \(=0\) in 4:1:1 format, and control bits IFF \(=1\); IFC \(=0\) and IFL \(=0\) in 4:2:2 format; 13.5 MHz data rate.

Fig. 11 Interpolation filter with \(I^{2} \mathrm{C}\)-bus control bits IFF \(=0 ; \mathrm{IFC}=0\) and IFL \(=1\) in 4:1:1 format, and control bits IFF \(=1\); IFC \(=0\) and IFL \(=1\) in \(4: 2: 2\) format; 13.5 MHz data rate.

Fig. 12 Interpolation filter with \(I^{2} \mathrm{C}\)-bus control bits IFF \(=0 ; \mathrm{IFC}=1\) and IFL \(=0\) in 4:1:1 format; 13.5 MHz data rate.

Fig. 13 Interpolation filter with \(\mathrm{I}^{2} \mathrm{C}\)-bus control bits IFF = 1; IFC = 1 and IFL \(=\mathrm{X}\) in 4:2:2 format; 13.5 MHz data rate.

\section*{Video enhancement and D/A processor (VEDA2)}

\section*{FEATURES}
- CMOS circuit to enhance video data and to convert luminance and colour-difference signals from digital-to-analog
- Digital colour transient improvement block DCTI to increase the sharpness of colour transitions. The improved pin-compatible SAA7165 can supercede the SAA9065.
- 16-bit parallel input for 4:1:1 and 4:2:2 YUV data
- Data clock input LLC (line-locked clock) for a data rate up to 32 MHz
-8-bit luminance and 8-bit multiplexed colour-difference formats (optional 7-bit formats)
- MC input to support various clock and pixel rates
- Formatter for YUV input data; 4:2:2 format, 4:1:1 format and filter characteristics selectable
- HREF input to determine the active line (number of pixels)
- Controllable peaking of luminance signal
- Coring stage with controllable threshold to eliminate noise in luminance signal
- Interpolation filter suitable for both furmats to increase the data rate in chrominance path
- Polarity of colour-difference signals selectable
- All functions controlled via \(1^{2} \mathrm{C}\)-bus
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN. & TYP. & MAX. & UNIT \\
\hline \(V_{\text {DDD }}\) & supply voltage digital part & 4.5 & 5 & 5.5 & \(V\) \\
\hline \(V_{\text {DDA }}\) & supply voltage analog part & 4.75 & 5 & 5.25 & \(V\) \\
\hline IDD & total supply current & - & tbf & - & mA \\
\hline \(V_{\text {IL }}\) & input voltage LOW on YUV-bus & -0.5 & - & 0.8 & \(V\) \\
\hline \(V_{1 H}\) & input voltage HIGH on YUV-bus & 2 & - \(V_{D}\) & \(\mathrm{D}^{+0.5}\) & V \\
\hline \({ }_{\text {fLLC }}\) & input data rate & - & - & 32 & MHz \\
\hline \(\mathrm{V}_{\mathrm{O}} \mathrm{Y}, \mathrm{CD}\) & output signal \(\mathrm{Y}, \pm(\mathrm{R}-\mathrm{Y})\) and \(\pm(B-Y)\) (peak-to-peak value) & - & 2 & - & V \\
\hline \(\mathrm{R}_{\mathrm{L}, \mathrm{Y}, \mathrm{CD}}\) & output load resistance & 125 & - & - & \(\Omega\) \\
\hline ILE & DC integral linearity error in output signal (8-bit data) & - & - & 1 & LSB \\
\hline DLE & DC differential error in output signal (8-bit data) & - & - & 0.5 & LSB \\
\hline \(\mathrm{T}_{\mathrm{amb}}\) & operating ambient temperature range & 0 & - & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
- Separate digital-to-analog converters (9-bit resolution for \(Y\);
8 -bit for colour-difference signals)
- \(1 \mathrm{~V}(\mathrm{p}-\mathrm{p}) / 75 \Omega\) outputs realized by two resistors
- No external adjustments

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
EXTENDED \\
TYPE NUMBER
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline SAA7165 & 44 & PLCC & plastic & SOT187 \\
\hline
\end{tabular}

Fig. 1 Block diagram and application circuit.

\section*{PINNING}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline \(\mathrm{REFL}_{Y}\) & 1 & low reference of luminance DAC (connected to \(\mathrm{V}_{\text {SSAt }}\)) \\
\hline \(\mathrm{C}_{\mathrm{Y}}\) & 2 & capacitor for luminance DAC (high reference) \\
\hline SUB & 3 & substrate (connected to \(\mathrm{V}_{\text {SSA }}\)) \\
\hline \begin{tabular}{l}
UVO \\
UV1 \\
UV2 \\
UV3 \\
UV4 \\
UV5 \\
UV6 \\
UV7
\end{tabular} & \[
\begin{gathered}
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11
\end{gathered}
\] & UV signal input bits UV7 to UV0 (digital colour-difference signal) \\
\hline \(\mathrm{V}_{\text {DDD1 }}\) & 12 & +5 V digital supply voltage 1 \\
\hline \(\mathrm{V}_{\text {SSD } 1}\) & 13 & digital ground 1 (0 V) \\
\hline \begin{tabular}{l}
YO \\
Y1 \\
Y2 \\
Y3 \\
Y4 \\
Y5 \\
Y6 \\
Y7
\end{tabular} & \[
\begin{aligned}
& 14 \\
& 15 \\
& 16 \\
& 17 \\
& 18 \\
& 19 \\
& 20 \\
& 21
\end{aligned}
\] & Y signal input bits Y 7 to Y 0 (digital luminance signal) \\
\hline AP & 22 & connected to ground (action pin for testing) \\
\hline SP & 23 & connected to ground (shift pin for testing) \\
\hline MC & 24 & data clock CREF (\(13.5 \mathrm{MHz} \mathrm{e}. \mathrm{g);} .\mathrm{at} \mathrm{MC} \mathrm{=} \mathrm{HIGH} \mathrm{the} \mathrm{LLC} \mathrm{divider-by-two} \mathrm{is} \mathrm{inactive}\) \\
\hline LLC & 25 & line-locked clock signal (LL27 = 27 MHz) \\
\hline HREF & 26 & data clock for YUV data inputs (for active line 768 Y or 640 Y long) \\
\hline RESN & 27 & reset input (active LOW) \\
\hline SCL & 28 & \(1^{2} \mathrm{C}\)-bus clock line \\
\hline SDA & 29 & \({ }^{12} \mathrm{C}\)-bus data line \\
\hline \(\mathrm{V}_{\text {SSD2 }}\) & 30 & digital ground \(2(0 \mathrm{~V}\)) \\
\hline \(\mathrm{V}_{\text {DDD2 }}\) & 31 & +5 V digital supply voltage 2 \\
\hline \(\mathrm{V}_{\text {DDA1 }}\) & 32 & +5 V analog supply voltage for buffer of DAC 1 \\
\hline (R-Y) & 33 & \(\pm(\mathrm{R}-\mathrm{Y})\) output signal (analog signal) \\
\hline \(\mathrm{V}_{\text {SSA } 1}\) & 34 & analog ground 1 (0 V) \\
\hline
\end{tabular}

\section*{Video enhancement and D/A processor (VEDA2)}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline \(V_{\text {SSA2 }}\) & 35 & analog ground \(2(0 \mathrm{~V})\) \\
\hline (B-Y) & 36 & \(\pm(\mathrm{B}-\mathrm{Y})\) output signal (analog colour-difference signal) \\
\hline \(V_{\text {DDA2 }}\) & 37 & +5 V analog supply voltage for buffer of DAC 2 \\
\hline \(V_{\text {SSA3 }}\) & 38 & analog ground 3 (0 V) \\
\hline Y & 39 & Y output signal (analog luminance signal) \\
\hline \(V_{\text {DDA3 }}\) & 40 & +5 V analog supply voltage for buffer of DAC 3 \\
\hline CUR & 41 & current input for analog output buffers \\
\hline \(\mathrm{V}_{\text {DDA4 }}\) & 42 & supply and reference voltage for the three DACs \\
\hline CuV & 43 & capacitor for chrominance DACs (high reference) \\
\hline REFLuV & 44 & low reference of chrominance DACs (connected to \(\mathrm{V}_{\text {SSA1 }}\)) \\
\hline
\end{tabular}

\section*{PIN CONFIGURATION}

Fig. 2 Pin configuration.

Video enhancement
and D/A processor (VEDA2)

\section*{FUNCTIONAL DESCRIPTION}

The CMOS circuit SAA7165 processes digital YUV-bus data up to a data rate of 30 MHz . The data inputs Y 7 to YO and UV7 to UV0 (Fig.1) are provided with 8-bit data. The data of digital colour-difference signals U and V are in a multiplexed state (serial in 4:2:2 or 4:1:1 format; Tables 2 and 3).
Data is read with the rising edge of LLC (line-locked clock) to achieve a data rate of LLC at MC \(=\) HIGH only. If \(M C\) is supplied with the frequency CREF (LLC/2 for example), data is read only at every second rising edge (Fig.3). The 7-bit YUV input data are also supported by means of the R78-bit \((\mathrm{R} 78=0)\). Additionally, the luminance data format is converted for internal use into a two's complement format by inverting MSB. The \(Y\) input byte (bits Y 7 to Y 0) represent luminance information; the UV input byte (bits UV7 to UVO) one of the two digital colour-difference signals in 4:2:2 format (Table 2).

The HREF input signal (HREF = HIGH) determines the start and the end of an active line (Fig.3) the number of pixels respectively. The analog output \(Y\) is blanked at HREF = LOW, the \(\pm(B-Y)\) and \(\pm(R-Y)\) outputs are in a colourless state. The blanking level can be set by the BLV-bit. The SAA7165 is controllable via the \(1^{2} \mathrm{C}\)-bus

\section*{Y and UV formatters}

The input data formats are formatted into the internally used processing formats (separate for 4:2:2 and 4:1:1 formats). The IFF, IFC and IFL bits control the input data format and determine the right interpolation filter (Figures 10 to 13).

\section*{Peaking and coring}

Peaking is applied to the \(Y\) signal to compensate several bandwidth reductions of the external pre-processing. Y signals can be improved to obtain a better sharpness.

Table 1 LLC and MC configuration modes in DMSD applications
\begin{tabular}{|l|l|l|}
\hline PIN & INPUT SIGNAL & COMMENT \\
\hline LLC & \begin{tabular}{l}
LLC (LL27) \\
CREF
\end{tabular} & \begin{tabular}{l}
The data rate on YUV-bus is half the clock rate \\
on pin LLC, e. g. in SAA7151B, SAA7191 and \\
SAA7191B single scan operation.
\end{tabular} \\
\hline \begin{tabular}{l}
LLC \\
MC
\end{tabular} & \begin{tabular}{l}
LLC (LL27) \\
MC = HIGH
\end{tabular} & \begin{tabular}{l}
The data rate on YUV-bus must be identical to \\
the clock rate on pin LLC, e. g. in double scan \\
applications.
\end{tabular} \\
\hline \begin{tabular}{l}
LLC
\end{tabular} & \begin{tabular}{l}
LLC2/LL3 \\
MC = HIGH
\end{tabular} & \begin{tabular}{l}
The data rate on YUV-bus must be identical to \\
the clock rate on pin LLC, e. g. SAA9051 single \\
scan operation.
\end{tabular} \\
\hline
\end{tabular}

Note: YUV data are only latched with the rising edge of LLC at MC \(=\mathrm{HIGH}\).

There are the two switchable bandpass filters BF1 and BF 2 controlled via the \({ }^{2} \mathrm{C}\)-bus by the bits BP1, BP0 and BFB. Thus, a frequency response is achieved in combination with the peaking factor \(K\) (Figures 5 to \(9 ; \mathrm{K}\) is determined by the bits BFB, WG1 and WG0).

The coring stage with controllable threshold (4 states controlled by CO1 and COO bits) reduces noise disturbances (generated by the bandpass gain) by suppressing the amplitude of small high-frequent signal components. The remaining high-frequent peaking component is available for a weighted addition after coring.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline INPUT & \multicolumn{6}{|l|}{PIXEL BYTE SEQUENCE} \\
\hline YO (LSB) & YO & Yo & Yo & Yo & Yo & Yo \\
\hline Y1 & Y1 & Y1 & Y1 & Y1 & Y1 & Y1 \\
\hline Y2 & Y2 & Y2 & Y2 & Y2 & Y2 & Y2 \\
\hline Y3 & Y3 & Y3 & Y3 & Y3 & Y3 & Y3 \\
\hline Y4 & Y4 & Y4 & Y4 & Y4 & Y4 & Y4 \\
\hline Y5 & Y5 & Y5 & Y5 & Y5 & Y5 & Y5 \\
\hline Y6 & Y6 & Y6 & Y6 & Y6 & Y6 & Y6 \\
\hline Y7 (MSB) & Y7 & Y7 & Y7 & Y7 & Y7 & Y7 \\
\hline UV0 (LSB) & U0 & Vo & U0 & Vo & U0 & Vo \\
\hline UV1 & U1 & V1 & U1 & V1 & U1 & V1 \\
\hline UV2 & U2 & V2 & U2 & V2 & U2 & V2 \\
\hline UV3 & U3 & V3 & U3 & V3 & U3 & V3 \\
\hline UV4 & U4 & V4 & U4 & \(V 4\) & U4 & V4 \\
\hline UV5 & U5 & V5 & U5 & V5 & U5 & V5 \\
\hline UV6 & U6 & V6 & U6 & V6 & U6 & V6 \\
\hline UV7(MSB) & U7 & V7 & U7 & V7 & U7 & V7 \\
\hline \(Y\) frame & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline UV frame & 0 & & 2 & & 4 & \\
\hline
\end{tabular}

\section*{Interpolation}

The chrominance interpolation filter consists of various filter stages, multiplexers and de-multiplexers to increase the data rate of the colour-difference signals by a factor of 2 or 4 . The switching of the filters by the bits IFF, IFC and IFL is described previously. Additional signal samples with significant amplitudes between two consecutive signal samples of the low data rate are generated. The time-multiplexed \(U\) and \(V\) samples are stored in parallel for converting.

\section*{Data switch}

The digital signals are adapted to the conversation range. \(U\) and \(V\) data have 8-bit formats again; \(Y\) can have 9 bits dependent on peaking. Blanking and switching to colourless level is applied here. Bits can be inverted by INV-bit to change the polarity of colour-difference output signals.

\section*{Digital colour transient improvement (DCTI)}

The DCTI circuit improves the transition behaviour of the UV colourdifference signals. As the CVBS signal allows for a \(4: 1: 1\) bandwidth representation only, the DCTI improves the transients to the same performance as signals coming from a 4:2:2 source - or even more.
In order to obtain the point of inflection, the second derivative of the signal is calculated. The improved transition is centered with respect to the point of inflection of the original signal: Thus, there is no horizontal shift of the resulting signal.

The transition area length to be improved is controlled via \(1^{2} \mathrm{C}\)-bus by the bits LI 1 and LIO (Table 4); the sensitivity of the DCTI block is controlled by the bits GA1 and GA0. The CMO bit controls the colour detail sensitivity. It should be set to 1
(ON) if the video signal contains fine colour details (recommended operation mode).
Digital-to-analog converters
Conversion is separate for \(\mathrm{Y}, \mathrm{U}\) and V . The converters use resistor chains with low-impedance output buffers. The minimum output voltage is 200 mV to reduce integral non-linearity errors. The analog signal, without load on output pin, is between 0.2 and 2.2 V floating. An application for \(1 \mathrm{~V} / 75 \Omega\) on outputs is shown in Fig.1.

Each digital-to-analog converter has its own supply and ground pins suitable for decoupling. The reference voltage, supplying the resistor chain of all three DACs, is the supply voltage \(\mathrm{V}_{\text {DDA4 }}\). The current into pin 41 is 0.3 mA ; a larger current improves the bandwidth but increases the integral non-linearity.

Table 3 Data format \(4: 1: 1\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INPUT & \multicolumn{8}{|l|}{PIXEL BYTE SEQUENCE} \\
\hline YO & Yo \\
\hline Y1 & Y1 \\
\hline Y2 & Y2 \\
\hline Y3 & Y3 \\
\hline Y4 & Y4 \\
\hline Y5 & Y5 \\
\hline Y6 & Y6 \\
\hline Y7 & Y7 \\
\hline UVO & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline UV1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline UV2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline UV3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline UV4 & V6 & V4 & V2 & Vo & V6 & V4 & V2 & Vo \\
\hline UV5 & V7 & V5 & V3 & V1 & V7 & V5 & V3 & V1 \\
\hline UV6 & U6 & U4 & U2 & Uo & U6 & U4 & U2 & U0 \\
\hline UV7 & U7 & U5 & U3 & U1 & U7 & U5 & U3 & U1 \\
\hline Y frame & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline UV frame & \multicolumn{4}{|l|}{0} & \multicolumn{4}{|l|}{4} \\
\hline
\end{tabular}

\section*{Video enhancement and D/A processor (VEDA2)}

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum Rating System (IEC 134).
\begin{tabular}{|l|l|l|l|l|}
\hline SYMBOL & PARAMETER & MIN. & MAX. & UNIT \\
\hline\(V_{\text {DDD1 }}\) & supply voltage range (pin 12) & -0.3 & 7 & V \\
\hline \(\mathrm{~V}_{\text {DDD2 }}\) & supply voltage range (pin 31) & -0.3 & 7 & V \\
\hline \(\mathrm{~V}_{\text {DDA1 }}\) & supply voltage range (pin 32) & -0.3 & 7 & V \\
\hline \(\mathrm{~V}_{\text {DDA2 }}\) & supply voltage range (pin 37) & -0.3 & 7 & V \\
\hline \(\mathrm{~V}_{\text {DDA3 }}\) & supply voltage range (pin 40) & -0.3 & 7 & V \\
\hline \(\mathrm{~V}_{\text {DDA4 }}\) & supply voltage range (pin 42) & -0.3 & 7 & V \\
\hline \(\mathrm{~V}_{\text {diff }}\) GND & difference voltage \(\mathrm{V}_{\text {SSD }}-\mathrm{V}_{\text {SSA }}\) & - & \(\pm 100\) & mV \\
\hline \(\mathrm{V}_{\mathrm{n}}\) & \begin{tabular}{l}
voltage on all input pins 4 to 11, \\
14 \\
to 27 and 41
\end{tabular} & -0.3 & \(\mathrm{~V}_{\mathrm{DDD}}\) & V \\
\hline \(\mathrm{V}_{\mathrm{n}}\) & \begin{tabular}{l}
voltage on analog output pins 33, \\
36 and 39
\end{tabular} & -0.3 & \(\mathrm{~V}_{\mathrm{DDD}}\) & V \\
\hline \(\mathrm{P}_{\text {tot }}\) & total power dissipation & 0 & tbf & mW \\
\hline \(\mathrm{T}_{\text {stg }}\) & storage temperature range & -55 & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature range & 0 & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{V}_{\text {ESD }}\) & electrostatic handling* for all pins & \(\pm 2000\) & - & V \\
\hline
\end{tabular}
* Equivalent to discharging a 100 pF capacitor through a \(1.5 \mathrm{k} \Omega\) series resistor.

THERMAL RESISTANCE
\begin{tabular}{|l|c|c|}
\hline SYMBOL & PARAMETER & THERMAL RESISTANCE \\
\hline\(R_{\text {th j-a }}\) & from junction-to-ambient in free air & 46 KW \\
\hline
\end{tabular}

Video enhancement
and D/A processor (VEDA2)

\section*{CHARACTERISTICS}
\(\mathrm{V}_{\mathrm{DDD}}=4.5\) to \(5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DDA}}=4.75\) to \(5.25 \mathrm{~V} ; \mathrm{LLC}=\mathrm{LL} 27 ; \mathrm{MC}=\mathrm{CREF}=13.5 \mathrm{MHz} ; \mathrm{T}_{\mathrm{amb}}=0\) to \(70^{\circ} \mathrm{C}\); measurements taken in Fig. 1 unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(V_{\text {DDD1 }}\) & supply voltage range (pin 12) & for digital part & 4.5 & 5 & 5.5 & V \\
\hline \(V_{\text {DDD2 }}\) & supply voltage range (pin 31) & for digital part & 4.5 & 5 & 5.5 & V \\
\hline \(V_{\text {DDA1 }}\) & supply voltage range (pin 32) & for buffer of DAC 1 & 4.75 & 5 & 5.25 & V \\
\hline \(V_{\text {DDA2 }}\) & supply voltage range (pin 37) & for buffer of DAC 2 & 4.75 & 5 & 5.25 & V \\
\hline \(V_{\text {DDA3 }}\) & supply voltage range (pin 40) & for buffer of DAC 3 & 4.75 & 5 & 5.25 & V \\
\hline \(\mathrm{V}_{\text {DDA4 }}\) & supply voltage range (pin 42) & DAC reference voltage & 4.75 & 5 & 5.25 & V \\
\hline \(\mathrm{I}_{\text {DDD }}\) & supply current (\({ }_{\text {DDD } 1}+\mathrm{I}_{\text {DDD2 }}\)) & for digital part & - & tbf & tbf & mA \\
\hline IDDA & supply current (IDDA1 to IDDA4) & for DACs and buffers & - & tbf & tbf & mA \\
\hline
\end{tabular}

YUV-bus inputs (pins 4 to 11 and 14 to 21)
Figures 3 and 4
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{I L}\) & input voltage LOW & & -0.5 & - & 0.8 & \(V\) \\
\hline\(V_{I H}\) & input voltage HIGH & & 2.0 & - & \(V_{\mathrm{DDD}}+0.5\) & V \\
\hline \(\mathrm{C}_{\mathrm{I}}\) & input capacitance & \(\mathrm{V}_{1}=\mathrm{HIGH}\) & - & - & 10 & pF \\
\hline \(\mathrm{I}_{\mathrm{LI}}\) & input leakage current & & - & - & 4.5 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

Inputs MS1, MS2, MC, LLC, HREF and RESN (pins 22 to 27)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(V_{\text {IL }}\) & input voltage LOW & & -0.5 & - & 0.8 & V \\
\hline \(V_{\text {IH }}\) & input voltage HIGH & & 2.0 & - & \(\mathrm{V}_{\text {DDD }}+0.5\) & \(V\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & \(\mathrm{V}_{1}=\mathrm{HIGH}\) & - & - & 10 & pF \\
\hline \(\mathrm{l}_{\mathrm{LI}}\) & input leakage current & & - & - & 4.5 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{24}\) & MC input voltage for LL27 CREF signal on MC input & \begin{tabular}{l}
27 MHz data rate \\
CREF data rate; note 1
\end{tabular} & \[
2.0
\] & - & \[
V_{D D D^{+0.5}}
\] & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
\] \\
\hline
\end{tabular}
\(I^{2}\) C-bus SCL and SDA (pins 28 and 29)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{V}_{\text {IL }}\) & input voltage LOW & & -0.5 & - & 1.5 & V \\
\hline \(\mathrm{~V}_{1 \mathrm{H}}\) & input voltage HIGH & & 3.0 & - & \(\mathrm{V}_{\mathrm{DDD}}+0.5\) & V \\
\hline \(\mathrm{I}_{1}\) & input current & \(\mathrm{V}_{\mathrm{I}}=\mathrm{LOW}\) or HIGH & - & - & \(\pm 10\) & \(\mu \mathrm{~A}\) \\
\hline \(\mathrm{~V}_{\text {ACK }}\) & output voltage at acknowledge (pin 29) & \(\mathrm{I}_{29}=3 \mathrm{~mA}\) & - & - & 0.4 & V \\
\hline \(\mathrm{I}_{29}\) & output current & during acknowledge & 3 & - & - & mA \\
\hline
\end{tabular}

Digital-to-analog converters (pins 1, 2, 41, 42, 43 and 44)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{\text {DAC }}\) & \begin{tabular}{l}
input reference voltage for internal \\
resistor chains (pin 42)
\end{tabular} & & 4.75 & 5 & 5.25 & V \\
\hline \(\mathrm{I}_{\mathrm{CUR}}\) & input current (pin 41) & \(\mathrm{R}_{41-42}=15 \mathrm{kS}\) & - & 300 & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{1,44}\) & reference voltage LOW & pin connected to \(\mathrm{V}_{\text {SSA1 }}\) & - & 0 & - & V \\
\hline \(\mathrm{C}_{\mathrm{L}}\) & \begin{tabular}{l}
external blocking capacitor to \(\mathrm{V}_{\text {SSA1 }}\) \\
for reference voltage HIGH (pins 2 and 43)
\end{tabular} & & - & 0.1 & - & \(\mu \mathrm{F}\) \\
\hline
\end{tabular}

Video enhancement and D/A processor (VEDA2)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & \multicolumn{1}{|c|}{ CONDITIONS } & MIN. & TYP. & MAX. & UNIT \\
\hline \(\mathrm{f}_{\text {LLC }}\) & data conversation rate (clock) & Fig.3 & - & - & 32 & MHz \\
\hline Res & resolution & \begin{tabular}{l}
luminance DAC \\
chrominance DACs
\end{tabular} & - & 8 & - & bit \\
\hline ILE & DC integral linearity error & 8 -bit data & - & - & 1.0 & LSB \\
\hline DLE & DC differential error & 8-bit data & - & - & 0.5 & LSB \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(V_{0}\) & output signal voltage (peak-to-peak value) & without load & - & 2 & - & V \\
\hline \(V_{33,36,39}\) & output voltage range & without load; note 2 & 0.2 & - & 2.2 & V \\
\hline \(\mathrm{V}_{39}\) & output blanking level & Y output; note 3 & - & 16 & - & LSB \\
\hline \(V_{33,36}\) & output no-colour level & \(\pm(\mathrm{R}-\mathrm{Y}), \pm(\mathrm{B}-\mathrm{Y})\); note 4 & - & 128 & - & LSB \\
\hline \(\mathrm{R}_{33,36,39}\) & internal serial output resistance & & - & 25 & - & \(\Omega\) \\
\hline \(\mathrm{R}_{\text {L } 33,36,39}\) & output load resistance & external load & 125 & - & - & \(\Omega\) \\
\hline B & output signal bandwidth & -3 dB & 20 & - & - & MHz \\
\hline \(\mathrm{t}_{\mathrm{d}}\) & signal delay from input to \(Y\) output & & - & tbf & - & ns \\
\hline \multicolumn{2}{|l|}{LLC timing (pins 25)} & \multicolumn{5}{|l|}{LLC; Fig. 3} \\
\hline tLLC & cycle time & & 33 & 37 & 41 & ns \\
\hline \(\mathrm{t}_{\mathrm{pH}}\) & pulse width & & 40 & 50 & 60 & \% \\
\hline \(\mathrm{t}_{\mathrm{r}}\) & rise time & & - & - & 5 & ns \\
\hline \(t_{f}\) & fall time & & - & - & 6 & ns \\
\hline
\end{tabular}

YUV-bus timing (pins 4 to 11 and 14 to 21)
\begin{tabular}{|l|l|l|}
\hline \(\mathrm{t}_{\text {SU }}\) & input data set-up time & \\
\hline \(\mathrm{t}_{\text {HD }}\) & input data hold time & \\
\hline
\end{tabular}

MC timing (pin24)
Fig. 5
\begin{tabular}{|l|l|l|l|l|}
\hline & 11 & - & - & ns \\
\hline & 3 & - & - & ns \\
\hline
\end{tabular}

Fig. 5
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{I}_{\text {SU }}\) & input data set-up time & & 11 & - & - & ns \\
\hline \(\mathrm{t}_{\text {HD }}\) & input data hold time & & 3 & - & - & ns \\
\hline
\end{tabular}

RESN timing (pin 27)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline t \(_{\text {SU }}\) & set-up time after power-on or failure & active LOW; note 5 & \(4 \times\) t LLC \(^{\prime}\) & - & - & ns \\
\hline
\end{tabular}

\section*{Notes to the characteristics}
1. YUV-bus data is read at MC \(=\) HIGH (pin 24) clocked with LLC (Fig.5) . Data is read only with every second rising edge of LLC when CREF \(=\mathrm{LLC} / 2\) on MC-pin 24.
2. 0.2 to 2.2 V ouput voltage range at 8 -bit DAC input data. The data word can increase to 9 -bit dependent on peaking factor.
3. The luminance signal is set to the digital black level: 16 LSB for BLV -bit \(=0 ; 0\) LSB for \(B L V-\) bit \(=1\).
4. The chrominance amplitudes are set to the digital colourless level of 128 LSB.
5. The circuit is prepared for a new data initialization.

Fig. 4 YUV-bus data and CREF timing.
\begin{tabular}{|l|l|l|}
\hline PROCESSING DELAY & LLC CYCLES & REMARKS \\
\hline \begin{tabular}{l}
YUV digital input \\
to \\
YUV analog output
\end{tabular} & 66 & at MC \(=" 1 "\) \\
\hline
\end{tabular}

\section*{Video enhancement and D/A processor (VEDA2)}

\section*{\({ }^{2}\) ²-BUS FORMAT}

* If more than 1 byte DATA are transmitted, then auto-increment of the subaddress is performed.

Table \(41^{2} \mathrm{C}\)-bus transmission
\begin{tabular}{|l|c|c|cccccccc|}
\hline FUNCTION & \multicolumn{2}{|c|}{ SUBADDRESS } & D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\hline Peaking and coring & 01 & AFB & CO1 & CO0 & BP1 & BP0 & BFB & WG1 & WG0 \\
Input formats; interpolation & 02 & IFF & IFC & IFL & CMO & LI1 & LIO & GA1 & GA0 \\
Input/output setting & 03 & 0 & 0 & DC1 & DC0 & DRP & BLV & R78 & INV \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Bit functions in data bytes:} \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { "01" } \\
& \mathrm{CO1} \text { and } \mathrm{COO}
\end{aligned}
\]} & \multirow[t]{2}{*}{Control of coring threshold:} & CO1 & \multicolumn{2}{|l|}{COO} & \multicolumn{2}{|l|}{} \\
\hline & & 0
0
1
1 & & & |lol \(\begin{aligned} & \text { corin } \\ & \text { sma } \\ & \text { med } \\ & \text { high }\end{aligned}\) & off noise reduction m noise reduction noise reduction \\
\hline \multirow[t]{7}{*}{AFB, BP1, BPO, BFB} & \multirow[t]{7}{*}{Bandpass filter selection:} & AFB & BP1 & BPO & BFB & \\
\hline & & X & 0 & 0 & 0 & characteristic Fig. 5 \\
\hline & & x & 0 & 1 & 0 & characteristic Fig. 6 \\
\hline & & X & 1 & 0 & 0 & characteristic Fig. 7 \\
\hline & & & & 1 & 0 & characteristic Fig. 8 \\
\hline & & 0 & x & X & 1 & BF1 filter bypassed Fig.9(a) \\
\hline & & 1 x & X & X & 1 & BF1 filter bypassed Fig.9(b) \\
\hline
\end{tabular}

Video enhancement and D/A processor (VEDA2)

Video enhancement and D/A processor (VEDA2)
\begin{tabular}{|c|c|c|}
\hline DRP & UV input data code: & \(0=\) two's complement; 1 = offset binary \\
\hline BLV & Blanking level on \(Y\) output: & \(0=16 \mathrm{LSB} ; 1=0 \mathrm{LSB}\) \\
\hline R78 & YUV input data solution: & \(0=7\)-bit data; \(1=8\)-bit data \\
\hline INV & Polarity of colour-difference output signals: & \[
\begin{aligned}
& 0=\text { normal polarity equal to input signal } \\
& 1=\text { inverted polarity }
\end{aligned}
\] \\
\hline
\end{tabular}

Purchase of Philips \(1^{2} \mathrm{C}\) components conveys a license under the Philips \({ }^{\prime} 1^{2} \mathrm{C}\) patent to use the components in the \(1^{2} \mathrm{C}\)-system provided the system conforms to the \(\mathrm{I}^{2} \mathrm{C}\) specifications defined by Philips.

Fig. 5 Peaking frequency response with \(\mathrm{I}^{2} \mathrm{C}\)-bus control bits \(\mathrm{BP} 1=0 ; \mathrm{BPO}=0\) and \(\mathrm{BFB}=0\) : (1) \(K=1\); (2) \(K=1 / 2\); (3) \(K=1 / 4\) and (4) \(K=1 / 8\).

Fig. 6 Peaking frequency response with \(\mathrm{I}^{2} \mathrm{C}\)-bus control bits \(\mathrm{BP} 1=0 ; \mathrm{BP}=1\) and \(\mathrm{BFB}=0\) : (1) \(K=1\); (2) \(K=1 / 2\); (3) \(K=1 / 4\) and (4) \(K=1 / 8\).

\section*{Video enhancement} and D/A processor (VEDA2)

Fig. 7 Peaking frequency response with \(I^{2} \mathrm{C}\)-bus control bits \(\mathrm{BP} 1=1 ; \mathrm{BPO}=0\) and \(\mathrm{BFB}=0\) : (1) \(K=1\); (2) \(K=1 / 2\); (3) \(K=1 / 4\) and (4) \(K=1 / 8\).

Fig. 8 Peaking frequency response with \(\mathrm{I}^{2} \mathrm{C}\)-bus control bits \(\mathrm{BP} 1=1 ; \mathrm{BP}=1\) and \(\mathrm{BFB}=0\) : (1) \(K=1\); (2) \(K=1 / 2\); (3) \(K=1 / 4\) and (4) \(K=1 / 8\).

Fig.9(a) Peaking frequency response with \(\mathrm{I}^{2} \mathrm{C}\)-bus control bits \(\mathrm{AFB}=0, \mathrm{BP} 1=0, \mathrm{BPO}=0\) and \(\mathrm{BFB}=1\); bandpass filter \(B F 1\) bypassed and peaking off; (1) \(K=1\), (2) \(K=1 / 2\), (3) \(K=1 / 4\) and (4) \(K=0\)

Fig.9(b) Peaking frequency response with \(\mathrm{I}^{2} \mathrm{C}\)-bus control bits \(\mathrm{AFB}=1, \mathrm{BP} 1=0, \mathrm{BPO}=0\) and \(\mathrm{BFB}=1\); bandpass filter BF1 bypassed and peaking off; (1) \(K=1\), (2) \(K=1 / 2\), (3) \(K=1 / 4\) and (4) \(K=0\).

Fig. 10 Interpolation filter at DCTI off with \(I^{2}\) C-bus control bits IFF \(=0\); IFC \(=0\) and IFL \(=0\) in 4:1:1 format and control bits IFF \(=1\); IFC \(=0\) and IFL \(=0\) in \(4: 2: 2\) format; 13.5 MHz data rate.

Fig. 11 Interpolation filter at DCTI off with \(\mathrm{I}^{2} \mathrm{C}\)-bus control bits IFF \(=0\); \(\mathrm{IFC}=0\) and IFL \(=1\) in 4:1:1 format and control bits IFF \(=1\); IFC \(=0\) and IFL \(=1\) in 4:2:2 format; 13.5 MHz data rate .

Fig. 12 Interpolation filter at DCTI off with \(\mathrm{R}^{2} \mathrm{C}\)-bus control bits \(\mathrm{IFF}=0 ; \mathrm{IFC}=1\) and IFL \(=0\) in 4:1:1 format; 13.5 MHz data rate.

Fig. 13 Interpolation filter with \(I^{2} \mathrm{C}\)-bus control bits \(\mathrm{IFF}=1\); IFC \(=1\) and \(\mathrm{FL}=\mathrm{X}\) in 4:2:2 format; 13.5 MHz data rate.

\section*{35 MHz triple 9-bit D/A converter for high-speed video}

\section*{FEATURES}
- CMOS circuit to convert high-speed video data from digital to analog
- Three equal 9-bit digital-to-analog converters
- Input signals TTL-compatible
- Input registers for positive edgetriggered data signals
- Clock frequency for a conversion rate up to 35 MHz
- 20 MHz analog bandwidth
- \(2 \mathrm{~V}(p-p)\) analog output voltage range without load on output (0.2 to 2.2 V DC)
- \(1 \mathrm{~V} / 75 \Omega\) outputs (0.1 to 1.1 V DC); Fig. 1
- No de-glitching circuit required
- Typical 225 mW power dissipation

\section*{GENERAL DESCRIPTION}

The triple high-speed D/A converter can be used in applications for
- desktop video processing
- digital television
- graphic displays
- television decoders
- general high frequency conversion

QUICK REFERENCE DATA
\begin{tabular}{|l|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & MIN. & TYP. & MAX. & UNIT \\
\hline\(V_{\text {DDD }}\) & supply voltage digital part & 4.5 & 5 & 5.5 & V \\
\hline \(\mathrm{~V}_{\text {DDA }}\) & supply voltage analog part & 4.75 & 5 & 5.25 & V \\
\hline I DD tot & total supply current & - & - & 38 & mA \\
\hline \(\mathrm{~V}_{\mathrm{l}}\) & data input levels & \multicolumn{3}{|c|}{ TTL-compatible } \\
\hline \(\mathrm{f}_{\mathrm{CLK}}\) & conversion frequency & 1 & - & 35 & MHz \\
\hline \(\mathrm{V}_{\mathrm{o}}\) & \begin{tabular}{l}
nominal output amplitude on pins \\
\(1,3,43\) (peak-to-peak value)
\end{tabular} & - & 2 & - & V \\
\hline B & bandwidth (-3 dB) & 20 & - & - & MHz \\
\hline DNL & differential non-linearity & - & - & \(\pm 0.5\) & LSB \\
\hline INL & integral non-linearity & - & - & \(\pm 0.2\) & \(\%\) \\
\hline\(\alpha_{\mathrm{CR}}\) & crosstalk attenuation & 48 & - & - & dB \\
\hline \(\mathrm{R}_{\mathrm{o}}\) & internal serial output resistance & - & 25 & - & \(\Omega\) \\
\hline \(\mathrm{R}_{\mathrm{L}}\) & output load resistance & 125 & - & - & \(\Omega\) \\
\hline \(\mathrm{T}_{\mathrm{amb}}\) & \begin{tabular}{l}
operating ambient temperature \\
range
\end{tabular} & 0 & - & 70 & \(\circ\) \\
\hline
\end{tabular}

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
EXTENDED \\
TYPE NUMBER
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline SAA7169 & 44 & PLCC & plastic & SOT187 \\
\hline
\end{tabular}

\section*{35 MHz triple 9-bit D/A converter for high-speed video}

PINNING
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline \(\mathrm{V}_{02}\) & 1 & analog output voltage of channel 2 \\
\hline \(V_{\text {SSA }}\) & 2 & analog ground (0 V) \\
\hline \(V_{03}\) & 3 & analog output voltage of channel 3 \\
\hline \(\mathrm{V}_{\text {DDA3 }}\) & 4 & +5 V supply voltage for buffer amplifier of channel 3 \\
\hline CUR & 5 & current input for analog output buffers, decoupled to \(\mathrm{V}_{\text {SSA }}\) \\
\hline \(\mathrm{V}_{\text {DDA } 4}\) & 6 & +5 V supply voltage for analog reference part \\
\hline PD3(8) & 7 & \\
\hline PD3(7) & 8 & \\
\hline PD3(6) & 9 & \\
\hline PD3(5) & 10 & \\
\hline PD3(4) & 11 & 9 -bit data input of channel 3 \\
\hline PD3(3) & 12 & \\
\hline PD3(2) & 13 & \\
\hline PD3(1) & 14 & \\
\hline PD3(0) & 15 & \\
\hline i.c. & 16 & connect to digital ground (input not used) \\
\hline CLK & 17 & clock frequency input \\
\hline PD2(8) & 18 & \\
\hline PD2(7) & 19 & 9-bit data input of channel 2 (bits PD2(8-5)) \\
\hline PD2(6) & 20 & \\
\hline PD2(5) & 21 & \\
\hline \(V_{\text {SSD }}\) & 22 & digital ground (O) \\
\hline \(V_{\text {DDD }}\) & 23 & +5 V supply voltage for digital part \\
\hline PD2(4) & 24 & \\
\hline PD2(3) & 25 & \\
\hline PD2(2) & 26 & 9-bit data input of channel 2 (bits PD2(4-0)) \\
\hline PD2(1) & 27 & \\
\hline PD2(0) & 28 & \\
\hline i.c. & 29 & connect to digital ground (input not used) \\
\hline PD1 (8) & 30 & \\
\hline PD1 7 (7) & 31 & \\
\hline PD1 (6) & 32 & 9 -bit data input of channel 1 (bits PD1 (8-4)) \\
\hline PD1(5) & 33 & \\
\hline PD1 (4) & 34 & \\
\hline
\end{tabular}

35 MHz triple 9-bit D/A converter for high-speed video
\begin{tabular}{|l|c|l|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline PD1(3) & 35 & \\
PD1(2) & 36 & 9-bit data input of channel 1 (bits PD1 (3-0)) \\
PD1(1) & 37 & \\
PD1(0) & 38 & \\
\hline i.c. & 39 & connect to digital ground (input not used) \\
\hline\(V_{\text {ref }}\) & 40 & reference voltage LOW; analog ground (\(V_{\text {SSA }}\)) \\
\hline\(V_{\text {ref } H}\) & 41 & internal generated reference voltage HIGH, decoupled to \(V_{S S A}\) \\
\hline\(V_{\text {DDA1 }}\) & 42 & +5 V supply voltage for buffer amplifier of channel 1 \\
\hline\(V_{\text {O1 }}\) & 43 & analog output voltage of channel 1 \\
\hline\(V_{\text {DDA2 }}\) & 44 & +5 V supply voltage for buffer amplifier of channel 2 \\
\hline
\end{tabular}

\section*{PIN CONFIGURATION}

Fig. 2 Pin configuration.

\section*{FUNCTIONAL DESCRIPTION}

The integrated monolithic CMOS circuit SAA7169 is a triple 9 -bit digital-to-analog converter for high-speed video applications. Its three channels are equal. The maximum conversion rate is 35 MHz .
The converters use a combination of resistor chains with low-impedance output buffers. The bottom output
voltage is 200 mV to reduce integral non-linearity errors. The analog signal, without load on output pin, is between 0.2 and 2.2 V . Fig. 1 shows the application for \(1 \mathrm{~V} / 75 \Omega\) outputs, using the serial \(25 \Omega+50 \Omega\) resistors.
Each digital-to-analog converter has its own supply pin for purpose of decoupling. \(V_{\text {DDA } 4}\) is the supply voltage for the resistor chains of the three DACs. The accuracy of this
supply voltage influences directly the output amplitudes.
The current CUR into pin 5 is 0.3 mA \(\left(\mathrm{V}_{\text {DDA4 }}=5 \mathrm{~V}, \mathrm{R}_{5-6}=15 \mathrm{k} \Omega\right)\); a larger current improves the bandwidth but increases the integral non-linearity.

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum Rating System (IEC 134).
\begin{tabular}{|l|l|l|l|l|}
\hline SYMBOL & PARAMETER & MIN. & MAX. & UNIT \\
\hline\(V_{\text {DDD }}\) & digital supply voltage range (pin 23) & -0.3 & 7 & V \\
\hline \(\mathrm{~V}_{\text {DDA1 }}\) & analog supply voltage range (pin 42) & -0.3 & 7 & V \\
\hline \(\mathrm{~V}_{\text {DDA2 }}\) & analog supply voltage range (pin 44) & -0.3 & 7 & V \\
\hline \(\mathrm{~V}_{\text {DDA3 }}\) & analog supply voltage range (pin 4) & -0.3 & 7 & V \\
\hline \(\mathrm{~V}_{\text {DDA4 }}\) & analog supply voltage range (pin 6) & -0.3 & 7 & V \\
\hline \(\mathrm{~V}_{\text {diff }}\) GND & difference voltage \(\mathrm{V}_{\text {SSD }}-\mathrm{V}_{\text {SSA(1 to 4) }}\) & - & \(\pm 100\) & mV \\
\hline \(\mathrm{V}_{\mathrm{n}}\) & \begin{tabular}{l}
voltage on all input pins 7 to 15, \\
18 to 21 and 24 to 40
\end{tabular} & -0.3 & \(\mathrm{~V}_{\mathrm{DDD}}\) & V \\
\hline \(\mathrm{P}_{\text {tot }}\) & total power dissipation & 0 & tbf & mW \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature range & 0 & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {stg }}\) & storage temperature range & -65 & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{V}_{\text {ESD }}\) & electrostatic handling* for all pins & \(\pm 2000\) & - & V \\
\hline
\end{tabular}

\footnotetext{
* Equivalent to discharging a 100 pF capacitor through a \(1.5 \mathrm{k} \Omega\) series resistor.
}

\section*{CHARACTERISTICS}
\(\mathrm{V}_{\mathrm{DDD}}=4.5\) to \(5.5 \mathrm{~V} ; \mathrm{V}_{\text {DDA }}=4.75\) to \(5.25 \mathrm{~V} ; \mathrm{CLK}=35 \mathrm{MHz} ; \mathrm{f}_{\text {DATA }}=17.5 \mathrm{MHz}\) (squarewave, full scale);
\(\mathrm{T}_{\mathrm{amb}}=0\) to \(70^{\circ} \mathrm{C}\); measurements taken in Fig. 1 unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(V_{\text {DDD }}\) & supply voltage range (pin 23) & for digital part & 4.5 & 5 & 5.5 & V \\
\hline \(V_{\text {DDA1 }}\) & supply voltage range (pin 42) & for buffer of DAC 1 & 4.75 & 5 & 5.25 & V \\
\hline \(V_{\text {DDA2 }}\) & supply voltage range (pin 44) & for buffer of DAC 2 & 4.75 & 5 & 5.25 & V \\
\hline \(V_{\text {DDA3 }}\) & supply voltage range (pin 4) & for buffer of DAC 3 & 4.75 & 5 & 5.25 & V \\
\hline \(V_{\text {DDA4 }}\) & supply voltage range (pin 6) & DAC reference voltage & 4.75 & 5 & 5.25 & V \\
\hline IDDD & supply current & for digital part; note 1 & - & - & 20 & mA \\
\hline IDDA & supply current (IDDA1 to \(\mathrm{I}_{\text {DDA4 }}\)) & without load on outputs & - & - & 18 & mA \\
\hline
\end{tabular}

9-bit data inputs (pins 7 to \(15 ; 18\) to 21,24 to 28 and 30 to 38)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(V_{\text {IL }}\) & input voltage LOW & & \(-0.5\) & - & 0.8 & V \\
\hline \(\mathrm{V}_{1} \mathrm{H}\) & input voltage HIGH & & 2.0 & - & \(\mathrm{V}_{\mathrm{DDD}}+0.5\) & V \\
\hline \(\mathrm{C}_{1}\) & input capacitance & & - & - & 10 & pF \\
\hline leak & input leakage current & & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{t}_{\text {Su }}\) & data set-up time & Fig. 3 & 11 & - & - & ns \\
\hline \(\mathrm{t}_{\mathrm{HD}}\) & data hold time & & 3 & - & - & ns \\
\hline
\end{tabular}

CLK input (pin 17)
\begin{tabular}{|l|l|}
\hline \(\mathrm{f}_{\mathrm{CLK}}\) & frequency range \\
\hline \(\mathrm{V}_{\text {IL }}\) & input voltage LOW \\
\hline \(\mathrm{V}_{\text {IH }}\) & input voltage HIGH \\
\hline \(\mathrm{C}_{\mathrm{l}}\) & input capacitance \\
\hline \(\mathrm{I}_{\text {leak }}\) & input leakage current \\
\hline \(\mathrm{t}_{\mathrm{CLK}}\) & cycle time \\
\hline \(\mathrm{t}_{\mathrm{pH}}\) & duty factor \\
\hline \(\mathrm{t}_{\mathrm{r}}\) & rise time \\
\hline \(\mathrm{t}_{\mathrm{f}}\) & fall time \\
\hline
\end{tabular}

Fig. 3
\begin{tabular}{|l|l|l|l|l|}
\hline & 1 & - & 35 & MHz \\
\hline & -0.5 & - & 0.8 & V \\
\hline & 2.0 & - & \(\mathrm{V}_{\mathrm{DDD}^{+0.5}}\) & V \\
\hline & - & - & 10 & pF \\
\hline & - & - & 10 & \(\mu \mathrm{~A}\) \\
\hline & 28.5 & - & - & ns \\
\hline & 40 & 50 & 60 & \(\%\) \\
\hline & - & - & 5 & ns \\
\hline & - & - & 6 & ns \\
\hline & & & & \\
\hline & & & & \\
\hline
\end{tabular}

Digital-to-analog converters (pins 5, 6 and 40)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{\text {DDA4 }}\) & \begin{tabular}{l}
reference input voltage for internal \\
resistor chains (pin 6)
\end{tabular} & & 4.75 & 5 & 5.25 & V \\
\hline \(\mathrm{I}_{\text {CUR }}\) & input current (pin 5) & \(R_{6-5}=15 \mathrm{k} \Omega\) & - & - & 400 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

Analog outputs \(V_{01} ; V_{02}\) and \(V_{03}\) (pins 43, 1 and 3)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(V_{0}\) & nominal output signal (peak-to-peak value) & without load & - & 2 & - & V \\
\hline \(V_{43,1,3}\) & minimum output voltage maximum output voltage & \begin{tabular}{l}
without load; \(\mathrm{V}_{\text {DDA } 4}=5 \mathrm{~V}\) \\
without load; \(\mathrm{V}_{\mathrm{DDA} 4}=5 \mathrm{~V}\)
\end{tabular} & \[
\begin{aligned}
& 0.16 \\
& 2.1
\end{aligned}
\] & - & \[
\begin{array}{|l|}
\hline 0.24 \\
2.3
\end{array}
\] & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
\] \\
\hline DTDM & DAC to DAC matching & between all channels & - & - & | 30 | & mV \\
\hline
\end{tabular}

35 MHz triple 9-bit D/A converter for high-speed video
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & \multicolumn{1}{c|}{ CONDITIONS } & MIN. & TYP. & MAX. & UNIT \\
\hline B & output signal bandwidth & -3 dB & 20 & - & - & MHz \\
\hline\(\alpha_{C R}\) & crosstalk attenuation & note 2 & 48 & - & - & \(d B\) \\
\hline DNL & differential non-linearity & 9-bit data; \(R_{L}=125 \Omega\) & - & - & \(\pm 0.5\) & LSB \\
\hline INL & integral non-linearity & 9-bit data; \(R_{L}=125 \Omega\) & - & - & \(\pm 0.2\) & \(\%\) \\
\hline\(R_{43,1,3}\) & internal serial output resistor & & - & 25 & - & \(\Omega\) \\
\hline\(R_{L 43,1,3}\) & load resistance on output & & 125 & - & - & \(\Omega\) \\
\hline
\end{tabular}

\section*{Notes to the characteristics}
1. With \(\mathrm{f}_{\mathrm{CLK}}=35 \mathrm{MHz} ; \mathrm{f}_{\mathrm{DATA}}=17.5 \mathrm{MHz}\) (squarewave, full scale)
2. Crosstalk from channel to channel. One DAC with digital 5 MHz (sinusoidal, full scale) input signal, the other input data LOW. Measurements taken on outputs with 5.46 MHz filters (-3 dB at 5.87 MHz and -45 dB at 7.24 MHz).

Fig. 3 Input data timing.

\section*{Digital video encoder (square pixel with Macrovision)}

The SAA7183 Digital Video Encoder is functionally equivalent to the SAA7187. Both the electrical and physical parameters are identical.
The only distinction is that the SAA7183 can be programmed to insert anti-taping encoding (Macrovision) onto the video signal.

Use of Macrovision technology requires a license from Macrovision. Sample request and saies orders require the following procedure:

\section*{Sample Requests}
- Contact Bill Krepick, Macrovision

Phone: (415)691-2900
Fax: (415)691-2999
- Macrovision will send an NDA to the customer
- Returned signed NDA will be sent to Macrovision and to Monica Howes, Tactical Marketing, Philips Semiconductors
Fax: (408)991-2133
- Samples will then be sent to the customer

\section*{Sales Orders}
- If the customer has a Macrovision license:
- The customer provides Philips with written confirmation of the license
- Marketing will retain the written confirmation
- Customer can then purchase part
- If the customer does not have a Macrovision license:
- The customer must obtain a license or waiver from Macrovision
- Customer must provide Philips with written confirmation of the license or waiver from Macrovision
- Marketing retains written information
- Customer purchases part

Neither parts nor programming information will be sent to the customer until the above conditions are met.

\section*{1. FEATURES}
- Scaling of video picture windows down to randomly sized windows
- Processes maximum 1023 pixels per line and 1023 lines per field
- Two-dimensional data processing for improved signal quality of scaled video data and for compression of video data
- 16-bit YUV input data buffer
- Interlace/non-interlace video data processing and field control
- Line memories in Y path and UV path to store two lines, each with \(2 \times 768 \times 8\) bit capacity
- Vertical sync processing by scale control
- Non-scaled mode to get full picture or to gate videotext lines
- UV input and output data binary/two's complement
- Switchable RGB matrix and antigamma ROMs
- 16-word FIFO register for 32-bit output data
- Output formats: 5-bit and 8-bit RGB, 8-bit YUV or 8-bit monochrome

\section*{3. QUICK REFERENCE DATA}
\begin{tabular}{|l|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & MIN. & TYP. & MAX. & UNIT \\
\hline\(V_{\text {DD }}\) & supply voltage & 4.5 & 5 & 5.5 & V \\
\hline IDD tot & \begin{tabular}{l}
total supply current \\
(inputs LOW, without output load)
\end{tabular} & - & - & 180 & mA \\
\hline \(\mathrm{~V}_{\mathrm{I}}\) & data input level & \multicolumn{3}{|c|}{ TTL-compatible } & \\
\hline \(\mathrm{V}_{\mathrm{O}}\) & data output level & \multicolumn{3}{|c|}{ TTL-compatible } & \\
\hline LLC & input clock frequency & - & - & 32 & MHz \\
\hline\(T_{\text {amb }}\) & \begin{tabular}{l}
operating ambient temperature \\
range
\end{tabular} & 0 & - & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{4. ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
EXTENDED \\
TYPE NUMBER
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline SAA7186 & 100 & QFP & plastic & SOT317 \\
\hline
\end{tabular}

\section*{2. GENERAL DESCRIPTION}

The CMOS circuit SAA7186 scales and filters digital video data to randomly sized picture windows. YUV input data in 4:2:2 format are required (SAA7191B source).
Fig. 1 Block diagram.
Digital video scaler

Digital video scaler

\section*{6. PINNING}
\begin{tabular}{|c|c|c|c|}
\hline SYMBOL & PIN & STATUS & DESCRIPTION \\
\hline LNQ & 1. & 0 & line qualifier signal; active polarity defined by QPL-bit in "10" (VCLK strobed) \\
\hline HREFD & 2 & 0 & delay-compensated HREF output signal (VCLK strobed) \\
\hline \(\mathrm{V}_{\text {SS } 1}\) & 3 & - & GND1 (0 V) \\
\hline i.c. & 4 & - & internally connected \\
\hline \(\mathrm{V}_{\mathrm{DD} 1}\). & 5 & - & +5 V supply voltage 1 \\
\hline i.c. & 6 & - & internally connected \\
\hline SP & 7 & 1 & connected to ground (shift pin for testing) \\
\hline AP & 8 & 1 & connected to ground (action pin for testing) \\
\hline n.c. & 9 & - & not connected \\
\hline \begin{tabular}{l}
UVINO \\
UVIN1 \\
UVIN2 \\
UVIN3
\end{tabular} & \[
\begin{aligned}
& 10 \\
& 11 \\
& 12 \\
& 13
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & time-multiplexed colour-difference input data (bits 0 to 3) \\
\hline \(\mathrm{V}_{\mathrm{DD} 2}\) & 14 & - & +5 V supply voltage 2 \\
\hline n.c. & 15 & - & not connected \\
\hline \(\mathrm{V}_{\text {SS2 }}\) & 16 & - & GND2 (0 V) \\
\hline \begin{tabular}{l}
UVIN4 \\
UVIN5 \\
UVIN6 \\
UVIN7
\end{tabular} & \[
\begin{aligned}
& 17 \\
& 18 \\
& 19 \\
& 20
\end{aligned}
\] & 1
1
1
1 & time-multiplexed colour-difference input data (bits 4 to 7) \\
\hline n.c. & 21 & - & not connected \\
\hline \begin{tabular}{l}
YINO \\
YIN1 \\
YIN2 \\
YIN3
\end{tabular} & \[
\begin{aligned}
& 22 \\
& 23 \\
& 24 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & luminance input data (bits 0 to 3) \\
\hline \(V_{\text {DD3 }}\) & 26 & - & +5 V supply voltage 3 \\
\hline n.c. & 27 & - & not connected \\
\hline \(\mathrm{V}_{\text {SS3 }}\) & 28 & - & GND3 (0 V) \\
\hline n.c. & 29 & - & not connected \\
\hline \begin{tabular}{l}
YIN4 \\
YIN5 \\
YIN6 \\
YIN7
\end{tabular} & \[
\begin{aligned}
& 30 \\
& 31 \\
& 32 \\
& 33
\end{aligned}
\] & 1
1
1
1 & luminance input data (bits 4 to 7) \\
\hline n.c. & 34 & - & not connected \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline SYMBOL & PIN & STATUS & DESCRIPTION \\
\hline CREF & 35 & 1 & clock reference, external sync signal \\
\hline LLC & 36 & 1 & line-locked system clock input signal (twice of pixel rate) \\
\hline HREF & 37 & 1 & horizontal reference, pixel data clock signal (also present during vertical blanking) \\
\hline Vs & 38 & 1 & vertical sync input signal (approximately 6 lines long) \\
\hline n.c. & 39 & - & not connected \\
\hline \(\mathrm{V}_{\text {DD4 }}\) & 40 & - & +5 V supply voltage 4 \\
\hline n.c. & 41 & - & not connected \\
\hline \(\mathrm{V}_{\text {SS4 }}\) & 42 & - & GND4 (0 V) \\
\hline RESN & 43 & 1 & reset input (active-LOW for at least 30LLC periods) \\
\hline SDA & 44 & I/O & IIC-bus data line \\
\hline SCL & 45 & 1 & IIC-bus clock line \\
\hline IICSA & 46 & 1 & set module address input of IIC-bus (LOW = B8, HIGH = BC) \\
\hline BTST & 47 & 1 & output disable input; HIGH sets all data outputs to high-impedance state \\
\hline INCADR & 48 & 0 & line increment / vertical reset control output line \\
\hline HFL & 49 & 0 & FIFO register half-full flag output \\
\hline VOEN & 50 & 1 & VRAM port output enable input (active-LOW) \\
\hline VCLK & 51 & 1 & FIFO register clock input signal \\
\hline n.c. & 52 & - & not connected \\
\hline \(\mathrm{V}_{\text {SS5 }}\) & 53 & - & GND5 (0 V) \\
\hline n.c. & 54 & - & not connected \\
\hline \(\mathrm{V}_{\text {DD5 }}\) & 55 & - & +5 V supply voltage 5 \\
\hline \begin{tabular}{l}
VRO31 \\
VRO30 \\
VRO29 \\
VRO28
\end{tabular} & 56
57
58
59 & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & video output; 32-bit VRAM output port (bits 31 to 28) \\
\hline n.c. & 60 & - & not connected \\
\hline \begin{tabular}{l}
VRO27 \\
VRO26 \\
VRO25 \\
VRO24
\end{tabular} & 61
62
63
64 & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & video output; 32-bit VRAM output port (bits 27 to 24) \\
\hline \(\mathrm{V}_{\text {SS6 }}\) & 65 & - & GND6 (0 V) \\
\hline n.c. & 66 & - & not connected \\
\hline \(\mathrm{V}_{\text {DD6 }}\) & 67 & - & +5 V supply voltage 6 \\
\hline \[
\begin{array}{|l|}
\hline \text { VRO23 } \\
\text { VRO22 }
\end{array}
\] & 68
69 & & video output; 32-bit VRAM output port (bits 23 to 22) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline SYMBOL & PIN & status & DESCRIPTION \\
\hline VRO21 & 70 & 0 & \\
\hline VRO20 & 71 & 0 & video output; 32-bit VRAM output port (bits 21 to 20) \\
\hline n.c. & 72 & - & not connected \\
\hline VRO19 & 73 & O & \\
\hline VRO18 & 74 & 0 & video output; 32-bit VRAM output port (bits 19 to 17) \\
\hline VRO17 & 75 & 0 & \\
\hline \(\mathrm{V}_{\mathrm{DD7}}\) & 76 & - & +5 V supply voltage 7 \\
\hline VRO16 & 77 & 0 & video output; 32-bit VRAM output port (bit16) \\
\hline \(\mathrm{V}_{\text {SS7 }}\) & 78 & - & GND7 (0 V) \\
\hline n.c. & 79 & - & not connected \\
\hline VRO15 & 80 & 0 & \\
\hline VRO14 & 81 & 0 & \\
\hline VRO13 & 82 & 0 & video output; 32-bit VRAM output port (bits 15 to 12) \\
\hline VRO12 & 83 & 0 & \\
\hline n.c. & 84 & - & not connected \\
\hline VRO11 & 85 & 0 & \\
\hline VRO10 & 86 & 0 & \\
\hline VRO9 & 87 & 0 & video output; 32-bit VRAM output port (bits 11 to 8) \\
\hline VRO8 & 88 & 0 & \\
\hline \(\mathrm{V}_{\text {SS8 }}\) & 89 & 0 & GND8 (0 V) \\
\hline n.c. & 90 & - & not connected \\
\hline \(\mathrm{V}_{\text {DD8 }}\) & 91 & - & +5 V supply voltage 8 \\
\hline VRO7 & 92 & 0 & \\
\hline VRO6 & 93 & 0 & \\
\hline VRO5 & 94 & 0 & video output; 32-bit VRAM output port (bits 7 to 4) \\
\hline VRO4 & 95 & \(\bigcirc\) & \\
\hline n.c. & 96 & - & not connected \\
\hline VRO3 & 97 & 0 & \\
\hline VRO2 & 98 & 0 & video output; 32-bit VRAM output port (bits 3 to 0) \\
\hline VRO1 & 99 & \(\bigcirc\) & \\
\hline VROO & 100 & O & \\
\hline
\end{tabular}

\section*{PIN CONFIGURATION}

Fig. 2 Pin configuration.

\section*{7. FUNCTIONAL DESCRIPTION}

The input port is output of Philips digital video multistandard decoders (SAA7151B, SAA7191B) or other similar sources.
The SAA7186 input supports the 16-bit YUV 4:2:2 format. The video data from the input port are converted into a unique internal two's complement data stream and are processed in horizontal direction in two separate decimation filters. Then they are processed in vertical direction by the vertical processing unit (VPU).
Chrominance data are interpolated to a 4:4:4 format; a chroma keying bit is generated.
The 4:4:4 YUV data are then converted from the YUV to the RGB domain in a digital matrix. ROM tables in the RGB data path can be used for anti-gamma correction of gamma-corrected input signals. Uncorrected RGB and YUV signals can be bypassed.
A scale control unit generates reference and gate signals for scaling of the processed video data. After data formatting to the various VRAM port formats, the scaled video data are buffered in the 16 word \(\times 32\)-bit output FIFO register. The FIFO output is directly connected to the VRAM output bus VRO(31-0).
Specific reference signals support an easy memory interfacing.
All functions of the SAA7186 are controlled via \({ }^{2} \mathrm{C}\)-bus using 17 subaddresses. The external microcontroller can get information by reading the status register.

\section*{Video input port}

The 16-bit YUV input data in 4:2:2 format (Table 1) consist of 8-bit luminance data \(Y\) (pins \(\mathrm{YIN}(7-0)\))
and 8-bit time-multiplexed colour-difference data UV (pins UVIN(7-0)).
The input data are clocked in by the signals LLC and CREF (Fig.3). HREF and VS inputs define the video scan pattern (window).

Sequential input data
- are limited to maximum 768 active pixels per line if the vertical filter is active
- UV can be processed in straight binary and two's complement representation (controlled by TCC)

\section*{Decimation filters}

The decimation filters perform accurate horizontal filtering of the input data stream.
Signal characteristics are matched in front of the pixel decimation stage, thus disturbing artifacts, caused by the pixel dropping, are reduced.
The signal bandwidth can be reduced in steps of:
2-tap filter \(=-6 \mathrm{~dB}\) at 0.325 pixel rate
3-tap filter \(=-6 \mathrm{~dB}\) at 0.25 pixel rate
4 -tap filter \(=-6 \mathrm{~dB}\) at 0.21 pixel rate
5 -tap filter \(=-6 \mathrm{~dB}\) at 0.125 pixel rate
9 -tap filter \(=-6 \mathrm{~dB}\) at 0.075 pixel rate
The different characteristics are choosen dependent on the defined scaling parameters in an adaptive filter mode (AFS-bit = 1).
The filter characteristics can also be selected independently by control bits HF2 to HFO at AFS-bit \(=0\).

\section*{Vertical filters}

Y and UV data are handled in separate filters (Fig.1). Each of the two line memories has a capacity of \(2 \times 768 \times 8\)-bit. Thus two complete video lines of 4:2:2 YUV data can be stored. The VPU is split into two memory banks and one arithmetic unit. The available processing modes, respectively transfer functions, are selectable by the bits VP1 and VP0 if AFS \(=0\).
An adaptive mode is selected by AFS = 1 . Disturbing artifacts, generated by line dropping, are reduced.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Adaptive filter selection (AFS = 1):} \\
\hline scaling ratio & filter function (refer to \({ }^{2} \mathrm{C}\) section) \\
\hline XD/XS & horizontal \\
\hline \(\leq 1\) & bypassed \\
\hline \(\leq 14 / 15\) & filter 1 \\
\hline \(\leq 11 / 15\) & filter 6 \\
\hline \(\leq 7 / 15\) & filter 3 \\
\hline \(\leq 3 / 15\) & filter 4 \\
\hline YD/YS & vertical \\
\hline \(\leq 1\) & bypassed \\
\hline \(\leq 13 / 15\) & filter 1 \\
\hline \(\leq 4 / 15\) & filter 2 \\
\hline
\end{tabular}

\section*{RGB matrix}

Y data and UV data are converted after interpolation into RGB data according to CCIR601 recommendation. Data are bypassed in YUV or monochrome modes.

Table 1 4:2:2 format (pixels per line). The time frames are controlled by the HREF signal.
\begin{tabular}{|c|c|c|c|c|c|}
\hline INPUT & \multicolumn{5}{|l|}{PIXEL BYTE SEQUENCE} \\
\hline YIN7 & Ye7 & Yo7 & Ye7 & Yo7 & Ye7 \\
\hline YIN6 & Ye6 & Yo6 & Ye6 & Yo6 & Ye6 \\
\hline YIN5 & Ye5 & Yo5 & Ye5 & Yo5 & Ye5 \\
\hline YIN4 & Ye4 & Yo4 & Ye4 & Yo4 & Ye4 \\
\hline YIN3 & Ye3 & Yo3 & Ye3 & Yo3 & Ye3 \\
\hline YIN2 & Ye2 & Yo2 & Ye2 & Yo2 & Ye2 \\
\hline YIN1 & Ye1 & Yo1 & Ye1 & Yo1 & Ye1 \\
\hline YINO & Ye0 & Yoo & YeO & Yoo & YeO \\
\hline UVIN7 & Ue7 & Ve 7 & Ue7 & Ve7 & Ue7 \\
\hline UVIN6 & Ue6 & Ve6 & Ue6 & Ve6 & Ue6 \\
\hline UVIN5 & Ue5 & \(\mathrm{Ve5}\) & Ue5 & Ve5 & Ue5 \\
\hline UVIN4 & Ue4 & Ve4 & Ue4 & Ve4 & Ue4 \\
\hline UVIN3 & Ue3 & \(\mathrm{Ve3}\) & Ue3 & Ve3 & Ue3 \\
\hline UVIN2 & Ue2 & Ve 2 & Ue 2 & Ve 2 & Ue 2 \\
\hline UVIN1 & Ue1 & \(\mathrm{Ve1}\) & Ue1 & Ve 1 & Ue1 \\
\hline UVINO & Ue0 & VeO & Ue0 & Ve0 & Ue0 \\
\hline Y frame & 0 & 1 & 2 & 3 & 4 \\
\hline UV frame & 0 & & 2 & & 4 \\
\hline
\end{tabular}

\footnotetext{
\(e=\) even pixel; \(0=\) odd pixel
}

The matrix equations are these considering the digital quantization:
\[
\begin{aligned}
& R=Y+1.375 V \\
& G=Y-0.703125 V-0.34375 U \\
& B=Y+1.734375 U .
\end{aligned}
\]

\section*{Anti-gamma ROM tables:}

ROM tables are implemented at the matrix output to provide anti-gamma correction of the RGB data. A curve for a gamma of 1.4 is implemented

The tables can be used (RTB-bit \(=0\)) to compensate gamma correction for linear data representation of RGB output data.

\section*{Chrominance signal keyer}

The keyer generates an alpha signal to achieve a 5-5-5 \(+\alpha\). RGB alpha output signal. Therefore, the processed UV data amplitudes are compared with thresholds set via \(1^{2} \mathrm{C}\)-bus (subaddresses " 0 C to 0 F "). A logical "1" signal is generated if the amplitude is inside the specified amplitude range, otherwise a logical " 0 " is generated.
Keying can be switched off by setting the lower limit higher than the upper limit ("OC or OE" and "OD or OF").

\section*{Scale control and vertical regions}

The scale control block SC includes vertical address/sequence counters to define the current position in the input field and to address the internal VPU memories.
To perform scaling, XD of XS pixel selection in horizontal direction and YD of YS line selection in vertical direction are applied. The pixel and line dropping are controlled at the input of the FIFO register. To control the decimation filter function and the vertical data processing in the adaptive mode

(AFS \(=1\)), the scaling ratio in horizontal and vertical direction is estimated in the SC block.

The input field can be divided into two vertical regions - the bypass region and the scaling region, which are defined via \(I^{2} \mathrm{C}\)-bus by the parameters VS, VC, YO and YS.
Vertical bypass region:
Data are not scaled and independent of \(I^{2}\) C-bits FS1, FSO the output format is always 8-bit grayscale (monochrome). The SAA7186 outputs all active pixels of a line, defined by the HREF input signal if the vertical bypass region is active. This can be used, for example, to store videotext information in the field memory.
The start line of the bypass region is defined by VS; the number of lines to be bypassed is defined by VC.
Vertical scaling region:
Data is scaled with start at line YO and the output format is selected when FS1, FS0 are valid.
This is the "normal operation" area.
The input/output screen dimensions in horizontal and vertical direction are defined by the parameters
XO, XS and XD for horizontal
YO, YS and YD for vertical.
The circuit processes XS samples of a line. Remaining pixels are ignored if a line is longer than XS. If a line is shorter than XS, processing is aborted when the falling edge of HREF is detected.

\section*{Vertical regions in Fig.4:}
- the two regions can be programmed via \(I^{2} \mathrm{C}\)-bus, whereby regions should not overlap (active region overrides the bypass region).
- the start of a normal active picture depends on video standard and has to be programmed to the correct value.
- the offisets XO and YO have to be set according to the internal processing delays to ensure the complete number of destination pixels and lines (Table 6).
- the scaling parameters can be used to perform a panning function over the video frame/field.

\section*{Output data representation and levels}

Output data representation of the YUV data can be modified by bit MCT (subaddress 10).
The DC gain is 1 for YUV input data. The corresponding RGB levels are defined by the matrix equations. The luminance levels are limited according to CCIR 601
\[
\begin{aligned}
& 16(239)=\text { black } \\
& 235(20)=\text { white } \\
& \text { (..) }=\text { grayscale luminance levels } \\
& \text { if the YUV or monochrome } \\
& \text { luminance output formats are } \\
& \text { selected. }
\end{aligned}
\]

The signal levels of the RGB formats are limited in 8 -bit to " 0 " or " 255 ". For the 5-bit RGB formats a truncation from 8 -bit to 5 -bit is implemented.
Fill values are inserted dependent on longword position and destination size:
- " 0 " in RGB formats and for \(Y\) two'2 complement \(U, V\)
- "128" for U, V (straight binary)
- "255" in 8-bit grayscale format

The unused output values of the YUV and grayscale formats can be used for other purposes.

Fig. 4 Vertical regions.

Digital video scaler

Table 2 VRAM port output data formats at EFE-bit \(=0\) dependend on FS1 and FS0 bits (set via \(1^{2} \mathrm{C}\)-bus)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
PIXEL \\
OUTPUT BITS
\end{tabular} & \multicolumn{3}{|l|}{FS1 \(=0 ; F S 0=0\) RGB 5-5-5 + 1 32-BIT WORDS} & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { FS1 = } 0 ; \text { FS0 = } 1 \\
& \text { YUV 4:2:2 } \\
& \text { 32-BIT WORDS }
\end{aligned}
\]} & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { FS1 = } 1 ; \text { FS0 = } 0 \\
& \text { YUV 4:2:2 TEST } \\
& \text { 16-BIT WORDS }
\end{aligned}
\]} & \multicolumn{3}{|l|}{\begin{tabular}{l}
FS1 \(=1 ; F S 0=1\) \\
8-bit monochrome 32-BIT WORDS
\end{tabular}} \\
\hline PIXEL ORDER & n & n+2 & n+4 & n & n+2 & n+4 & n & n+1 & n+2 & \[
\begin{aligned}
& n \\
& n+1
\end{aligned}
\] & \[
\begin{aligned}
& n+4 \\
& n+5
\end{aligned}
\] & \[
\begin{aligned}
& n+8 \\
& n+9
\end{aligned}
\] \\
\hline VRO31 & \(\alpha\) & \(\alpha\) & \(\alpha\) & Ye7 & Ye7 & Ye7 & Ye7 & Yo7 & Ye7 & Ya7 & Ya7 & Ya7 \\
\hline VRO30 & R4 & R4 & R4 & Ye6 & Ye6 & Ye6 & Ye6 & Yo6 & Ye6 & Ya6 & Ya6 & Ya6 \\
\hline VRO29 & R3 & R3 & R3 & Ye5 & Ye5 & Ye5 & Ye5 & Yo5 & Ye5 & Ya5 & Ya5 & Ya5 \\
\hline VRO28 & R2 & R2 & R2 & Ye4 & Ye4 & Ye4 & Ye4 & Yo4 & Ye4 & Ya4 & Ya4 & Ya4 \\
\hline VRO27 & R1 & R1 & R1 & Ye3 & Ye3 & Ye3 & Ye3 & Yo3 & Ye3 & Ya3 & Ya3 & Ya3 \\
\hline VRO26 & R0 & RO & R0 & Ye2 & Ye2 & Ye2 & Ye2 & Yo2 & Ye2 & Ya2 & Ya2 & Ya2 \\
\hline VRO25 & G4 & G4 & G4 & Ye1 & Ye1 & Ye1 & Ye1 & Yo1 & Ye1 & Ya1 & Ya1 & Ya1 \\
\hline VRO24 & G3 & G3 & G3 & Ye0 & YeO & Ye0 & Yeo & Yoo & Yeo & YaO & YaO & Yao \\
\hline VRO23 & G2 & G2 & G2 & Ue7 & Ue7 & Ue7 & Ue7 & Ve7 & Ue7 & Yb7 & Yb7 & Yb7 \\
\hline VRO22 & G1 & G1 & G1 & Ue6 & Ue6 & Ue6 & Ue6 & Ve6 & Ue6 & Yb6 & Yb6 & Yb6 \\
\hline VRO21 & G0 & G0 & G0 & Ue5 & Ue5 & Ue5 & Ue5 & Ve5 & Ue5 & Yb5 & Yb5 & Yb5 \\
\hline VRO20 & B4 & B4 & B4 & Ue4 & Ue4 & Ue4 & Ue4 & Ve4 & Ue4 & Yb4 & Yb4 & Yb4 \\
\hline VRO19 & B3 & B3 & B3 & Ue3 & Ue3 & Ue3 & Ue3 & Ve3 & Ue3 & Yb3 & Yb3 & Yb3 \\
\hline VRO18 & B2 & B2 & B2 & Ue2 & Ue2 & Ue2 & Ue2 & V 2 & Ue2 & Yb2 & Yb2 & Yb2 \\
\hline VRO17 & B1 & B1 & B1 & Ue1 & Ue1 & Ue1 & Ue1 & Ve1 & Ue1 & Yb1 & Yb1 & Yb1 \\
\hline VRO16 & B0 & B0 & B0 & UeO & UeO & UeO & Ue0 & VeO & Ue0 & Ybo & Ybo & Ybo \\
\hline \begin{tabular}{l}
PIXEL \\
ORDER
\end{tabular} & n+1 & n+3 & n+5 & n+1 & n+3 & n+5 & OUT & TS N & USED & \[
\begin{aligned}
& n+2 \\
& n+3
\end{aligned}
\] & \[
\begin{aligned}
& n+6 \\
& n+7
\end{aligned}
\] & \[
\begin{aligned}
& n+10 \\
& n+11
\end{aligned}
\] \\
\hline VRO15 & \(\alpha\) & \(\alpha\) & \(\alpha\) & Yo7 & Yo7 & Yo7 & X & \(X\) & X & Yc7 & Yc7 & Yc7 \\
\hline VRO14 & R4 & R4 & R4 & Yo6 & Yo6 & Yo6 & X & X & X & Yc6 & Yc6 & Yc6 \\
\hline VRO13 & R3 & R3 & R3 & Yo5 & Yo5 & Yo5 & X & X & X & Yc5 & Yc5 & Yc5 \\
\hline VRO12 & R2 & R2 & R2 & Yo4 & Yo4 & Yo4 & X & X & X & Yc4 & Yc4 & Yc4 \\
\hline VRO11 & R1 & R1 & R1 & Yo3 & Yo3 & Yo3 & X & X & \(X\) & Yc3 & Yc3 & Yc3 \\
\hline VRO10 & Ro & Ro & R0 & Yo2 & Yo2 & Yo2 & X & X & X & Yc2 & Yc2 & Yc2 \\
\hline VRO9 & G4 & G4 & G4 & Yo1 & Yo1 & Yo1 & X & X & X & Yc1 & Yc1 & Yc1 \\
\hline VRO8 & G3 & G3 & G3 & Yoo & Yoo & Yoo & X & X & X & Yco & Yco & Yco \\
\hline VRO7 & G2 & G2 & G2 & Ve7 & Ve7 & Ve7 & X & \(X\) & X & Yd7 & Yd7 & Yd7 \\
\hline VRO6 & G1 & G1 & G1 & Ve6 & Ve6 & Ve6 & X & X & X & Yd6 & Yd6 & Yd6 \\
\hline VRO5 & G0 & G0 & G0 & Ve5 & Ve5 & \(\mathrm{Ve5}\) & X & X & X & Yd5 & Yd5 & Yd5 \\
\hline VRO4 & B4 & B4 & B4 & Ve4 & Ve4 & Ve4 & X & X & X & Yd4 & Yd4 & Yd4 \\
\hline VRO3 & B3 & B3 & B3 & Ve3 & Ve3 & Ve3 & X & X & X & Yd3 & Yd3 & Yd3 \\
\hline VRO2 & B2 & B2 & B2 & Ve2 & Ve2 & Ve 2 & X & X & X & Yd2 & Yd2 & Yd2 \\
\hline VRO1 & B1 & B1 & B1 & Ve1 & Ve1 & Ve1 & X & X & X & Yd1 & Yd1 & Yd1 \\
\hline VROO & B0 & B0 & B0 & Ve0 & VeO & VeO & X & X & X & Ydo & Ydo & Yd0 \\
\hline
\end{tabular}
\(\alpha=\) keying bit; \(R, G, B, Y . U\) and \(V=\) digital signals; \(e=\) even pixel number; \(0=\) odd pixel number;
\(a b c d=\) consecutive pixels

Table 3 VRAM port output data formats at EFE-bit \(=1\) dependend on FS1 and FSO bits (set via \({ }^{2} \mathrm{C}\)-bus)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline PIXEL OUTPUT BITS & \multicolumn{3}{|l|}{\begin{tabular}{l}
\[
F S 1=0 ; F S 0=0
\] \\
RGB 5-5-5 + 1 \\
16-BIT WORDS
\end{tabular}} & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { FS1 }=0 ; F S 0=1 \\
& \text { YUV 4:2:2 } \\
& \text { 16-BIT WORDS }
\end{aligned}
\]} & \multicolumn{3}{|l|}{\begin{tabular}{l}
\[
F S 1=1 ; F S 0=0
\] \\
RGB 8-8-8 \\
24-BIT WORDS
\end{tabular}} & \multicolumn{3}{|l|}{\begin{tabular}{l}
FS1 \(=1 ; F S 0=1\) \\
8-bit monochrome \\
16-BIT WORDS
\end{tabular}} \\
\hline PIXEL ORDER & n & \(\mathrm{n}+1\) & \(\mathrm{n}+2\) & n & \(\mathrm{n}+1\) & \(\mathrm{n}+2\) & n & \(\mathrm{n}+1\) & \(\mathrm{n}+2\) & \[
\begin{aligned}
& n \\
& n+1
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{n}+2 \\
& \mathrm{n}+3
\end{aligned}
\] & \[
\begin{aligned}
& n+4 \\
& n+5
\end{aligned}
\] \\
\hline VRO31 & \(\alpha\) & \(\alpha\) & \(\alpha\) & Ye7 & Yo7 & Ye7 & R7 & R7 & R7 & Ya7 & Ya7 & Ya7 \\
\hline VRO30 & R4 & R4 & R4 & Ye6 & Yo6 & Ye6 & R6 & R6 & R6 & Ya6 & Ya6 & Ya6 \\
\hline VRO29 & R3 & R3 & R3 & Ye5 & Yo5 & Ye5 & R5 & R5 & R5 & Ya5 & Ya5 & Ya5 \\
\hline VRO28 & R2 & R2 & R2 & Ye4 & Yo4 & Ye4 & R4 & R4 & R4 & Ya4 & Ya4 & Ya4 \\
\hline VRO27 & R1 & R1 & R1 & Ye3 & Yo3 & Ye3 & R3 & R3 & R3 & Ya3 & Ya3 & Ya3 \\
\hline VRO26 & Ro & R0 & Ro & Ye2 & Yo2 & Ye2 & R2 & R2 & R2 & Ya2 & Ya2 & Ya2 \\
\hline VRO25 & G4 & G4 & G4 & Ye1 & Yo1 & Ye1 & R1 & R1 & R1 & Ya1 & Ya1 & Ya1 \\
\hline VRO24 & G3 & G3 & G3 & Ye0 & Yoo & Yeo & RO & Ro & R0 & Yao & Yao & Yao \\
\hline VRO23 & G2 & G2 & G2 & Ue7 & \(\mathrm{Ve7}\) & Ue7 & G7 & G7 & G7 & Yb7 & Yb7 & Yb7 \\
\hline VRO22 & G1 & G1 & G1 & Ue6 & Ve6 & Ue6 & G6 & G6 & G6 & Yb6 & Yb6 & Yb6 \\
\hline VRO21 & G0 & G0 & G0 & Ue5 & Ve5 & Ue5 & G5 & G5 & G5 & Yb5 & Yb5 & Yb5 \\
\hline VRO20 & B4 & B4 & B4 & Ue4 & Ve4 & Ue4 & G4 & G4 & G4 & Yb4 & Yb4 & Yb4 \\
\hline VRO19 & B3 & B3 & B3 & Ue3 & Ve3 & Ue3 & G3 & G3 & G3 & Yb3 & Yb3 & Yb3 \\
\hline VRO18 & B2 & B2 & B2 & Ue2 & V 2 & Ue2 & G2 & G2 & G2 & Yb2 & Yb2 & Yb2 \\
\hline VRO17 & B1 & B1 & B1 & Ue1 & Ve 1 & Ue1 & G1 & G1 & G1 & Yb1 & Yb1 & Yb1 \\
\hline VRO16 & B0 & B0 & B0 & Ue0 & Ve0 & Ueo & G0 & Go & G0 & Ybo & Ybo & Ybo \\
\hline PIXEL ORDER & n & \(\mathrm{n}+1\) & \(\mathrm{n}+2\) & n & \(\mathrm{n}+1\) & \(\mathrm{n}+2\) & n & \(\mathrm{n}+1\) & \(\mathrm{n}+2\) & \[
\begin{aligned}
& \hline n \\
& n+1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{n}+2 \\
& \mathrm{n}+3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& n+4 \\
& n+5 \\
& \hline
\end{aligned}
\] \\
\hline VRO15 & X & X & X & X & X & X & B7 & B7 & B7 & X & X & X \\
\hline VRO14 & X & X & X & X & X & X & B6 & B6 & B6 & X & X & X \\
\hline VRO13 & X & X & x & X & x & x & B5 & B5 & B5 & x & X & X \\
\hline VRO12 & X & X & X & X & X & X & B4 & B4 & B4 & x & X & X \\
\hline VRO11 & X & X & x & X & X & X & B3 & B3 & B3 & X & X & x \\
\hline VRO10 & X & X & X & X & X & X & B2 & B2 & B2 & X & x & X \\
\hline VRO9 & X & X & X & X & X & X & B1 & B1 & B1 & X & X & X \\
\hline VRO8 & X & X & X & X & X & X & B0 & B0 & B0 & X & X & X \\
\hline VRO7(1)(2) & \(\alpha\) & \(\alpha\) & \(\alpha\) & \(\alpha\) & X & \(\alpha\) \\
\hline VRO6 (2) & O/E \\
\hline VRO5 (2) & VGT \\
\hline VRO4 (2) & HGT \\
\hline VRO3 & x & X & X & X & X & X & & & X & & & \\
\hline VRO2 (2) & HRF \\
\hline VRO1 (2) & LNQ \\
\hline VROO (2) & PXQ \\
\hline
\end{tabular}
\(\alpha=\) keying bit; \(R, G, B, Y . U\) and \(V=\) digital signals; \(e=\) even pixel number; \(0=\) odd pixel number; \(a b c d=\) consecutive pixels;
\(\mathrm{O} / \mathrm{E}=\) odd/even flag
(1) YUV 16-bit format: the keying signal \(\alpha\) is defined only for YU time steps. The corresponding YV sample has also to be keyed. The \(\alpha\) signal in monochrome mode can be used only in the transparent mode (TTR \(=1\)), in this case \(\mathrm{Ya}=\mathrm{Yb}\).
(2) Data valid only when transparent mode active (TTR-bit \(=1\)) and VCLK pin connected to LLC/2 clock rate.

\section*{Output FIFO register and VRAM output port}

The output FIFO register is the buffer between the video data stream and the VRAM data input port. Resized video data are buffered and formatted. 32-, 24- and 16-bit video data modes are supported. The various formats are selected by the bits EFE, FS1 and FSO. VRAM port formats are shown in Tables 2 and 3. The FIFO register capacity is 16 word x 32 bit (for 32-, 24-, or 16-bit video data). The bits LW1 and LWO can be used to define the position of the first pixel each line in the 32-bit longword formats or to shift the UV sequence to VU in the 16 -bit YUV formats (LW1 =1).
VRAM port inputs are:
VCLK to clock the FIFO register output data and VOEN to enable output data.
VRAM port outputs are:
the HFL flag (half-full flag), the signal INCADR (refer to section "data burst transfer") and the reference signals for pixel and line selection on outputs VRO(7-0) (only for 24- and 16-bit video data formats refer to
"transparent data transfer").

\section*{VRAM port transfer procedures}

Data transfer on the VRAM port can be done asynchroneously controlled by outputs HFL, INCADR and input VCLK (data burst transfer with bit TTR = 0).
Data transfer on the VRAM port can be done synchroneously controlled by output reference signals on outputs VRO(7-0) and a clock rate of LLC/2 on input VCLK (transparent data transfer with bit
\(T T R=1\) and \(E F E=1\)).
The scaling capability of the SAA7186 can be used in various applications.

\section*{Data burst transfer mode}

Data transfer on the VRAM port is asynchroneously (\(T T R=0\)). This mode can be used for all output formats. Four signals for communication with the external memory are provided.
- HFL flag, the half-full flag of the FIFO output register is raised when the FIFO contains at least 8 data words (HFL \(=H I G H)\). By setting HFL = 1 , the SAA7186 requests a data burst transfer by the external memory controller, that has to start a transfer cycle within the next 32 LLC cycles for 32-bit longword modes (16 LLC cycles for 16 - and 24 -bit modes). - If there are pixels in the FIFO at the end of a line, which are not transferred, the circuit fills up the FIFO register with "fill pixels" until it is half-full and sets the HFL flag to request a data burst transfer. After transfer is done, HFL is used in combination with INCADR to indicate the line increments (Figures 6 and 7).
- INCADR output signal is used in combination with HFL to control horizontal and vertical address generation for a memory controller. The pulse sequence depends on field formats (interlace/ non-interlace or odd/even fields, Figures 6 and 7) and control bits OF (subaddress 00).
\(H F L=1\) at the rising edge of INCADR:
the end of line is reached, request for line address increment \(\mathrm{HFL}=0\) at the rising edge of INCADR:
the end of field/frame is reached, request for line and pixel addresses reset
(The distance from the last halffull request HFL to the INCADR pulse may be longer than 64 x LLC. The HFL state is defined for minimum \(4 \times\) LLC in front of the rising edge of INCADR and minimum \(2 \times\) LLC afterwards.)
- VCLK input signal to clock the FIFO register output data VRO(n). New data are placed on the VRO(n) port with the rising edge of VCLK (Fig.5).
- VOEN input enables output data \(\mathrm{VRO}(\mathrm{n})\). The outputs are in 3-state mode at VOEN \(=\mathrm{HIGH}\). VOEN changes only when VCLK
is LOW. If VCLK pulses are applied during VOEN \(=\) HIGH, the outputs remain inactive, but the FIFO register accepts the pulses.

\section*{Transparent data transfer mode}

Data transfer on the VRAM port can be achieved synchroneously (TTR =1). With a contineous clock rate of LLC/2 on input VCLK, the SAA7186 delivers a contineously processed data stream. Therefore, the extended formats of the VRAM output port have to be selected (bit EFE = 1; Table 3). The reference and gate signals on outputs VRO(6-1) and the LNQ signal are delivered in each field (means scaled and ignored fields). The PXO signal (also VROO) is only delivered in active fields. The output signals VRO(7-0) can be used to buffer qualified pre-processed RGB or YUV video data (notice: the YUV data are only valid in qualified time slots). Control output signals in Table 3 are:
\(\alpha \quad\) keying signal of the chroma keyer
O/E odd/even field bit according to the internal field processing
VGT vertical gate signal, "1" marks the scaling window in vertical direction from YO to (YO + YS) lines, cut by VS.
HGT horizontal gate signal, "1" marks horizontal direction from XO to (\(\mathrm{XO}+\mathrm{XS}\)) lines, cut by HREF.
HRF delay compensated horizontal reference signal.
LNQ line qualifier signal, active polarity is defined by QPL bit.
PXQ pixel qualifier signal, active polarity is defined by QPP bit.

\section*{Power-on reset}
- the FIFO register contents are undefined
- outputs VRO are set to highimpedance state
- output INCADR = HIGH
- output HFL = LOW until the VPE bit is set to "1"
- subaddress " 10 " is set to 00 h and VPE-bit in subaddress " 00 " is set to zero (Table 4).

Fig. 5 Output port transfer to VRAM at 32-bit data format without scaling. If VCLK cycles occur at VOEN \(=\mathrm{HIGH}\), the FIFO register is unchanged, but the outputs \(\operatorname{VRO}(31-0)\) remain in 3 -state position.

Fig. 6 Vertical reset timing to the VRAM.

Fig. 8 Reference signals for scaling window.

\section*{Field processing}

The phase of the field sequence (odd/even dependent on inputs HREF and VS) is detected by means of the falling edge of VS. The current field phase is reported in the status byte by the OEF bit (Table 5). OEF bit can be stable 0 or 1 for noninterlaced input frames or non standard input signals VS and/or HREF (nominal condition for VS and HREF - SAA7191 B with active vertical noise limiter). A free-running odd/even flag is generated for internal field processing if the detection reports a stable OEF bit.

\section*{8. OPERATION CYCLE}

The operation is synchronized by the input field. The cycle is specified in the flow chart (Fig.9).
The circuit is inactive after power-on reset, VPO is 0 and the FIFO control is set "empty". The internal control registers are updated with the falling edge of VS signal. The circuit is switched active and waits for a transmission of VS and a vertical reset sequence to the memory controller. Afterwards, the circuit waits for the beginning of a scaling or bypass region. The processing of a current line is finished when a vertical sync pulse appears. The

The POE bit (subaddress OB) can be used to change the polarity of the internal flag (in case of non-standard VS and HREF signals) to control the phase of the free-running flag, and to compensate mis-detections. Thus, the SAA7186 can be used under various VS/HREF timing conditions.
The SAA7186 operates on fields. To support progressive displays and to avoid movement blurring and artifacts, the circuit can process both or single fields of interlaced or noninterlaced input data. Therefore the OF bits can be used. The bits OF1 and OFO (Table 6) determine the INCADR/HFL generation in "data
burst transfer mode". One of the fields (odd or even) is ignored when OF1 = 1 ; then no line increment sequence (INCADR/HFL) is generated, the vertical reset pulse is only generated.

With \(\mathrm{OF} 1=\mathrm{OF} 0=0\) the circuit supports correct interlaced data storage. Two INCADR/HFL sequences are generated in each qualified line; additionally an INCADR/HFL sequence after the vertical reset sequence of an odd field is generated. Thereby, the scaled lines are automatically stored in the right sequence.
circuit performs a coefficient update and generates a new vertical reset (if it is still active).

Line processing starts when a line is decided to be active, the circuit starts to scale it. Active pixels are loaded into the FIFO register. An HFL flag is generated to initialize a data transfer when eight words are completed. The line end is reached when the programmed pixel number is processed or when a horizontal sync pulse occurs. If there are pixels in the FIFO register, it is filled up until it is half-full to cause a data transfer. Horizontal increment pulses are transmitted after this data transier.

Remarks:
The SAA7186 will always wait for the HREF/VS pulse before the line increment/vertical reset sequence is performed.
After each line/field, the FIFO control is set to empty when INCADR/HFL sequence is transmitted.
No additional actions are necessary if the memory controller has ignored the HFL signal. There is no need to handle overflow/underflow of the FIFO register.

MEH473

Fig. 9 Operation cycle

Fig. 10 SAA7186 system configuration in Data Burst Transfer Mode (TTR = , VCLK = continuous).

Fig. 11 SAA7186 system configuration in Transparent Data Transfer Mode (TTR = 1, EFE = 1, VCLK = continuous (LLLC2)).

Fig. 12 VS timing for video input source SAA7191B.

\section*{9. \(1^{2} \mathrm{C}\)-BUS FORMAT}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline\(S\) & SLAVE ADDRESS & A & SUBADDRESS & A & DATAO & A & & DATAn & A & P \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline S & \(=\) & start condition \\
\hline SLAVE ADDRESS & \(=\) & 1011 100X (IICSA = LOW) or 1011 110X (IICSA \(=\) HIGH) \\
\hline A & = & acknowledge, generated by the slave \\
\hline SUBADDRESS* & = & subaddress byte (Table 4) \\
\hline DATA & = & data byte (Table 4) \\
\hline P & \(=\) & stop condition \\
\hline X & = & read/write control bit \\
\hline & & \begin{tabular}{l}
\(X=0\), order to write (the circuit is slave receiver) \\
\(X=1\), order to read (the circuit is slave transmitter)
\end{tabular} \\
\hline
\end{tabular}
* If more than 1 byte DATA are transmitted, then auto-increment of the subaddress is performed.

Table \(4 I^{2} C\)-bus; subaddress and data bytes for writing (\(X\) in address byte \(=0\)).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{FUNCTION} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{SUBADDRESS}} & \multicolumn{8}{|c|}{DATA} & \multirow[b]{2}{*}{DF*} \\
\hline & & & D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{7}{*}{Formats and sequence Output data pixel/line continued in Input data pixel/line continued in Horizontal window start Pixel decimation filter}} & 00 & RTB & OF1 & OFO & VPE & LW1 & LW0 & FS1 & FSO & tbf \\
\hline & & 01 & XD7 & XD6 & XD5 & XD4 & XD3 & XD2 & XD1 & XDO & \\
\hline & & 04 & & & & & & & XD9 & XD8 & \\
\hline & & 02 & XS7 & XS6 & XS5 & XS4 & XS3 & XS2 & XS1 & XSO & \\
\hline & & 04 & & & & & XS9 & XS8 & & & \\
\hline & & 03 & XO7 & XO6 & XO5 & XO4 & XO3 & XO2 & XO1 & XOO & \\
\hline & & 04 & HF2 & HF1 & HFO & XO8 & XS9 & XS8 & XD9 & XD8 & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{6}{*}{Output data lines/field continued in input data lines/field continued in Vertical window start AFS/vertical processing}} & 05 & YD7 & YD6 & YD5 & YD4 & YD3 & YD2 & YD1 & YDO & \\
\hline & & 09 & & & & & & & YD9 & YD8 & \\
\hline & & 06 & YS7 & YS6 & YS5 & YS4 & YS3 & YS2 & YS1 & YSO & \\
\hline & & 09 & & & & & YS9 & YS8 & & & \\
\hline & & 07 & YO7 & YO6 & YO5 & YO4 & YO3 & YO2 & YO1 & YOO & \\
\hline & & 08 & AFS & VP1 & VPO & YO8 & YS9 & YS8 & YD9 & YD8 & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{Vertical bypass start continued in Vertical bypass count continued in}} & 09 & VS7 & VS6 & VS5 & VS4 & VS3 & VS2 & VS1 & VSO & \\
\hline & & OB & & & & VS8 & & & & & \\
\hline & & OA & VC7 & VC6 & VC5 & VC4 & VC3 & VC2 & VC1 & VCo & \\
\hline & & OB & TCC & 0 & 0 & VS8 & 0 & VC8 & 0 & POE & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{Chroma keying lower limit for \(V\) upper limit for \(V\) lower limit for \(U\) upper limit for \(U\)}} & & & & & & & & & & \\
\hline & & OC & VL7 & VL6 & VL5 & VL4 & VL3 & VL2 & VL1 & VLO & \\
\hline & & OD & VU7 & VU6 & VU5 & VU4 & VU3 & VU2 & VU1 & VU0 & \\
\hline & & OE & UL7 & UL6 & UL5 & UL4 & UL3 & UL2 & UL1 & ULO & \\
\hline & & OF & UU7 & UU6 & UU5 & UU4 & UU3 & UU2 & UU1 & UU0 & \\
\hline \multicolumn{2}{|l|}{Byte 10**} & 10 & 0 & 0 & 0 & MCT & QPL & QPP & TTR & EFE & \\
\hline \multicolumn{2}{|l|}{Unused} & 11 to 1 & & & & & & & & & \\
\hline
\end{tabular}

\footnotetext{
*) Default register contents fill in by hand
\({ }^{* *}\)) Byte 10 is set to 00 h after power-on reset.
}

Digital video scaler

Table \(5{ }^{2}{ }^{2} \mathrm{C}\)-bus status byte (X in address byte \(=1\))
\begin{tabular}{|l|l|lllllllll|}
\hline \multicolumn{1}{|c|}{ FUNCTION } & & \multicolumn{6}{c|}{ DATA } & & D2 \\
& & D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\hline status byte & & & ID3 & ID2 & ID1 & ID0 & 0 & 0 & OEF & SVP \\
\hline
\end{tabular}

Function of status bits:
ID3 to IDO
Software version of SAA7186 compatible with
\begin{tabular}{llll|l}
ID3 & ID2 & ID1 & ID0 & version \\
\hline 0 & 0 & 0 & 1 & 1
\end{tabular}

OEF Identification of field sequence dependent on inputs HREF and VS:
\(0=\) even field detected; \(1=\) odd field detected
State of VRAM port: \(\quad 0=\) inputs HFL and INCADR inactive;
1 = inputs HFL and INCADR active.

Table 6 Function of the register bits of Table 4
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { "00" } \\
& \text { RTB }
\end{aligned}
\] & & & \multicolumn{2}{|l|}{ROM table bypass switch:} & \multicolumn{4}{|c|}{\begin{tabular}{l}
\(0=\) anti-gamma ROM active
\(1=\) table is bypassed \\
\(1=\) table is bypassed
\end{tabular}} \\
\hline OF1 & to & OFO & Set output field & mode: & \begin{tabular}{l}
d mode D \\
fields for \\
h fields for fields only f fields on
\end{tabular} & \begin{tabular}{l}
S proce \\
interlace \\
non-inte \\
y (even \\
ly(odd fied
\end{tabular} & storage aced sto ids ignor ds ignor & or non-interlaced storage non-interlaced storage \\
\hline \multicolumn{3}{|l|}{VPE} & \multicolumn{6}{|l|}{VRAM port outputs enable: \(0=H F L\) and INCADR inactive; VRO outputs in 3-state position (HFL = LOW, INCADR = HIGH) \(1=\) HFL and INCADR enabled; VRO outputs dependent on VOEN} \\
\hline \multirow[t]{14}{*}{LW1} & \multirow[t]{14}{*}{to} & \multirow[t]{14}{*}{LWo} & \multicolumn{6}{|l|}{First pixel position in VRO data for \(\mathrm{FS} 1=0 ; \mathrm{FS0}=0\) (RGB) and \(\mathrm{FS} 1=0 ; \mathrm{FSO}=1\) (YUV):} \\
\hline & & & LW1 LW0 & 31 to 24 & 23 to 16 & 15 to 8 & 7 to 0 & \\
\hline & & & 0 0 & pixel 0 & pixel 0 & pixel 1 & pixel 1 & \\
\hline & & & 01 & pixel 0 & pixel 0 & pixel 1 & pixel 1 & \\
\hline & & & 10 & black & black & pixel 0 & pixel 0 & F \(=0, T R R=0\) \\
\hline & & & 11 & black & black & pixel 0 & pixel 0 & \\
\hline & & & First pixel positio & n in VRO d & ata for FS1 & \(=1 ;\) FSO & 1 (mono & \\
\hline & & & LW1 LW0 & 31 to 24 & 23 to 16 & 15 to 8 & 7 to 0 & \\
\hline & & & 00 & pixel 0 & pixel 1 & pixel 2 & pixel 3 & \\
\hline & & & 01 & black & pixel 0 & pixel 1. & pixel 2 & \(E F E=0, T R R=0\) \\
\hline & & & \[
\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}
\] & black
black & black
black & \[
\begin{aligned}
& \text { pixel o } \\
& \text { black }
\end{aligned}
\] & \begin{tabular}{l}
pixel 1 \\
pixel 0
\end{tabular} & \(E F E=0, T R R=0\) \\
\hline & & & 00 & pixel 0 & pixel 1 & x & & \\
\hline & & & & black & pixel 0 & X & X & \(=1, T R R=0\) \\
\hline & & & \(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\) & pixel 0
black & pixel 1
pixel 0 & X
X & & greyscale formar \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline FS1 to & FSO & FIFO output register format select (EFE- bit see "10"): \\
\hline \[
\begin{aligned}
& \text { "01 and 04" } \\
& \text { XD9 to }
\end{aligned}
\] & & Pixel number per line (straight binary) on output (VRO): 0000000000 to 1111111111 (number of XS pixels as a maximum) \\
\hline \[
\begin{array}{ll}
\text { "02 and } 04 " \\
\text { XS9 to }
\end{array}
\] & XSO & Pixel number per line (straight binary) on inputs (YIN and UVIN): 0000000000 to 1111111111 (number of input pixels per line as maximum) \\
\hline \[
\begin{aligned}
& \text { "03 and 04" } \\
& \text { XO8 to }
\end{aligned}
\] & XOO & \begin{tabular}{l}
Horizontal start position (straight binary) of scaling window (take care of active pixel number per line). \\
start with 1st pixel after HREF rise \(=000010000\) to 111111111 (010 to 1FF) \\
window start and window end may be cut by internal delay compensated HREF \(=0\) phase. XO has to be matched to the internal processing delay to get full scaling range
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { "04" } \\
& \text { HF2 to }
\end{aligned}
\] & HFO & Horizontal decimation filter (Figures 13 and 14): \\
\hline \[
\begin{aligned}
& \text { "05 and 08" } \\
& \text { YD9 to }
\end{aligned}
\] & YDO & \begin{tabular}{l}
Line number per output field (straight binary): \\
0000000000 to 1111111111 (number of \(Y S\) lines as a maximum)
\end{tabular} \\
\hline
\end{tabular}

\section*{Digital video scaler}
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \text { "06 and 08" } \\
& \text { YS9 to }
\end{aligned}
\] & YSO & Line number per input field (straight binary):
\begin{tabular}{c}
line \\
000000 \\
111111 \\
1111
\end{tabular}\(\quad\)\begin{tabular}{l}
1023
\end{tabular} \begin{tabular}{l}
lines (maximum \(=\) number of lines/field -3)
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { "07 and 08" } \\
& \text { YO8 }
\end{aligned}
\] & YOO & \begin{tabular}{l}
Vertical start of scaling window. "0" equals 3rd line after rising slope of VS input signal. Take care of active line number per field (straight binary). \\
000000000 start with 3rd line after the rising slope of VS \\
000000011 start with 1st line after the falling slope of nominal VS (SAA7151B/91B) \\
\(111111111511+3\) lines after the rising slope of VS (maximum value)
\end{tabular} \\
\hline \[
\begin{array}{|l|}
\hline \text { "08" } \\
\text { AFS }
\end{array}
\] & & \begin{tabular}{l}
Adaptive filter switch: \(0=\) off; use VP1, VPO and HF2 to HFO bits \\
\(1=\) on; filter characteristics are selected by the scaler
\end{tabular} \\
\hline VP1 to & VPo & Vertical data processing \\
\hline \[
\begin{aligned}
& \text { "O9 and OB" } \\
& \text { VS8 }
\end{aligned}
\] & VSo & \begin{tabular}{l}
Vertical bypass start, sets begin of the bypass region (straight binary). Scaling region overrides bypass region (YO bits): \\
000000000 start with 3rd line after the rising slope of VS \\
000000011 start with 1st line after the falling slope of nominal VS (SAA7151B/91B) \\
\(111111111511+3\) lines after the rising slope of VS (maximum value)
\end{tabular} \\
\hline \[
\begin{array}{|l|}
\hline \text { "OA and OB" } \\
\text { VC8 to }
\end{array}
\] & VC0 & Vertical bypass count, sets length of bypass region (straight binary):
\(000000000 \quad 0\) line length
\(111111111 \quad 511\) lines length (maximum = number of lines/field -3) \\
\hline TCC & & Two's complement input data select \((\mathrm{U}, \mathrm{V}): \quad \begin{aligned} & 0 \\ & 1\end{aligned}=\) binary input data
\(1=\) two complement input data \\
\hline POE & & Polarity, internally detected odd/even flag \(O / E\) : \(0=\) flag unchanged; \(\quad 1=\) flag inverted \\
\hline \[
\begin{array}{|l|}
\hline \text { "OC" } \\
\mathrm{VL7}
\end{array}
\] & VLO & Set lower limit for V colour-difference signal (8 bit ; two's complement): \(\begin{array}{ll}10000000 & \text { as maximum negative value }=-128 \text { signal level } \\ 00000000 & \text { limit }=0 \\ 01111111 & \text { as maximum positive value }=+127 \text { signal level }\end{array}\) \\
\hline \[
\begin{array}{ll}
\text { "OD" } \\
\text { VU7 }
\end{array}
\] & VUO & Set upper limit for V colour-difference signal (8 bit; two's complement): \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { "OE" } \\
& \text { UL7 }
\end{aligned}
\] & to & ULO & Set lower limit for U colour-difference signal (8 bit; two's complement): \\
\hline \[
\begin{aligned}
& \text { "OF" } \\
& \text { UU7 }
\end{aligned}
\] & to & UUO & Set upper limit for U colour-difference signal (8 bit; two's complement):
\[
\begin{array}{ll}
10000000 & \text { as maximum negative value }=-128 \text { signal level } \\
00000000 & \text { limit }=0 \\
01111111 & \text { as maximum positive value }=+127 \text { signal level }
\end{array}
\] \\
\hline \[
\begin{aligned}
& " 10 " \\
& \text { MCT }
\end{aligned}
\] & & & \begin{tabular}{l}
Monochrome and two's complement output data select: \\
\(0=\) inverse grayscale luminance (if grayscale is selected by FS bits) or straight binary U, V data output \\
\(1=\) non-inverse monochrome luminance (if grayscale is selected by FS bits) or two' complement \(\mathrm{U}, \mathrm{V}\) data output
\end{tabular} \\
\hline QPL & & & Line qualifier polarity flag: \(\quad 0=\) LNQ is active-LOW (pin 1 and on VRO1, pin 99);
\[
1=L N Q \text { is active }-\mathrm{HiGH}
\] \\
\hline QPP & & & \begin{tabular}{l}
Pixel qualifier polarity flag: \(\quad 0=\mathrm{PXQ}\) is active-LOW (VROO, pin 100); \\
\(1=\mathrm{PXQ}\) is active-HIGH
\end{tabular} \\
\hline TTR & & & \begin{tabular}{l}
Transparent data transfer: \\
0 = normal operation (VRAM protocol valid,) \\
\(1=\) FIFO register transparent (output FIFO in shift register mode)
\end{tabular} \\
\hline EFE & & & Extended formats enable, FS-bits in subaddress "00" \\
\hline
\end{tabular}

Fig. 13 Horizontal frequency characteristic of luminance signal (Y) dependent on HF2 to HFO bits (subaddress 04).

Fig. 14 Horizontal frequency characteristic of chrominance signals (UV) without UV interpolation dependent on HF2 to HFO bits (subaddress 04).

Purchase of Philips \({ }^{\prime} I^{2} \mathrm{C}\) components conveys a license under the Philips' \(1^{2} \mathrm{C}\) patent to use the components in the \(\mathrm{I}^{2} \mathrm{C}\)-system provided the system conforms to the \(\left.\right|^{2} \mathrm{C}\) specifications defined by Philips.

\section*{10. LIMITING VALUES}

In accordance with the Absolute Maximum Rating System (IEC 134).
\begin{tabular}{|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & MIN. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\mathrm{DD}}\) & \begin{tabular}{l}
supply voltage (pins 5, 14, 26, 40, \\
\(55,67,76\) and 91)
\end{tabular} & -0.5 & 6.5 & V \\
\hline \(\mathrm{~V}_{\mathrm{I}}\) & DC input voltage on all pins & -0.5 & \(\mathrm{~V}_{\mathrm{DD}}\) & V \\
\hline \(\mathrm{I}_{\mathrm{DD}}\) & \begin{tabular}{l}
supply current (pins 5, 14, 26, 40, \\
\(55,67,76\) and 91)
\end{tabular} & - & 70 & mA \\
\hline \(\mathrm{P}_{\text {tot }}\) & total power dissipation & 0 & 1 & W \\
\hline \(\mathrm{~T}_{\text {stg }}\) & storage temperature range & -65 & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature range & 0 & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{V}_{\text {ESD }}\) & electrostatic handling* for all pins & - & \(\pm 2000\) & V \\
\hline
\end{tabular}
* Equivalent to discharging a 100 pF capacitor through a \(1.5 \mathrm{k} \Omega\) series resistor.
11. DC CHARACTERISTICS
\(\mathrm{V}_{\mathrm{DD} 1}\) to \(\mathrm{V}_{\mathrm{DD}}=4.5\) to \(5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=0\) to \(70^{\circ} \mathrm{C}\) unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\mathrm{DD}}\) & supply voltage range (pins 5, 14, 26, 40, 55, 67, 76 and 91) & & 4.5 & 5 & 5.5 & V \\
\hline \(\mathrm{I}_{\mathrm{P}}\) & \[
\begin{aligned}
& \text { total supply current }\left(l_{\mathrm{DD} 1}+l_{\mathrm{DD2}}+\mathrm{I}_{\mathrm{DD}}\right. \\
& \left.\mathrm{I}_{\mathrm{DD4}}+\mathrm{I}_{\mathrm{DD} 5}+\mathrm{l}_{\mathrm{DD6}}+\mathrm{I}_{\mathrm{DD7}}+\mathrm{l}_{\mathrm{DD8}}\right)
\end{aligned}
\] & inputs LOW and outputs without load & - & 80 & - & mA \\
\hline
\end{tabular}

Data and control inputs
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{V}_{\mathrm{IL}}\) & input voltage LOW & & -0.5 & - & 0.8 & V \\
\hline \(\mathrm{~V}_{\mathrm{IH}}\) & input voltage HIGH & & 2.0 & - & \(\mathrm{V}_{\mathrm{DD}}+0.5\) & V \\
\hline \(\mathrm{I}_{\mathrm{LI}}\) & input leakage current & \(\mathrm{V}_{I \mathrm{~L}}=0\) & - & - & 10 & \(\mu \mathrm{~A}\) \\
\hline \(\mathrm{C}_{I}\) & input capacitance & \begin{tabular}{l}
data \\
clocks
\end{tabular} & - & - & 8 & pF \\
& & - & - & 10 & pF \\
\hline
\end{tabular}

Data and control outputs
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathrm{V}_{\text {OL }}\) & output voltage LOW & note 1 & - & & 0.6 & V \\
\hline \(\mathrm{VOH}^{\text {O }}\) & outputt voltage HIGH & note 1 & 2.4 & & - & V \\
\hline \multicolumn{7}{|l|}{3-state outputs} \\
\hline lo off \(\mathrm{C}_{\mathrm{O}}\) & high-impedance output current high-impedance output capacitance & & & . & \[
\begin{aligned}
& \pm 5 \\
& 8
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
pF
\end{tabular} \\
\hline \multicolumn{7}{|l|}{\(I^{2} \mathrm{C}\)-bus, SDA and SCL (pins 44 and 45)} \\
\hline \(V_{\text {IL }}\) & input voltage LOW & & -0.5 & - & 1.5 & V \\
\hline \(\mathrm{V}_{1} \mathrm{H}\) & input voltage HIGH & & 3 & & \(\mathrm{V}_{\mathrm{DD}}+0.5\) & V \\
\hline 144,45 & input current & & - & - & \(\pm 10\) & \(\mu \mathrm{A}\) \\
\hline \(l_{\text {ACK }}\) & output current on pin 44 & acknowledge & 3 & - & - & mA \\
\hline \(\mathrm{V}_{\text {OL }}\) & output voltage at acknowledge & \(\mathrm{I}_{44}=3 \mathrm{~mA}\) & - & - & 0.4 & V \\
\hline
\end{tabular}

\section*{12. AC CHARACTERISTICS}
\(V_{D D 1}\) to \(V_{D D 8}=4.5\) to \(5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=0\) to \(60^{\circ} \mathrm{C}\) unless otherwise specified.

\section*{Notes to the caracteristics}
1. Levels are measured with load circuit. VRO outputs with \(1.2 \mathrm{k} \Omega\) in parallel to 25 pF at 3 V (TTL load).
2. Maximum tvcLK \(=200 \mathrm{~ns}\) for test mode only. The applicable maximum cycle time depends on data format, horizontal scaling and input data rate.
3. Measured at \(1,5 \mathrm{~V}\) level; \(\mathrm{t}_{\mathrm{p}}\), may be unlimited.
4. Timings of VRO refer to the rising edge of VLCK.
5. The timing of INCADR refers to LLC; the rising edge of HFL always refers to LLC. During a VRAM transfer is the falling edge of HFL generated by VCLK. Both edges of HFL refer to LLC during horizontal increment and vertical reset cycles.
6. Asynchronous signals with timing refering to the 1.5 V switching point of VOEN input signal (pin 50).

\section*{13. PROCESSING DELAYS}
\begin{tabular}{|l|l|l|}
\hline PORTS & DELAY IN LLC & REMARKS \\
\hline YIN to VRO & 58 & in transparent mode only \\
UVIN to VRO & 58 & in transparent mode only \\
HREF to VRO & 58 & in transparent mode only \\
\hline
\end{tabular}

\section*{14. PROGRAMMING EXAMPLE}

Slave address byte is B8h at pin IICSA \(=0\) (or BCh at pin IICSA \(=+5 \mathrm{~V}\)).
This example shows the setting via \(1^{2} C\)-bus for the processing of a picture segment at \(1: 1\) horizontal and vertical scale.
Values in brackets [..]:
If no scaling or panning is wanted
the parameters XD, XS, YD and YS should be set to the maximum value 3FFh.
the parameters XO' and YO should be set to the minimum value 000h.
(in this case, HREF and VS from external define the SAA7186 processing window).
\begin{tabular}{|c|c|c|c|c|}
\hline SUBADDR (hex) & BITS & FUNCTION & VALUE (hex) & COMMENT \\
\hline 00 & RTB, OF(1:0), VPE, LW(1:0), FS(1:0), & ROM table control and field sequence processing; VRAM port enable; output format select & 11 & (1) \\
\hline 01 & \(\mathrm{XD}(7: 0)\) & LSB's output pixel/line & 80 [FF] & 384 pixels out \\
\hline 02 & XS(7:0) & LSB's input pixel/ine & 80 [FF] & 384 pixels in \\
\hline 03 & XO(7:0) & LSB's for horizontal window start & 10 [00] & 1st pixel after HREF \(=1\) \\
\hline 04 & \[
\begin{aligned}
& \mathrm{HF}(2: 0), \mathrm{XO}(8), \\
& \mathrm{XS}(9,8), \mathrm{XD}(9 ; 8)
\end{aligned}
\] & horizontal filter select and MSB's of subaddresses 01, 02, 03 & 85 [8F] & horizontal filter bypassed \\
\hline 05 & YD(7:0) & LSB's output lines/field & 90 [FF] & 144 lines out \\
\hline 06 & YS(7:0) & LSB's input lines/field & 90 [FF] & 144 lines in \\
\hline 07 & \(\mathrm{YO}(7: 0)\) & LSB's vertical window start & 03 [00] & 1st line after VS = 0; (2) \\
\hline 08 & AFS, VP(1:0), YO(8), \(\mathrm{YS}(9,8), \mathrm{YD}(9,8)\) & adaptive and vertical filter select; MSB's of subaddresses \(05,06,07\) & 00 [FF] & no adaptive select vertical filter bypassed \\
\hline 09 & VS(7:0) & LSB's vertical bypass start position & 00 & not bypassed \\
\hline OA & \(\mathrm{VC}(7: 0)\) & LSB's vertical bypass lines/field & 00 & region \\
\hline OB & VS(8), VC(8), TCC, POE & MSB's of subaddresses 09, 0A; UV input data representation and odd/even polarity switch & 00 & defined; (3) (4) \\
\hline OC & VL(7:0) & UV keyer: lower limit V (R-Y) & 00 &) keying is switched off \\
\hline OD & VU(7:0) & UV keyer: upper limit V (R-Y) & FF &) by \(\mathrm{VU}<\mathrm{VL}\) \\
\hline OE & UL(7:0) & UV keyer: lower limit \(U\) (B-Y) & 00 & \\
\hline OF & UU(7:0) & UV keyer: upper limit \(U\) (B-Y) & 00 & - \\
\hline 10 & MCT, QPP, QPL, TTR, EFE & Y or UV output data representation, output data transfer mode, pixel/ line qualifier polarity. & 00 & (5) \\
\hline
\end{tabular}

Notes to the programming examples
(1) \(\mathrm{RTB}=0 \quad\) ROM table is active (only for RGB formats) OF \(=00\) SAA7186 processes the both fields for interlaced display VPE \(=1 \quad\) VRAM port is enabled
LW \(=00\) longword position of first pixel in each output line \(=0\)
FS \(=01\) 16-bit 4:2:2 YUV output format is selected
(2) for nominal VS length of \(6 \times \mathrm{H}\)-period (input SAA7191B respectively SAA7151B with active VNL)
(3) \(T T C=0 \quad\) straight binary UV input data expected
(4) odd/even polarity unchanged - can be used to change the field sequence if phase relations between HREF and VS are not according to SAA7191B respectively SAA7151B specification
(5) \(\mathrm{MCT}=0 \quad\) when \(\mathrm{EFE}, \mathrm{FS}=001 \mathrm{~h}: \mathrm{UV}\) output data are straight binary QPP \(=0\) the pixel qualifier \(P X Q\) is " 0 "-active (if TTR, \(E F E=1\))
\(Q P L=0 \quad\) line qualifier \(L N Q\) is " 0 "-active (if TTR, \(E F E=1\))
\(T R=0 \quad\) VRAM port is set to data burst transfer
\(E F E=0 \quad 32\)-bit longword formats selected.

\section*{FEATURES}
- Monolithic CMOS 5V device
- Digital PAL/NTSC encoder
- System Pixel Frequency selectable for 12.27 MHz (60 Hz fields) or 14.75 MHz (50 Hz fields)
- 24-bit wide YUV Input port or
- 16-bit wide YUV Input port or
- Input data format \(\mathrm{Cb}, \mathrm{Y}, \mathrm{Cr}, \mathrm{Y}, \ldots\) (CCIR 656 like)
- IIC Bus control port
- MPU parallel control port
- Encoder can be master or slave
- Programmable horizontal and vertical input synchronization phase
- Programmable horizontal sync output phase
- OSD overlay with LUTs (\(8 * 3\) bytes)
- 'Line 21' Closed Caption encoder
- Cross colour reduction
- DACs running at two times oversampling with 10 bits resolution
- Controlled rise-/fall times of output syncs and blanking
- Down mode of DACs
- CVBS and S-Video output simultaneously.
- PLCC68 package

Quick Reference Data
\begin{tabular}{|l|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & \multicolumn{1}{|c|}{ PARAMETER } & MIN. & TYP. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\text {DDD }}\) & digital supply voltage range & 4.5 & 5.0 & 5.5 & V \\
\hline \(\mathrm{~V}_{\text {DDA }}\) & analog supply voltage range & 4.75 & 5.0 & 5.25 & V \\
\hline \(\mathrm{I}_{\text {DDD }}\) & supply current digital & - & 175 & 210 & mA \\
\hline \(\mathrm{I}_{\text {DDA }}\) & supply current analog & - & 50 & 55 & mA \\
\hline \(\mathrm{~V}_{\mathrm{i}}\) & input signal levels & \multicolumn{2}{|c|}{ TTL - compatible } & V \\
\hline \(\mathrm{V}_{\mathrm{o}}\) & \begin{tabular}{l}
analog output signals, Y, C \\
and CVBS without load \\
(peak to peak value)
\end{tabular} & - & 2 & - & V \\
\hline \(\mathrm{R}_{\mathrm{L}}\) & load resistance & - & - & - & - \\
\hline ILE & LF integral linearity error & - & - & \(\pm 2\) & LSB \\
\hline DLE & LF differential linearity error & - & - & \(\pm 1\) & LSB \\
\hline \(\mathrm{T}_{\text {amb }}\) & \begin{tabular}{l}
operating ambient tempera- \\
ture range
\end{tabular} & 0 & - & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{General Description}

The Digital Video Encoder 2 (DENC2-SQ) encodes digital YUV video data to an NTSC or PAL CVBS or S-Video signal.
The circuit accepts differently formatted YUV data with 640 or 768 active pixels per line. It includes a sync/clock generator as well as on chip D/A converters.

The circuit is compatible to the DIG. TV2 chip family (Square Pixel).

\section*{PINNING}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline VSS & 1 & Digital negative supply voltage (Ground) \\
\hline VP3(4)
VP3(5)
VP3(6)
VP3(7) & \[
\begin{aligned}
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}
\] & Upper 4 bits of the VP3 Port. If Pin 68 (SEL_MPU) is high, this is the data bus of the parallel MPU interface. If it is low, there can be multiplexed UV lines (422) or the U-signal (444) of the Video input \\
\hline RCV1 & 6 & Raster Control 1 for Video port. Depending on the synchronization mode, this pin receives/ provides a VS/FS/FSEQ signal. \\
\hline RCV2 & 7 & Raster Control 2 for Video port. Depending on the synchronization mode, this pin receives/ provides a HS/HREF/CBL signal \\
\hline VSS & 8 & Digital negative supply voltage (Ground) \\
\hline VP2(0) & 9 & \\
\hline VP2(1) & 10 & \\
\hline VP2(2) & 11 & \\
\hline VP2(3) & 12 & \\
\hline VP2(4) & 13 & Port VP2. In 444 input mode, this is input for the V-sid \\
\hline VP2(5) & 14 & \\
\hline VP2(6) & 15 & \\
\hline VP2(7) & 16 & \\
\hline VDD & 17 & Digital positive supply voltage. \\
\hline res. & 18 & reserved, do not connect. \\
\hline VSS & 19 & Digital negative supply voltage (Ground) \\
\hline VP1(7) & 20 & \\
\hline VP1(6) & 21 & \\
\hline VP1(5) & 22 & \\
\hline VP1(4) & 23 & Video Port VP1. This is an input for CCIR-656 compatible, multiplexed video data, or dur- \\
\hline VP1(3) & 24 & ing other input modes, this is the Y-signal. \\
\hline VP1(2) & 25 & \\
\hline VP1(1) & 26 & \\
\hline VP1(0) & 27 & \\
\hline VSS & 28 & Digital negative supply voltage (Ground) \\
\hline RCM1 & 29 & Raster Control Master 1. This pin provides a VS/FS/FSEQ signal \\
\hline RCM2 & 30 & Raster Control Master 2. This pin provides a programmable HS pulse \\
\hline KEY & 31 & Key signal for OSD. It is high-active. \\
\hline OSD(0) & 32 & \\
\hline OSD(1) & 33 & On Screen Display data. This is the index for the internal OSD lookup table. \\
\hline OSD (2) & 34 & \\
\hline VSS & 35 & Digital negative supply voltage (Ground) \\
\hline CDIR & 36 & Clock direction. If the CDIR input is high, the circuit receives a clock signal, otherwise LLC and CREF are generated by the internal crystal oscillator. \\
\hline VDD & 37 & Digital positive supply voltage. \\
\hline
\end{tabular}

\section*{PINNING}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline LLC & 38 & Line Locked clock. This is the \(24.54 \mathrm{MHz} / 29.5 \mathrm{MHz}\) master clock for the encoder. The direction is set by the CDIR pin. \\
\hline CREF & 39 & Clock Reference signal. This is the clock qualifier for DIG-TV2 compatible signals. \\
\hline XTAL & 40 & Crystal oscillator output (to crystal). \\
\hline XTALI & 41 & Crystal oscillator input (from crystal). If the oscillator is not used, this pin should be connected to ground. \\
\hline VDD & 42 & Digital positive supply voltage. \\
\hline RTCI & 43 & Real Time Control Input. If the clock is provided by a SAA7191B, RTCI should be connected to the RTCO pin of the decoder to improve the signal quality. \\
\hline AP & 44 & Test pin. Connect to digital ground for normal operation. \\
\hline SP & 45 & Test pin. Connect to digital ground for normal operation. \\
\hline VREFL & 46 & Lower reference voltage for the D/A converters. \\
\hline VREFH & 47 & Upper reference voltage for the D/A converters. \\
\hline VDDA & 48 & Analog positive supply voltage for the D/A converters and output amplifiers. \\
\hline C & 49 & Analog output of the chrominace signal.' \\
\hline VDDA & 50 & Analog positive supply voltage for the D/A converters and output amplifiers. \\
\hline Y & 51 & Analog output of the luminance signal. \\
\hline VSSA & 52 & Analog negative supply voltage for the D/A converters and output amplifiers (Ground). \\
\hline CVBS & 53 & Analog output of the CVBS signal. \\
\hline VDDA & 54 & Analog positive supply voltage for the D/A converters and output amplifiers. \\
\hline CUR & 55 & Current input for the output amplifiers, connect 15 kOhm to VDDA \\
\hline VDDA & 56 & Analog positive supply voltage for the D/A converters and output amplifiers. \\
\hline RESN & 57 & Reset input, low active. After reset is applied, all outputs are in tristate/input mode. The IIC receiver waits for the start condition. \\
\hline DTACKN & 58 & Data acknowledge output of the parallel MPU interface; low-active, otherwise high-impedance. \\
\hline RWN/SCL & 59 & If pin 68 (SEL_MPU) is high, this is the read/write signal of the parallel MPU interface, otherwise it is the IIC serial clock line. \\
\hline A0/SDA & 60 & If pin 68 (SEL_MPU) is high, this is the address signal of the parallel MPU interface, otherwise it is the IIC serial data line. \\
\hline CSN/SA & 61 & \begin{tabular}{l}
If pin 68 (SEL_MPU) is high, this is the chip select signal of the parallel MPU interface, otherwise it is the IIC slave address select pin: \\
Low : Slave address \(=88 \mathrm{~h}\); \\
High : Slave address \(=8 \mathrm{Ch}\)
\end{tabular} \\
\hline VSS & 62 & Digital negative supply voltage (Ground) \\
\hline VP3(0) & 63 & \\
\hline VP3(1) & 64 & Lower 4 bits of the VP3 Port. If Pin 68 (SEL_MPU) is high, this is the data bus of the par- \\
\hline VP3(2) & 65 & (444) of the Video input \\
\hline VP3(3) & 66 & \\
\hline VDD & 67 & Digital positive supply voltage. \\
\hline SEL_MPU & 68 & Select MPU interface. If it is high, the parallel MPU interface is active, otherwise the IIC bus interface will be used. \\
\hline
\end{tabular}

Fig. 2: Pinning Diagram

\section*{Functional Description}

The digital Video Encoder (DENC2-SQ) encodes digital luminance and chrominance into analog CVBSand simultaneously S - Video (Y/C) signals. NTSC-M and PAL B/G standards as well as sub-standards are supported.
The basic encoder function consists of subcarrier generation and colour modulation as well as insertion of synchronization signals. Luminance and chrominance signals are filtered according to the standard requirements RS-170-A and CCIR-624.

For ease of analog post filtering the signals The VP3 port accepts Cb-data (444 are two times oversampled w.r.t. pixel input mode) or multiplexed \(\mathrm{Cb} / \mathrm{Cr}\)-data clock before digital-to-analog conversion. (422 input mode. If not used for video input data, it also can handle the data of an 8 bit wide microprocessor interface, alternatively.
Minimum suppression of output chroma alias components around 1 MHz due to high frequency 444 input data is better than 12 dB .

The 8 bit multiplexed \(\mathrm{Cb}-\mathrm{Y}-\mathrm{Cr}\) formats are CCIR-656 (D1 format) compatible, but the SAV, EAV e.t.c. codes are not decoded.
A crystal-stable master clock (LLC) of 24.54 or 29.5 MHz , which is twice the linelocked pixel clock, needs to be sup-
plied externally. Optionally, a crystal oscillator input/output pair of pins and an on-chip clock driver is provided. Additionally, a DMSD2 compatible clock interface, using CREF (input or output) and RTC (see data sheet SAA 7191B) is available.

The DENC2-SQ synthesizes all necessary internal signals, colour subcarrier frequency, as well as synchronization signals, from that clock. DENC2-SQ can be timing master or slave.
The IC contains Closed Caption and Extended Data Services Encoding (Line 21); it also supports OSD via KEY and three bit overlay techniques by a \(24 * 8\) LUT.
The IC can be programmed via I2C or 8 -bit MPU interface, but only one interface configuration can be active at a time; if 422 or 444 input format is being used, only the I2C interface can be selected.

A lot of possibilities is provided for setting of different video parameters like Black- and Blanking level control, colour subcarrier frequency, variable burst amplitude etc.

During Reset (RESN=low) and after Reset released, all digital I/O stages are set to input mode. A Reset forces the control interfaces to abort any running bus transfer and to set register 3Ah to contents 00 h , register 61 h to contents 15 h , and register 6 Ch to contents 00 h . All other control registers are not influenced by a Reset.

\section*{Data Manager}

In the Data Manager, the de-multiplexing scheme is chosen acc. to the input format.
Depending on hardware conditions (signals on pins KEY and \(\operatorname{OSD}(2-0)\), and software programming either data from the VP ports or from the OSD port are selected to be encoded to CVBS and Y/ C signals.
Optionally, the OSD colour look-up tables located in this block, can be read out in a pre-defined sequence (8 steps per active video line), achieving e.g. a colour bar test pattern generator without need for an external data source. The colour bar function is under software control, only.

\section*{Encoder}

\section*{Video Path:}

The encoder generates out of Y,U,V base band signals output signals luminance and colour subcarrier, suitable for use as CVBS or separate \(Y\) and \(C\) signals.
Luminance is modified in gain as well as in offset (latter programmable in a certain range to enable different black level set-ups).After having been inserted a fixed sync level, acc. to standard composite sync schemes, a variable blanking level, programmable also in a certain range, is inserted

Transients of both sync pulses and start/ stop of blanking are reduced compared to overall luminance bandwidth.

In order to enable easy analog post filtering, luminance is interpolated from square pixel data rate to twice that rate (24.54 or 29.5 MHz , respectively), providing luminance in 10 bit resolution. For transfer characteristic of the luminance interpolation filter see figs. 5 and 6 for 60 Hz field rate and figs. 9 and 10 for 50 Hz field rate.

Chrominance is modified in gain (programmable separately for \(U\) and \(V\)), standard dependent burst is inserted, before base band colour signals are interpolated properly to \(24.54 / 29.5 \mathrm{MHz}\) data rate. One of the interpolation stages can be by-passed, thus providing a higher colour bandwidth, which can be made use of for Y/C output. For transfer characteristics of the chrominance interpolation filter see figs. 3 and 4 for 60 Hz field rate and figs. 7 and 8 for 50 Hz field rate.
The amplitude of inserted burst is programmable in a certain range, suitable for standard signals as well as for special effects. Behind the succeeding quadrature modulator, colour in 10 bit resolution is provided on subcarrier.
The numeric ratio between Y and C output is acc. to standards.

\section*{Closed Caption Encoder:}

By means of this circuit, data acc. to the specification of Closed Caption or Extended Data Service, delivered by the control interface, can be encoded (LINE21). Two dedicated pairs of bytes (two bytes per field), each pair preceded by run-in clocks and framing code, are possible.

The actual line number where data are to be encoded in, can be modified in a certain range.
Data clock frequency is acc. to definition for NTSC-M standard 32 times horizontal line frequency.

Data LOW at the output of the DACs corresponds to 0 IRE, data HIGH at the output of the DACs corresponds to about 50 IRE.

It is also possible to encode Closed Caption Data for 50 Hz field frequencies at 32 times horizontal line frequency.

\section*{Output Interface}

In the output interface encoded \(Y\) and \(C\) signals are converted from digital to analog in 10 bit resolution both. Y and C signals are combined to a 10 bit wide CVBS-signal, as well; in front of the summation point, the luminance signal can optionally be fed through a further filter stage, suppressing components in the range of subcarrier frequency. Thus, a kind of Cross Colour reduction is provided, useful in a standard TV set with CVBS input.
Slopes of synchronization pulses are not affected with any Cross Colour reduction active.
Three different filter characteristics or bypass are available, see fig. 5 for 60 Hz field rate and fig. 9 for 50 Hz field rate.
The CVBS output occurs with the same processing delay as the Y,C outputs do. Absolute amplitudes at the input of the DAC for CVBS is reduced by \(15 / 16\) w.r.t. Y- and C- DACs to make optimized use of conversion ranges.
Outputs of all DACs can be set together via software control to minimum output voltage for either purpose.

\section*{Synchronization}

The synchronization of the DENC2-SQ is able to operate in two modes:
In the slave mode, the circuit accepts sync pulses at the bi-directional RCV1 port. The timing and trigger behaviour related to the video signal on VP ports can be influenced by programming the polarity and on-chip delay of RCV1. Active slope of RCV1 defines the vertical phase and optionally the odd/evenand colour frame phase to be initialized, it can be used also to set the horizontal phase.

If the horizontal phase shall not be influenced by RCV1, a horizontal pulse needs to be supplied at the RCV2 pin. Timing and trigger behaviour can be influenced for RCV2, as well.
If there are missing pulses at RCV1 and/ or RCV2, the time base of DENC2-SQ runs free, thus an arbitrary number of sync slopes may miss, but no additional pulses (such with wrong phase) must occur.
If the vertical and horizontal phase is derived from RCV1, RCV2 can be used for horizontal or composite blanking input or output.
In the master mode, the time base of the circuit runs free continuously. On the RCV1 port, the IC can output:
- a Vertical Sync signal (VS) with 3 or 2.5 lines duration, or
- an ODD/EVEN signal which is low in odd fields, or
- a field sequence signal (FSEQ) which is high in the first of 4 resp. 8 fields.

On the RCV2 port, the IC can provide a horizontal pulse with programmable start and stop phase; this pulse can be inhibited in the vertical blanking period to build up e.g. a composite blanking signal.
The phase of the pulses output on RCV1 or RCV2 are related on the VP ports, polarity of both signals is selectable.
On the RCM1 port the same types of signals as on RCV1 (as output) are available; on RCM2 the IC provides a horizontal pulse with programmable start and stop phase.
The length of a field as well as start and end of its active part can be programmed. The active part of a field always starts at the beginning of a line.

\section*{Control Interface}

DENC2-SQ contains two control interfaces: An IIC slave transceiver and 8 bit parallel microprocessor interface. The interfaces cannot be used simultaneously.
The IIC bus interface is a standard slave transceiver, supporting 7 bit slave addresses and \(100 \mathrm{kBit} / \mathrm{sec}\) guaranteed transfer rate. It uses 8 bit subaddressing with auto-increment function. All registers are write-only, except one readable status byte.
Two IIC slave addresses can be selected (pin SEL_MPU must be low!):

88h: Low at pin 61
8Ch: High at pin 61
The parallel interface is defined by
D(7-0) data bus
CSN low-active chip select signal
RWN read/write not signal, low for a write cycle
DTACKN 680XX style data acknowledge (hand-shake), active low
A0 register select, low selects address, high selects data

The parallel interface uses two registers, one auto-incremental containing the current address of a control register (equals subaddress with IIC control), one containing actual data. The currently addressed register is mapped to the corresponding control register.
Via a read access to the address register, the status byte can be read optionally; no other read access is provided.

\section*{Input levels and formats}

DENC2-SQ expects digital YUV data with levels (digital codes) acc to CCIR601:
Deviating amplitudes of the colour difference signals can be compensated by independent gain control setting, while gain for luminance is set to pre-defined values, distinguishable for 7.5 IRE setup or without setup.
Reference levels are measured with a colour bar, \(100 \%\) white, \(100 \%\) amplitude, \(100 \%\) saturation.

When the IC is operating with input data acc. to CCIR656, programming can be done alternatively via the parallel interface using VP3 port for data transfer.
For other input modes, the IIC interface has to be used for programming.

CCIR signal component levels
\begin{tabular}{|c|c|c|c|}
\hline Signal & IRE & dig. level & Code \\
\hline \multirow{3}{*}{Y} & 0 & 16 & \multirow{3}{*}{ straight binary } \\
\cline { 2 - 3 } & 50 & 126 & \\
\cline { 2 - 3 } & 100 & 235 & \\
\hline \multirow{3}{*}{Cb} & bottom peak & 16 & \multirow{3}{*}{ straight binary } \\
\cline { 2 - 3 } & colourless & 128 & \\
\cline { 2 - 3 } & top peak & 240 & \\
\hline \multirow{3}{*}{Cr} & bottom peak & 16 & \\
\cline { 2 - 3 } & colourless & 128 & \\
\cline { 2 - 3 } & top peak & 240 & \\
\hline
\end{tabular}

The 8 bit multiplexed format (CCIR656 like)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Time & \(\mathbf{0}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) \\
\hline Sample & \(\mathrm{Cb}_{0}\) & \(\mathrm{Y}_{0}\) & \(\mathrm{Cr}_{0}\) & \(\mathrm{Y}_{1}\) & \(\mathrm{Cb}_{2}\) & \(\mathrm{Y}_{2}\) & \(\mathrm{Cr}_{2}\) & \(\mathrm{Y}_{3}\) \\
\hline Lum. pixel number & \multicolumn{2}{|c|}{0} & \multicolumn{3}{|c|}{1} & \multicolumn{2}{c|}{2} & \multicolumn{2}{c|}{3} \\
\hline Colour pixel number & \multicolumn{4}{|c|}{0} & \multicolumn{4}{c|}{2} \\
\hline
\end{tabular}

The 16 bit multiplexed format (DTV2 format)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Time & \(\mathbf{0}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) \\
\hline Sample Y - line & \(\mathrm{Y}_{0}\) & \(\mathrm{Y}_{1}\) & \(\mathrm{Y}_{2}\) & \(\mathrm{Y}_{3}\) \\
\hline Sample UV - line & \(\mathrm{Cb}_{0}\) & \(\mathrm{Cr}_{0}\) & \(\mathrm{Cb}_{2}\) & \(\mathrm{Cr}_{2}\) \\
\hline Lum. pixel number & 0 & 1 & 2 & 3 \\
\hline Colour pixel number & \multicolumn{3}{|c|}{0} & \multicolumn{3}{|c|}{2} \\
\hline
\end{tabular}

The \(\mathbf{2 4}\) bit direct \(\mathbf{4 4 4}\) format
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Time & \(\mathbf{0}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) \\
\hline Sample Y - line & \(\mathrm{Y}_{0}\) & \(\mathrm{Y}_{1}\) & \(\mathrm{Y}_{2}\) & \(\mathrm{Y}_{3}\) \\
\hline Sample U - line & \(\mathrm{Cb}_{0}\) & \(\mathrm{Cb}_{1}\) & \(\mathrm{Cb}_{2}\) & \(\mathrm{Cb}_{3}\) \\
\hline Sample V - line & \(\mathrm{Cr}_{0}\) & \(\mathrm{Cr}_{1}\) & \(\mathrm{Cr}_{2}\) & \(\mathrm{Cr}_{3}\) \\
\hline Lum. pixel number & 0 & 1 & 2 & 3 \\
\hline Colour pixel number & 0 & 1 & 2 & 3 \\
\hline
\end{tabular}

\section*{Bit allocation map}

\section*{Slave Receiver [Slave Address \(\mathbf{8 8 h}\) or \(\mathbf{8 C h}\)]}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
REGISTER \\
FUNCTION
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { SUB- } \\
& \text { ADDR }
\end{aligned}
\]} & \multicolumn{8}{|l|}{DATA BYTE} \\
\hline & & D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\hline NULL & 00 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \multicolumn{10}{|c|}{.....} \\
\hline NULL & 39 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Input_Port_Control & 3A & CBENB & 0 & 0 & 0 & VY2C & VUV2C & FMT1 & FMT0 \\
\hline OSD_LUT_Y0 & 42 & OSDY07 & OSDY06 & OSDY05 & OSDY04 & OSDY03 & OSDY02 & OSDY01 & OSDY00 \\
\hline OSD_LUT_U0 & 43 & OSDU07 & OSDU06 & OSDU05 & OSDU04 & OSDU03 & OSDU02 & OSDU01 & OSDU00 \\
\hline OSD_LUT_V0 & 44 & OSDV07 & OSDV06 & OSDV05 & OSDV04 & OSDV03 & OSDV02 & OSDV01 & OSDV00 \\
\hline \multicolumn{10}{|c|}{.....} \\
\hline OSD_LUT_Y7 & 57 & OSDY77 & OSDY76 & OSDY75 & OSDY74 & OSDY73 & OSDY72 & OSDY71 & OSDY70 \\
\hline OSD_LUT_U7 & 58 & OSDU77 & OSDU76 & OSDU75 & OSDU74 & OSDU73 & OSDU72 & OSDU71 & OSDU70 \\
\hline OSD_LUT_V7 & 59 & OSDV77 & OSDV76 & OSDV75 & OSDV74 & OSDV73 & OSDV72 & OSDV71 & OSDV70 \\
\hline Chroma_Phase & 5A & CHPS7 & CHPS6 & CHPS5 & CHPS4 & CHPS3 & CHPS2 & CHPS1 & CHPS0 \\
\hline Gain_U & 5B & GAINU7 & GAINU6 & GAINU5 & GAINU4 & GAINU3 & GAINU2 & GAINU1 & GAINU0 \\
\hline Gain_V & 5C & GAINV7 & GAINV6 & GAINV5 & GAINV4 & GAINV3 & GAINV2 & GAINV1 & GAINV0 \\
\hline \[
\begin{aligned}
& \text { Gain_U_MSB, } \\
& \text { Black_Lev }
\end{aligned}
\] & 5D & GAINU8 & 0 & BLCKL5 & BLCKL4 & BLCKL3 & BLCKL2 & BLCKL1 & BLCKL0 \\
\hline \[
\begin{array}{|l}
\hline \text { Gain_V_MSB, } \\
\text { Blank_Lev }
\end{array}
\] & 5E & GAINV8 & 0 & BLNNL5 & BLNNL4 & BLNNL3 & BLNNL2 & BLNNL1 & BLNNL0 \\
\hline NULL & 5F & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline X-Col_Select & 60 & CCRS1 & CCRS0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Standard_Control & 61 & 0 & DOWN & INPI1 & YGS & RTCE & SCBW & PAL & FISE \\
\hline Burst_Amplitude & 62 & SQP & BSTA6 & BSTA5 & BSTA4 & BSTA3 & BSTA2 & BSTA1 & BSTA0 \\
\hline Subcarrier_0 & 63 & FSC07 & FSC06 & FSC05 & FSC04 & FSC03 & FSC02 & FSC01 & FSC00 \\
\hline Subcarrier_1 & 64 & FSC15 & FSC14 & FSC13 & FSC12 & FSC11 & FSC10 & FSC09 & FSC08 \\
\hline Subcarrier_2 & 65 & FSC23 & FSC22 & FSC21 & FSC20 & FSC19 & FSC18 & FSC17 & FSC16 \\
\hline Subcarrier_3 & 66 & FSC31 & FSC30 & FSC29 & FSC28 & FSC27 & FSC26 & FSC25 & FSC24 \\
\hline Line21_Odd_0 & 67 & L21007 & L21006 & L21005 & L21004 & L21003 & L21O02 & L21O01 & L21000 \\
\hline Line21_Odd_1 & 68 & L21017 & L21016 & L21015 & L21014 & L21013 & L21012 & L21O11 & L21010 \\
\hline Line21_Even_0 & 69 & L21E07 & L21E06 & L21E05 & L21E04 & L21E03 & L21E02 & L21E01 & L21E00 \\
\hline Line21_Even_1 & 6A & L21E17 & L21E16 & L21E15 & L21E14 & L21E13 & L21E12 & L21E11 & L21E10 \\
\hline CC_Line & 6B & 0 & 0 & 0 & SCCLN4 & SCCLN3 & SCCLN2 & SCCLN1 & SCCLN0 \\
\hline RCV_Port_Control & 6C & SRCV11 & SRCV10 & TRCV2 & ORCV1 & PRCV1 & CBLF & ORCV2 & PRCV2 \\
\hline RCM, CC-Mode & 6D & 0 & 0 & 0 & 0 & SRCM11 & SRCM10 & CCEN1 & CCEN0 \\
\hline H-Trigger & 6E & HTRIG7 & HTRIG6 & HTRIG5 & HTRIG4 & HTRIG3 & HTRIG2 & HTRIG1 & HTRIG0 \\
\hline H-Trigger & 6F & 0 & 0 & 0 & 0 & 0 & HTRIG10 & HTRIG09 & HTRIG08 \\
\hline
\end{tabular}

\section*{Slave Receiver [Slave Address 88h or 8Ch]}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
REGISTER \\
FUNCTION
\end{tabular}} & \multirow[t]{2}{*}{SUBADDR} & \multicolumn{8}{|l|}{DATA BYTE} \\
\hline & & D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\hline Fsc_Res_Mode, V-Trigger & 70 & PHRES 1 & PHRES0 & SBLBN & VTRIG4 & VTRIG3 & VTRIG2 & VTRIG1 & VTRIG0 \\
\hline Beg_Master_Request & 71 & BMRQ7 & BMRQ6 & BMRQ5 & BMRQ4 & BMRQ3 & BMRQ2 & BMRQ1 & BMRQ0 \\
\hline End_Master_Request & 72 & EMRQ7 & EMRQ6 & EMRQ5 & EMRQ4 & EMRQ3 & EMRQ2 & EMRQ1 & EMRQ0 \\
\hline MSBs_Mast_Request & 73 & 0 & EMRQ10 & EMRQ9 & EMRQ8 & 0 & BMRQ10 & BMRQ9 & BMRQ8 \\
\hline NULL & 74 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline NULL & 75 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline NULL & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Begin_RCV2_out & 77 & BRCV7 & BRCV6 & BRCV5 & BRCV4 & BRCV3 & BRCV2 & BRCV1 & BRCV0 \\
\hline End_RCV2_out & 78 & ERCV7 & ERCV6 & ERCV5 & ERCV4 & ERCV3 & ERCV2 & ERCV1 & ERCV0 \\
\hline MSBs_RCV2_out & 79 & 0 & ERCV10 & ERCV09 & ERCV08 & 0 & BRCV10 & BRCV09 & BRCV08 \\
\hline Field_Length & 7A & FLEN7 & FLEN6 & FLEN5 & FLEN4 & FLEN3 & FLEN2 & FLEN1 & FLEN0 \\
\hline First_Act_Line & 7B & FAL7 & FAL6 & FAL5 & FAL4 & FAL3 & FAL2 & FAL1 & FAL0 \\
\hline Last_Act_Line & 7C & LAL7 & LAL6 & LAL5 & LAL4 & LAL3 & LAL2 & LAL1 & LAL0 \\
\hline MSBs_Field_Ctrl & 7D & 0 & 0 & LAL8 & FAL8 & 0 & 0 & FLEN9 & FLEN8 \\
\hline
\end{tabular}

\section*{\(\mathbf{I}^{2}\) C-Bus Format}

\begin{tabular}{|l|l|}
\hline Portion & Meaning \\
\hline \hline S & start condition \\
\hline Slave Address & 1000100X or 1000110X \\
\hline A & acknowledge, generated by the slave \\
\hline Subaddress \({ }^{*}\)) & subaddress byte \\
\hline DATA & data byte \\
\hline----- & continued data bytes and A's \\
\hline P & stop condition \\
\hline & \begin{tabular}{l}
X: read/write control bit; \(\mathrm{X}=0\) \\
subaddressing with read.
\end{tabular} \\
\hline
\end{tabular}
\(\left(^{*}\right)\) if more than 1 byte DATA is transmitted, then auto-increment of the subaddress is performed.

\section*{Slave Receiver}

Subaddress 3A:

Subaddress 42 .. 59:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { OSDY } \\
& \text { OSDU }
\end{aligned}
\] & \multicolumn{5}{|l|}{Contents of OSD Look-up tables. All 8 entries are 8 bits. Data representation is acc. to CCIR 601 [Y,Cb,Cr], but two's complement, e.g. for a 100/100 [upper number] or 100/75 [lower number] Colour Bar:} \\
\hline \multirow[t]{17}{*}{OSDV} & Colour & OSDY & OSDU & OSDV & index (for normal colour bar with CBENB \(=1\)) \\
\hline & White & 107 (6Bh) & 0(00h) & 0(00h) & 0 \\
\hline & & 107 (6Bh) & 0 (00h) & 0 (00h) & \\
\hline & Yellow & 82 (52h) & 144 (90h) & 18(12h) & 1 \\
\hline & & 34 (22h) & 172 (ACh) & 14 (0Eh) & \\
\hline & Cyan & 42 (2Ah) & 38 (26h) & 144 (90h) & 2 \\
\hline & & 03 (03h) & 29 (1Dh) & 172 (ACh) & \\
\hline & Green & 17 (11h) & 182 (B6h) & 162 (A2h) & 3 \\
\hline & & 240 (FOh) & 200 (C8h) & 185 (B9h) & \\
\hline & Magenta & 234 (EAh) & 74 (4Ah) & 94 (5Eh) & 4 \\
\hline & & 212 (D4h) & 56 (38h) & 71 (47h) & \\
\hline & Red & 209 (D1h) & 218 (DAh) & 112 (70h) & 5 \\
\hline & & 193 (C1h) & 227 (E3h) & 84 (54h) & \\
\hline & Blue & 169 (A9h) & 112 (70h) & 238 (EEh) & 6 \\
\hline & & 163 (A3h) & 84 (54h) & 242 (F2h) & \\
\hline & Black & 144 (90h) & 0 (00h) & 0 (00h) & 7 \\
\hline & & 144 (90h) & 0 (0.0h) & \(0(00 \mathrm{~h})\) & \\
\hline
\end{tabular}

\section*{Subaddress 5A:}
\begin{tabular}{|l|l|l|}
\hline CHPS & \begin{tabular}{l}
Phase of encoded colour subcarrier (including burst) relative to H - sync. Can be adjusted in steps of \(360 / 256\) \\
degrees.
\end{tabular} \\
\hline
\end{tabular}

Subaddress 5B, 5D:
\begin{tabular}{|c|c|}
\hline GAINU & ```
Variable gain for Cb signal (Input Representation acc. to CCIR 601) White - Black \(=92.5\) IRE
White - Black \(=92.5\) IRE
 GAINU=0 Output subcarrier of \(U\) contribution \(=0\)
 GAINU=118 (76h) Output subcarrier of \(U\) contribution \(=\) nominal
GAINU \(=-2.17\) * nominal \(\ldots\) nominal. \(.2 .16^{*}\) nominal
White - Black \(=100\) IRE
 GAINU=0 Output subcarrier of \(U\) contribution \(=0\)
 GAINU=125 (7Dh) Output subcarrier of \(U\) contribution \(=\) nominal
GAINU \(=-2.05 *\) nominal \(\ldots\) nominal. \(.2 .04 *\) nominal
``` \\
\hline
\end{tabular}

Subaddress 5C, 5E:
\begin{tabular}{|c|c|}
\hline GAINV & ```
Variable gain for Cr signal (Input Representation acc. to CCIR 601)
White - Black = 92.5 IRE
    GAINV=0 Output subcarrier of V contribution =0
    GAINV=165 (A5h) Output subcarrier of V contribution = nominal
GAINV = -1.55 * nominal ... nominal ... 1.55* nominal
White-Black = 100 IRE
    GAINV=0 Output subcarrier of V contribution =0
    GAINV=175 (AFh) Output subcarrier of V contribution = nominal
GAINV =-1.46 * nominal ... nominal ... 1.46* nominal
``` \\
\hline
\end{tabular}

\section*{Subaddress 5D:}

\section*{Digital video encoder (DENC2-SQ)}

\section*{Subaddress 5E:}
\begin{tabular}{|c|c|}
\hline BLNNL & \begin{tabular}{l}
Variable Blanking Level \\
White - Sync \(=140\) IRE \\
BLNNL \(=0 \quad\) Output Blanking Level \(=17\) IRE \\
BLNNL= 63 (3Fh) Output Blanking Level \(=42\) IRE \\
Output Blanking Level//RE \(=\) BLNNL * 25/63 +17 \\
Recommended Value: \(\quad\) BLNNL \(=58\) (3Ah) (normal) \\
White - Sync \(=143\) IRE \\
BLNNL \(=0 \quad\) Output Blanking Level \(=17\) IRE \\
BLNNL \(=63\) (3Fh) Output Blanking Level \(=43\) IRE \\
Output Blanking Level/IRE \(=\) BLNNL \(* 26 / 63+17\) \\
Recommended Value: BLNNL \(=63\) (3Fh) (normal)
\end{tabular} \\
\hline
\end{tabular}

\section*{Subaddress 60:}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{6}{*}{CCRS} & \multicolumn{3}{|l|}{Select cross colour reduction filter in luminance} \\
\hline & CCRS1 & CCRS0 & function \\
\hline & 0 & 0 & No Cross Colour Reduction (for transfer characteristic of luminance see figs. 5, 9) \\
\hline & 0 & 1 & Cross Colour Reduction \#1 active (for transfer characteristic see figs. 5, 9) \\
\hline & 1 & 0 & Cross Colour Reduction \#2 active (for transfer characteristic see figs. 5, 9) \\
\hline & 1 & 1 & Cross Colour Reduction \#3 active (for transfer characteristic see figs. 5, 9) \\
\hline
\end{tabular}

Subaddress 61:
\begin{tabular}{|l|ll|}
\hline FISE & 0 & 944 total pixel clocks per line \\
& 1 & 780 total pixel clocks per line (default after reset) \\
\hline PAL & 0 & NTSC Encoding (non-alternating V-component) (default after reset) \\
& 1 & PAL Encoding (alternating V-component) \\
\hline SCBW & 0 & Enlarged Bandwidth for Chrominance Encoding (for overall transfer characteristic of chrominance in base-- \\
& \begin{tabular}{lll}
band representation see figs. 3 and 4, 7 and 8). \\
& & \begin{tabular}{l}
Standard Bandwidth for Chrominance Encoding (for overall transfer characteristic of chrominance in base-- \\
band representation see figs. 3 and 4, 7 and 8). (default after reset)
\end{tabular} \\
\hline RTCE & 0 & No Real Time Control of generated Subcarrier Frequency (default after reset) \\
& 1 & Real Time Control of generated Subcarrier Frequency through SAA7191B (timing see fig. 13) \\
\hline YGS & 0 & Luminance Gain for White-Black 100 IRE . \\
& 1 & Luminance Gain for White-Black 92.5 IRE incl. 7.5 IRE Set-up of Black (default after reset) \\
\hline INPI & \begin{tabular}{lll}
0 & PAL Switch phase is nominal (default after reset) \\
1 & PAL Switch phase is inverted compared to nominal
\end{tabular} \\
\hline DOWN & \begin{tabular}{ll}
DACs in normal operational mode (default after reset) \\
& 1
\end{tabular} & DACs forced to lowest output voltage \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Subaddress 62:
\begin{tabular}{|c|c|}
\hline BSTA & \begin{tabular}{l}
Amplitude of Colour Burst (Input Representation acc. to CCIR 601) \\
White-Black \(=92.5\) IRE, Burst \(=40\) IRE, NTSC-Encoding \\
BSTA = 0 .. 1.25 * nominal \\
Recommended Value: BSTA \(=102(66 \mathrm{~h})\) \\
White-Black \(=92.5\) IRE, Burst \(=40\) IRE, PAL-Encoding \\
BSTA = 0 .. 1.76 * nominal \\
Recommended Value: \(\quad\) BSTA \(=72(48 \mathrm{~h})\) \\
White-Black \(=100\) IRE, Burst \(=43\) IRE, NTSC-Encoding \\
BSTA = 0 .. 1.20 * nominal \\
Recommended Value: \(\mathrm{BSTA}=106\) (6 Ah) \\
White-Black \(=100\) IRE, Burst \(=43\) IRE, PAL-Encoding \\
BSTA \(=0\).. 1.67 * nominal \\
Recommended Value: BSTA \(=75(4 \mathrm{Bh})\)
\end{tabular} \\
\hline SQP & \begin{tabular}{l}
0 not supported in current version, do not use \\
1 Subcarrier Real Time Control from 7191B Digital Colour Decoder
\end{tabular} \\
\hline
\end{tabular}

Note to subaddresses \(5 \mathrm{~B}, 5 \mathrm{C}, 5 \mathrm{D}, 5 \mathrm{E}, 62\) : All IRE values are rounded

Subaddress 63 .. 66 :
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { FSC0 } \\
& \ldots \\
& \text { FSC3 }
\end{aligned}
\] & Four bytes to program subcarrier frequency
\[
F S C=\operatorname{round}\left(\frac{F(f s c)}{F(l l c)} \times 2^{32}\right) \quad \begin{array}{ll}
F(l l c) \\
& F S C 3 \\
& F S C 0
\end{array}
\] & Subcarrier frequency (in multiples of line frequency) Clock frequency (in multiples of line frequency) Most significant byte Least significant byte \\
\hline & Examples:
\[
\begin{aligned}
& \text { NTSC-M: } F(f s c)=227.5, F(l l c)=1560=\Rightarrow \\
& \text { PAL-B/G: } F(f s c)=283.7516, F(l l c)=1888=\Rightarrow
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{FSC}=626349397(25555555 \mathrm{~h}) \\
& \mathrm{FSC}=645499916(26798 \mathrm{C} 0 \mathrm{Ch})
\end{aligned}
\] \\
\hline
\end{tabular}

Subaddress 67 .. 6A:
\begin{tabular}{|l|l|}
\hline L21O0 & First Byte of Captioning Data, Odd Field \\
\hline L21O1 & \begin{tabular}{l}
Second Byte of Captioning Data, Odd Field \\
F21E0
\end{tabular} \\
\hline F21E1 Byte of Extended Data, Even Field
\end{tabular}

\section*{Subaddress 6B}
\begin{tabular}{|l|c|}
\hline SCCLN & Selects the actual line, where Closed Caption or Extended Data are encoded. \\
Line \(=(\) SCCLN +4\()\) for M-systems \\
Line \(=(S C C L N+1)\) for other systems \\
\hline
\end{tabular}

\section*{Digital video encoder (DENC2-SQ)}

\section*{Subaddress 6C:}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PRCV2 & \multicolumn{5}{|l|}{\begin{tabular}{l}
0 Polarity of RCV2 as output is high-active, rising edge is taken when input, respectively (default after reset). \\
1 Polarity of RCV2 as output is low-active, falling edge is taken when input, respectively
\end{tabular}} \\
\hline ORCV2 & \multicolumn{5}{|l|}{\begin{tabular}{l}
0 Pin RCV2 is switched to input (default after reset). \\
1 Pin RCV2 is switched to output
\end{tabular}} \\
\hline CBLF & \multicolumn{5}{|l|}{\begin{tabular}{l}
0 If ORCV2=high, pin RCV2 provides a HREF signal (Horizontal Reference Pulse that is high during active portion of line, also during Vertical Blanking Interval). (default after reset) \\
If ORCV2=low, signal input to RCV2 is used for horizontal synchronization only (if TRCV2 \(=1\)). (default after reset) \\
1 If ORCV2=high, pin RCV2 provides a CBN signal (Reference Pulse that is high during active video, excluding Vertical Blanking Interval). \\
If ORCV2=low, signal input to RCV2 is used for horizontal synchronization (if TRCV2 \(=1\)) as well as an internal blanking signal
\end{tabular}} \\
\hline PRCV1 & \multicolumn{5}{|l|}{\begin{tabular}{l}
0 Polarity of RCV1 as output is high-active, rising edge is taken when input, respectively. (default after reset) \\
1 Polarity of RCV1 as output is low-active, falling edge is taken when input, respectively.
\end{tabular}} \\
\hline ORCV1 & \multicolumn{5}{|l|}{\begin{tabular}{l}
0 Pin RCV1 is switched to input (default after reset). \\
1 Pin RCV1 is switched to output.
\end{tabular}} \\
\hline TRCV2 & \multicolumn{5}{|l|}{\begin{tabular}{l}
0 Horizontal synchronization is taken from RCV1 port. (default after reset) \\
1 Horizontal synchronization is taken from RCV2 port.
\end{tabular}} \\
\hline SRCV1 & \begin{tabular}{l}
Defines signal t
\[
\begin{gathered}
\text { SRCV11 } \\
\hline 0 \\
0 \\
1
\end{gathered}
\] \\
1
\end{tabular} & \begin{tabular}{l}
ype on pin \\
0 \\
1 \\
0 \\
1
\end{tabular} & RCV1
as output
VS
FS
FSEQ

n.a. & \begin{tabular}{|c}
as input \\
\hline VS \\
FS \\
FSEQ \\
n.a.
\end{tabular} & \begin{tabular}{l}
Vertical Sync each field (default after reset) \\
Frame Sync (_odd/even) \\
Field SEQuence, Vertical sync every fourth (FISE=1) or eighth field (FISE=0)
\end{tabular} \\
\hline
\end{tabular}

Subaddress 6D:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{CCEN} & \multicolumn{4}{|l|}{Enables individual Line 21 Encoding} \\
\hline & CCEN1 & CCEN0 & & \\
\hline & 0 & 0 & \multicolumn{2}{|l|}{Line 21 Encoding OFF} \\
\hline & 0 & 1 & \multicolumn{2}{|l|}{Enables Encoding in field 1 (odd)} \\
\hline & 1 & 0 & \multicolumn{2}{|l|}{Enables Encoding in field 2 (even)} \\
\hline & 1 & 1 & \multicolumn{2}{|l|}{Enables Encoding in both fields} \\
\hline \multirow[t]{6}{*}{SRCM} & \multicolumn{4}{|l|}{Defines signal type on pin RCM1} \\
\hline & SRCM1 & SRCM0 & as output & \\
\hline & 0 & 0 & VS & Vertical Sync each field \\
\hline & 0 & 1 & FS & Frame Sync (_odd/even) \\
\hline & 1 & 0 & FESQ & Field SEQuence, Vertical sync every fourth (FISE=1) or eight field (FISE=0) \\
\hline & 1 & 1 & n.a. & \\
\hline
\end{tabular}

Subaddress 6E .. 6F:
\begin{tabular}{|l|l|}
\hline HTRIG & \begin{tabular}{c}
Sets the Horizontal TRIGger phase related to signal on RCV1 or RCV2 input. \\
Values above 1559 (FISE=1) or 1887 [FISE=0] are not allowed. \\
Increasing HTRIG decreases delays of all internally generated timing signals. \\
Reference mark:
\end{tabular} \\
\begin{tabular}{l}
Analog output horizontal sync (leading slope) coincides with active edge of RCV used \\
for triggering at HTRIG \(=031 \mathrm{~h}\) [033h]
\end{tabular} \\
\hline
\end{tabular}

Subaddress 70:
\begin{tabular}{|c|c|c|c|}
\hline VTRIG & \multicolumn{3}{|l|}{\begin{tabular}{l}
Sets the Vertical TRIGger phase related to signal on RCV1 input. \\
Increasing VTRIG decreases delays of all internally generated timing signals, measured in half lines Variation range of VTRIG \(=0 . .31\) (1 Fh)
\end{tabular}} \\
\hline SBLBN & \multicolumn{3}{|l|}{\begin{tabular}{l}
0 Vertical Blanking is defined by programming of FAL and LAL. \\
Vertical Blanking is forced automatically at least during field synchronization and equalization pulses. \\
Note: If Cross-Colour Reduction is programmed, it is active between FAL and LAL in both cases.
\end{tabular}} \\
\hline PHRES & Selects the phas & \begin{tabular}{|c|}
\hline PHRES0 0 \\
0 \\
1 \\
0 \\
1
\end{tabular} & \begin{tabular}{l}
de of the colour subcarrier generator \\
no reset \\
reset every two lines \\
reset every eight fields \\
reset every four fields
\end{tabular} \\
\hline
\end{tabular}

Subaddress 71 .. 73:
\begin{tabular}{|l|l|}
\hline BMRQ & \begin{tabular}{c}
Begin of Master ReQuest signal (RCM2). \\
Values above 1559 (FISE=1) or 1887 [FISE=0] are not allowed. \\
First active pixel at analog outputs (corresp. input pixel coinciding with RCM2) at \(\mathrm{BMRQ}=0 \mathrm{E} 1 \mathrm{~h}\) [130h]
\end{tabular} \\
\hline EMRQ & \begin{tabular}{c}
End of Master ReQuest signal (RCM2). \\
Values above 1559 (FISE=1) or 1887 [FISE=0] are not allowed. \\
Last active pixel at analog outputs (corresp. input pixel coinciding with RCM2) at \(\mathrm{EMRQ}=5 \mathrm{E} 9 \mathrm{~h}\) [72Ah]
\end{tabular} \\
\hline
\end{tabular}

Subaddress 77.. 79:
\begin{tabular}{|l|l|}
\hline BRCV & \begin{tabular}{c}
Begin of output signal on RCV2 pin. \\
Values above 1559 (FISE=1) or 1887 [FISE=0] are not allowed. \\
First active pixel \\
\\
\hline at analog outputs (corresp. input pixel coinciding with RCV2) at BRCV=0E1h [130h]
\end{tabular} \\
\hline & \begin{tabular}{c}
End of output signal on RCV2 pin. \\
Values above 1559 (FISE=1) or 1887 [FISE=0] are not allowed. \\
Last active pixel at analog outputs (corresp. input pixel coinciding with RCV2) at \(\mathrm{ERCV}=5 \mathrm{E} 9 \mathrm{~h}[72 \mathrm{Ah}]\) \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Subaddress 7A .. 7D:
\begin{tabular}{|l|c|}
\hline FLEN & \begin{tabular}{c}
LENgth of a Field = FLEN +1, measured in half lines \\
Valid range is limited to \(524 \ldots 1022\) (FISE=1) resp. \(624 . .1022\) (FISE=0), FLEN should be even
\end{tabular} \\
\hline FAL & \begin{tabular}{c}
First Active Line, measured in lines. \\
FAL \(=0\) coincides with the first field synchronization pulse.
\end{tabular} \\
\hline LAL & \begin{tabular}{c}
Last Active Line, measured in lines \\
LAL \(=0\) coincides with the first field synchronization pulse.
\end{tabular} \\
\hline
\end{tabular}

\section*{Slave Transmitter}

\section*{Slave Transmitter [Slave Address 89h or 8Dh]}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
REGISTER \\
FUNCTION
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{array}{|c}
\text { SUB- } \\
\text { ADDR }
\end{array}
\]} & \multicolumn{8}{|l|}{DATA BYTE} \\
\hline & & D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\hline Status Byte & - & VER2 & VER1 & VER0 & CCRDE & CCRDO & FSQ2 & FSQ1 & FSQ0 \\
\hline
\end{tabular}

\section*{no subaddress}
\begin{tabular}{|l|l|}
\hline VER & \begin{tabular}{l}
Version id of the device. It will be changed with all versions of the IC that have different programming models \\
Current Version is 000 bin.
\end{tabular} \\
\hline CCRDE & \begin{tabular}{l}
Closed caption bytes of the even field have been encoded. \\
The bit is reset after information has been written to the subbaddresses 69, 6A. It is set immediately after \\
the data have been encoded.
\end{tabular} \\
\hline CCRDO & \begin{tabular}{l}
Closed caption bytes of the odd field have been encoded. \\
The bit is reset after information has been written to the subbaddresses 67, 68. It is set immediately after \\
the data have been encoded.
\end{tabular} \\
\hline FSQ & \begin{tabular}{l}
State of the internal field sequence counter. \\
Bit 0 (FSQ0) gives the odd/even information. (Odd=Low, Even=High)
\end{tabular} \\
\hline
\end{tabular}

Fig. 3: Chrominance transfer characteristic [60 Hz]

Fig. 4: Chrominance transfer characteristic [60 Hz]

Fig. 5: Luminance transfer characteristic [60 Hz]

Fig. 6: Luminance transfer characteristic [60 Hz]

Fig. 7: Chrominance transfer characteristic [50 Hz]

Fig. 8: Chrominance transfer characteristic [50 Hz]

Fig. 9: Luminance transfer characteristic [50 Hz]

Fig. 10: Luminance transfer characteristic [50 Hz]

Digital video encoder (DENC2-SQ)

\section*{Electrical Characteristics}

Conditions: \(\mathrm{T}_{\mathrm{amb}}=0 . .70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DDD}}=4.5 . .5 .5 \mathrm{~V}\) unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{SYMBOL} & \multirow{2}{*}{PARAMETER} & \multirow[t]{2}{*}{TEST CONDITIONS} & \multicolumn{2}{|c|}{LIMITS} & \multirow{2}{*}{UNIT} \\
\hline & & & MIN & MAX & \\
\hline \multicolumn{6}{|l|}{Supply} \\
\hline \(\mathrm{V}_{\text {DDD }}\) & supply voltage range digital & & 4.5 & 5.5 & V \\
\hline \(\mathrm{V}_{\text {DDA }}\) & supply voltage range analog & & 4.75 & 5.25 & V \\
\hline \(\mathrm{I}_{\text {DDD }}\) & supply current & 1) & - & 210 & mA \\
\hline \(\mathrm{I}_{\text {DDA }}\) & supply current & 1) & - & 55 & mA \\
\hline \multicolumn{6}{|l|}{Inputs} \\
\hline \(\mathrm{V}_{\text {IL }}\) & input voltage LOW (except SDA, SCL, AP, SP, XTALI) & & -0.5 & 0.8 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & input voltage HIGH (except SDA, SCL, AP, SP, XTALI) & & 2.0 & \(\mathrm{V}_{\text {DDD }}+0.5\) & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & input voltage HIGH (LLC) & pin 38, only & 2.4 & \(\mathrm{V}_{\text {DDD }}+0.5\) & V \\
\hline \(\mathrm{I}_{\text {LI }}\) & input leakage current & & - & 1 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{C}_{\text {I }}\) & input capacitance & clocks & - & 10 & pF \\
\hline \(\mathrm{C}_{\text {I }}\) & input capacitance & data & & 8 & pF \\
\hline \(\mathrm{C}_{\mathrm{I}}\) & input capacitance & I/O at high impedance & & 8 & pF \\
\hline \multicolumn{6}{|l|}{Outputs} \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & output voltage LOW (except XTAL, SDA) & 2) & 0 & 0.6 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & output voltage HIGH (except XTAL,DTACKN, SDA) & 2) & 2.4 & \(\mathrm{V}_{\text {DDD }}+0.5\) & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & output voltage HIGH (LLC) & 2) pin 38, only & 2.6 & \(\mathrm{V}_{\text {DDD }}+0.5\) & V \\
\hline \multicolumn{6}{|l|}{\(\mathbf{I}^{\mathbf{2}} \mathbf{C}\) Bus SDA and SCL} \\
\hline \(\mathrm{V}_{\text {IL }}\) & input voltage LOW & & -0.5 & 1.5 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & input voltage HIGH & & 3.0 & \(\mathrm{V}_{\mathrm{DDD}^{+0.5}}\) & V \\
\hline I & input current & \(\mathrm{V}_{\mathrm{I}}=\) low or high & & +/-10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & SDA output voltage & \(\mathrm{I}_{\mathrm{O}}=3 \mathrm{~mA}\) & & 0.4 & V \\
\hline \(\mathrm{I}_{\mathrm{O}}\) & output current & during acknowl. & 3 & & mA \\
\hline \multicolumn{6}{|l|}{Clock timing} \\
\hline \({ }_{\text {t }}\) & cycle time LLC & 3) & 31 & 44 & ns \\
\hline \(\delta\) & duty factor \(\mathrm{t}_{\text {LLCh }} / \mathrm{t}_{\text {LLC }}\) & 10) & 40 & 60 & \% \\
\hline \(\mathrm{t}_{\mathrm{r}}\) & rise time LLC & 3) & - & 5 & ns \\
\hline \(\mathrm{t}_{\mathrm{f}}\) & fall time LLC & 3) & - & 6 & ns \\
\hline \multicolumn{6}{|l|}{Input timing} \\
\hline \(\mathrm{t}_{\text {SUC }}\) & input data setup time (CREF) & & 6 & - & ns \\
\hline \(\mathrm{t}_{\mathrm{HDC}}\) & input data hold time (CREF) & & 3 & - & ns \\
\hline \(\mathrm{t}_{\mathrm{S}} \mathrm{U}\) & input data setup time (any other except SEL_MPU, CDIR, RWN/SCL, A0/SDA, CSN/SA, RESN, AP, SP) & & 6 & - & ns \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{SYMBOL} & \multirow{2}{*}{PARAMETER} & \multirow[t]{2}{*}{TEST CONDITIONS} & \multicolumn{2}{|c|}{LIMITS} & \multirow{2}{*}{UNIT} \\
\hline & & & MIN & MAX & \\
\hline \({ }^{\text {HD }}\) & input data hold time (any other except SEL_MPU, CDIR, RWN/SCL, A0/SDA, CSN/SA, RESN, AP, SP) & & 3 & - & ns \\
\hline \multicolumn{6}{|l|}{Crystal Oscillator} \\
\hline \(\mathrm{f}_{\mathrm{n}}\) & nominal frequency (usually 24.545454 MHz or 29.5 MHz) & 3rd harmonic & - & 30 & MHz \\
\hline \multirow[t]{7}{*}{Df/f \(\mathrm{f}_{\mathrm{n}}\)} & permissible deviation fn & 9) & -50 & +50 & \(10^{-6}\) \\
\hline & crystal specification: & & & & \\
\hline & temperature range Tamb & & 0 & 70 & C \\
\hline & load capacitance \(\mathrm{C}_{\mathrm{L}}\) & & 8 & - & pF \\
\hline & series resonance resistance \(\mathrm{R}_{\mathrm{S}}\) & & & 80 & \(\Omega\) \\
\hline & motional capacitance \(\mathrm{C}_{1}\) & typically & 1.5-20\% & 1.5+20\% & fF \\
\hline & parallel capacitance \(\mathrm{C}_{0}\) & typically & 3.5-20\% & 3.5+20\% & pF \\
\hline \multicolumn{2}{|l|}{MPU interface timing} & & & & \\
\hline \(\mathrm{t}_{\text {AS }}\) & address setup time & 5) & 9 & - & ns \\
\hline \(\mathrm{t}_{\text {AH }}\) & address hold time & & 0 & - & ns \\
\hline tres & read/write setup time & 5) & 9 & - & ns \\
\hline \(\mathrm{t}_{\text {RWH }}\) & \(\mathrm{read} / \mathrm{write}\) hold time & & 0 & - & ns \\
\hline \({ }^{\text {t }}\) D \({ }^{\text {d }}\) & data valid from CSN (read) & 6), 7), 8), n=9 & - & 440 & ns \\
\hline \(\mathrm{t}_{\mathrm{DF}}\) & data bus floating from CSN (read) & 6), 7), n=5 & - & 275 & ns \\
\hline \(\mathrm{t}_{\mathrm{DS}}\) & data bus setup time (write) & 5) & 9 & - & ns \\
\hline \({ }^{\text {t }}\) DH & data bus hold time (write) & 5) & 9 & - & ns \\
\hline \(\mathrm{t}_{\text {ACS }}\) & acknowledge delay from CSN & 6), 7), \(\mathrm{n}=11\) & - & 520 & ns \\
\hline \({ }^{\text {t }}\) CSD & CSN high from acknowledge & & 0 & - & ns \\
\hline \(\mathrm{t}_{\text {DAT }}\) & DTACKN floating from CSN high & 6), 7), n=7 & - & 360 & ns \\
\hline \multicolumn{2}{|l|}{Data and reference signal output timing} & & & & \\
\hline \(\mathrm{C}_{\mathrm{L}}\) & output load capacitance & & 7.5 & 40 & pF \\
\hline \({ }^{\text {toh }}\) & output hold time & & 4 & - & ns \\
\hline \(\mathrm{t}_{\text {OD }}\) & output delay time (CREF in output mode) & & - & 25 & ns \\
\hline \multicolumn{2}{|l|}{C, Y, and CVBS outputs} & & & & ; \\
\hline Vo & output signal (peak to peak value) & 4) & 1.9 & 2.1 & V \\
\hline \(\mathrm{R}_{\mathrm{I}}\) & internal serial resistance & & 18 & 35 & \(\Omega\) \\
\hline \(\mathrm{R}_{\mathrm{L}}\) & output load resistance & & 80 & - & \(\Omega\) \\
\hline B & output signal bandwidth (D/A-converters) & -3dB & 10 & - & MHz \\
\hline ILE & LF integral linearity error (D/A-converters) & . & - & \(\pm 2\) & LSB \\
\hline DLE & LF differential linearity error (D/A-converters) & & - & \(\pm 1\) & LSB \\
\hline
\end{tabular}

\section*{Notes:}
1) at maximum supply voltages and with high-activity input signals
2) The levels have to be measured with load circuits of \(1.2 \mathrm{k} \Omega\) to 3.0 V (standard TTL load), \(\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}\).
3) The data is for both, input and output direction.
4) for full digital range, without load, \(\mathrm{V}_{\mathrm{DDA}}=5.0 \mathrm{~V}\). The typical voltage swing is 2.0 V , the typical minimum output voltage (digital zero at DAC) is 0.2 V .
5) The value is calculated via equation (1)
6) The value depends on the clock frequency. The numbers given are calculated with \(f_{\text {LLC }}=24.54 \mathrm{MHz}\)
7) The values are calculated via equation (2)
8) The falling edge of DTACKN will always occur 1 * LLC after data is valid.
9) If internal oscillator is used, crystal deviation of fn is directly proportional to the deviation of subcarrier frequency and line/ field frequency.
10) With LLC in input mode. In output mode, with a crystal connected to XTAL/ XTALI typically \(50 \%\).

\section*{Equations:}
(1) \(t=t_{S U}+t_{H D}\)
(2) \(t_{d m a x}=t_{O D}+n^{*} t_{L L C}+t_{L L C}+t_{S U}\)

Fig. 11: Clock Data Timing

Fig. 12: Dig.TV - Timing

\section*{Notes:}
1) The data demultiplex phase is coupled to the internal horizontal phase.
2) The CREF signal applies only for the 16 lines DIG-TV format,because these signals are only valid in \(12.27 / 14.75 \mathrm{MHz}\).
3) The phase of the RCV2 signal is programmed to 0 E 1 h [130 h for 50 Hz] in this example in output mode (BRCV2)

Fig. 13: RTCI timing

Fig. 14: MPU Interface Timing (Read cycle)

Fig. 15: MPU Interface Timing (Write cycle)

\section*{FEATURES}
- Monolithic CMOS 5V device
- Digital PAL/NTSC encoder
- System Pixel Frequency: 13.5 MHz
- Accepts MPEG decoded data.
- 8-bit wide MPEG port.
- Input data format \(\mathrm{Cb}, \mathrm{Y}, \mathrm{Cr}, \mathrm{Y}, \ldots\) (CCIR 656 like)
- 16 -bit wide YUV Input port
- IIC Bus control port or alternatively MPU parallel control port
- Encoder can be master or slave
- Programmable horizontal and vertical input synchronization phase
- Programmable horizontal sync output phase
- OSD overlay with LUTs (8*3 bytes)
- 'Line 21' Closed Caption encoder
- Macrovision Pay-per-View copy protection system as option (Note 1)
- Cross colour reduction
- DACs running at 27 MHz with 10 bits resolution
- Controlled rise-/fall times of output syncs and blanking
- Down mode of DACs
- CVBS and S-Video output simultaneously.
- PLCC68 package

Note 1: This device is protected U.S. patent numbers 4631603, 4577216 and 4819098 and other intellectual property rights. The Macrovision anticopy process is licensed for non-commercial home use only, which is its sole intended use in this device. Please contact your nearest Philips Semiconductors sales office for more information.

Quick Reference Data
\begin{tabular}{|l|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & \multicolumn{1}{|c|}{ PARAMETER } & MIN. & TYP. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\text {DDD }}\) & digital supply voltage range & 4.5 & 5.0 & 5.5 & V \\
\hline \(\mathrm{~V}_{\text {DDA }}\) & analog supply voltage range & 4.75 & 5.0 & 5.25 & V \\
\hline \(\mathrm{I}_{\text {DDD }}\) & supply current digital & - & 140 & 170 & mA \\
\hline \(\mathrm{I}_{\text {DDA }}\) & supply current analog & - & 50 & 55 & mA \\
\hline \(\mathrm{~V}_{\mathrm{i}}\) & input signal levels & \multicolumn{2}{|c|}{ TTL - compatible } & V \\
\hline \(\mathrm{V}_{\mathrm{o}}\) & \begin{tabular}{l}
analog output signals, Y, C \\
and CVBS without load \\
(peak to peak value)
\end{tabular} & - & 2 & - & V \\
\hline \(\mathrm{R}_{\mathrm{L}}\) & load resistance & 80 & - & - & \(\Omega\) \\
\hline ILE & LF integral linearity error & - & - & \(\pm 2\) & LSB \\
\hline DLE & LF differential linearity error & - & - & \(\pm 1\) & LSB \\
\hline \(\mathrm{T}_{\text {amb }}\) & \begin{tabular}{l}
operating ambient tempera- \\
ture range
\end{tabular} & 0 & - & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{General Description}

The Digital Video Encoder 2 (DENC2-M) encodes digital YUV video data to an NTSC or PAL CVBS or S-Video signal.

The circuit accepts CCIR compatible YUV data with 720 active pixels per line in 4:2:2 multiplexed formats, e.g. MPEG decoded data. It includes a sync/
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
EXTENDED \\
TYPE NUMBER
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline SAA7188A & 68 & PLCC & plastic & SOT188 \\
\hline
\end{tabular}

Fig. 1 : Block Diagram

\section*{Digital video encoder (DENC2-M)}

\section*{PINNING}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline VSS & 1 & Digital negative supply voltage (Ground) \\
\hline \begin{tabular}{|l|}
\hline DP(4) \\
DP(5) \\
DP(6) \\
DP(7)
\end{tabular} & \[
\begin{aligned}
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}
\] & Upper 4 bits of the Data Port. If Pin 68 (SEL_MPU) is high, this is the data bus of the parallel MPU interface. If it is low, they are the UV lines of the Video Port \\
\hline RCV1 & 6 & Raster Control 1 for Video port . Depending on the synchronization mode, this pin receives/provides a VS/FS/FSEQ signal. \\
\hline RCV2 & 7 & Raster Control 2 for Video port . Depending on the synchronization mode, this pin receives/provides a HS/HREF/CBL signal \\
\hline VSS & 8 & Digital negative supply voltage (Ground) \\
\hline VP(0) & 9 & \\
\hline VP(1) & 10 & \\
\hline VP(2) & 11 & \\
\hline VP(3) & 12 & Video Port. This is an input for CCIR-656 compatible, multiplexed video data. If the 16-bit \\
\hline VP(4) & 13 & DIG-TV2 format is used, this is the Y-data. \\
\hline VP(5) & 14 & \\
\hline VP(6) & 15 & \\
\hline VP(7) & 16 & \\
\hline VDD & 17 & Digital positive supply voltage. \\
\hline SEL_ED & 18 & Select Encoder Data. Selects data either from MPEG port or from video port as Encoder input. \\
\hline VSS & 19 & Digital negative supply voltage (Ground) \\
\hline MP(7) & 20 & \\
\hline MP(6) & 21 & \\
\hline MP(5) & 22 & \\
\hline MP(4) & 23 & MPEG Port It is an input for CCIR-656 style multiplexed YUV data. \\
\hline MP(3) & 24 & \\
\hline MP(2) & 25 & \\
\hline MP(1) & 26 & \\
\hline MP(0) & 27 & \\
\hline VSS & 28 & Digital negative supply voltage (Ground) \\
\hline RCM1 & 29 & Raster control 1 for MPEG port . This pin provides a VS/FS/FSEQ signal. \\
\hline RCM2 & 30 & Raster control 2 for MPEG port . The pin provides a HS pulse for the MPEG decoder. \\
\hline KEY & 31 & Key signal for OSD. It is high-active. \\
\hline OSD(0) & 32 & \\
\hline OSD(1) & 33 & On Screen Display data. This is the index for the internal OSD lookup table. \\
\hline OSD(2) & 34 & \\
\hline VSS & 35 & Digital negative supply voltage (Ground) \\
\hline CDIR & 36 & Clock direction. If the CDIR input is high, the circuit receives a clock signal, otherwise LLC and CREF are generated by the internal crystal oscillator. \\
\hline VDD & 37 & Digital positive supply voltage. \\
\hline
\end{tabular}

\section*{PINNING}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline LLC & 38 & Line Locked clock. This is the 27 MHz master clock for the encoder. The direction is set by the CDIR pin. \\
\hline CREF & 39 & Clock Reference signal. This is the clock qualifier for DIG-TV2 compatible signals. \\
\hline XTAL & 40 & Crystal oscillator output (to crystal). \\
\hline XTALI & 41 & Crystal oscillator input (from crysta). If the oscillator is not used, this pin should be connected to ground. \\
\hline VSS & 42 & Digital negative supply voltage (Ground) \\
\hline RTCI & 43 & Real Time Control Input. If the clock is provided by a SAA7151B, RTCI should be connected to the RTCO pin of the decoder to improve the signal quality. \\
\hline AP & 44 & Test pin. Connect to digital ground for normal operation. \\
\hline SP & 45 & Test pin. Connect to digital ground for normal operation. \\
\hline VREFL & 46 & Lower reference voltage for the D/A converters. \\
\hline VREFH & 47 & Upper reference voltage for the D/A converters. \\
\hline VDDA & 48 & Analog positive supply voltage for the D/A converters and output amplifiers. \\
\hline C & 49 & Analog output of the chrominace signal. \\
\hline VDDA & 50 & Analog positive supply voltage for the D/A converters and output amplifiers. \\
\hline Y & 51 & Analog output of the luminance signal. \\
\hline VSSA & 52 & Analog negative supply voltage for the D/A converters and output amplifiers (Ground). \\
\hline CVBS & 53 & Analog output of the CVBS signal. \\
\hline VDDA & 54 & Analog positive supply voltage for the D/A converters and output amplifiers. \\
\hline CUR & 55 & Current input for the output amplifiers, connect via \(15 \mathrm{k} \Omega\) to VDDA. \\
\hline VDDA & 56 & Analog positive supply voltage for the D/A converters and output amplifiers. \\
\hline RESN & 57 & Reset input, low active. After reset is applied, all outputs are in tristate/input mode. The IIC receiver waits for the start condition. \\
\hline DTACKN & 58 & Data acknowledge output of the parallel MPU interface; low-active, otherwise high-impedance. \\
\hline RWN/SCL & 59 & If pin 68 (SEL_MPU) is high, this is the read/write signal of the parallel MPU interface, otherwise it is the IIC serial clock line. \\
\hline A0/SDA & 60 & If pin 68 (SEL_MPU) is high, this is the address signal of the parallel MPU interface, otherwise it is the IIC serial data line. \\
\hline CSN/SA & 61 & \begin{tabular}{l}
If pin 68 (SEL_MPU) is high,this is the chip select signal of the parallel MPU interface, otherwise it is the IIC slave address select pin: \\
Low : Slave address \(=88 \mathrm{~h}\); \\
High : Slave address \(=8 \mathrm{Ch}\)
\end{tabular} \\
\hline VSS & 62 & Digital negative supply voltage (Ground) \\
\hline DP(0) & 63 & \\
\hline DP(1) & 64 & bits of the Data Port. If Pin 68 (SEL_MPU) is high, this is the data bus of the par- \\
\hline DP(2) & 65 & allel MPU interface. If it is low, they are the UV lines of the Video Port \\
\hline DP(3) & 66 & \\
\hline VDD & 67 & Digital positive supply voltage. \\
\hline SEL_MPU & 68 & Select MPU interface. If it is high, the parallel MPU interface is active, otherwise the IIC bus interface will be used. \\
\hline
\end{tabular}

Fig. 2: Pinning Diagram

\section*{Functional Description}

The digital MPEG-compatible Video Encoder (DENC2-M) encodes digital luminance and chrominance into analog CVBS- and simultaneously S - Video (Y/C) signals. NTSC-M and PAL B/G standards as well as sub-standards are supported.
The basic encoder function consists of subcarrier generation and colour modulation as well as insertion of synchronization signals. Luminance and chrominance signals are filtered according to the standard requirements RS-170-A and CCIR-624.

For ease of analog post filtering the signals are two times oversampled wrt pixe clock before digital-to-analog conversion.
For total filter transfer characteristics see The 8 bit multiplexed \(\mathrm{Cb}-\mathrm{Y}-\mathrm{Cr}\) formats figs \(3,4,5\) and 6 . The DACs are realized are CCIR-656 (D1 format) compatible, with full 10 bit resolution. The encoder but the SAV, EAV e.t.c. codes are not provides three 8 bit wide data ports, that decoded. serve different applications.

The MPEG port (MP) as well as the Video port (VP) accept 8 lines multiplexed \(\mathrm{Cb}-\mathrm{Y}-\mathrm{Cr}\) data.

The Video port (VP) is also able to handle DIG-TV2 family compatible 16 bit YUV signals. In this case, the Data port (DP) is used for the U/V components.

The Data port can handle the data of an 8 bit wide microprocessor interface, alternatively.

A crystal-stable master clock (LLC) of 27 MHz , which is twice the CCIR linelocked pixel clock of 13.5 MHz , needs to be supplied externally. Optionally, a crystal oscillator input/output pair of pins and an on-chip clock driver is provided. Additionally, a DMSD2 compatible clock interface, using CREF (input or output) and RTC (see data sheet SAA 7151B) is available.

The DENC2-M synthesizes all necessary internal signals, colour subcarrier frequency, as well as synchronization signals, from that clock. DENC2-M is always timing master for the MPEG port (MP), but it can additionally be configured as master or slave for the Video port (VP).
The IC also contains Closed Caption and Extended Data Services Encoding (Line 21), and supports Anti-Taping signal generation acc. to Macrovision; it also supports OSD via KEY and three bit overlay techniques by a \(24 * 8\) LUT.
The IC can be programmed via I2C or 8 -bit MPU interface, but only one interface configuration can be active at a time; if the 16 bit Video port mode (VP and DP) is being used, only the I2C interface can be selected.
A lot of possibilities is provided for setting of different video parameters like Black- and Blanking level control, colour subcarrier frequency, variable burst amplitude etc.
During Reset (RESN=low) and after Reset released, all digital I/O stages are set to input mode. A Reset forces the control interfaces to abort any running bus transfer and to set register 3Ah to contents 13 h , register 61 h to contents 15 h , and register 6 Ch to contents 00 h . All other control registers are not influenced by a Reset.

\section*{Data Manager}

In the Data Manager, real time arbitration on the data stream to be encoded is performed.
Depending on hardware conditions (signals on pins SEL_ED, KEY, OSD(2-0), \(\mathrm{MP}(7-0), \mathrm{VP}(7-0), \mathrm{DP}(7-0)\)) and different software programming either data from the MP port, from the VP port, or from the OSD port are selected to be encoded to CVBS and Y/C signals.
Optionally, the OSD colour look-up tables located in this block, can be read out in a pre-defined sequence (8 steps per active video line), achieving e.g. a colour bar test pattern generator without need for an external data source. The colour bar function is under software control, only.

\section*{Encoder}

\section*{Video Path:}

The encoder generates out of \(\mathrm{Y}, \mathrm{U}, \mathrm{V}\) base band signals output signals luminance and colour subcarrier, suitable for use as CVBS or separate \(Y\) and \(C\) signals.
Luminance is modified in gain as well as in offset (latter programmable in a certain range to enable different black level set-ups).After having been inserted a fixed sync level, acc. to standard composite sync schemes, and blanking level, programmable also in a certain range to allow for manipulations with Macrovision Anti-Taping, additional insertion of AGC super white pulses, programmable in height, is supported.
In order to enable easy analog post filtering, luminance is interpolated from 13.5 MHz data rate to 27 MHz data rate, providing luminance in 10 bit resolution. This filter is also used to define smoothed transients for sync pulses and blanking period. For transfer characteristic of the luminance interpolation filter see figs. 5 and 6.
Chrominance is modified in gain (programmable separately for \(U\) and \(V\)), standard dependent burst is inserted, before base band colour signals are interpolated from 6.75 MHz data rate to 27 MHz data rate. One of the interpolation stages can be by-passed, thus providing a higher colour bandwidth, which can be made use of for Y/C output. For transfer characteristics of the chrominance interpolation filter see figs. 3 and 4.
The amplitude of inserted burst is programmable in a certain range, suitable for standard signals as well as for special effects. Behind the succeeding quadrature modulator, colour in 10 bit resolution is provided on subcarrier.
The numeric ratio between Y and C output is acc. to standards.

\section*{Closed Caption Encoder:}

By means of this circuit, data acc. to the specification of Closed Caption or Extended Data Service, delivered by the control interface, can be encoded (LINE21). Two dedicated pairs of bytes (two bytes per field), each pair preceded by run-in clocks and framing code, are possible.

The actual line number where data are to be encoded in, can be modified in a certain range.
Data clock frequency is acc. to definition for NTSC-M standard 32 times horizontal line frequency.
Data LOW at the output of the DACs corresponds to 0 IRE, data HIGH at the output of the DACs corresponds to about 50 IRE.
It is also possible to encode Closed Caption Data for 50 Hz field frequencies at 32 times horizontal line frequency.

\section*{Anti-Taping:}

For more information, please contact your nearest Philips Semiconductors sales office.

\section*{Output Interface}

In the output interface encoded \(Y\) and \(C\) signals are converted from digital to analog in 10 bit resolution both.. Y and C signals are combined to a 10 bit CVBS -signal, as well; in front of the summation point, the luminance signal can optionally be fed through a further filter stage, suppressing components in the range of subcarrier frequency. Thus, a kind of Cross Colour reduction is provided, useful in a standard TV set with CVBS input.
Slopes of synchronization pulses are not affected with any Cross Colour reduction active.
Three different filter characteristics or bypass are available, see fig. 5 .
The CVBS output occurs with the same processing delay as the \(\mathrm{Y}, \mathrm{C}\) outputs do. Absolute amplitudes at the input of the DAC for CVBS is reduced by \(15 / 16\) w.r.t. Y- and C- DACs to make optimized use of conversion ranges.
Outputs of all DACs can be set together via software control to minimum output voltage for either purpose.

\section*{Synchronization}

The synchronization of the DENC2-M is able to operate in two modes:

In the slave mode, the circuit accepts sync pulses at the bi-directional RCV1 port. The timing and trigger behaviour related to the video signal on VP (and DP, if used) can be influenced by programming the polarity and on-chip delay of RCV1. Active slope of RCV1 defines the vertical phase and optionally the odd/even- and colour frame phase to be initialized, it can be used also to set the horizontal phase.
If the horizontal phase shall not be influenced by RCV1, a horizontal pulse needs to be supplied at the RCV2 pin. Timing and trigger behaviour can be influenced for RCV2, as well.

If there are missing pulses at RCV1 and/ or RCV2, the time base of DENC2-M runs free, thus an arbitrary number of sync slopes may miss, but no additional pulses (such with wrong phase) must occur.

If the vertical and horizontal phase is derived from RCV1, RCV2 can be used for horizontal or composite blanking input or output.
In the master mode, the time base of the circuit runs free continuously. On the RCV1 port, the IC can output :
- a Vertical Sync signal (VS) with 3 or 2.5 lines duration, or
- an ODD/EVEN signal which is low in odd fields, or
- a field sequence signal (FSEQ) which is high in the first of 4 resp. 8 fields.

On the RCV2 port, the IC can provide a horizontal pulse with programmable start and stop phase; this pulse can be inhibited in the vertical blanking period to build up e.g. a composite blanking signal.
The phase of the pulses output on RCV1 or RCV2 are related on the VP port, polarity of both signals is selectable.

The DENC2-M is always timing master for the source at the MP input. The IC provides two signals for synchronizing this source:

On the RCM1 port the same signals as on RCV1 (as output) are available; on RCM2 the IC provides a horizontal pulse with programmable start and stop phase.
The length of a field as well as start and end of its active part can be programmed. The active part of a field always starts at the beginning of a line.

\section*{Control Interface}

DENC2-M contains two control interfaces: An IIC slave transceiver and 8 bit parallel microprocessor interface. The interfaces cannot be used simultaneously.

The IIC bus interface is a standard slave transceiver, supporting 7 bit slave addresses and \(100 \mathrm{kBit} /\) sec guaranteed transfer rate. It uses 8 bit subaddressing with auto-increment function. All registers are write-only, except one readable status byte.
Two IIC slave addresses can be selected (pin SEL_MPU must be low !):
88h: Low at pin 61
\(8 \mathrm{Ch}: \quad\) High at pin 61
The parallel interface is defined by
D(7-0) data bus
CSN low-active chip select signal
RWN read/write not signal, low for a write cycle

DTACKN 680XX style data acknowledge (hand-shake), active low

A0 register select, low selects address, high selects data

The parallel interface uses two registers, one auto-incremental containing the current address of a control register (equals subaddress with IIC control), one containing actual data. The currently addressed register is mapped to the corresponding control register.

Via a read access to the address register, the status byte can be read optionally; no other read access is provided.

\section*{Input levels and formats}

DENC2-M expects digital YUV data with levels (digital codes) acc to CCIR601:
Deviating amplitudes of the colour difference signals can be compensated by independent gain control setting, while gain for luminance is set to pre-defined values, distinguishable for 7.5 IRE setup or without setup.
The MPEG port accepts only 8 - bit multiplexed CCIR656 compatible data.
If the IIC bus interface is used, the VP port can handle both formats, 8 bit multiplexed CbYCr data on the VP lines, or the 16 bit
DTV2 format with the Y signal on the VP lines and the UV signal on the DP port.

Reference levels are measured with a colour bar, \(100 \%\) white, \(100 \%\) amplitude, \(100 \%\) saturation.

\section*{CCIR signal component levels}
\begin{tabular}{|c|c|c|c|}
\hline Signal & IRE & dig. level & Code \\
\hline \multirow{3}{*}{Y} & 0 & 16 & \multirow{3}{*}{ straight binary } \\
\cline { 2 - 3 } & 50 & 126 & \\
\hline \multirow{3}{*}{Cb} & 100 & 235 & \\
\cline { 2 - 3 } & bottom peak & 16 & \multirow{3}{*}{ straight binary } \\
\cline { 2 - 3 } & colourless & 128 & \\
\hline \multirow{3}{*}{Cr} & top peak & 240 & \\
\cline { 2 - 3 } & bottom peak & 16 & \multirow{3}{*}{ straight binary } \\
\hline & colourless & 128 & \\
\cline { 2 - 3 } & top peak & 240 & \\
\hline
\end{tabular}

The 8 bit multiplexed format (CCIR656 like)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Time & \(\mathbf{0}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) \\
\hline Sample & \(\mathrm{Cb}_{0}\) & \(\mathrm{Y}_{0}\) & \(\mathrm{Cr}_{0}\) & \(\mathrm{Y}_{1}\) & \(\mathrm{Cb}_{2}\) & \(\mathrm{Y}_{2}\) & \(\mathrm{Cr}_{2}\) & \(\mathrm{Y}_{3}\) \\
\hline Lum. pixel number & \multicolumn{2}{|c|}{0} & \multicolumn{3}{|c|}{1} & \multicolumn{3}{c|}{2} \\
\hline Colour pixel number & \multicolumn{4}{|c|}{0} & \multicolumn{4}{|c|}{3} \\
\hline
\end{tabular}

The 16 bit multiplexed format (DTV2 format)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Time & \(\mathbf{0}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) \\
\hline Sample Y - line & \multicolumn{2}{|c|}{\(\mathrm{Y}_{0}\)} & \(\mathrm{Y}_{1}\) & \(\mathrm{Y}_{2}\) & \(\mathrm{Y}_{3}\) \\
\hline Sample UV - line & \(\mathrm{Cb}_{0}\) & \(\mathrm{Cr}_{0}\) & \(\mathrm{Cb}_{2}\) & \(\mathrm{Cr}_{2}\) \\
\hline Lum. pixel number & 0 & 1 & 2 & 3 \\
\hline Colour pixel number & \multicolumn{3}{|c|}{0} & \multicolumn{2}{|c|}{2} \\
\hline
\end{tabular}

Digital video encoder (DENC2-M)

\section*{Bit allocation map}

\section*{Slave Receiver [Slave Address 88h or 8Ch]}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{REGISTER FUNCTION} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { SUB- } \\
\text { ADDR }
\end{gathered}
\]} & \multicolumn{8}{|l|}{DATA BYTE} \\
\hline & & D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\hline NULL & 00 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \multicolumn{10}{|c|}{\%} \\
\hline NULL & 39 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Input_Port_Control & 3A & CBENB & 0 & 0 & V656 & VY2C & VUV2C & MY2C & MUV2C \\
\hline OSD_LUT_Y0 & 42 & OSDY07 & OSDY06 & OSDY05 & OSDY04 & OSDY03 & OSDY02 & OSDY01 & OSDY00 \\
\hline OSD_LUT_U0 & 43 & OSDU07 & OSDU06 & OSDU05 & OSDU04 & OSDU03 & OSDU02 & OSDU01 & OSDU00 \\
\hline OSD_LUT_V0 & 44 & OSDV07 & OSDV06 & OSDV05 & OSDV04 & OSDV03 & OSDV02 & OSDV01 & OSDV00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline OSD_LUT_Y7 & 57 & OSDY77 & OSDY76 & OSDY75 & OSDY74 & OSDY73 & OSDY72 & OSDY71 & OSDY70 \\
\hline OSD_LUT_U7 & 58 & OSDU77 & OSDU76 & OSDU75 & OSDU74 & OSDU73 & OSDU72 & OSDU71 & OSDU70 \\
\hline OSD_LUT_V7 & 59 & OSDV77 & OSDV76 & OSDV75 & OSDV74 & OSDV73 & OSDV72 & OSDV71 & OSDV70 \\
\hline Chroma_Phase & 5A & CHPS7 & CHPS6 & CHPS5 & CHPS4 & CHPS3 & CHPS2 & CHPS1 & CHPS0 \\
\hline Gain_U & 5B & GAINU7 & GAINU6 & GAINU5 & GAINU4 & GAINU3 & GAINU2 & GAINU1 & GAINU0 \\
\hline Gain_V & 5C & GAINV7 & GAINV6 & GAINV5 & GAINV4 & GAINV3 & GAINV2 & GAINV1 & GAINV0 \\
\hline \begin{tabular}{l}
Gain_U_MSB, \\
Black_Lev
\end{tabular} & 5D & GAINU8 & 0 & BLCKL5 & BLCKLA & BLCKL3 & BLCKL2 & BLCKL1 & BLCKLO \\
\hline Gain_V_MSB, Blank_Lev & 5E & GAINV8 & 0 & BLNNL5 & BLNNL4 & BLNNL3 & BLNNL2 & BLNNL1 & BLNNLO \\
\hline NULL & 5 F & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline X-Col_Select & 60 & CCRS1 & CCRS0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Standard_Control & 61 & 0 & DOWN & INPI1 & YGS & RTCE & SCBW & PAL & FISE \\
\hline Burst_Amplitude & 62 & SQP & BSTA6 & BSTA5 & BSTA4 & BSTA3 & BSTA2 & BSTA1 & BSTA0 \\
\hline Subcarrier_0 & 63 & FSC07 & FSC06 & FSC05 & FSC04 & FSC03 & FSC02 & FSC01 & FSC00 \\
\hline Subcarrier_1 & 64 & FSC15 & FSC14 & FSC13 & FSC12 & FSC11 & FSC10 & FSC09 & FSC08 \\
\hline Subcarrier_2 & 65 & FSC23 & FSC22 & FSC21 & FSC20 & FSC19 & FSC18 & FSC17 & FSC16 \\
\hline Subcarrier_3 & 66 & FSC31 & FSC30 & FSC29 & FSC28 & FSC27 & FSC26 & FSC25 & FSC24 \\
\hline Line21_Odd_0 & 67 & L21007 & L21O06 & L21005 & L21004 & L21003 & L21O02 & L21O01 & L21000 \\
\hline Line21_Odd_1 & 68 & L21017 & L21O16 & L21015 & L21O14 & L21O13 & L21O12 & L21O11 & L21010 \\
\hline Line21_Even_0 & 69 & L21E07 & L21E06 & L21E05 & L21E04 & L21E03 & L21E02 & L21E01 & L21E00 \\
\hline Line21_Even_1 & 6A & L21E17 & L21E16 & L21E15 & L21E14 & L21E13 & L21E12 & L21E11 & L21E10 \\
\hline Encod_Ctrl,CC_Line & 6 B & MODIN1 & MODIN0 & 0 & SCCLN4 & SCCLN3 & SCCLN2 & SCCLN1 & SCCLN0 \\
\hline RCV_Port_Control & 6 C & SRCV11 & SRCV10 & TRCV2 & ORCV1 & PRCV1 & CBLF & ORCV2 & PRCV2 \\
\hline RCM, CC-Mode & 6D & 0 & 0 & 0 & 0 & SRCM11 & SRCM10 & CCEN1 & CCENO \\
\hline H-Trigger & 6 E & HTRIG7 & HTRIG6 & HTRIG5 & HTRIG4 & HTRIG3 & HTRIG2 & HTRIG1 & HTRIG0 \\
\hline H-Trigger & 6F & 0 & 0 & 0 & 0 & 0 & HTRIG10 & HTRIG09 & HTRIG08 \\
\hline
\end{tabular}

\section*{Slave Receiver [Slave Address 88 h or 8 Ch]}
\begin{tabular}{|l|c|l|l|l|l|l|l|l|l|}
\hline \multirow{2}{*}{\begin{tabular}{l}
REGISTER \\
FUNCTION
\end{tabular}} & \multirow{2}{*}{\begin{tabular}{l}
SUB- \\
ADDR
\end{tabular}} & DATA BYTE & D7 & D6 & D5 & D4 & D3 & D2 & D1 \\
\hline \begin{tabular}{l}
Fsc_Res_Mode, \\
V-Trigger
\end{tabular} & 70 & PHRES1 & PHRES0 & SBLBN & VTRIG4 & VTRIG3 & VTRIG2 & VTRIG1 & VTRIG0 \\
\hline Begin_MP_Request & 71 & BMRQ7 & BMRQ6 & BMRQ5 & BMRQ4 & BMRQ3 & BMRQ2 & BMRQ1 & BMRQ0 \\
\hline End_MP_Request & 72 & EMRQ7 & EMRQ6 & EMRQ5 & EMRQ4 & EMRQ3 & EMRQ2 & EMRQ1 & EMRQ0 \\
\hline MSBs_MP_Request & 73 & 0 & EMRQ10 & EMRQ09 & EMRQ08 & 0 & BMRQ10 & BMRQ09 & BMRQ08 \\
\hline NULL & 74 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline NULL & 75 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline NULL & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Begin_RCV2_out & 77 & BRCV7 & BRCV6 & BRCV5 & BRCV4 & BRCV3 & BRCV2 & BRCV1 & BRCV0 \\
\hline End_RCV2_out & 78 & ERCV7 & ERCV6 & ERCV5 & ERCV4 & ERCV3 & ERCV2 & ERCV1 & ERCV0 \\
\hline MSBs_RCV2_out & 79 & 0 & ERCV10 & ERCV09 & ERCV08 & 0 & BRCV10 & BRCV09 & BRCV08 \\
\hline Field_Length & 7 A & FLEN7 & FLEN6 & FLEN5 & FLEN4 & FLEN3 & FLEN2 & FLEN1 & FLEN0 \\
\hline First_Act_Line & \(7 B\) & FAL7 & FAL6 & FAL5 & FAL4 & FAL3 & FAL2 & FAL1 & FAL0 \\
\hline Last_Act_Line & \(7 C\) & LAL7 & LAL6 & LAL5 & LAL4 & LAL3 & LAL2 & LAL1 & LAL0 \\
\hline MSBs_Field_Ctrl & 7D & 0 & 0 & LAL8 & FAL8 & 0 & 0 & FLEN9 & FLEN8 \\
\hline
\end{tabular}

\section*{Note :}

All bits labelled ' 0 ' are reserved. They must be programmed with 0 .

\section*{\(\mathbf{I}^{\mathbf{2}} \mathbf{C}\)-Bus Format}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline S & Slave Address & A & Subaddress & A & DATA0 & A & \(\cdots-\cdots-\cdots\) & DATA n & A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Portion & Meaning \\
\hline \hline S & start condition \\
\hline Slave Address & 1000100 X or 1000110 X \\
\hline A & acknowledge, generated by the slave \\
\hline Subaddress \(\left(^{*}\right.\)) & subaddress byte \\
\hline DATA & data byte \\
\hline\(-\cdots---\) & continued data bytes and A's \\
\hline P & stop condition \\
\hline & \begin{tabular}{l}
\(\mathrm{X}:\) read/write control bit; \(\mathrm{X}=0\) is order to write; \(\mathrm{X}=1\) is order to read, no \\
subaddressing with read.
\end{tabular} \\
\hline
\end{tabular}
\({ }^{(*)}\) if more than 1 byte DATA is transmitted, then auto-increment of the subaddress is performed.

\section*{Slave Receiver}

Subaddress 3A:
\begin{tabular}{|l|ll|}
\hline MUV2C & 0 & \(\mathrm{Cb} / \mathrm{Cr}\) data at MP are two's complement \\
& 1 & \(\mathrm{Cb} / \mathrm{Cr}\) data at MP are straight binary (default after reset) \\
\hline MY2C & 0 & Y data at MP are two's complement \\
& 1 & Y data at MP are straight binary (default after reset) \\
\hline VUV2C & 0 & \(\mathrm{Cb} / \mathrm{Cr}\) data input to VP or DP are two's complement (default after reset) \\
& 1 & \(\mathrm{Cb} / \mathrm{Cr}\) data input to VP or DP are straight binary \\
\hline VY2C & 0 & Y data input to VP are two's complement (default after reset) \\
& 1 & Y data input to VP are straight binary \\
\hline V656 & 0 & Selects YUV 422 format on VP (8 lines Y) and DP (8 lines multiplexed Cb/Cr) \\
& 1 & Selects CCIR 656 compatible format on VP (8 lines Cb,Y,Cr,Y) (default after reset) \\
\hline CBENB & \begin{tabular}{l}
0 \\
\\
\end{tabular} \begin{tabular}{c}
Data from input ports are encoded (default after reset) \\
Colour Bar with programmable colours (entries of OSD-LUTs) is encoded \\
The LUTs are read in upward order from index 0 to index 7.
\end{tabular} \\
\hline
\end{tabular}

Subaddress 42 .. 59:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { OSDY } \\
& \text { OSDU }
\end{aligned}
\] & \multicolumn{5}{|l|}{Contents of OSD Look-up tables. All 8 entries are 8 bits. Data representation is acc. to CCIR 601 [Y,Cb,Cr], but two's complement, e.g. for a 100/100 [upper number] or 100/75 [lower number] Colour Bar:} \\
\hline \multirow[t]{17}{*}{OSDV} & Colour & OSDY & OSDU & OSDV & index (for normal colour bar with CBENB = 1) \\
\hline & White & 107 (6Bh) & 0(00h) & O(00h) & 0 \\
\hline & & 107 (6Bh) & 0 (00h) & 0 (00h) & \\
\hline & Yellow & 82 (52h) & 144 (90h) & 18 (12h) & 1 \\
\hline & & \(34(22 h)\) & 172 (ACh) & 14 (0Eh) & \\
\hline & Cyan & 42 (2Ah) & 38 (26h) & 144 (90h) & 2 \\
\hline & & 03 (03h) & 29 (1Dh) & 172 (ACh) & \\
\hline & Green & 17 (11h) & 182 (B6h) & 162 (A2h) & 3 \\
\hline & & 240 (F0h) & 200 (C8h) & 185 (B9h) & \\
\hline & Magenta & 234 (EAh) & 74 (4Ah) & 94 (5Eh) & 4 \\
\hline & & 212 (D4h) & 56 (38h) & 71 (47h) & \\
\hline & Red & 209 (D1h) & 218 (DAh) & 112 (70h) & 5 \\
\hline & & 193 (C1h) & 227 (E3h) & 84 (54h) & \\
\hline & Blue & 169 (A9h) & 112 (70h) & 238 (EEh) & 6 \\
\hline & & 163 (A3h) & \(84(54 \mathrm{~h})\) & 242 (F2h) & \\
\hline & Black & 144 (90h) & 0 (00h) & 0 (00h) & 7 \\
\hline & & 144 (90h) & \(0(00 \mathrm{~h})\) & 0(00h) & \\
\hline
\end{tabular}

\section*{Subaddress 5A:}

Phase of encoded colour subcarrier (including burst) realtive to H - sync. Can be adjusted in steps of 360/256 degrees.

\section*{Subaddress 5B, 5D:}
(GAINU

Variable gain for Cb signal (Input Representation acc. to CCIR 601) White - Black \(=92.5\) IRE
White - Black \(=92.5\) IRE
GAINU \(=0 \quad\) Output subcarrier of \(U\) contribution \(=0\)
GAINU=118 (76h) Output subcarrier of U contribution \(=\) nominal
GAINU \(=-2.17\) * nominal ... nominal ... 2.16 * nominal
White - Black \(=100\) IRE
GAINU \(=0 \quad\) Output subcarrier of \(U\) contribution \(=0\)
GAINU=125 (7Dh) Output subcarrier of \(U\) contribution \(=\) nominal
GAINU \(=-2.05 *\) nominal \(\ldots\) nominal. \(.2 .04 *\) nominal

Subaddress 5C, 5E:
\begin{tabular}{|c|c|}
\hline GAINV & ```
Variable gain for Cr signal (Input Representation acc. to CCIR 601)
White - Black \(=92.5\) IRE
 GAINV \(=0 \quad\) Output subcarrier of \(V\) contribution \(=0\)
 GAINV \(=165\) (A5h) Output subcarrier of \(V\) contribution \(=\) nominal
GAINV \(=-1.55\) * nominal \(\ldots\) nominal.. \(.1 .55 *\) nominal
White-Black \(=100\) IRE
 GAINV \(=0 \quad\) Output subcarrier of V contribution \(=0\)
 GAINV=175 (AFh) Output subcarrier of V contribution = nominal
GAINV \(=-1.46\) * nominal... nominal.. .1 .46 * nominal
``` \\
\hline
\end{tabular}

\section*{Subaddress 5D:}
\begin{tabular}{|c|c|}
\hline BLCKL & ```
Variable Black Level (Input Representation acc. to CCIR 601)
White - Sync = 140 IRE
    BLCKL \(=0 \quad\) Output Black Level \(=24\) IRE
    BLCKL= 63 (3Fh) Output Black Level = 49 IRE
Output Black Level/IRE = BLCKL * 25/63 + 24
Recommended Value : BLCKL \(=60\) (3Ch) (normal)
White-Sync \(=143\) IRE
    BLCKL \(=0 \quad\) Output Black Level \(=24\) IRE
    BLCKL= 63 (3Fh) Output Black Level = 50 IRE
Output Black Level/IRE \(=\) BLCKL \(* 26 / 63+24\)
Recommended Value : \(\mathrm{BLCKL}=45\) (2Dh) (normal)
``` \\
\hline
\end{tabular}

\section*{Subaddress 5E:}
\begin{tabular}{|c|c|}
\hline BLNNL & \begin{tabular}{l}
Variable Blanking Level \\
White - Sync \(=140\) IRE \\
BLNNL \(=0 \quad\) Output Blanking Level \(=17\) IRE \\
BLNNL \(=63\) (3Fh) Output Blanking Level \(=42\) IRE \\
Output Blanking Level/fRE \(=\) BLNNL * 25/63 +17 \\
Recommended Value : BLNNL \(=58\) (3Ah) (normal) \\
White - Sync \(=143\) IRE \\
BLNNL \(=0 \quad\) Output Blanking Level \(=17\) IRE \\
BLNNL \(=63\) (3Fh) Output Blanking Level \(=43\) IRE \\
Output Blanking Level/IRE \(=\) BLNNL \(* 26 / 63+17\) \\
Recommended Value : BLNNL \(=63\) (3Fh) (normal)
\end{tabular} \\
\hline
\end{tabular}

\section*{Subaddress 60:}
\begin{tabular}{|l|c|c|l|l|}
\hline CCRS & \multicolumn{2}{|c|}{\begin{tabular}{l}
Select cross colour reduction filter in luminance \\
\\
\end{tabular}\(\quad\)\begin{tabular}{l}
CCRS1
\end{tabular}} & CCRS0 & function \\
& 0 & 0 & No Cross Colour Reduction (for overall transfer characteristic of luminance see fig. 5) \\
& 0 & 1 & Cross Colour Reduction \#1 active (for overall transfer characteristic see fig. 5) \\
& 1 & 0 & Cross Colour Reduction \#2 active (for overall transfer characteristic see fig. 5) \\
& 1 & 1 & Cross Colour Reduction \#3 active (for overall transfer characteristic see fig. 5) \\
\hline
\end{tabular}

\section*{Subaddress 61:}
\begin{tabular}{|l|ll|}
\hline FISE & 0 & 864 total pixel clocks per line \\
& 1 & 858 total pixel clocks per line (default after reset) \\
\hline PAL & 0 & NTSC Encoding (non-alternating V-component) (default after reset) \\
& 1 & PAL Encoding (alternating V-component) \\
\hline SCBW & 0 & \begin{tabular}{l}
Enlarged Bandwidth for Chrominance Encoding (for overall transfer characteristic of chrominance in base-- \\
band representation see figs. 3 and 4). \\
1
\end{tabular} \\
\hline RTCE & \begin{tabular}{lll}
Standard Bandwidth for Chrominance Encoding (for overall transfer characteristic of chrominance in base-- \\
band representation see figs. 3 and 4). (default after reset)
\end{tabular} \\
\hline YGS Real Time Control of generated Subcarrier Frequency (default after reset) \\
& \begin{tabular}{lll}
0 & Luminance Gain for White-Black 100 IRE \\
1 & Luminance Gain for White-Black 92.5 IRE incl. 7.5 IRE Set-up of Black (default after reset)
\end{tabular} \\
\hline INPI & 0 & PAL Switch phase is nominal (default after reset) \\
1 & PAL Switch phase is inverted compared to nominal \\
\hline DOWN & \begin{tabular}{ll}
0 & DACs in normal operational mode (default after reset) \\
1 & DACs forced to lowest output voltage
\end{tabular} \\
\hline
\end{tabular}

\section*{Subaddress 62:}
\begin{tabular}{|c|c|}
\hline BSTA & \begin{tabular}{l}
Amplitude of Colour Burst (Input Representation acc. to CCIR 601) \\
White-Black \(=92.5\) IRE, Burst \(=40\) IRE, NTSC-Encoding \\
BSTA \(=0\).. 1.25 * nominal \\
Recommended Value : BSTA \(=102(66 \mathrm{~h})\) \\
White-Black \(=92.5\) IRE, Burst \(=40\) IRE, PAL-Encoding \\
BSTA \(=0\).. 1.76 * nominal \\
Recommended Value: BSTA \(=72(48 \mathrm{~h})\) \\
White-Black \(=100\) IRE, Burst \(=43\) IRE, NTSC-Encoding \\
BSTA \(=0 . .1 .20 *\) nominal \\
Recommended Value : BSTA \(=106(6 \mathrm{Ah})\) \\
White-Black \(=100\) IRE, Burst \(=43\) IRE, PAL-Encoding \\
BSTA \(=0 . .1 .67\) * nominal \\
Recommended Value : BSTA \(=75(4 \mathrm{Bh})\)
\end{tabular} \\
\hline SQP & 0 Subcarrier Real Time Control from 7151B Digital Colour Decoder 1 not supported in current version, do not use. \\
\hline
\end{tabular}

Note to subaddresses 5B,5C,5D,5E,62: All IRE values are rounded

Subaddress 63.. 66 :
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \mathrm{FSC} 0 \\
& \ldots \\
& \mathrm{FSC} 3
\end{aligned}
\] & \begin{tabular}{l}
Four bytes to program subcarrier frequency \\
\(F(f s c) \quad\) Subcarrier frequency (in multiples of line frequency)
\[
F S C=\operatorname{round}\left(\frac{F(f s c)}{F(l l c)} \times 2^{32}\right)
\] \\
\(F\) (llc) Clock frequency (in multiples of line frequency) \\
FSC3 Most significant byte \\
FSC0 Least significant byte
\end{tabular} \\
\hline & Examples: \\
\hline
\end{tabular}

Subaddress 67.. 6A:
\begin{tabular}{|l|l|}
\hline L21OD2 & First Byte of Captioning Data, Odd Field \\
\hline L21OD3 & \begin{tabular}{l}
Second Byte of Captioning Data, Odd Field \\
First Byte of Extended Data, Even Field
\end{tabular} \\
\hline L21ED1 & Second Byte of Extended Data, Even Field \\
\hline & \begin{tabular}{l}
LSBs of the respective bytes are encoded immediately after run-in and framing \\
code, the MSBs of the respective bytes have to carry the parity bit, acc. to \\
the definition of line 21 encoding format.
\end{tabular} \\
\hline
\end{tabular}

\section*{Digital video encoder (DENC2-M)}

\section*{Subaddress 6B}
\begin{tabular}{|c|c|c|c|}
\hline SCCLN & \multicolumn{3}{|l|}{Selects the actual line, where Closed Caption or Extended Data are encoded.
\[
\begin{aligned}
& \text { Line }=(S C C L N+4) \text { for M-systems } \\
& \text { Line }=(S C C L N+1) \text { for other systems }
\end{aligned}
\]} \\
\hline MODIN & Defines video & ta of MP po
MODIN0
0
1
0
1 & \begin{tabular}{l}
or VP(DP) port to be encoded \\
unconditionally from MP port from MP port, if pin SEL_ED=high, else from VP port unconditionally from VP port from VP port, if pin SEL_ED=high, else from MP port
\end{tabular} \\
\hline
\end{tabular}

Subaddress 6C:
\begin{tabular}{|c|c|c|c|c|c|}
\hline PRCV2 & \multicolumn{5}{|l|}{\begin{tabular}{l}
0 Polarity of RCV2 as output is high-active, rising edge is taken when input, respectively (default after reset). \\
1 Polarity of RCV2 as output is low-active, falling edge is taken when input, respectively
\end{tabular}} \\
\hline ORCV2 & \multicolumn{5}{|l|}{\begin{tabular}{l}
0 Pin RCV2 is switched to input (default after reset). \\
1 Pin RCV2 is switched to output
\end{tabular}} \\
\hline CBLF & \multicolumn{5}{|l|}{\begin{tabular}{l}
0 If ORCV2=high, pin RCV2 provides a HREF signal (Horizontal Reference Pulse that is high during active portion of line, also during Vertical Blanking Interval). (default after reset) \\
If ORCV2=low, signal input to RCV2 is used for horizontal synchronization only (if TRCV2 \(=1\)). (default after reset) \\
1 If ORCV2=high, pin RCV2 provides a CBN signal (Reference Pulse that is high during active video, excluding Vertical Blanking Interval). \\
If ORCV2=low, signal input to RCV2 is used for horizontal synchronization (if TRCV2 \(=1\)) as well as an internal blanking signal
\end{tabular}} \\
\hline PRCV1 & \multicolumn{5}{|l|}{\begin{tabular}{l}
0 Polarity of RCV1 as output is high-active, rising edge is taken when input, respectively. (default after reset) \\
1 Polarity of RCV1 as output is low-active, falling edge is taken when input, respectively.
\end{tabular}} \\
\hline ORCV1 & \multicolumn{5}{|l|}{\begin{tabular}{l}
0 Pin RCV1 is switched to input (default after reset). \\
1 Pin RCV1 is switched to output.
\end{tabular}} \\
\hline TRCV2 & \multicolumn{5}{|l|}{\begin{tabular}{l}
0 Horizontal synchronization is taken from RCV1 port. (default after reset) \\
1 Horizontal synchronization is taken from RCV2 port.
\end{tabular}} \\
\hline SRCV1 & \multicolumn{5}{|l|}{Defines signal type on pin RCV1} \\
\hline & \multicolumn{5}{|r|}{} \\
\hline & 0 & 0 & VS & VS & \multirow[t]{4}{*}{\begin{tabular}{l}
Vertical Sync each field (default after reset) \\
Frame Sync (_odd/even) \\
Field SEQuence, Vertical sync every fourth (FISE=1) or eighth field (FISE=0)
\end{tabular}} \\
\hline & 0 & 1 & FS & FS & \\
\hline & 1 & 0 & FSEQ & FSEQ & \\
\hline & 1 & 1 & n.a. & n.a. & \\
\hline
\end{tabular}

\section*{Subaddress 6D:}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{CCEN} & \multicolumn{4}{|l|}{Enables individual Line 21 Encoding} \\
\hline & CCEN1 & CCEN0 & & \\
\hline & 0 & 0 & \multicolumn{2}{|l|}{Line 21 Encoding OFF} \\
\hline & 0 & 1 & \multicolumn{2}{|l|}{Enables Encoding in field 1 (odd)} \\
\hline & 1 & 0 & \multicolumn{2}{|l|}{Enables Encoding in field 2 (even)} \\
\hline & 1 & 1 & \multicolumn{2}{|l|}{Enables Encoding in both fields} \\
\hline \multirow[t]{6}{*}{SRCM} & \multicolumn{4}{|l|}{Defines signal type on pin RCM1} \\
\hline & SRCM1 & SRCM0 & as output & \\
\hline & 0 & 0 & VS & Vertical Sync each field \\
\hline & 0 & 1 & FS & Frame Sync (_odd/even) \\
\hline & 1. & 0 & FESQ & Field SEQuence, Vertical sync every fourth (FISE=1) or eight field (FISE=0) \\
\hline & 1 & 1 & n.a. & \\
\hline
\end{tabular}

Subaddress 6E .. 6F:
\begin{tabular}{|l|l|}
\hline HTRIG & \begin{tabular}{l}
Sets the Horizontal TRIGger phase related to signal on RCV1 or RCV2 input. \\
Values above 1715 (FISE=1) or 1727 [FISE=0] are not allowed. \\
Increasing HTRIG decreases delays of all internally generated timing signals. \\
Reference mark: \begin{tabular}{l}
Analog output horizontal sync (leading slope) coincides with active edge of RCV used \\
for triggering at HTRIG \(=032 \mathrm{~h}\) [032h]
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Subaddress 70:
\begin{tabular}{|c|c|}
\hline VTRIG & \begin{tabular}{l}
Sets the Vertical TRIGger phase related to signal on RCV1 input. \\
Increasing VTRIG decreases delays of all internally generated timing signals, measured in half lines Variation range of VTRIG \(=0\).. 31 (1 Fh)
\end{tabular} \\
\hline SBLBN & \begin{tabular}{l}
0 Vertical Blanking is defined by programming of FAL and LAL . \\
Vertical Blanking is forced automatically at least during field synchronization and equalization pulses. Note: If Cross-Colour Reduction is programmed, it is active between FAL and LAL in both cases.
\end{tabular} \\
\hline PHRES & Selects the phase reset mode of the colour subcarrier generator \\
\hline
\end{tabular}

Digital video encoder (DENC2-M)

Subaddress 71 .. 73:
\begin{tabular}{|l|l|}
\hline BMRQ & \begin{tabular}{c}
Begin of MP ReQuest signal (RCM2). \\
Values above 1715 (FISE=1) or 1727 [FISE=0] are not allowed. \\
\\
First active pixel at analog outputs (corresp. input pixel coinciding with RCM2) at BMRQ=0F9h [115h]
\end{tabular} \\
\hline EMRQ & \begin{tabular}{c}
End of MP ReQuest signal (RCM2). \\
Values above 1715 (FISE=1) or 1727 [FISE=0] are not allowed. \\
Last active pixel at analog outputs (corresp. input pixel coinciding with RCM 2) at \(\mathrm{EMRQ}=686 \mathrm{~h}[690 \mathrm{~h}]\) \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Subaddress 77.. 79:
\begin{tabular}{|l|l|}
\hline BRCV & \begin{tabular}{l}
Begin of output signal on RCV2 pin. \\
Values above 1715 (FISE=1) or 1727 [FISE=0] are not allowed. \\
First active pixel at analog outputs (corresp. input pixel coinciding with RCV2) at BRCV \(=0\) F9h \([115 \mathrm{~h}\)]
\end{tabular} \\
\hline ERCV & \begin{tabular}{l}
End of output signal on RCV2 pin. \\
Values above 1715 (FISE=1) or 1727 [FISE=0] are not allowed. \\
Last active pixel at analog outputs (corresp. input pixel coinciding with RCV2) at ERCV=686h [690h]
\end{tabular} \\
\hline
\end{tabular}

Subaddress 7A .. 7D:
\begin{tabular}{|c|c|}
\hline FLEN & \begin{tabular}{l}
LENgth of a Field \(=\) FLEN +1 , measured in half lines \\
Valid range is limited to 524 . . 1022 (FISE=1) resp. 624 .. 1022 (FISE=0), FLEN should be even
\end{tabular} \\
\hline FAL & First Active Line after vertical blanking interval \(=\) FAL +1 , measured in lines. FAL \(=0\) coincides with the first field synchronization pulse. \\
\hline LAL & Last Active Line before vertical blanking interval = LAL + 1, measured in lines \(\mathrm{LAL}=0\) coincides with the first field synchronization pulse. \\
\hline
\end{tabular}

\section*{Slave Transmitter}

\section*{Slave Transmitter [Slave Address 89h or 8Dh]}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
REGISTER \\
FUNCTION
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{array}{|c}
\text { SUB- } \\
\text { ADDR }
\end{array}
\]} & \multicolumn{8}{|l|}{DATA BYTE} \\
\hline & & D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\hline Status Byte & - & VER2 & VER1 & VER0 & CCRDE & CCRDO & FSQ2 & FSQ1 & FSQ0 \\
\hline
\end{tabular}

\section*{no subaddress}
\begin{tabular}{|l|l|}
\hline VER & \begin{tabular}{l}
Version id of the device. It will be changed with all versions of the IC that have different programming models \\
Current Version is 011 bin.
\end{tabular} \\
\hline CCRDE & \begin{tabular}{l}
Closed caption bytes of the even field have heen encoded. \\
The bit is reset after information has been written to the subbaddresses 69,6A. It is set immediately after \\
the data have been encoded.
\end{tabular} \\
\hline CCRDO & \begin{tabular}{l}
Closed caption bytes of the odd field have heen encoded. \\
The bit is reset after information has been written to the subbaddresses 67,68. It is set immediately after \\
the data have been encoded.
\end{tabular} \\
\hline FSQ & \begin{tabular}{l}
State of the internal field sequence counter. \\
Bit 0 (FSQ0) gives the odd/even information. (Odd=Low, Even=High)
\end{tabular} \\
\hline
\end{tabular}

Fig. 3 : Chrominance transfer characteristic

Fig. 4 : Chrominance transfer characteristic

Fig. 5 : Luminance transfer characteristic

Fig. 6 : Luminance transfer characteristic

\section*{Digital video encoder (DENC2-M)}

\section*{Electrical Characteristics}

Conditions : \(\mathrm{T}_{\mathrm{amb}}=0 . .70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DDD}}=4.5 . .5 .5 \mathrm{~V}\) unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{SYMBOL} & \multirow{2}{*}{PARAMETER} & \multirow[t]{2}{*}{TEST} & \multicolumn{2}{|r|}{LIMITS} & \multirow{2}{*}{UNIT} \\
\hline & & & MIN & MAX & \\
\hline \multicolumn{6}{|l|}{Supply} \\
\hline \(\mathrm{V}_{\text {DDD }}\) & supply voltage range digital & & 4.5 & 5.5 & V \\
\hline \(\mathrm{V}_{\text {DDA }}\) & supply voltage range analog & & 4.75 & 5.25 & V \\
\hline \(\mathrm{I}_{\text {DDD }}\) & supply current & 1) & - & 170 & mA \\
\hline \(\mathrm{I}_{\text {DDA }}\) & supply current & 1) & - & 55 & mA \\
\hline \multicolumn{6}{|l|}{Inputs} \\
\hline \(\mathrm{V}_{\mathrm{IL}}\) & \[
\begin{gathered}
\text { input voltage LOW (except LLC, SDA, SCL, AP, SP, } \\
\text { XTALI) }
\end{gathered}
\] & & -0.5 & 0.8 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & \[
\begin{aligned}
& \text { input voltage HIGH (except LLC, SDA, SCL, AP, SP, } \\
& \text { XTALI) }
\end{aligned}
\] & & 2.0 & \(\mathrm{V}_{\text {DDD }}+0.5\) & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & input voltage HIGH (LLC pin 38) & & 2.4 & \(\mathrm{V}_{\text {DDD }}{ }^{+0.5}\) & V \\
\hline \(\mathrm{I}_{\text {LI }}\) & input leakage current & & - & 1 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & clocks & - & 10 & pF \\
\hline \(\mathrm{C}_{1}\) & input capacitance & data & & 8 & pF \\
\hline \(\mathrm{C}_{1}\) & input capacitance & I/O at high impedance & & 8 & pF \\
\hline \multicolumn{6}{|l|}{Outputs} \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & output voltage LOW (except XTAL, SDA) & 2) & 0 & 0.6 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & \[
\begin{aligned}
& \text { output voltage HIGH (except LLC, XTAL,DTACKN, } \\
& \text { SDA) }
\end{aligned}
\] & 2) & 2.4 & \(\mathrm{V}_{\mathrm{DDD}}+0.5\) & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & output voltage HIGH (LLC pin 38) & 2) & 2.6 & \(\mathrm{V}_{\text {DDD }}+0.5\) & V \\
\hline \multicolumn{6}{|l|}{\(\mathbf{I}^{\mathbf{2}} \mathbf{C}\) Bus SDA and SCL} \\
\hline \(\mathrm{V}_{\text {IL }}\) & input voltage LOW & & -0.5 & 1.5 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & input voltage HIGH & & 3.0 & \(\mathrm{V}_{\mathrm{DDD}^{+0.5}}\) & V \\
\hline \(\mathrm{I}_{\mathrm{I}}\) & input current & \(\mathrm{V}_{\mathrm{I}}=\) low or high & & +/-10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & SDA output voltage & \(\mathrm{I}_{\mathrm{O}}=3 \mathrm{~mA}\) & & 0.4 & V \\
\hline \(\mathrm{I}_{\mathrm{O}}\) & output current & during acknowl. & 3 & & mA \\
\hline \multicolumn{6}{|l|}{Clock timing} \\
\hline \(\mathrm{t}_{\text {LLC }}\) & cycle time LLC & 3) & 34 & 41 & ns \\
\hline \(\delta\) & duty factor \(\mathrm{t}_{\text {LLCh }} / \mathrm{t}_{\mathrm{LLC}}\) & 10) & 40 & 60 & \% \\
\hline \(\mathrm{t}_{\mathrm{r}}\) & rise time LLC & 3) & - & 5 & ns \\
\hline \(\mathrm{t}_{\mathrm{f}}\) & fall time LLC & 3) & - & 6 & ns \\
\hline \multicolumn{2}{|l|}{Input timing} & \(\cdots\) & & , & : \\
\hline \(\mathrm{t}_{\text {SUC }}\) & input data setup time (CREF) & & 6 & - & ns \\
\hline \(\mathrm{t}_{\mathrm{HDC}}\) & input data hold time (CREF) & & 3 & - & ns \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{SYMBOL} & \multirow{2}{*}{PARAMETER} & \multirow[t]{2}{*}{TEST CONDITIONS} & \multicolumn{2}{|c|}{LIMITS} & \multirow{2}{*}{UNIT} \\
\hline & & & MIN & MAX & \\
\hline \(\mathrm{t}_{\mathrm{SU}}\) & input data setup time (any other except SEL_MPU, CDIR, RWN/SCL, A0/SDA, CSN/SA, RESN, AP, SP) & & 6 & - & ns \\
\hline \(\mathrm{t}_{\mathrm{HD}}\) & input data hold time (any other except SEL_MPU, CDIR, RWN/SCL, A0/SDA, CSN/SA, RESN, AP, SP) & & 3 & - & ns \\
\hline \multicolumn{6}{|l|}{Crystal Oscillator} \\
\hline \(\mathrm{f}_{\mathrm{n}}\) & nominal frequency (usually 27 MHz) & 3rd harmonic & - & 30 & MHz \\
\hline \multirow[t]{7}{*}{Df/ \(\mathrm{f}_{\mathrm{n}}\)} & permissable deviation fn & 9) & -50 & +50 & \(10^{-6}\) \\
\hline & crystal specification: & & & & \\
\hline & temperature range Tamb & & 0 & 70 & C \\
\hline & load capacitance \(\mathrm{C}_{\mathrm{L}}\) & & 8 & - & pF \\
\hline & series resonance resistance \(\mathrm{R}_{S}\) & & & 80 & \(\Omega\) \\
\hline & motional capacitance \(\mathrm{C}_{1}\) & typically & 1.5-20\% & 1.5+20\% & fF \\
\hline & parallel capacitance \(\mathrm{C}_{0}\) & typically & 3.5-20\% & 3.5+20\% & pF \\
\hline \multicolumn{6}{|l|}{MPU interface timing} \\
\hline \(\mathrm{t}_{\text {AS }}\) & address setup time & 5) & 9 & - & ns \\
\hline \(\mathrm{t}_{\text {AH }}\) & address hold time & & 0 & - & ns \\
\hline \({ }^{\text {t }}\) RWS & read/write setup time & 5) & 9 & - & ns \\
\hline \(\mathrm{t}_{\text {RWH }}\) & read/write hold time & & 0 & - & ns \\
\hline \(\mathrm{t}_{\text {DD }}\) & data valid from CSN (read) & 6), 7), 8), n=9 & - & 400 & ns \\
\hline \(\mathrm{t}_{\mathrm{DF}}\) & data bus floating from CSN (read) & 6), 7), \(n=5\) & - & 255 & ns \\
\hline \(\mathrm{t}_{\text {dS }}\) & data bus setup time (write) & 5) & 9 & - & ns \\
\hline \(\mathrm{t}_{\mathrm{DH}}\) & data bus hold time (write) & 5) & 9 & - & ns \\
\hline \({ }^{\text {t }}\) ACS & acknowledge delay from CSN & 6), 7), \(\mathrm{n}=11\) & - & 475 & ns \\
\hline \({ }^{\text {t }}\) CSD & CSN high from acknowledge & & 0 & - & ns \\
\hline \({ }^{\text {t }}\) DAT & DTACKN floating from CSN high & 6), 7), n=7 & - & 330 & ns \\
\hline \multicolumn{6}{|l|}{Data and reference signal output timing} \\
\hline \(\mathrm{C}_{\mathrm{L}}\) & output load capacitance & . & 7.5 & 40 & pF \\
\hline \(\mathrm{t}^{\text {OH }}\) & output hold time & & 4 & - & ns \\
\hline \(\mathrm{t}_{\mathrm{OD}}\) & output delay time (CREF in output mode) & & - & 25 & ns \\
\hline \multicolumn{2}{|l|}{C, Y, and CVBS outputs} & & & & \\
\hline Vo & output signal (peak to peak value) & 4) & 1.9 & 2.1 & V \\
\hline \(\mathrm{R}_{\mathrm{I}}\) & internal serial resistance & & 18 & 35 & \(\Omega\) \\
\hline \(\mathrm{R}_{\mathrm{L}}\) & output load resistance & & 80 & - & \(\Omega\) \\
\hline B & output signal bandwidth (D/A-convertors) & -3dB & 10 & - & MHz \\
\hline ILE & LF integral linearity error (D/A-convertors) & & - & \(\pm 2\) & LSB \\
\hline DLE & LF differential linearity error (D/A-convertors) & & - & \(\pm 1\) & LSB \\
\hline
\end{tabular}

\section*{Notes:}
1) At maximum supply voltage with highly active input signals.
2) The levels have to be measured with load circuits of \(1.2 \mathrm{k} \Omega\) to 3.0 V (standard TTL load), \(\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}\).
3) The data is for both, input and output direction.
4) for full digital range, without load, \(\mathrm{V}_{\mathrm{DDA}}=5.0 \mathrm{~V}\). The typical voltage swing is 2.0 V , the typical minimum output voltage (digital zero at DAC) is 0.2 V .
5) The value is calculated via equation (1)
6) The value depends on the clock frequency. The numbers given are calculated with \(\mathrm{f}_{\text {LLC }}=27 \mathrm{MHz}\)
7) The values are calculated via equation (2)
8) The falling edge of DTACKN will always occur 1 * LLC after data is valid.
9) If internal oscillator is used, crystal deviation of fn is directly proportional to the deviation of subcarrier frequency and line/ field frequency.
10) With LLC in input mode. In output mode, with a crystal connected to XTAL/ XTALI typically \(50 \%\).

\section*{Equations:}
\[
\begin{align*}
& \mathrm{t}=\mathrm{t}_{\mathrm{SU}}+\mathrm{t}_{\mathrm{HD}} \tag{1}\\
& \mathrm{t}_{\mathrm{dmax}}=\mathrm{t}_{\mathrm{OD}}+\mathrm{n}^{*} \mathrm{t}_{\mathrm{LLC}}+\mathrm{t}_{\mathrm{LLC}}+\mathrm{t}_{\mathrm{SU}} \tag{2}
\end{align*}
\]

Fig. 7 : Clock Data Timing

\section*{Digital video encoder (DENC2-M)}

Fig. 8 : Dig.TV - Timing

\section*{Notes :}
1) The data demultiplex phase is coupled to the internal horizontal phase.
2) The CREF signal applies only for the 16 lines DIG-TV format, because these signals are only valid in 13.5 MHz .
3) The phase of the RCV2 signal is programmed to 0 F 9 h [115 h for 50 Hz] in this example in output mode (BRCV2)

Fig. 9 : RTCI timing

Fig. 10 : MPU Interface Timing (Read cycle)

Fig. 11 : MPU Interface Timing (Write cycle)

Digital video encoder (DENC2-M) SAA7188A

\section*{SAA7188A programming example}

SAA7188A PROGRAMMING EXAMPLE
\begin{tabular}{|c|c|c|}
\hline SUB ADDRS & DATA & FUNCTION \\
\hline 0-39 & 00 & NULL \\
\hline 3A & 5 F & Input Port Control - DF selects internal color bars - MP port used - 8 bit mux'd data \\
\hline 3B-41 & 00 & NULL \\
\hline 42 & 6B & OSD Y-0 \\
\hline 43 & 00 & OSD U-0 WHITE \\
\hline 44 & 00 & OSD V-0 \\
\hline 45 & 1D & OSD Y-1 \\
\hline 46 & AD & OSD U-1 YELLOW \\
\hline 47 & OE & OSD V-1 \\
\hline 48 & 00 & OSD Y-2 \\
\hline 49 & 1D & OSD U-2 CYAN \\
\hline 4A & AD & OSD V-2 \\
\hline 4B & EC & OSD Y-3 \\
\hline 4 C & CA & OSD U-3 GREEN \\
\hline 4D & BB & OSD V-3 \\
\hline 4E & CF & OSD Y-4 \\
\hline 4F & 3A & OSD U-4 MAGENTA \\
\hline 50 & 46 & OSD V-4 \\
\hline 51 & BC & OSD Y-5 \\
\hline 52 & E5 & OSD U-5 RED \\
\hline 53 & 54 & OSD V-5 \\
\hline 54 & 9E & OSD Y-6 \\
\hline 55 & 55 & OSD U-6 BLUE \\
\hline 56 & F1 & OSD V-6 \\
\hline 57 & 90 & OSD Y-7 \\
\hline 58 & 00 & OSD U-7 BLACK \\
\hline 59 & 00 & OSD V-7 \\
\hline 5A & 3 F & Chroma Phase \\
\hline 5B & 79 & Gain U Axis \\
\hline 5 C & AD & Gain V Axis \\
\hline 5D & 3 C & \\
\hline 5E & 3A & Blanking Level \\
\hline 5 F & 00 & NULL \\
\hline 60 & 38 & Cross Color Reduction Filter Seiect \\
\hline 61 & 15 & Standard Control \\
\hline 62 & 69 & Burst Amplitude \\
\hline 63 & 1F & SubCarrier (4 LSBs) \\
\hline 64 & 7 C & SubCarrier \\
\hline 65 & F0 & SubCarrier \\
\hline 66 & 21 & SubCarrier (4 MSBs) \\
\hline 67 & 67 & Closed Caption - Odd Field - First Byte \\
\hline 68 & 68 & Closed Caption - Odd Field - Second Byte \\
\hline 69 & 69 & Closed Caption - Even Field - First Byte \\
\hline 6A & 6A & Closed Caption - Even Field - Second Byte \\
\hline 6B & 11 & Port Select - Closed Caption Line Position \\
\hline 6 C & 6D & RCV Port Control (Slave Mode Selected) \\
\hline 6D & 07 & RCM-CC Mode \\
\hline 6 E & 9 D & H Trigger (LSBs) \\
\hline 6 F & 06 & H Trigger (MSBs) \\
\hline 70 & C4 & SubCarrier Reset Mode - V Trigger \\
\hline
\end{tabular}

\section*{SAA7188A programming example}
\begin{tabular}{|c|c|l|}
\hline SUB ADDRS & DATA & \\
\hline 71 & \(6 C\) & FUNCTION \\
72 & 00 & End MP Request \\
73 & 00 & MP Request (MSBs) \\
74 & 00 & NULL \\
75 & 00 & NULL \\
76 & 00 & NULL \\
77 & 00 & Begin RCV2 Out \\
78 & 00 & End RCV2 Out \\
79 & 00 & RCV2 Out (MSBs) \\
7 A & 0 C & Field Length \\
\hline \(7 B\) & 12 & First Active Line \\
\(7 C\) & 03 & Last Active Line \\
7 CD & 22 & Field Control (MSBs) \\
\hline
\end{tabular}

Encoder in SLAVE mode (RCV1, RCV2 and LLC are INPUT).
RCV1 is reset with Field ID (low for Field 1, high for Field 2).
RCV2 is reset with HREF (low during video blanking period).
SubCarrier provides the correct 4 field sequence.
Video into MP Port, NTSC (US standard-7.5 IRE setup).
OSD programmed for 100/75 color bars.
SAA7188A driven from a Tektronix TSG422 generator (CCIR656 format).

\section*{Digital multistandard colour decoder, square pixel (DMSD-SQP)}

\section*{1. FEATURES}
- Separate 8-bit luminance (Y or CVBS) and 8-bit chrominance inputs (CVBS or C) from CVBS, Y/C, S-Video
(S-VHS or Hi8) sources
- Luminance and chrominance signal processing for standards PAL-B/G, NTSC-M, SECAM
- Horizontal and vertical sync detection for all standards
- Real-time control output RTCO to be used for frequency-locked digital video encoder (SAA7199B). RTCO contains serialized information about actual clock frequency, subcarrier frequency and PAL/SECAM sequence.
- Controls via the \(\mathrm{I}^{2} \mathrm{C}\)-bus
- User programmable aperture correction (horizontal peaking)
- Compatible with memory-based features (line-locked clock)
- Cross-colour reduction by chrominance comb-filtering (NTSC) or by special cross colour cancellation (SECAM)
- 8-bit quantization of input signals
- 768/640 active samples per line equals \(50 / 60 \mathrm{~Hz}\) (SQP)
- The YUV bus supports data rates of \(780 \times \mathrm{f}_{\mathrm{H}}\) equal to 12.2727 MHz for 60 Hz (NTSC-M) and \(944 \times f_{H}\) equal to 14.75 MHz for 50 Hz (PAL-B/G, SECAM) in 4:1:1 or \(4: 2: 2\) formats (via the \(\mathrm{I}^{2} \mathrm{C}\)-bus)
- One crystal oscillator of 26.8 MHz

\section*{2. GENERAL DESCRIPTION}

The SAA7191B is a digital multistandard colour decoder suitable for 8-bit CVBS input signals or for 8bit luminance and 8 -bit chrominance input signals (Y/C).
The SAA7191B is down-compatible with SAA7191. The SAA7191B has additional outputs RTCO, GPSW0 and ODD. These new outputs are in high-impedance state when NFEN-bit \(=0\).

\section*{3. QUICK REFERENCE DATA}
\begin{tabular}{|l|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & MIN. & TYP. & MAX. & UNIT \\
\hline V \(_{\text {DD }}\) & \begin{tabular}{l}
positive supply voltage \\
(pins 5, 18, 28, 37 and 52)
\end{tabular} & 4.5 & 5 & 5.5 & V \\
\hline IDD & \begin{tabular}{l}
total supply current \\
(pins 5, 18, 28, 37 and 52)
\end{tabular} & - & 100 & 250 & mA \\
\hline\(V_{\text {IL }}\) & input levels & \multicolumn{4}{|c|}{ TTL-compatible } \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & output levels & \multicolumn{3}{|c|}{ TTL-compatible } \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature & 0 & - & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{4. ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
EXTENDED \\
TYPE NUMBER
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline SAA7191B & 68 & PLCC & plastic & SOT188 \\
\hline
\end{tabular}
 square pixel (DMSD-SQP)

\section*{6. PINNING}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline SP & 1 & connected to ground (shift pin for testing) \\
\hline AP & 2 & connected to ground (action pin for testing) \\
\hline RESN & 3 & reset, active LOW \\
\hline CREF & 4 & clock reference, sync from external to ensure in-phase signals on the YUV-bus \\
\hline \(\mathrm{V}_{\text {DD1 }}\) & 5 & +5 V supply input 1 \\
\hline \begin{tabular}{l}
CHRO \\
CHR1 \\
CHR2 \\
CHR3 \\
CHR4 \\
CHR5 \\
CHR6 \\
CHR7
\end{tabular} & \begin{tabular}{l}
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12 \\
13
\end{tabular} & chrominance input data bits CHR7 to CHRO from a Y/C (VHS, Hi8) source in two's complement format \\
\hline \[
\begin{aligned}
& \text { CVBSO } \\
& \text { cVBS1 } \\
& \text { cVBS2 } \\
& \text { cVBS3 }
\end{aligned}
\] & \[
\begin{aligned}
& 14 \\
& 15 \\
& 16 \\
& 17
\end{aligned}
\] & luminance respectively CVBS lower input data bits CVBS3 to CVBSo (CVBS with luminance, chrominance and all sync information in two's complement format) \\
\hline \(\mathrm{V}_{\mathrm{DD} 2}\) & 18 & +5 V supply input 2 \\
\hline \(\mathrm{V}_{\text {SS } 1}\) & 19 & ground \(1(0 \mathrm{~V}\)) \\
\hline \begin{tabular}{l}
CVBS4 \\
CVBS5 \\
CVBS6 \\
CVBS7
\end{tabular} & \[
\begin{aligned}
& 20 \\
& 21 \\
& 22 \\
& 23
\end{aligned}
\] & luminance respectively CVBS upper input data bits CVBS7 to CVBS4 (CVBS with luminance, chrominance and all sync information in two's complement format) \\
\hline GPSW1 & 24 & Port 1 output for general purpose (programmable) \\
\hline GPSW2 & 25 & Port 2 output for general purpose (programmable) \\
\hline HCL & 26 & black level clamp pulse (programmable), e.g. for TDA8708 (ADC) \\
\hline LLC & 27 & line-locked clock input signal (29.5 MHz for 50 Hz system; 24.5454 MHz for 60 Hz system) \\
\hline \(\mathrm{V}_{\text {DD3 }}\) & 28 & +5 V supply input 3 \\
\hline HSY & 29 & horizontal sync indicator output signal (programmable), e.g. for TDA8708 (ADC) \\
\hline VS & 30 & vertical sync output signal \\
\hline HS & 31 & horizontal sync output signal (programmable) \\
\hline HL & 32 & horizontal lock flag, HIGH = PLL locked \\
\hline XTAL & 33 & 26.8 MHz clock output \\
\hline XTALI & 34 & 26.8 MHz connection for crystal or external oscillator (TL compatible squarewave) \\
\hline
\end{tabular}

Digital multistandard colour decoder, square pixel (DMSD-SQP)

\section*{Digital multistandard colour decoder, square pixel (DMSD-SQP)}

\section*{PIN CONFIGURATION}

Fig. 2 Pin configuration.

\section*{7. FUNCTIONAL DESCRIPTION}

\section*{Chrominance processor}

The 8-bit chrominance input signal (CVBS or chrominance format). passes a bandpass filter to eliminate DC components and to decimate the sample rate before it is fed to the two multipliers (quadrature demodulator), Fig.3(a).
Two subcarrier signals from a local oscillator (0 and 90 degree) are fed to the multiplicator inputs of the multipliers. The multipliers operate as a quadrature demodulator for all

PAL and NTSC signals; it operates as a frequency down-mixer for SECAM signals.
The two multiplier output signals are converted to a serial data stream and applied to three low-pass filter stages, then to a gain controlled amplifier. A final multiplexed low-pass filter achieves, together with the preceding stages, the required bandwidth performance. The signals, originated from PAL and NTSC, are applied to a comb-filter. The signals, originated from SECAM, are fed through a Cloche filter \((0 \mathrm{~Hz}\)
centre frequency), a phase demodulator and a differentiator to obtain frequency-demodulated colour-difference signals.
The SECAM signals are fed after de-emphasis to a cross-over switch, to provide the both serial-transmitted colour-difference signals. These signals are fed finally to the output formatter stages and to the output interface.

\begin{tabular}{l|l}
Digital multistandard colour decoder, \\
square pixel (DMSD-SQP) & SAA7191B \\
\hline
\end{tabular}

\section*{Luminance processor}

The luminance input signal, a digital CVBS format or an 8-bit luminance format (S-VHS, Hi8), is fed through a sample rate converter to reduce the data rate to 14.75 MHz for PAL and SECAM (12.2727 MHz for NTSC), Fig.3(b).

Sample rate is converted by means of a switchable pre-filter. High frequency components are emphasized to compensate for loss in the following chrominance trap filter. This chrominance trap filter (\(f_{0}=4.43 \mathrm{MHz}\) or \(\mathrm{f}_{\mathrm{o}}=3.58 \mathrm{MHz}\) centre frequency selectable) eliminates most of the colour carrier signal, therefore, it must be by-passed for S-Video (S-VHS and Hi8) signals.
The high frequency components of the luminance signal can be "peaked" (control for sharpness improvement via the \(1^{2} \mathrm{C}\)-bus) in two bandpass filters with selectable transfer characteristic.
A coring circuit with selectable characteristic improves the signal once more, this signal is then added to the original ("unpeaked") signal. A switchable amplifier achieves a common DC amplification, because the DC gains are different in both chrominance trap modes.
The improved luminance signal is fed to the variable delay compensation.

\section*{Processing delay}

The delay from input to output is 220 LLC cycles if YDEL is set to 0 . The processing delay will be influenced in future enhancements.

\section*{Synchronization}

The luminance output signal is fed to the synchronization stage. Its bandwidth is reduced to 1 MHz in a low-pass filter. The sync pulses are sliced and fed to the phase detectors to be compared with the sub-divided clock frequency.
The resulting output signal is applied to the loop filter to accumulate all phase deviations. Adjustable output
signals (e. g. HCL and HSY) are generated according to peripheral requirements (TDA8708A, TDA8709A). The output signals HS, VS and PLIN are locked to the timing reference signal HREF (Figures 6 and 7). There is no absolute timing reference guaranteed between the input signal and the HREF signal as further improvements to the circuit may change the total processing delay. It is therefore not recommended to use them for applications, which ask for absolute timing accuracy to the input signals.
The loop filter signal drives an oscillator to generate the line frequency control output signal LFCO.

Table 1 Clock frequencies in MHz for \(50 / 60 \mathrm{~Hz}\) systems
\begin{tabular}{|l|l|l|}
\hline CLOCK & \(\mathbf{5 0 ~ H z}\) & \(\mathbf{6 0 ~ H z}\) \\
\hline LLC & 29.5 & 24.545454 \\
LLC2 & 14.75 & 12.272727 \\
LLC4 & 7.375 & 6.136136 \\
LLC8 & 3.6875 & 3.068181 \\
\hline
\end{tabular}

Line locked clock frequency
LFCO is required in an external PLL (SAA7197) to generate the line locked clock frequency.

\section*{YUV-bus, digital outputs}

The 16-bit YUV-bus transfers digital data from the output interfaces to a feature box, or to the digital-to-analog converter (DAC). Outputs are controlled via the \(1^{2} \mathrm{C}\)-bus in normal selections, or they are controlled by output enable chain (FEIN on pin 64, Fig.4).
The YUV-bus data rate equals LLC2 in Table 1. Timing is achieved by marking each second positive rising edge of the clock LLC in conjunction with CREF (clock reference).

YUV-bus formats 4:2:2 and 4:1:1

The output signals \(Y 7\) to \(Y 0\) are the bits of the digital luminance signal. The output signals UV7 to UVO are the bits of the multiplexed colour-difference signals (\(B-Y\)) and (\(\mathrm{R}-\mathrm{Y}\)). The frame in the following tables is the time, required to transfer a full set of samples. In case of 4:2:2 format two luminance samples are transmitted in comparision to one \(U\) and one \(V\) sample within one frame.

Table 2 4:2:2 format (768 pixels per line for 50 Hz system; 640 pixels per line for 60 Hz system)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline OUTPUT & \multicolumn{6}{|l|}{PIXEL BYTE SEQUENCE} \\
\hline YO (LSB) & Yo & Yo & Yo & Yo & Yo & Yo \\
\hline Y1 & Y1 & Y1 & Y1 & Y1 & Y1 & Y1 \\
\hline Y2 & Y2 & Y2 & Y2 & Y2 & Y2 & Y2 \\
\hline Y3 & Y3 & Y3 & Y3 & Y3 & Y3 & Y3 \\
\hline Y4 & Y4 & Y4 & Y4 & Y4 & Y4 & Y4 \\
\hline Y5 & Y5 & Y5 & Y5 & Y5 & Y5 & Y5 \\
\hline Y6 & Y6 & Y6 & Y6 & Y6 & Y6 & Y6 \\
\hline Y7 (MSB) & Y7 & Y7 & Y7 & Y7 & Y7 & Y7 \\
\hline UVo (LSB) & U0 & Vo & U0 & Vo & Uo & Vo \\
\hline UV1 & U1 & V1 & U1 & V1 & U1 & V1 \\
\hline UV2 & U2 & V2 & U2 & V2 & U2 & V2 \\
\hline UV3 & U3 & V3 & U3 & V3 & U3 & V3 \\
\hline UV4 & U4 & V4 & U4 & V4 & U4 & V4 \\
\hline UV5 & U5 & V5 & U5 & V5 & U5 & V5 \\
\hline UV6 & U6 & V6 & U6 & V6 & U6 & V6 \\
\hline UV7(MSB) & U7 & V7 & U7 & V7 & U7 & V7 \\
\hline \(Y\) frame & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline UV frame & 0 & & 2 & & 4 & \\
\hline
\end{tabular}

\section*{Notes to Table 2}
1. Data rate: LLC2
2. Sample frequency:
\begin{tabular}{ll}
\(Y\) & LLC2 \\
\(U\) & LLC4 \\
\(V\) & LLC4
\end{tabular}

The quoted frequencies are valid on the YUV-bus. The time frames are controlled by the HREF signal.

Digital multistandard colour decoder, square pixel (DMSD-SQP)

Table 3 4:1:1 format (768 pixels per line for 50 Hz system and 640 pixels per line for 60 Hz system)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline OUTPUT & PIX & BYT & EQU & CE & & & & \\
\hline YO (LSB) & Yo \\
\hline Y1 & Y1 \\
\hline Y2 & Y2 \\
\hline Y3 & Y3 \\
\hline Y4 & Y4 \\
\hline Y5 & Y5 \\
\hline Y6 & Y6 \\
\hline Y7 (MSB) & Y7 \\
\hline UVO (LSB) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline UV1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline UV2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline UV3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline UV4 & V6 & V4 & V2 & Vo & V6 & V4 & V2 & Vo \\
\hline UV5 & V7 & V5 & V3 & V1 & V7 & V5 & V3 & V1 \\
\hline UV6 & U6 & U4 & U2 & Uo & U6 & U4 & U2 & Uo \\
\hline UV7 (MSB) & U7 & U5 & U3 & U1 & U7 & U5 & U3 & U1 \\
\hline \(Y\) frame & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline UV frame & \multicolumn{4}{|l|}{0} & \multicolumn{4}{|l|}{4} \\
\hline
\end{tabular}

Fast enable is achieved by setting input FEIN to LOW. This signal is used to control fast switching on the digital YUV-bus. HIGH on this pin forces the \(Y\) and \(U N\) outputs to a high-impedance state. The signal FEON is LOW when the \(Y\) and \(U N\) outputs are in this high-impedance state (Fig.4).
The quoted frequencies are valid on the YUV-bus. The time frames are controlled by the HREF signal.

Notes to Table 3
\begin{tabular}{lll}
Data rate: & & LLC2 \\
sample frequency: & \(Y\) & LLC2 \\
& \(U\) & LLC8 \\
& \(V\) & LLC8
\end{tabular}

Table 4 Digital output control
\begin{tabular}{|lll|lll|}
\hline OEDY & OEDC & FEIN & Y(7:0) & UV(7:0) & FEON \\
\hline\(X\) & \(X\) & 0 & active & active & 1 \\
0 & 0 & 1 & \(Z\) & \(Z\) & 0 \\
0 & 1 & 1 & \(Z\) & active & 1 \\
1 & \(C\) & 1 & active & \(Z\) & 1 \\
1 & 1 & \(X\) & active & active & 1 \\
\hline
\end{tabular}

Digital multistandard colour decoder, square pixel (DMSD-SQP)

Fig. 4 Timing example of fast enable input FEIN.

Fig. 5 Line control by HREF in 4:2:2 format for 50 Hz and 60 Hz systems.

Fig. 6 Vertical timing diagram for \(50 / 60 \mathrm{~Hz}\).

Digital multistandard colour decoder, square pixel (DMSD-SQP)

Fig. 7 RTCO timing.

\section*{8. LIMITING VALUES}

In accordance with the Absolute Maximum Rating System (IEC 134); ground pins \(19,35,38,51\) and 67 as well as supply pins \(5,18,28,37\) and 52 connected together.
\begin{tabular}{|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & \multicolumn{1}{|c|}{ MIN. } & MAX. & UNIT \\
\hline \(\mathrm{V}_{\mathrm{DD}}\) & supply voltage (pins 5, 18, 28, 37, 52) & -0.5 & 7.0 & V \\
\hline \(\mathrm{~V}_{\text {diff }}\) GND & difference voltage \(\mathrm{V}_{\text {SS }}-\mathrm{V}_{\mathrm{SS}(1 \text { to 4) }}\) & - & \(\pm 100\) & mV \\
\hline \(\mathrm{V}_{\mathrm{I}}\) & voltage on all inputs & -0.5 & \(\mathrm{~V}_{\mathrm{DD}}+0.5\) & V \\
\hline \(\mathrm{~V}_{\mathrm{O}}\) & voltage on all outputs (\(\left.\mathrm{l}_{\mathrm{O} \text { max }}=20 \mathrm{~mA}\right)\) & -0.5 & \(\mathrm{~V}_{\mathrm{DD}}+0.5\) & V \\
\hline \(\mathrm{P}_{\text {tot }}\) & total power dissipation & - & 2.5 & W \\
\hline \(\mathrm{~T}_{\text {stg }}\) & storage temperature range & -65 & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature range & 0 & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{V}_{\text {ESD }}\) & electrostatic handling* for all pins & - & \(\pm 2000\) & V \\
\hline
\end{tabular}
* Equivalent to discharging a 100 pF capacitor through an \(1.5 \mathrm{k} \Omega\) series resistor.

\section*{9. CHARACTERISTICS}
\(\mathrm{V}_{\mathrm{DD}}=4.5\) to 5.5 V ; \(\mathrm{T}_{\mathrm{amb}}=0\) to \(70^{\circ} \mathrm{C}\) unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(V_{D D}\) & supply voltage range (pins \(5,18,28,37,52\)) & & 4.5 & 5 & 5.5 & V \\
\hline \({ }^{\text {D D }}\) & total supply current (pins 5, 18, 28, 37, 52) & \(V_{D D}=5 \mathrm{~V}\); inputs LOW; outputs not connected & - & 100 & 250 & mA \\
\hline
\end{tabular}
\(1^{2}\) C-bus, SDA and SCL (pins 40 and 41)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{I L}\) & input voltage LOW & & -0.5 & - & 1.5 & V \\
\hline \(\mathrm{~V}_{\text {IH }}\) & input voltage HIGH & & 3 & - & \(\mathrm{V}_{\mathrm{DD}}+0.5\) & V \\
\hline \(\mathrm{I}_{40,41}\) & input current & & - & - & \(\pm 10\) & \(\mu \mathrm{~A}\) \\
\hline \(\mathrm{I}_{\mathrm{ACK}}\) & output current on pin 40 & acknowledge & 3 & - & - & mA \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & output voltage at acknowledge & \(\mathrm{I}_{40}=3 \mathrm{~mA}\) & - & - & 0.4 & V \\
\hline
\end{tabular}

Data clock and control inputs (pins 3, 4, 6 to 17, 20 to 23, 27, 34, 43 and 64), Fig. 10
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{I L}\) & LLC input voltage LOW (pin 27) & & -0.5 & - & 0.6 \\
\(V_{I H}\) & LLC input voltage HIGH
\end{tabular}

Control outputs (pins 24 to 26, 29, 31, 32, 39, 63, 65,66 and 68); Fig. 12
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{V}_{\mathrm{OL}}\) & output voltage LOW & notes 1 and 2 & 0 & - & 0.6 & V \\
\hline \(\mathrm{~V}_{\mathrm{OH}}\) & output voltage HIGH & & 2.4 & - & \(\mathrm{V}_{\mathrm{DD}}\) & V \\
\hline \(\mathrm{C}_{\mathrm{L}}\) & load capacitance & & 7.5 & - & 25 & PF \\
\hline
\end{tabular}

\section*{Notes to the characteristics}
1. Data output signals are Y 7 to Y 0 and UV7 to UVO. All others are control output signals.
2. Levels are measured with load circuit. YUV-bus, HREF and VS outputs with \(1.2 \mathrm{k} \Omega\) in parallel to 50 pF at 3 V (TTL load); LFCO output with \(10 \mathrm{k} \Omega\) in parallel to 15 pF and other outputs with \(1.2 \mathrm{k} \Omega\) in parallel to 25 pF at \(3 \vee\) (TTL load).
3. \(t_{S U}, t_{H D}, t_{O H}\) and \(t_{O D}\) include \(t_{r}\) and \(t_{f}\).

Digital multistandard colour decoder, square pixel (DMSD-SQP)

Fig. 8 Data input and output timing diagram.

Fig. 10 Input and output signal ranges.

\section*{Digital multistandard colour decoder, square pixel (DMSD-SQP)}

Fig. 12 Horizontal sync at HRMV \(=0\) and HRFS \(=0\) for \(50 / 60 \mathrm{~Hz}\) (signals HSY, HCL, HREF and PLIN).

Fig. 13 Application circuit for analog-to-digital conversions.
\begin{tabular}{l}
Digital multistandard colour decoder, \\
square pixel (DMSD-SQP) \\
\hline
\end{tabular}

Fig. 14 Application circuit for digital multistandard colour decoder.

\section*{Digital multistandard colour decoder, square pixel (DMSD-SQP)}

\section*{10. \(I^{2} \mathrm{C}\)-BUS FORMAT}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline\(S\) & SLAVE ADDRESS & A & SUBADDRESS & A & DATAO & \(A\) & & DATAn & \(A\) & \(P\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline S & = & start condition \\
\hline SLAVE ADDRESS & = & 1000 101X (IICSA = LOW) or 1000 111X (IICSA = HIGH) \\
\hline A & \(=\) & acknowledge, generated by the slave \\
\hline SUBADDRESS* & = & subaddress byte (Table 5) \\
\hline DATA & = & data byte (Table 5) \\
\hline P & = & stop condition \\
\hline X & = & read/write control bit \\
\hline & & \(X=0\), order to write (the circuit is slave receiver) \\
\hline & & \(X=1\), order to read (the circuit is slave transmitter) \\
\hline
\end{tabular}
* If more than 1 byte DATA are transmitted, then auto-increment of the subaddress is performed.

Table \(5 I^{2} \mathrm{C}\)-bus; DATA for status byte (\(\mathrm{X}=1\) in address byte; 8 Bh at IICSA \(=\) LOW or 8 Fh at IICSA \(=\mathrm{HIGH}\)).
\begin{tabular}{|l|l|lllllllll|}
\hline \multicolumn{1}{|c|}{ FUNCTION } & & & & \multicolumn{7}{c|}{ DATA } \\
& & D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\hline status byte & & & STTC & HLCK & FIDT & X & X & X & X & CODE \\
\hline
\end{tabular}

Function of the bits:
Horizontal time constant information for future application with logical combfilter only:
\(0=\) TV time constant (slow);
\(1=\) VCR time constant (fast)
HLCK Horizontal PLL information: \(\quad 0=\) HPLL locked; \(1=\) HPLL unlocked
FIDT
CODE
Field information: \(\quad 0=50 \mathrm{~Hz}\) system detected; \(1=60 \mathrm{~Hz}\) system detected
Colour information: \(0=\) no colour detected; \(1=\) colour detected

Table \(6{ }^{2}\) ²-bus; subaddress and data bytes for writing (\(X=0\) in address byte; 8 Ah at IICSA \(=\) LOW or \(8 E h\) at IICSA \(=H I G H\)).

\section*{Note to Table 6}
- Default values of register contents to obtain a picture see Table 6.
- All unused control bits must be programmed with "0" (zero) as indicated in Table 5.

\section*{Digital multistandard colour decoder, square pixel (DMSD-SQP)}

\section*{Function of the bits of Table 5}
\begin{tabular}{|c|c|c|}
\hline IDEL7 to "00" & - IDELO & Increment delay time (dependent on application), step size \(=4\) / LLC. The delay time is selectable from -4 / LLC (-1 decimal multiplier) to -1024 / LLC (-256 decimal multiplier) equals data FF to 00 (hex). Different processing times in the chrominance channel and the clock generation could result in phase errors in the chrominance processing by transients in clock frequency. An adjustable delay (IDEL) is necessary if the processing time in the clock generation is unknown. \\
\hline HSYB7 to "01" & HSYB0 & Horizontal sync begin for 50 Hz , step size \(=2\) / LLC. The delay time is selectable from \(-382 /\) LLC (+191 decimal multiplier) to \(+128 /\) LLC (-64 decimal multiplier) equals data BF to C0 (hex). Two's complement numbers with "hidden" sign-bit. The sign-bit is generated internally by evaluating the MSB and the MSB-1 bits. \\
\hline HSYS7 to "02" & HSYSO & Horizontal sync stop for 50 Hz , step size \(=2\) / LLC. The delay time is selectable from \(-382 / L L C\) (+191 decimal multiplier) to \(+128 / L L C\) (-64 decimal multiplier) equals data BF to C0 (hex). Two's complement numbers with "hidden" sign-bit. The sign-bit is generated internally by evaluating the MSB and the MSB-1 bits. \\
\hline HCLB7 to "03" & HCLB0 & Horizontal clamp start for 50 Hz , step size \(=2\) / LLC. The delay time is selectable from -254/LLC (+127 decimal multiplier) to +256/LLC (-128 decimal multiplier) equals data 7 F to 80 (hex). \\
\hline HCLS7 to "04" & HCLSO & Horizontal clamp stop for 50 Hz , step size \(=2\) / LLC. The delay time is selectable from -254/LLC (+127 decimal multiplier) to +256/LLC (-128 decimal multiplier) equals data 7 F to 80 (hex). \\
\hline HPHI7 to "05" & HPHIO & Horizontal sync after PHI1 for 50 Hz , step size \(=8\) /LLC. The delay time is selectable from \(-936 /\) LLC (+117 decimal multiplier) to \(+944 /\) LLC (-118 decimal multiplier) equals data 75 to 8 A (hex). \\
\hline \[
\begin{aligned}
& \text { BYPS } \\
& \text { "06" }
\end{aligned}
\] & & \[
\begin{aligned}
\text { input mode select bit: } & =\text { CVBS mode (chrominance trap active) } \\
1 & =\text { S-Video mode (chrominance trap bypassed) }
\end{aligned}
\] \\
\hline PREF & & use of pre-filter: \(\quad 0=\) pre-filter off; \(1=\) pre-filter on; PREF may be used if chrominance trap is active. \\
\hline BPSS1 to & BPSSO & Aperture bandpass to select different characteristics with maximums (0.2 to \(0.3 \times\) LLC / 2): \\
\hline CORI1 to "06" & CORIO & Coring range for high frequency components according to 8 -bit luminance, Fig. 15. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{APER1 to "06"} & \multirow[t]{4}{*}{APERO} & \begin{tabular}{l}
Aperture bandpass filter weights high frequency components of luminance signal: \\
APER1 \\
APERO \\
factor
\end{tabular} \\
\hline & & 0 0 0 \\
\hline & & 0 1 0 (0.25) Figures 16 to \\
\hline & & 1 1 1 \\
\hline HUE7 to "07" & HUEO & Hue control from \(+178.6^{\circ}\) to \(-180.0^{\circ}\), equals data bytes 7F to 80 (hex); \(0^{\circ}\) equals 00. \\
\hline CKTQ4 to . "08" & CKTQO & Colour-killer threshold QAM from approximately -30 dB to -18 dB , equals data bytes F8 to 07 (hex) \\
\hline CKTS4 to "09" & CKTSO & Colour-killer threshold SECAM from approximately -30 dB to -18 dB , equals data bytes. F8 to 07 (hex) \\
\hline PLSE7 to "0A" & PLSEO & PAL switch sensitivity from LOW-to-HIGH (HIGH means immediate sequence correction), equals FF to 00 (hex), MEDIUM equals 80. \\
\hline SESE7 to "OB" & SESEO & SECAM switch sensitivity from LOW-to-HIGH (HIGH means immediate sequence correction), equals FF to 00 (hex), MEDIUM equals 80. \\
\hline \[
\begin{aligned}
& \text { COLO } \\
& \text { "OC" }
\end{aligned}
\] & & Colour on bit: \(0=\) automatic colour-killer enabled; \(1=\) forced colour on. \\
\hline LFIS1 to & LFISO & Chrominance gain control (AGC filter): \\
\hline "0C" & & \begin{tabular}{l}
LFIS1 \\
LFISO \\
loop filter time constant
\end{tabular} \\
\hline & & \begin{tabular}{lll|l}
0 & 0 & \(=\) & slow \\
0 & 1 & \(=\) & medium \\
1 & 0 & \(=\) & fast \\
1 & 1 & \(=\) & actual gain, stored for test purposes only
\end{tabular} \\
\hline VTRC "0D" & & VTR/TV mode bit : \(0=\) TV mode (slow time constant); 1 = VTR mode (fast time constant) \\
\hline NFEN & & \begin{tabular}{l}
SAA7191B-specified functions enable (RTCO, ODD and GPSWO outputs) \\
\(0=\) outputs set to high-impedance (circuit equals SAA7191); \(1=\) outputs active
\end{tabular} \\
\hline HRMV GPSWO & & \begin{tabular}{l}
HREF generation: \(0=\) like SAA7191; \(1=\) HREF is \(8 \times\) LLC2 clocks earlier \\
General purpose switch 0: \(\quad 0=\) output pin 65 LOW; \(1=\) output pin 65 HIGH
\end{tabular} \\
\hline SECS & & SECAM mode bit : \(0=0\) other standards; \(1=\) SECAM \\
\hline HPLL "OE" & & \begin{tabular}{l}
Horizontal clock PLL: \(0=\) PLL closed; \\
\(1=\) PLL circuit open and horizontal frequency fixed.
\end{tabular} \\
\hline OEDC & & \[
\begin{aligned}
\text { Colour-difference output enable: } 0= & \text { data outputs UV7 to UVO can be set to } \\
& \text { high-impedance via FEIN } \\
1= & \text { data outputs UV7 to UV0 active. }
\end{aligned}
\] \\
\hline OEMS & & \[
\begin{aligned}
& \text { H-sync output enable (pins } 31 \text { and } 42 \text {): } \begin{array}{l}
0=\text { HS and HREF outputs high-impedance } \\
1=H S \text { and HREF outputs active. }
\end{array} .
\end{aligned}
\] \\
\hline OEVS & & \[
\begin{aligned}
& \text { V-sync output enable (pin 30): } \begin{array}{l}
0=\text { VS output high-impedance } \\
1 \\
1=\text { VS output active. }
\end{array}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Digital multistandard colour decoder, square pixel (DMSD-SQP)}

Fig. 16 Luminance control in 50 Hz / CVBS mode controllable by subaddress byte 06 ; pre-filter on and coring off; maximum aperture bandpass filter characteristic.

Fig. 17 Luminance control in 50 Hz / CVBS mode controllable by subaddress byte 06 ; pre-filter on and coring off; other aperture bandpass filter characteristics.

Fig. 18 Luminance control in 50 Hz / CVBS mode controllable by subaddress byte 06 ; pre-filter off and coring off; maximum aperture bandpass filter characteristic.

Fig. 19 Luminance control in 60 Hz / CVBS mode controllable by subaddress byte 06; pre-filter on and coring off; maximum aperture bandpass filter characteristic.

Digital multistandard colour decoder, square pixel (DMSD-SQP)

Fig. 20 Luminance control in 60 Hz / CVBS mode controllable by subaddress byte 06 ; pre-filter on and coring off; other aperture bandpass filter characteristics.

Fig. 21 Luminance control in 60 Hz / CVBS mode controllable by subaddress byte 06; pre-filter off and coring off; maximum and minimum aperture bandpass filter characteristics.

Fig. 22 Luminance control in \(50 \mathrm{~Hz} / \mathrm{S}\)-VHS mode controllable by subaddress byte 06; pre-filter off and coring off; different aperture bandpass filter characteristics.

Fig. 23 Luminance control in 50 Hz / S-VHS mode controllable by subaddress byte 06; pre-filter on and coring off; different aperture bandpass filter characteristics.

Purchase of Philips \(\left.\right|^{2} \mathrm{C}\) components conveys a license under the Philips \(\left.\right|^{2} \mathrm{C}\) patent to use the components in the \(I^{2} \mathrm{C}\)-system provided the system conforms to the \(I^{2} \mathrm{C}\) specifications defined by Philips.

PROGRAMMING EXAMPLE
Coefficients to set operation for application circuits Figures 13 and 14. (All numbers of the Table 6 are hex values).
Slave address byte is 8 A at pin \(43=0 \mathrm{~V}\) (or 8 E at pin \(43=+5 \mathrm{~V}\)).
Table 7 Recommended default values
\begin{tabular}{|c|c|c|c|}
\hline SUBADDRESS & BIT NAME & FUNCTION & VALUE (HEX) \\
\hline 00 & IDEL(7-0) & increment delay & 50 \\
\hline 01 & HSYB(7-0) & H sync beginning for 50 Hz & 30 \\
\hline 02 & HSYS(7-0) & H sync stop for 50 Hz & 00 \\
\hline 03 & HCLB(7-0) & H clamping beginning for 50 Hz & E8 \\
\hline 04 & HCLS(7-0) & H clamping stop for 50 Hz & B6 \\
\hline 05 & HPHI(7-0) & H sync position for 50 Hz & F4 \\
\hline 06 & BYPS, PREF, BPSS(1-0) & & \\
\hline & CORI(1-0), APER(1-0) & luminance bandwidth control: & 01(1) \\
\hline 07 & HUEC(7-0) & hue control (0 degree) & 00 \\
\hline 08 & CKTQ(4-0) & colour-killer threshold QUAM & F8 \\
\hline 09 & CKTS(4-0) & colour-killer threshold SECAM & F8 \\
\hline OA & PLSE(7-0) & PAL switch sensitivity & 90 \\
\hline OB & SESE(7-0) & SECAM switch sensitivity & 90 \\
\hline OC & COLO, LFIS(1-0) & chroma gain control settings & 00 \\
\hline OD & VTRC, NFEN, HRMV, & & \\
\hline & GPSW0 and SECS & standard/mode control & \(00^{(2)(4)}, 01^{(3)(4)}\) \\
\hline OE & HPLL, OEDC, OEHS, OEVS & & \\
\hline & OEDY, CHRS, GPSW(2-1) & I/O and clock control & 79, 7E \({ }^{(5)}\) \\
\hline OF & AUFD, FSEL, SXCR, SCEN, OFTS, YDEL(2-0) & miscellaneous control \#1 & 91(6), 99(7) \\
\hline 10 & HRFS, VNOI(1-0) & miscellaneous control \#2 & 00 \\
\hline 11 & CHCV(7-0) & chrominance gain nominal value & \(2 \mathrm{C}^{(8)}, 59^{(9)}\) \\
\hline 12 & - & set to zero & 00 \\
\hline 13 & - & set to zero & 00 \\
\hline 14 & HS6B(7-0) & H sync beginning for 60 Hz & 34 \\
\hline 15 & HS6S(7-0) & H sync stop for 60 Hz & OA \\
\hline 16 & HC6B(7-0) & H clamping beginning for 60 Hz & F4 \\
\hline 17 & HC6S(7-0) & H clamping stop for 60 Hz & CE \\
\hline 18 & HP6I(7-0) & H sync position for 60 Hz & F4 \\
\hline
\end{tabular}

\section*{Notes to Table 7}
(1) dependent on application (Figures 16 to 25)
(2) for QUAM standards
(3) for SECAM
(4) HPLL is in TV mode; value for VCR mode is 80 (81 for SECAM VCR mode)
(5) for Y/C mode
(6) \(4: 1: 1\) format
(7) 4:2:2 format
(8) nominal value for UV CCIR level with NTSC source
(9) nominal value for UV CCIR level with PAL source

\section*{Digital colour space converter}

\section*{FEATURES}
- Input formatter with: multiplexer
\(Y\)-dalay line
Cr and Cb interpolating filters
- Conversion matrix (acc. to CCIR 601)
- Video look-up tables (provide gamma correction)
- Pipeline delay line (horizontal reference signal)
- \({ }^{2} \mathrm{C}\)-bus interface

\section*{GENERAL DESCRIPTION}

The Digital Colour Space Converter (DCSC) is a digital matrix which is used to transform 16/24-bit digital input signals, i.e. \(Y\) (luminance), Cr (colour, R-Y) and Cb (colour, B-Y), into an RGB 24-bit format in accordance with the CCIR-601 recommendations.

Accepting inputs from the different formats of the DMSD2 decoder family, the device has a constant propagation delay and a maximum data rate of 16 MHz . A matched pipeline delay line is available to permit the HREF signal to be synchronized with the video data at the output.

QUICK REFERENCE DATA
\begin{tabular}{|l|l|c|c|c|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & MIN & MAX & UNIT \\
\hline\(V_{\text {DD }}\) & Supply voltage & -0.5 & 7 & V \\
\hline VI & input voltage & -0.5 & 7 & V \\
\hline VO & output voltage & -0.5 & 7 & V \\
\hline \(\mathrm{P}_{\text {tol }}\) & total power dissipation & - & 1.5 & W \\
\hline \(\mathrm{~T}_{\text {stg }}\) & storage temperature range & -65 & +150 & C \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature & 0 & +70 & C \\
\hline
\end{tabular}

\section*{ORDERING INFORMATION}
\begin{tabular}{|l|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
EXTENDED \\
TYPE NUMBER
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline SAA7192 & 68 & PLCC & plastic & \begin{tabular}{c}
SOT18-8AA, \\
AGA, CGS
\end{tabular} \\
\hline
\end{tabular}

\section*{BLOCK DIAGRAM}

Fig. 1 Block diagram.

PIN CONFIGURATION

Fig. 2 Pin configuration.

Digital colour space converter

PINNING
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline DATAIN (10-17) & \[
\begin{aligned}
& 16-17 \text { and } \\
& 20-25
\end{aligned}
\] & luminance signal Y (0-7) \\
\hline DATAIN (20-27) & 1-7 and 66 & colour difference signal \(\mathrm{Cr}(0-7)\) \\
\hline DATAIN (30-37) & 8-15 & colour difference signal \(\mathrm{Cb}(0-7)\) or multiplexed Cb and Cr \\
\hline DATAOUT (10-17) & \[
\begin{aligned}
& 30-34 \text { and } \\
& 37-39
\end{aligned}
\] & RED (0-7) \\
\hline DATAOUT (20-27) & 40-47 & GREEN (0-7) \\
\hline DATAOUT (30-37) & \[
\begin{aligned}
& 48-50 \text { and } \\
& 53-57
\end{aligned}
\] & BLUE (0-7) \\
\hline RESET & 26 & initially resets the functions \\
\hline HREF_OUT & 58 & delayed horizontal reference signal \\
\hline CLK_MODE & 59 & 16 MHz or DMSD clock mode selection \\
\hline TEST & 60 & test mode, usually not connected \\
\hline \(\overline{\text { OE }}\) & 61 & output enable (fast switch) \\
\hline VLUTBYPASS & 62 & fast switch to operate the VLUTs in bypass \\
\hline CLOCK & 63 & system clock \\
\hline CREF & 64 & clock reference signal (DMSD mode) \\
\hline HREF & 65 & horizontal reference signal \\
\hline \(\mathrm{V}_{\mathrm{DD}}\) & \[
\begin{aligned}
& 18,67 \\
& 35,51
\end{aligned}
\] & positive supply, voltage core (+ 5 V) positive supply voltage, output stages (+5 V) \\
\hline \(V_{S S}\) & \[
\begin{aligned}
& 19,68 \\
& 36,52
\end{aligned}
\] & negative supply, voltage core (ground) negative supply, output stages \\
\hline \({ }^{12} \mathrm{C}\)-bus ADDRESS & 27 & \(1{ }^{2} \mathrm{C}\)-bus SLAVE ADDRESS selection \\
\hline SCL & 28 & \(1{ }^{2} \mathrm{C}\)-bus SERIAL CLOCK input \\
\hline SDA & 29 & \(1^{2} \mathrm{C}\)-bus SERIAL DATA input \\
\hline
\end{tabular}

\section*{Note}

All DATAIN and DATAOUT busses count from 0 (LSB) to 7 (MSB).

\section*{Functional modes}

Table 1 Functional Modes
\begin{tabular}{|c|l|}
\hline MODE & \multicolumn{1}{|c|}{ FUNCTION } \\
\hline 1 & \(4: 1: 1\) filter, no matrix, no VLUT; DATAOUT = upsampled DATAIN \\
\hline 2 & \(4: 1: 1\) filter, matrix, no VLUT; DATAOUT = RGB \\
\hline 3 & \begin{tabular}{l}
\(4: 1: 1\) filter, no matrix, VLUT; DATAOUT = upsampled DATAIN multiplied by the factor \\
loaded into the VLUT
\end{tabular} \\
\hline 4 & \(4: 1: 1\) filter, matrix, VLUT; DATAOUT = RGB multiplied by the factor loaded into the VLUT \\
\hline 5 & \(4: 2: 2\) filter, no matrix, no VLUT; DATAOUT = upsampled DATAIN \\
\hline 6 & \(4: 2: 2\) filter, matrix, no VLUT; DATAOUT = RGB \\
\hline 7 & \begin{tabular}{l}
\(4: 2: 2\) filter, no matrix, VLUT; DATAOUT = upsampled DATAIN multiplied by the factor \\
loaded into the VLUT
\end{tabular} \\
\hline 8 & \(4: 2: 2\) filter, matrix, VLUT; DATAOUT = RGB multiplied by the factor loaded into the VLUT \\
\hline 9 & no filter, no matrix, no VLUT; DATAOUT = DATAIN "Process Bypass" \\
\hline 10 & no filter, matrix, no VLUT; DATAOUT = RGB. \\
\hline 11 & \begin{tabular}{l}
no filter, no matrix, VLUT; DATAOUT = DATAIN multiplied by the factor loaded into the \\
VLUT.
\end{tabular} \\
\hline 12 & no filter, matrix, VLUT; DATAOUT = RGB multiplied by the factor loaded into the VLUT \\
\hline
\end{tabular}

\section*{Note}

Figures 3 to 10 illustrate the various functional modes.

Fig. 3 Functional mode 1 and 5.

Fig. 4 Functional mode 2 and 6.

Fig. 5 Functional mode 3 and 7.

Fig. 6 Functional mode 4 and 8.

Fig. 7 Functional mode 9.

Fig. 8 Functional mode 10.

Fig. 9 Functional mode 11.

Fig. 10 Functional mode 12 .

\section*{Control facilities}

After power-up all device internal control signais are at undefined values. The \(I^{2} \mathrm{C}\)-bus receiver must, therefore, be reset by using the external RESET signal.

Table \(21^{2} \mathrm{C}\)-bus control signals (subadd 00 H) after an external RESET is received
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & \multicolumn{1}{c|}{ BIT } & \multicolumn{1}{c|}{ STATUS } \\
\hline IICOE & D5 & \(=1 ; \overline{\text { OE pin } 61 \text { enabled }}\) \\
FMTCNTRL & D0-D2 & \(=4 ;\) format \(4: 4: 4\) \\
\hline MATBYPASS & D3 & \(=0 ;\) matrix by-passed \\
INRESET & D4 & \(=0 ;\) input data set to fixed values \\
\hline
\end{tabular}

Table 3 Input formats and functional modes
\begin{tabular}{|c|c|c|c|}
\hline FMTCNTRL & MATBYPASS & VLUTBYPASS & FUNCTIONS \\
\hline 000 & 0 & 0 & mode 1 , input format 0 (DMSD2 format) \\
\hline 000 & 1 & 0 & mode 2, input format 0 (DMSD2 format) \\
\hline 001 & 0 & 0 & mode 1, input format 1 \\
\hline 001 & 1 & 0 & mode 2, input format 1 \\
\hline 010 & 0 & 0 & mode 5, input format 2 (DMSD2 format) \\
\hline 010 & 1 & 0 & mode 6, input format 2 (DMSD2 format) \\
\hline 011 & 0 & 0 & mode 5, input format 3 (paraliel IN) \\
\hline 011 & 1 & 0 & mode 6, input format 3 (parallel IN) \\
\hline 100 & 0 & 0 & mode 9, input format 4 (parallel IN) \\
\hline 100 & 1 & 0 & mode 10, input format 4 (parallel IN) \\
\hline x & X & 1 & each of the above described modes will be multiplied by the factor loaded into the VLUT. \\
\hline
\end{tabular}

\section*{Note}

The modes are given in Table 1.

The other control signals are:
\begin{tabular}{rl}
INRESET & \(=\) logic \(1 \quad:\)\begin{tabular}{l}
input latches at the formatter are \\
always transparent \\
at the end of each active video line
\end{tabular} \\
& \(=\) logic \(0:\)\begin{tabular}{l}
the input latches have to be set to \\
fixed values (Y to \(16 ; \mathrm{Cr}\) and Cb to \\
\(128 ;\) if HREF = 0\()\)
\end{tabular} \\
CLK_MODE \(=\quad\) logic \(1 \quad: \quad\)\begin{tabular}{l}
DMSD mode (LL27 clock of DMSD \\
feeds the DCSC) \\
DCSC is fed by a maximum 16 MHz \\
clock without CREF signal.
\end{tabular}
\end{tabular}

Table 4 Output enable control
\begin{tabular}{|c|c|l|}
\hline IICOE & \(\overline{\mathbf{O E}}\) & \multicolumn{1}{|c|}{ CONTROL LINE TO DRIVER STAGES } \\
\hline 0 & X & 1 = DATAOUT in high impedance mode \\
\hline 1 & 1 & 1 = DATAOUT in high impedance mode \\
\hline 1 & 0 & 0 = DATAOUT working \\
\hline
\end{tabular}

\section*{Notes}

IICOE : D5; output enable control of \(\mathrm{I}_{2} \mathrm{C}\)-bus (enables \(\overline{\mathrm{OE}}\))
\(\overline{\mathrm{OE}}\) : pin 61 ; output enable (fast switch)

\section*{SYSTEM I/O INTERFACES}

\section*{Input signals}

Table 5 Format 0 (4:1:1, semi-parallel, DMSD2 decoder family format)
\begin{tabular}{|l|l|}
\hline DATAIN1 - Y & luminance signal, 8-bit \\
\hline Sampling frequency & 12 to 16 MHz \\
\hline Level & 0 IRE; black, quantization level 16 100 IRE; white, quantization level 235 \\
\hline DATAIN3 - U, V & multiplexed colour difference signals 4-bit; corresponds to UV7 to UV4 of DMSD2 \\
\hline Sampling frequency & \(1 / 4\) of the Y signal \\
\hline Level & \begin{tabular}{l}
bottom peak; quantization level 16 top peak; quantization level 240 \\
colourless; quantization level 128
\end{tabular} \\
\hline DATAIN2 & not used \\
\hline
\end{tabular}

Table 6 Timing of Format 0; pin (DATAIN) and bit (\(\mathrm{U}, \mathrm{V}\)) numbers are indicated except clock
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline\(Y ; 7\) to 0 & \(Y\) \\
\hline DATAIN 37 & \(U 7\) & \(U 5\) & \(U 3\) & \(U 1\) & \(U 7\) & \(U 5\) & \(U 3\) \\
\hline DATAIN 36 & \(U 6\) & \(U 4\) & \(U 2\) & \(U 0\) & \(U 6\) & \(U 4\) & \(U 2\) \\
\hline DATAIN 35 & \(V 7\) & \(V 5\) & \(V 3\) & \(V 1\) & \(V 7\) & \(V 5\) & \(V 3\) \\
\hline DATAIN 34 & \(V 6\) & \(V 4\) & \(V 2\) & \(V 0\) & \(V 6\) & \(V 4\) & \(V 2\) \\
\hline Clock A & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
\end{tabular}

\section*{Note}

Clock_A is the internal sampling clock of the system. The clock rate of the DMSD and the DCSC is twice that of Clock_A in this mode.

Table 7 Format 1 (4:1:1, semi-parallel, customized format)
\begin{tabular}{|l|l|}
\hline DATAIN1 - Y & luminance signal; 8-bit \\
\hline Sampling frequency & 12 to 16 MHz \\
\hline Level & 0 IRE; black; quantization level 16 100 IRE; white; quantization level 235 \\
\hline DATAIN3 - Cr, Cb & multiplexed colour difference signals, 8-bit \\
\hline Sampling frequency & \(1 / 4\) of the Y signal \\
\hline Level & \begin{tabular}{l}
bottom peak; quantization level 16 top peak; quantization level 240 \\
colourless; quantization level 128
\end{tabular} \\
\hline DATAIN2 & not used \\
\hline
\end{tabular}

Digital colour space converter

Table 8 Timing of Format 1; the indices show the clock (sample) number
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline Y & Y 0 & Y 1 & Y 2 & Y 3 & Y 4 & Y 5 & Y 6 \\
\hline \(\mathrm{Cr}, \mathrm{Cb}\) & \(\mathrm{Cb0}\) & & CrO & & Cb 4 & & Cr 4 \\
\hline Clock A & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\end{tabular}

\section*{Note}

Clock_A is the internal sampling clock of the system. The external CLOCK may differ from the CLK_MODE.
Table 9 Format 2 (4:2:2, semi-parallel, DMSD2 format)
\begin{tabular}{|l|l|}
\hline DATAIN1 Y & luminance signal; 8-bit \\
\hline Sampling frequency & 12 to 16 MHz \\
\hline Level & 0 IRE; black; quantization level 16 100 IRE; white; quantization level 235 \\
\hline DATAIN3 - Cr, Cb & multiplexed colour difference signals; corresponds to UV7 to UVO of DMSD2 \\
\hline Sampling frequency & \(1 / 2\) of the Y signal \\
\hline Level & \begin{tabular}{l}
bottom peak; quantization level 16 top peak; quantization level 240 \\
colourless; quantization level 128
\end{tabular} \\
\hline DATAIN2 & not used \\
\hline
\end{tabular}

Table 10 Timing of Format 2
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline Y & Y 0 & Y 1 & Y 2 & Y 3 & Y 4 & Y 5 & Y 6 \\
\hline \(\mathrm{Cr}, \mathrm{Cb}\) & Cb 0 & Cr 0 & Cb 2 & Cr 2 & Cb 4 & Cr 4 & Cb 6 \\
\hline Clock A & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\end{tabular}

\section*{Note}

Clock_A is the internal sampling clock of the system. The clock of the DMSD (also the CLOCK of the DCSC) is twice that of Clock_A in this mode.

Table 11 Format 3 (4:2:2, Y-Cr-Cb, parallel)
\begin{tabular}{|l|l|}
\hline DATAIN1 - Y & luminance signal; 8-bit \\
\hline Sampling frequency & 12 to 16 MHz \\
\hline Level & 0 IRE; black; quantization level 16 100 IRE; white; quantization level 235 \\
\hline DATAIN3 - Cb & colour difference signal B-Y, 8-bit \\
\hline Sampling frequency & \(1 / 2\) of the Y signal \\
\hline Level & \begin{tabular}{l}
bottom peak; quantization level 16 top peak; quantization level 240 \\
colourless; quantization level 128
\end{tabular} \\
\hline DATAIN2 - Cr & colour difference signal R-Y, 8-bit \\
\hline Sampling frequency & \(1 / 2\) of the Y signal \\
\hline Level & \begin{tabular}{l}
bottom peak; quantization level 16 top peak; quantization level 240 \\
colourless; quantization level 128
\end{tabular} \\
\hline
\end{tabular}

Table 12 Timing of Format 3
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline\(Y\) & Y 0 & Y 1 & Y 2 & Y 3 & Y 4 & Y 5 & Y 6 \\
\hline Cb & \(\mathrm{Cb0}\) & & Cb 2 & & Cb 4 & & Cb 6 \\
\hline Cr & Cr 0 & & Cr 2 & & Cr 4 & & Cr 6 \\
\hline Clock A & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\end{tabular}

\section*{Note}

Clock_A is the internal sampling clock of the system. The external CLOCK may differ from the CLK_MODE.
Table 13 Format 4 (4:4:4, Y-Cr-Cb, parallel)
\begin{tabular}{|l|l|}
\hline DATAIN2 - Cr & colour difference signal R-Y, 8-bit \\
\hline Sampling frequency & as the Y signal \\
\hline Level & bottom peak; quantization level 16 top peak; quantization level 240 colourless, binary 128 \\
\hline DATAIN3-Cb & colour difference signal B-Y, 8-bit \\
\hline Sampling frequency & as the Y signal \\
\hline Level & \begin{tabular}{l}
bottom peak; quantization level 16 top peak; quantization level 240 \\
colourless; quantization level 128
\end{tabular} \\
\hline DATAIN1-Y & luminance signal; 8-bit \\
\hline Sampling frequency & 12 to 16 MHz \\
\hline Level & O IRE; black; quantization level 16 100 IRE; white; quantization level 235 \\
\hline
\end{tabular}

\section*{VIDEO DATA (DATAIN)}

Table 14 Timing of Format 4
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline\(Y\) & Y 0 & Y 1 & Y 2 & Y 3 & Y 4 & Y 5 & Y 6 \\
\hline Cb & Cb 0 & Cb 1 & Cb 2 & Cb 3 & Cb 4 & Cb 5 & Cb 6 \\
\hline Cr & Cr 0 & Cr 1 & Cr 2 & Cr 3 & Cr 4 & Cr 5 & Cr 6 \\
\hline Clock A & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\end{tabular}

\section*{Note}

Clock_A is the internal sampling clock of the system. The external CLOCK may differ from CLK_MODE.

\section*{CONTROL DATA}

\section*{Clock}

The CLK-Mode signal is used to select the frequency of the system clock (denoted as CLOCK at the DCSC input) and may be chosen from two different Clock Modes.

16 MHz-Mode:
DCSC is used in any environment except that of the DMSD2 decoder family. The clock reference signal (CREF) is internally set HIGH in value.

The maximum CLOCK frequency is 16 MHz .

DMSD-Mode:
DCSC is used in a DMSD environment.

The CLOCK signal (LL27) and the CREF signal are fed by the clock generator circuit
(SAA7157/SAA7197) and the line
locked clock LL27 (denoted as CLOCK at the DCSC input) is twice the data rate of that specified for the DMSD2 family of decoders. The data rate is denoted as CLOCK_A in Tables 6, 8, 10, 12 and 14.

The data rate on the input (DATAIN) is as follows:

> 12.2727 MHz; 60 Hz signals (from SAA 7191) 13.5 MHz; CCIR signals (from SAA7151)
> 14.75 MHz; 50 Hz signals (from SAA7191)
> 16.0 MHz; maximum frequency

\section*{Timing Reference}

The timing reference signal from the SAA7151/7191 is used to synchronize the multiplexer and refers to the LL27 clock. Each alternative positive slope, marked by a CREF signal, is used to obtain data.

The horizontal reference signal, HREF, indicates the active part of a line and also synchronizes the multiplexer.

CREF The clock reference signal is a clock qualifier signal distributed by the clock generator of the DMSD system. The frequency is identical to the sample rates denoted in the input and the output formats (see Video data and Operating conditions).
HREF Horizontal reference signal is the line reference signal of the YUV-bus. A positive slope marks the beginning of the active part of a line. The length of the active part corresponds to the number of samples (see Operating conditions).

Table 15 Real-time control signals
\begin{tabular}{|c|c|c|c|}
\hline \(\bar{O} \bar{E}\) & pin 61 & \[
\begin{aligned}
& =1: \\
& =0:
\end{aligned}
\] & switches the output to high-z mode output enable, output stage in use \\
\hline VL̄UTBY「PĀSS & pin 62 & \[
\begin{aligned}
& =1: \\
& =0:
\end{aligned}
\] & \begin{tabular}{l}
VLUT's in use \\
VLUT's bypassed
\end{tabular} \\
\hline RESET & pin 26 & \[
\begin{aligned}
& =1: \\
& =0:
\end{aligned}
\] & device in use general reset \\
\hline CLK_MODE & pin 59 & \[
\begin{aligned}
& =1: \\
& =0:
\end{aligned}
\] & DMSD mode (LL27 clock of DMSD feeds the DCSC) DCSC is fed by a clock signal with a maximum data rate of 16 MHz (without CREF signal). \\
\hline
\end{tabular}

Table \(16 I^{2} \mathrm{C}\)-bus controls (sub-add. VLUTDATA)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ VLUTDATA FED TO } & \multicolumn{1}{c|}{ SUB-ADD } \\
\hline RAM 1 (RED) & 01 H \\
\hline RAM 2 (GREEN) & 02 H \\
\hline RAM 3 (BLUE) & 03 H \\
\hline RAM 1, 2, 3 & 04 H \\
\hline
\end{tabular}

\section*{Note}

See also example of VLUT programming Fig. 23.

Table \(171^{2} \mathrm{C}\)-bus controls (sub-add. 00 H)
\begin{tabular}{|c|c|c|c|}
\hline FMTCNTRL & D0-D2 & \[
\begin{aligned}
& =000: \\
& =001: \\
& =010: \\
& =011: \\
& =100: \\
& =101: \\
& =110: \\
& =111:
\end{aligned}
\] & \begin{tabular}{l}
4:1:1 format, DMSD2 format \\
4:1:1 format, customized format \\
4:2:2 format, from DMSD2 \\
4:2:2 format, parallel \\
4:4:4 format, parallel \\
not used \\
not used \\
not used
\end{tabular} \\
\hline \(\overline{\text { MATBYPASS }}\) & D3 & \[
\begin{aligned}
& =1: \\
& =0:
\end{aligned}
\] & matrix in use matrix bypassed \\
\hline INRESET & D4 & \[
\begin{aligned}
& =1: \\
& =0:
\end{aligned}
\] & input latches at the formatter are always transparent at the end of each active video line the input latches have to be set to fixed values (Y to 16 ; \(\mathrm{Cr}, \mathrm{Cb}\) to 128 ; if \(\mathrm{HREF}=0\)) \\
\hline IICOE & & \[
\begin{aligned}
& \text { D5 = } 1: \\
& =0:
\end{aligned}
\] & \(\overline{\mathrm{OE}}\) enabled switches the output to high impedance mode \\
\hline
\end{tabular}

\section*{OUTPUT SIGNALS}

\section*{Video data}

Table 19 Timing of DATAOUT (R-G-B if matrix in use)
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline Timing: \\
the indices show the clock sample number \\
\hline DATAOUT1 : & R0 & R1 & R2 & R3 & R4 & R5 & R6 \\
\hline DATAOUT2 : & G0 & G1 & G2 & G3 & G4 & G5 & G6 \\
\hline DATAOUT3 : & B0 & B1 & B2 & B3 & B4 & B5 & B6 \\
\hline Clock_A: & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\end{tabular}

\section*{Notes}

Clock_A is the internal sampling clock of the system. The system clock may differ from CLK-MODE.
\(\overline{\mathrm{OE}}\) (output enable, fast switch, active LOW) and IICOE (\({ }^{2} \mathrm{C}\)-bus output enable, active HIGH) will switch the DATAOUT lines in high-z or normal mode.
See also Fig. 14.

\section*{Auxiliary data}

Pipelined external reference signal HREF_OUT (delayed HREF).

The delay line (wordlength 1-bit) has the same duration as the signal processing of the video data lines.

\section*{OPERATING CONDITIONS}

\section*{Electrical Conditions}

Start-up condition
No particular function except the external power-on-reset e.g. for \(1^{2} \mathrm{C}\)-bus interface (RESET) is intended.

Operating time
As this device will be used in computers, it has been designed to operate continuously.

\section*{Handling}

Inputs and outputs are protected against electrostatic discharge during normal handling. It is desirable, however, to observe normal handling precautions appropriate to MOS devices.

\section*{Temperature range}

Refer to the characteristics.

\section*{Backup}

No internal backup capability (standby) is provided.

\section*{POWER DOWN MODE}

No internal power-down capability is provided.

Digital colour space converter
SAA7192A

\section*{LIMITING VALUES}
\begin{tabular}{|l|l|c|c|c|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & MIN & MAX & UNIT \\
\hline\(V_{\text {DD }}\) & Supply voltage & -0.5 & 7 & V \\
\hline VI & input voltage & -0.5 & 7 & V \\
\hline VO & output voltage & -0.5 & 7 & V \\
\hline \(\mathrm{P}_{\text {tot }}\) & total power dissipation & - & 1.5 & W \\
\hline \(\mathrm{~T}_{\text {stg }}\) & storage temperature range & -65 & +150 & C \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature & 0 & +70 & C \\
\hline
\end{tabular}

CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITION & MIN & MAX & UNIT \\
\hline \(V_{D D}\) & supply voltage & & 4.5 & 5.5 & \(V\) \\
\hline ldo & supply current & note 1 & - & 150 & mA \\
\hline \multicolumn{6}{|l|}{Inputs} \\
\hline \(V_{\text {IL }}\)

\(V_{\text {IH }}\)

\(L_{L}\)
\(C_{\text {I }}\) & input voltage LOW
\[\)\begin{tabular}{l}
\text { SDA, SCL } \\
\text { any other }
\end{tabular}
\]
input voltage HIGH
SDA, SCL
any other
input leakage current
input capacitance & note 2 & \[
\begin{array}{r}
-0.5 \\
-0.5 \\
3 \\
2
\end{array}
\] & \[
\begin{gathered}
1.5 \\
0.8 \\
\\
V_{D D}+0.5 \\
V_{D D}+0.5 \\
10 \\
10 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
V \\
V \\
V \\
V \\
\(\mu \mathrm{A}\) pF
\end{tabular} \\
\hline \multicolumn{6}{|l|}{Outputs} \\
\hline \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OH}}\) \\
\(V_{\mathrm{oL}}\) \\
\(\mathrm{IOH}_{\mathrm{OH}}\) \\
lol \\
\(C_{L d}\) \\
lo
\end{tabular} & \begin{tabular}{ll}
output voltage & \\
& HIGH (any) \\
& LOW (SDA) \\
LOW (any other) \\
output current \\
& HIGH (any) \\
& LOW (SDA) \\
LOW (any other \\
output load capacitance \\
output leakage current
\end{tabular} & & \[
\begin{gathered}
2.4 \\
0 \\
0
\end{gathered}
\] & \[
\begin{gathered}
V_{D D} \\
0.4 \\
0.4 \\
4 \\
4 \\
3 \\
4 \\
40 \\
10
\end{gathered}
\] & \begin{tabular}{l}
V \\
V \\
V \\
mA \\
mA \\
mA \\
pF \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Notes}

1 The supply current may vary between 30 and 150 mA depending upon the input data. The minimum may be achieved with \(\overline{O E}\) disabled and no clock
2 All inputs except TEST (internal pull-up resistor).

Digital colour space converter
SAA7192A

TIMING CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITION & MIN & TYP & MAX & UNIT \\
\hline \(t_{\text {c27 }}\) & \begin{tabular}{l}
propagation delay \\
CLOCK (DMSD-mode, LL27) : \\
cycle time \\
duty cycle
\end{tabular} & \begin{tabular}{l}
note 2 \\
note 3
\end{tabular} & \[
\begin{aligned}
& 31 \\
& 40
\end{aligned}
\] & \[
26
\] & \[
\begin{aligned}
& 45 \\
& 60
\end{aligned}
\] & \begin{tabular}{l}
\(\mathrm{t}_{\mathrm{C} 16}\) \\
ns \\
\%
\end{tabular} \\
\hline \[
\begin{aligned}
& t_{\mathrm{C} 16} \\
& t_{\mathrm{tCDL}} \\
& \mathrm{t}_{\mathrm{CDH}}
\end{aligned}
\] & \[
\begin{array}{r}
\text { CLOCK (16 } \mathrm{MHz} \text {-mode) : } \\
\text { cycle time } \\
\text { duty time LOW } \\
\text { duty time HIGH }
\end{array}
\] & note 4 & \[
\begin{aligned}
& 62 \\
& 30 \\
& 16
\end{aligned}
\] & & \[
83
\] & ns ns ns \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{tc}} \\
& \mathrm{t}_{\mathrm{CH}}
\end{aligned}
\] & \begin{tabular}{l}
CREF \\
set-up time hold time
\end{tabular} & & \[
\begin{gathered}
11 \\
3
\end{gathered}
\] & & & \[
\begin{aligned}
& \text { ns } \\
& \text { ns }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{HS}} \\
& \mathrm{t}_{\mathrm{HH}}
\end{aligned}
\] & \begin{tabular}{l}
HREF \\
set-up time hold time
\end{tabular} & & \[
\begin{gathered}
11 \\
3
\end{gathered}
\] & & & \[
\begin{aligned}
& \text { ns } \\
& \text { ns }
\end{aligned}
\] \\
\hline \(\mathrm{t}_{\mathrm{RH}}\) & RESEThold time & & \multicolumn{4}{|c|}{4 clock periods} \\
\hline \[
\begin{aligned}
& \text { tvs } \\
& \text { tive }
\end{aligned}
\] & \begin{tabular}{l}
VIUTBYPASS \\
set-up time hold time
\end{tabular} & note 5 & \[
\begin{aligned}
& 8 \\
& 0
\end{aligned}
\] & & & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns}
\end{aligned}
\] \\
\hline & CLK_MODE set-up time & & \multicolumn{4}{|c|}{must be set before RESET} \\
\hline & \(1^{2} \mathrm{C}\)-bus address set-up time & & \multicolumn{4}{|c|}{must be set before \(\overline{\mathrm{RESET}}\)} \\
\hline \[
\begin{aligned}
& t_{s u} \\
& t_{\text {HD }}
\end{aligned}
\] & \begin{tabular}{l}
DATAIN \\
set-up time hold time
\end{tabular} & & \[
\begin{gathered}
11 \\
3
\end{gathered}
\] & & & \[
\begin{aligned}
& \text { ns } \\
& \text { ns }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{os}} \\
& \mathrm{t}_{\mathrm{OH}}
\end{aligned}
\] & \begin{tabular}{l}
DATAOUT \\
set-up time hold time
\end{tabular} & & \[
\begin{aligned}
& 10 \\
& 10
\end{aligned}
\] & & & \[
\begin{aligned}
& \text { ns } \\
& \text { ns }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{OHS}} \\
& \mathrm{t}_{\mathrm{OH}}
\end{aligned}
\] & \begin{tabular}{l}
HREF_OUT \\
set-up time hold time
\end{tabular} & * & \[
\begin{gathered}
9 \\
10
\end{gathered}
\] & & & \[
\begin{aligned}
& \text { ns } \\
& \text { ns }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{HZ}} \\
& \mathrm{t}_{\mathrm{ZH}}
\end{aligned}
\] & output disable time (to tri-state) output enable time (from tri-state) & & - & \[
\begin{aligned}
& 10 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 21
\end{aligned}
\] & \[
\begin{aligned}
& \text { ns } \\
& \text { ns }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Notes}

1 Typical ratings are measured at \(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}\) and \(25^{\circ} \mathrm{C}\) room temperature
2 Denotes the delay in clock periods between DATAIN and DATAOUT
3 DMSD-mode designates that the DCSC will workin a DMSD environment. The CLOCK and the clock reference signal CREF will be fed by the SCGC (SAA7157). This is further explained in the following diagrams.
416 MHz -mode indicates that the DCSC will work in any other environment. The CREF signal will be set internally to HIGH, the CLOCK signal can be any clock up to 16 MHz (see also Fig. 15.
5 Must be set one clock period before DATAOUT.

Fig. 12 Timing diagram input.

Fig. 13 Timing diagram input (16 MHz mode).

\(\overline{\text { OE will also affect HREF_OUT }}\)

Fig. 14 Timing diagram output.

\section*{Error condition}

To inhibit unwanted operations, no information signal is available to the peripheral circuits. In the advent of an error the system must be re-started by application of the \(\overline{R E S E T}\) signal.

VLUTBYPASS must be supplied one clock pulse in advance of the desired DATAOUT lines reaction.

Fig. 15 Timing diagram VLUTBYPASS

\section*{SYSTEM BLOCK DESCRIPTION}

\section*{Input formatter}

The formatter consists of five functional blocks:
- the multiplexer, which decodes the luminance and chrominance input signals
- the filter, which interpolates the samples of the incoming signal to get an upsampled data rate as at DATAIN1
- the luminance delay line
- the timing control which creates the internal reference signals from the various inputs
- the bypass output multiplexer

The data applied at DATAIN1 to DATAIN3 is converted as follows;

FIL1: Y Luminance
FIL2 : Cr colour-difference signal R-Y
FIL3 : Cb colour-difference signal
B-Y

Fig. 16 Input formatter.

\section*{Filter and delay line}

In the various functional modes the signal FMTCNTRL switches in the required filters (FMTCNTRL is described in 'Control data'). In all modes the same propagation delay will be realized, (the reference is CbO , respective to \(U 7\) with format 0).
At all frequencies and in all formats, there is a delay line to compensate for the delay of the signal processing time needed in the chrominance section.

\section*{CHROMINANCE FILTER}

The filter for the Cr and Cb signal is realized in one filter design.

Format 1, 2
4:1:1
An interpolating filter is inserted to convert the original sampling frequency to the sampling frequency of the luminance signal i.e. four times that of the colour signal. Figure 17 illustrates the frequency response of the chrominance section.

Format 3, 4
4:2:2
An interpolating filter is inserted to convert the original sampling frequency to the sampling frequency of the luminance signal i.e. twice the colour signal. Figure 18 illustrates the frequency response of the chrominance section.

Format 5
4:4:4
A bypass with a specified delay is inserted.

Fig. 17 Frequency response of \(4: 1: 1\) filter.

Fig. 18 Frequency response of 4:2:2 filter

\section*{CONVERSION MATRIX}

Fig. 19 MATRIX block diagram.

The properties of the conversion matrix are as follows:
- the conversion equations are (according to CCIR 601, with respect to the different quantisation on \(\mathrm{Y}, \mathrm{Cb}\) and Cr);
Red \(=Y+1.371\) (\(\mathrm{Cr}-0.5\))
Green \(=\mathrm{Y}-0.698(\mathrm{Cr}-0.5)\) \(0.336(C b-0.5)\)
Blue \(=Y+1.732(\mathrm{Cb}-0.5)\)
- the accuracy of the signal processing is within \(\pm 0.5 \%\) of the accuracy of a theoretical conversion.
- the input and output data lines are 8-bit.
- in the advent of non-standard input levels, the limiter reduces the possible output data values to between 0 and 255.
- MATBYPASS switches the matrix in bypass. The bypass has the same propagation delay as the matrix itself.

\section*{VIDEO LOOK-UP TABLE AND OUTPUT STAGE}

Fig. 20 Block diagram video look up table.

Digital colour space converter

\section*{Functional description}

The VLUTLOAD will be set to the WRITE operation if one of the four addresses are received from the RAMs. VLUTLOAD will be set to the READ operation following reception of the last databyte.

VLUTSELECT provides selection of one VLUT according to the sub-address.

VLUTDATA contains the value for the address counter (VLUT_ADDRESS; the start address of the first byte to be written into the RAM) and the data for the RAMs, validated with DATAVALID.

The databytes will be loaded by an autoincrement function.
VLUTBYPASS will bypass the VLUT's in clock period time (real time switch).
In computer applications the VLUT is also known as a Colour Look-Up Table (CLUT).

In the DCSC this table might be used to invert the Gamma-correction of a camera. This correction is applied to compensate for the non-linear relationship between the video voltage applied to the cathode and the light output of the phosphor of a CRT.

The Gamma-correction function (also known as Gradation) is given as;
\(Y=X^{\gamma}\)
The VLUT's are realized by \(256 \times\) 8-bit RAMs.

\section*{I2C-bus RECEIVER}

The DCSC can be switched to different functional modes via the \(\mathrm{I}^{2} \mathrm{C}\)-bus receiver. The \(\mathrm{I}^{2} \mathrm{C}\)-bus receiver is also used to feed the VLUT RAMs with data.

Fig. 21 Block diagram of \(\mathrm{I}^{2} \mathrm{C}\)-bus receiver

\section*{\(\mathbf{I}^{2}\) C-bus Receiver Functional Description}

Following power-up, all internal control signals are at undefined values. The \(I^{2} \mathrm{C}\)-bus receiver must be reset by the external \(\overline{\text { RESET }}\) signal. Following \(\overline{\operatorname{RESET}}\) the control signals are set to:

FMTCNTRL : =
MATBYPASS \(:=\)
INRESET \(\quad:=\)
IICOE :=

100 format 4:4:4
0 matrix bypassed
0 input data set to fixed values
1 OE enabled

\section*{Receiver organisation}

Fig. 22 The address for the DCSC

The control byte

Fig. 23 The address of the control byte is \(00_{\text {HEX }}\)

In this example the control signals are set to:
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { FMTCNTR }:= \\
& L
\end{aligned}
\] & 2 & Format 3 & \[
\begin{aligned}
& \text { 4:2:2 } \\
& \text { DMSD }
\end{aligned}
\] \\
\hline \[
\overline{\overline{\text { MATBYPA }}}:=
\] & 1 & matrix in use & \\
\hline INRESET : \(=\) & 0 & input DATA at fixed values during HREF = 0 & \\
\hline llCOE : = & 1 & \(\overline{O E}\) enabled & \\
\hline
\end{tabular}

Table 20 Levels of the colour bar signal
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ CONDITION } & \(\mathbf{E}_{\mathbf{R}}^{\prime}\) & \(\mathbf{E}_{\mathbf{G}}\) & \(\mathbf{E}_{\mathbf{B}}\) & \(\mathbf{Y}\) & \(\mathbf{C}_{\mathbf{R}}\) & \(\mathbf{C}_{\mathbf{B}}\) & \(\mathbf{R}\) & \(\mathbf{G}\) & \(\mathbf{B}\) \\
\hline White & 1.0 & 1.0 & 1.0 & 235 & 128 & 128 & 235 & 235 & 235 \\
Black & 0 & 0 & 0 & 16 & 128 & 128 & 16 & 16 & 16 \\
Red & 1.0 & 0 & 0 & 82 & 240 & 90 & 236 & 17 & 16 \\
\hline Green & 0 & 1.0 & 0 & 145 & 34 & 54 & 16 & 236 & 17 \\
Blue & 0 & 0 & 1.0 & 41 & 110 & 240 & 16 & 16 & 235 \\
Yellow & 1.0 & 1.0 & 0 & 210 & 146 & 16 & 235 & 235 & 16 \\
Cyan & 0 & 1.0 & 1.0 & 170 & 16 & 166 & 16 & 235 & 236 \\
Magenta & 1.0 & 0 & 1.0 & 106 & 222 & 202 & 235 & 15 & 234 \\
\hline
\end{tabular}

\section*{Note}

The colour bar signal is described in CCIR 601, Rep. 629-2, Table 1. It can be used to check the nominal levels (at least for black and white) between the functional blocks of the DCSC.

Table 21 Control byte formats
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 & Functions \\
\hline x & X & X & X & X & 0 & 0 & 0 & input formatter at format 0 Filter switched to 4:1:1 filter \\
\hline x & X & X & x & x & 0 & 0 & 1 & \begin{tabular}{l}
input formatter at format 1 \\
Filter switched to 4:1:1 filter
\end{tabular} \\
\hline x & \(x\) & X & x & x & 0 & 1 & 0 & \begin{tabular}{l}
input formatter at format 2 \\
Filter switched to 4:2:2 filter
\end{tabular} \\
\hline x & X & x & x & x & 0 & 1 & 1 & \begin{tabular}{l}
input formatter at format 3 \\
Filter switched to 4:2:2 filter
\end{tabular} \\
\hline x & x & X & x & x & 1 & 0 & 0 & input formatter at format 4 Filter switched to bypass \\
\hline \(x\) & \(x\) & \(x\) & \(x\) & 0 & \(x\) & \(x\) & \(x\) & matrix bypassed \\
\hline x & x & x & x & 1 & \(x\) & \(x\) & \(x\) & matrix in use \\
\hline \(x\) & x & \(x\) & 0 & x & x & \(x\) & \(x\) & input data at fixed values \\
\hline x & x & x & 1 & x & x & x & \(x\) & input data to formatter \\
\hline \(x\) & \(x\) & 0 & \(x\) & x & x & \(x\) & x & output stages tri-state \\
\hline x & x & 1 & x & x & x & x & x & OE enabled \\
\hline
\end{tabular}

D0-D2
D3
D4
D5
D6
D7

FMTCONTROL MATBYPASS INRESET IICOE not used not used

\section*{VLUTDATA}

Four sub-addresses are implemented to convey data into the different VLUT RAMs. RAM can be addressed individually or together. The memory of each VLUT RAM can be addressed, e.g. if only parts of the data has to be changed.

Table 22 Sub-addresses VLUTDATA:
\begin{tabular}{|c|c|l|}
\hline SUB-ADDRESS & VLUT-ADDRESS & \multicolumn{1}{|c|}{ DATA BYTEs } \\
\hline 01 & \(\mathbf{x x}\) & VLUTDATA RAM 1 (RED) \\
02 & xx & VLUTDATA RAM 2 (GREEN) \\
03 & xx & VLUTDATA RAM 3 (BLUE) \\
04 & xx & VLUTDATA RAM 1, 2, 3 \\
\hline
\end{tabular}

\section*{Note}
(*) addresses in HEX representation

\(S:=\) Start
\(A:=\) Acknowledge
\(P:=\) Stop

Fig. 24 Sub-addresses VLUTDATA

\section*{\(1^{2}\) C-bus receiver timing examples}

The exact timing of the signals are described in the \(\mathrm{I}^{2} \mathrm{C}\)-bus specification. The addresses indicated in the FIG. 25 are in HEX representation.

Fig. 27 Application with DMSD2.

Fig. 28 Application with SAA9051.

\section*{Digital colour space converter}

\section*{APPLICATION}

The application is simple since the DCSC is designed to operate in conjunction with the DMSD2 decoder family.

Additional hardware is required to convert the level formats to permit the DCSC to be used with the older 7-bit version of the DMSD.

Due to the differing data formats between the SAA9051 and the SAA7192, the colour difference U and \(V\) signals must be converted from two's-complement to unipolar representation and the MSBs of the UV data must be inverted. Differing chrominance amplitudes are small and are not taken into account.

Additionally, the DATAIN10 (LSB of the Y -data) should be connected to ground and the DATAIN34 and DATAIN36 (LSBs of the UV data) should be connected to ground via a resistor to avoid noise at the LSBs.

\section*{GLOSSARY}

B
C
Cb
CCIR

CDS-System
CGC
CLUT
Cr
CREF
CVBS
DCSC
DIN
DMSD
G
HDTV
HREF
\(1^{2} \mathrm{C}\)-bus
IRT
IIC-DVP/SE

MIC-SE

RGB
R
SCL
SDA
SRC
Semiparallel
SERInet
VLUT
\(Y\)
YUV Bus
U
V
colour component of a video signal (BLUE)
coded colour components of a video signal (TV)
coded colour difference signal (digital B-Y)
Comite Consultatif International de Radiocommunication (International Radio Consultative Committee)
Chip Design System
Clock Generation Circuit
Colour Look Up Table (personal computer graphics)
coded colour difference signal (digital R-Y)
Clock Reference Signal; indicates the valid data samples of the DMSD
Composite Video Burst Synchron signal (TV)
Digital Colour Space Converter; converts the YUV signal to RGB
Deutsches Institut fuer Normung, Berlin
family of Digital Multi-standard Decoders, decodes YUV out of the CVBS signal.
colour component of a video signal (GREEN)
High Definition Television
Horizontal Line Reference signal
Inter-IC-Bus (Valvo network concept between controilers
Institut fuer RundfunkTechnik (Muenchen)
Philips Components RHW Hamburg, Department Industrial-ICs Video Products System Engineering
Philips Components RHW Hamburg, Department MOS-ICs System Engineering (now called IIC-DVP-SE)
components of a video signal (red, green, blue)
colour component of a video signal (RED)
clock line of the \(I^{2} C\)-bus
data line of the \(\mathrm{I}^{2} \mathrm{C}\)-bus
Sample Rate Converter
Chrominance data (multiplexed colour difference) parallel to luminance data
Signetics Elcoma Research ISA Network (Philips computer interconnection network)
Video Look Up Table. RAM to multiply video data with a factor
luminance signal (brightness of a video signal)
Component bus of the DMSD family
colour difference signal (coded video signal B-Y)
colour difference signal (coded video signal R-Y)

\section*{FEATURES}
- Digital 8-bit luminance input (video (Y) or CVBS)
- Digital 8-chrominance input (CVBS or C from CVBS, Y/C, S-Video (S-VHS or Hi8))
- Luminance and chrominance signal processing for main standards PAL, NTSC and SECAM
- Horizontal and vertical sync detection for all standards
- User programmable luminance peaking for aperture correction
- Compatible with memory-based features (line-locked clock, square pixel)
- Cross colour reduction by chrominance comb filtering for NTSC or special cross-colour cancellation for SECAM
- UV signal delay lines for PAL to correct chrominance phase errors
- Square -pixel format with 768/640 active samples per line
- The bidirectional Expansion Port (YUV-bus) supports data rates of \(780 \times \mathrm{f}_{\mathrm{H}}\) (NTSC) and \(944 \times f_{H}\) (PAL, SECAM) in 4:2:2 format
- Brightness, contrast, hue and saturation controls for scaled outputs
- Down-scaling of video windows with 1023 active samples per line and 1023 active lines per frame to randomly sized windows
- 2D data processing for improved signal quality of scaled luminance data, especially for compression applications
- Chroma key (\(\alpha\)-generation)
- YUV to RGB conversation including Anti-gamma ROM tables for RGB
- 16-word FIFO register for 32-bit output data
- Output configurable for 32/24/16-bit video data bus
- Scaled 16-bit 4:2:2 YUV output
- Scaled 15-bit RGB (5-5-5+ \(\alpha\)) and 24-bit (\(8-8-8+\alpha\)) output
- Scaled 8-bit monochrome output
- Line increment, field sequence (off/even, interlace/non-interlace) and vertical reset control for easy memory interfacing
- Output of discontinuous data bursts of scaled video data or continuous data output with corresponding qualifier signals
- Real-time status information
- \(I^{2} \mathrm{C}\)-bus control
- Only one crystal of 26.8 MHz

\section*{DESCRIPTION}

The CMOS circuit SAA7194, digital video decoder and scaler (DESC), is a highly integrated circuit for Desktop Video applications. It combines the functions of a digital video scaler (SAA7186).

The decoder is based on the principle of line-locked clock decoding. It runs at square-pixel frequencies to achieve correct aspect ratio.

Monitor controis are provided to ensure best display. Four data ports are supported:

Ports CVBS(7-0) and CHR(7-0) of the input interface are used in Y/C mode (Fig.1(a)) to
decode digitized luminance and chrominance signals (digitized in two external ADCs).

In normal mode, the CVBS(7-0) input is only used, and only one ADC is necessary. The 32-bit VRAM output port is interface to the video memory; it outputs the down-scaled video data. Different formats and operation modes are supported by this circuit.

The 16 -bit wide Expansion Port is a bidirectional port. In general, it establishes the digital YUV as known from the SAA71x1 family of digital decoders. In addition, the Expansion port is configurable to send data from the decoder unit or to accept external data fro input into the scaler. In input mode the clock rate and/or the sync signals may be delivered by the external data source.

Decoder and scaler units can run at different clock rates. The decoder processing always operates with a line locked clock (LLC). This clock is derived from the CVBS signal and is suited best for memory based video processing; the LLC clock is always present the scaler clock may be driven by the LLC clock or by an external clock depending on the configuration of the Expansion port.

The circuit is \(\mathrm{I}^{2} \mathrm{C}\)-bus-controlied. The \(\mathrm{I}^{2} \mathrm{C}\)-bus interface is clocked by LLC to ensure proper control.

The \(\mathrm{I}^{2} \mathrm{C}\)-bus control is divided into two sections:
- subaddress 00 h to 1 F for the decoder part
- subaddress 20h to 3F for the scaler part

The programming of the subaddresses for the scaler part becomes effective at the first vertical sync pulse VS after a transmission.

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
EXTENDED TYPE \\
NUMBER
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 6 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline SAA7194 & 120 & QFP & plastic & SOT349 AA1 \\
\hline
\end{tabular}

SAA7194 is a subset of SAA7196. In SAA7194, the internal CGC function is not available. Therefore, the pins 36, 37, 3840 and 42 are defined differently, as shown in the following table:
\begin{tabular}{|c|c|c|c|c|}
\hline SIGNAL NAME & PIN NUMBER & SAA7194 & \multicolumn{2}{|c|}{SAA7196} \\
\hline RESN & 36 & 1 & \multicolumn{2}{|c|}{\(\bigcirc\)} \\
\hline \multirow[t]{2}{*}{CGCE} & \multirow[t]{2}{*}{37} & \multirow[t]{2}{*}{\[
\begin{gathered}
! \\
!=\text { Low } \\
\text { needs to be grounded }
\end{gathered}
\]} & \multicolumn{2}{|c|}{1} \\
\hline & & & \begin{tabular}{l}
if grounded (LOW) \\
\(\Rightarrow\) internal CGC is disabled \\
IC functions like SAA7194
\end{tabular} & \begin{tabular}{l}
if pulled up (HIGH) \\
\(\Rightarrow\) internal CGC is enabled \\
full-function SAA7196
\end{tabular} \\
\hline CREF & 38 & 1 & 1 & 0 \\
\hline LiC & 40 & 1 & 1 & 0 \\
\hline LLC2 & 42 & O (reserved) & & \\
\hline
\end{tabular}

Fig. 34 Application of SAA7194.

\section*{1. FEATURES}
- Digital 8-bit luminance input (video (Y) or CVBS)
- Digital 8-bit chrominance input (CVBS or C from CVBS, Y/C, S-video (S-VHS or Hi8))
- Luminance and chrominance signal processing for main standards PAL. NTSC and SECAM
- Horizontal and vertical sync detection for all standards
- User programmable luminance peaking for aperture correction
- Compatible with memory-based features (linelocked clock, square pixel)
- Cross colour reduction by chrominance comb filtering for NTSC or special cross-colour cancellation for SECAM
- UV signal delay lines for PAL to correct chrominance phase errors
- Square-pixel format with 768/640 active samples per line
- The bidirectional Expansion Port (YUV-bus) supports data rates of \(780 \times f_{H}(\) NTSC \()\) and \(944 \times f_{H}\) (PAL, SECAM) in 4:2:2 format
- Brightness, contrast, hue and saturation controls for scaled outputs
- Down-scaling of video windows with 1023 active samples per line and 1023 active lines per frame to randomly sized windows
- 2D data processing for improved signal quality of scaled luminance data, especially for compression applications
- Chroma key (\(\alpha\)-generation)
- YUV to RGB conversation including Anti-gamma ROM tables for RGB
- 16-word output FIFO (32-bit words)
- Output configurable for 32/24/16-bit video data bus
- Scaled 16-bit 4:2:2 YUV output
- Scaled 15-bit RGB (5-5-5+ \(\alpha\)) and 24-bit (\(8-8-8+\alpha\)) output
- Scaled 8-bit monochrome output
- Line increment, field sequence (odd/even, inter-lace/non-interlace) and vertical reset control for easy memory interfacing
- Output of discontinuous data bursts of scaled video data or continuous data output with corresponding qualifier signals
- Real-time status information
- \(1^{2} \mathrm{C}\)-bus control
- Only one crystal of 26.8 MHz
- Clock generator on chip

\section*{2. GENERAL DESCRIPTION}

The CMOS circuit SAA7196, digital video decoder, scaler and clock generator (DESCPro), is a highly integrated circuit for DeskTop Video applications. It combines the functions of a digital multistandard decoder (SAA7191B), a digital video scaler (SAA7186) and a clock generator (SAA7197). The decoder is based on the principle of line-locked clock decoding. It runs at square-pixel frequencies to achieve correct aspect ratio.
Monitor controls are provided to ensure best display. Four data ports are supported:
Ports CVBS(7-0) and CHR(7-0) of the input interface are used in Y/C mode (Fig. 1(a) on page 5) to decode digitized luminace and chrominance signals (digitized in two external ADCs).
In normal mode, the CVBS(7-0) input is only used, and only one ADC is neccessary (Fig. 3 on page 12). The 32-bit VRAM output port is interface to the video memory; it outputs the down-scaled video data.
Different formats and operation modes are supported by this circuit.
The 16-bit wide Expansion Port is a bidirectional port. In general, it establishes the digital YUV as known from the SAA \(71 \times 1\) family of digital decoders. In addition, the Expansion port is configurable to send data from the decoder unit or to accept external data for input into the scaler. In input mode the clock rate and/or the sync signals may be delivered by the external data source.
Decoder and scaler units can run at different clock rates. The decoder processing always operates with a line locked clock (LLC). This clock is derived from the CVBS signal and is suited best for memory based video processing; the LLC clock is always present. The scaler clock may be driven by the LLC clock or by an external clock depending on the configuration of the Expansion port.
The circuit is \(\mathrm{I}^{2} \mathrm{C}\)-bus-controlled. The \(\mathrm{I}^{2} \mathrm{C}\)-bus interface is clocked by LLC to ensure proper control. The \(I^{2} \mathrm{C}\)-bus control is identical to that of SAA7194. It is divided into two sections:
- subaddress 00 h to 1 F for the decoder part (Tables 9 and 10)
- subaddress 20h to 3F for the scaler part (Tables 11 and 12)
The programming of the subaddresses for the scaler part becomes effective at the first vertical sync pulse VS after a transmission.
3. QUICK REFERENCE DATA
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN. & TYP. & MAX & UNIT \\
\hline\(V_{D D}\) & supply voltage & 4.5 & 5 & 5.5 & V \\
\hline \(\mathrm{I}_{\text {DD tot }}\) & total supply current & - & 180 & 280 & mA \\
\hline \(\mathrm{~V}_{1}\) & data input level & \multicolumn{3}{|c|}{ TTL-compatible } & \\
\hline \(\mathrm{V}_{\mathrm{O}}\) & data output level & \multicolumn{3}{|c|}{ TTL-compatible } & \\
\hline LLC & input clock frequency & - & - & 32 & MHz \\
\hline \(\mathrm{T}_{\text {amb }}\) & \begin{tabular}{c}
operating ambient tem- \\
perature range
\end{tabular} & 0 & - & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
4. ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
EXTENDED TYPE \\
NUMBER
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline SAA7196 & 120 & QFP & plastic & SOT349 AA1 \\
\hline
\end{tabular}

5. BLOCK DIAGRAM
Fig.1(a) Block diagram of decoder part; (continued in Fig.1(b) on page 6).

Fig.1(b) Block diagram of brightness, contrast, saturation controls and scaler part; (continued from Fig. 1 (a) on page 5).

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}

\section*{6. PINNING}
\begin{tabular}{|c|c|c|c|}
\hline SYMBOL & PIN & STATUS & DESCRIPTION \\
\hline XTAL & 1 & \(\bigcirc\) & 26.8 MHz crystal oscillator output, not used if TTL clock signal is used \\
\hline xtaLI & 2 & 1 & 26.8 MHz crystal oscillator input or external clock input (TTL, squarewave) \\
\hline SDA & 3 & \(1 / 0\) & \(1^{2} \mathrm{C}\)-bus data line \\
\hline SCL & 4 & 1 & \({ }^{2} \mathrm{C}\)-bus clock line \\
\hline IICSA & 5 & 1 & \(\mathrm{I}^{2} \mathrm{C}\)-bus set address \\
\hline CHRO & 6 & 1 & \\
\hline CHR1 & 7 & 1 & \\
\hline CHR2 & 8 & 1 & \\
\hline CHR3 & 9 & 1 & digital chrominance input signal (bits 0 to 7) \\
\hline CHR4 & 10 & 1 & \\
\hline CHR5 & 11 & 1 & \\
\hline CHR6 & 12 & 1 & \\
\hline CHR7 & 13 & 1 & \\
\hline \(\mathrm{V}_{\text {DD } 1}\) & 14 & - & +5V supply voltage 1 \\
\hline CTST & 15 & - & connected to ground (clock test pin) \\
\hline \(\mathrm{V}_{\text {s } 1}\) & 16 & - & GND1 (0V) \\
\hline cVBSO & 17 & 1 & \\
\hline cVBS1 & 18 & 1 & \\
\hline CVBS2 & 19 & 1 & \\
\hline CVBS3 & 20 & 1 & digital CVBS input signal (bits 0 to 7) \\
\hline CVBS4 & 21 & 1 & \\
\hline CVBS5 & 22 & 1 & \\
\hline CVBS6 & 23 & 1 & \\
\hline CVBS7 & 24 & 1 & \\
\hline HSY & 25 & \(\bigcirc\) & horizontal sync indicator output (programmable) \\
\hline HCL & 26 & \(\bigcirc\) & horizontal clamping pulse output (programmable) \\
\hline \(V_{\text {DDA }}\) & 27 & - & +5V analog supply voltage \\
\hline LFCO & 28 & \(\bigcirc\) & line frequency control output signal to CGC (multiple of present line frequency) \\
\hline \(\mathrm{V}_{\text {SSA }}\) & 29 & - & analog ground (O) \\
\hline \(\mathrm{V}_{\text {SS2 }}\) & 30 & - & GND2 (OV) \\
\hline
\end{tabular}

Digital video decoder, scaler and clock generator circuit (DESCPro)
\begin{tabular}{|c|c|c|c|}
\hline SYMBOL & PIN & STATUS & DESCRIPTION \\
\hline \(\mathrm{V}_{\mathrm{DD} 2}\) & 31 & - & +5 V supply voltage 2 \\
\hline GPSW2 & 32 & 0 & general purpose output 2 (settable via \(1^{2} \mathrm{C}\)-bus) \\
\hline GPSW1 & 33 & 0 & general purpose output 1 (settable via \(1^{2} \mathrm{C}\)-bus) \\
\hline RTS1 & 34 & \(\bigcirc\) & real time status output 1; controlled by RTSE-bit \\
\hline RTSO & 35 & \(\bigcirc\) & real time status output 0; controlled by RTSE-bit \\
\hline RESN & 36 & 0 & reset output, active low \\
\hline CGCE & 37 & 1 & enable input for internal CGC (connected to +5 V) \\
\hline CREF & 38 & 0 & clock qualifier output (test only) \\
\hline CREFB & 39 & 1/0 & clock reference qualifier input/output (HIGH indicates valid data on Expansion port) \\
\hline LLC & 40 & 0 & line-locked video system clock output, for frontend (ADC's) only; frequency: \(1888^{*} f_{H}\) for 50 Hz / 625 lines per field systems and \(1560^{*} \mathrm{~F}_{\mathrm{H}}\) for \(60 \mathrm{~Hz} / 525\) lines per field systems \\
\hline LLCB & 41 & 1/O & line-locked clock signal input/output, maximum 32 MHz (twice of pixel rate in 4:2:2); frequency: \(1888^{*} \mathrm{f}_{\mathrm{H}}\) for \(50 \mathrm{~Hz} / 625\) lines per field systems and \(1560^{*} \mathrm{f}_{\mathrm{H}}\) for \(60 \mathrm{~Hz} / 525\) lines per field systems; or variable input clock up to 32 MHz in input mode \\
\hline LLC2 & 42 & 0 & line-locked clock signal output (pixel clock) \\
\hline BTST & 43 & 1 & connected to ground; BTST \(=\) HIGH sets all outputs (except pins 1,28, 38, 40 and 42) to high-impedance state (testing) \\
\hline RTCO & 44 & 0 & real time control output \\
\hline \(V_{\text {DD3 }}\) & 45 & 1 & +5 V supply voltage 3 \\
\hline Vmux & 46 & 1 & VRAM output multiplexing, control input for the 32- to 16-bit multiplexer (Table 4 on page 23) \\
\hline \(V_{\text {SS3 }}\) & 47 & \(\cdot\) & GND3 (OV) \\
\hline SODD & 48 & \(\bigcirc\) & odd/even field sequence reference output related to the scaler output (test only) \\
\hline SVS & 49 & 0 & vertical sync signal related to the scaler output (test only) \\
\hline SHREF & 50 & \(\bigcirc\) & delayed HREF signal related to the scaler output (test only) \\
\hline PXQ & 51 & 0 & pixel qualifier output signal to mark active pixels of a qualified line (polarity: QPP-bit;test only) \\
\hline LNQ & 52 & 0 & line qualifier output signal to mark active video phase (polarity: QPP-bit; test only) \\
\hline VOEN & 53 & 1 & enable input of VRAM output \\
\hline HFL & 54 & 0 & FIFO half-full flag output signal \\
\hline INCADR & 55 & 0 & \(\cdots \quad\) line increment / vertical reset control output \\
\hline VCLK & 56 & 1 & clock input signal of FIFO output \\
\hline \begin{tabular}{l}
VRO31 \\
VRO30 \\
VRO29
\end{tabular} & \begin{tabular}{l}
57 \\
58 \\
59
\end{tabular} & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & . 32-bit digital VRAM output port (bits 31 to 29) \\
\hline \(\mathrm{V}_{\text {SS } 4}\) & 60 & - & GND4 (OV) \\
\hline
\end{tabular}

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}
\begin{tabular}{|c|c|c|c|}
\hline SYMBOL & PIN & STATUS & DESCRIPTION \\
\hline \(\mathrm{V}_{\text {DD }}\) & 91 & - & +5V supply voltage 6 \\
\hline VRO2 & 92 & \(\bigcirc\) & \\
\hline VRO1 & 93 & \(\bigcirc\) & 32-bit VRAM output port (bits 2 to 0) \\
\hline vroo & 94 & \(\bigcirc\) & \\
\hline DIR & 95 & 1 & direction control of Expansion Bus \\
\hline YuV15 & 96 & 1/0 & \\
\hline YUV14 & 97 & \(1 / 0\) & \\
\hline YuV13 & 98 & \(1 / 0\) & \\
\hline YuV12 & 99 & \(1 / 0\) & digital 16-bit video input/output signal (bits 15 to 8): Iuminance (Y) \\
\hline YUV11 & 100 & 1/0 & \\
\hline Yuvio & 101 & \(1 / 0\) & \\
\hline Yuv9 & 102 & 1/0 & \\
\hline Yuvs & 103 & \(1 / 0\) & \\
\hline \(\mathrm{V}_{\text {Ss6 }}\) & 104 & - & GND6 (0V) \\
\hline i.c. & 105 & - & internally connected \\
\hline \(\mathrm{V}_{\mathrm{DD7}}\) & 106 & - & +5 V supply voltage 7 \\
\hline Yuv7 & 107 & 1/0 & \\
\hline yuve & 108 & \(1 / 0\) & \\
\hline Yuv5 & 109 & 1/0 & \\
\hline Yuv4 & 110 & 1/0 & digital 16-bit video input/output signal (bits 7 to 0): colour-difference signals (UV) \\
\hline Yuv3 & 111 & \(1 / 0\) & \\
\hline Yuv2 & 112 & \(1 / 0\) & \\
\hline Yuv1 & 113 & 1/0 & \\
\hline yuvo & 114 & \(1 / 0\) & \\
\hline HREF & 115 & 1/0 & horizontal reference signal \\
\hline vs & 116 & \(1 / 0\) & vertical sync input/output signal with respect to the YUV input signal \\
\hline Hs & 117 & \(\bigcirc\) & horizontal sync signal, programmable \\
\hline AP & 118 & 1 & connected to ground (action pin for testing) \\
\hline SP & 119 & 1 & connected to ground (shift pin for testing) \\
\hline \(\mathrm{V}_{\text {S } 77}\) & 120 & - & GND7 (0V) \\
\hline
\end{tabular}

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}

PIN CONFIGURATION

Fig. 2 Pin configuration.

Digital video decoder, scaler and clock generator circuit (DESCPro)

\section*{7. FUNCTIONAL DESCRIPTION}

\subsection*{7.1. FUNCTIONAL DESCRIPTION DECODER PART}

PAL, NTSC and SECAM standard colour signals based on line-locked clock are decoded (Fig. 25 on page 41). In Y/C mode (Fig. 1 (a) on page 5), digitized luminance \(\operatorname{CVBS}(7-0)\) and chrominance \(\operatorname{CHR}(7-0)\) signals - digitised in two external ADCs - are input. In normal mode only CVBS \((7-0)\) is used.
The data rate is 29.5 MHz (50 MHz systems) or 24.54 MHz (60 MHz systems).

\section*{Chrominance processor}

The input signal passes the input interface, the chrominance bandpass filter to eliminate DC components, and is finally fed to the multiplicator inputs of a quadrature demodulator, where two subcarrier signals (\(0^{\circ}\) and \(90^{\circ}\) phase-shifted) from a local digital oscillator (DTO1) are applied.

The frequency is dependent on the present colour standard. The signals are low-pass filtered and amplified in a gain-controlled amplifier. A final low-pass stage provides a correct bandwidth performance.

PAL signals are comb-filtered to eliminate crosstalk between the chrominance channels according to PAL standard requirements.

NTSC signals are comb-filtered to eliminate crosstalk from luminance to chrominance for vertical structures.

SECAM signals are fed through a cloche filter, a phase demodulator and a differentiator to achieve proportionality to the instantaneous frequency. The signals are de-multiplexed in the SECAM recombination stage after passing a de-emphasis stage to provide the two serially transmitted colour-difference signals.

Fig. 3 CVBS(7-0) input signal ranges.

\title{
Digital video decoder, scaler and clock generator circuit (DESCPro)
}

The PLL for quadrature demodulation is closed via the cloche filter (to improve noise performance), a phase demodulator, a burst gate accumulator, a loop filter PI1 and a discrete time oscillator DTO1. The gain control loop is closed via the cloche filter, amplitude detector, a burst gate accumulator and a loop filter PI2.

The sequence processor switches signals according to standards.

\section*{Luminance processor}

The data rate of the input signal is reduced to LLC2 frequency by a sample rate converter in the input interface. The high frequency components are emphasized in a prefilter to compensate for losses in the succeeding chrominance trap. The chrominance trap is adjusted to a center frequency of 3.58 MHz (NTSC) or 4.4 MHz (PAL, SECAM) to eliminate most of the colour carrier components. The chrominance trap is bypassed for S-VHS signals.
The high frequency components in the luminance signal are "peaked" using a bandpass filter and a coring stage. The "peaked" (high frequent) component is added to the "unpeaked" signal part for sharpness improvement and output via variable delay to the Expansion-Bus.

\section*{Synchronization}

The sync input signal is reduced in bandwidth to 1 MHz before it is sliced and separated from luminance signal. The sync pulses are compared in a detector with the divided clock signal of a counter. The resulting output signal is fed to a loop filter that accumulates all the phase deviations. Thereby, a discrete time oscillator DTO2 is driven generating the line frequency control signal LFCO. An external PLL generates the line-locked clock LLC from the signal LFCO.
A noise-limited vertical deflection pulse is generated for vertical processing that also inserts artificial pulses if vertical input pulses are missing. \(50 / 60 \mathrm{~Hz}\) as well as odd/even field is automatically detected by the identification stage.

The Expansion port is a bidirectional interface for digital video signals YUV(15-0) in 4:2:2 format (Table 2 on page 15). External video signals can be inserted to the scaler or decoded video signals of the decoder part can be output.
The data direction is controlled by pin 95
(DIR=HIGH: data from external; Table 1 on page 14).
YUV(15-0), HREF, VS, LLCB and CREFB pins are input when bits OECL, OEHV, OEYC of subaddress \(0 E\) are set to " 0 ". Different modes are provided (timing see Figures 5 and 6 on page 16 and page 17):

Mode 0:
All bidirectional terminals are outputs. The signal of the decoder part (internal YUV(15-0)) is switched to be scaled.

Mode1:
External YUV(15-0) is input to the scaler. LLCB/ CREFB clock system and HREFNS from the SAA7196 are used to control the external source. It is possible to switch between Mode 0 and Mode 1 by means of DIR input (Fig. 4 on page 15).
Pixelwise switching of the scaler source is possible because the internal clock and sync sources are used.

Mode 2:
External YUV(15-0) is input to the scaler. LLCB/ CREFB clock system and HREF/VS from external are used.

\section*{Mode 3:}

YUV(15-0) and HREFNS terminals are inputs. External YUV \((15-0)\) is input to the scaler with HREF/ VS reference from external. LLCB/CREFB clock system of the SAA7196 is used.

\subsection*{7.2. FUNCTIONAL DESCRIPTION EXPANSION PORT (Fig.1(b) on page 6)}

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}

\subsection*{7.3. MONITOR CONTROLS}
(BCS; Fig. 1 (b) on page 6)

\section*{BRIGHTNESS AND CONTRAST CONTROLS:}

The luminance signal can be controlled via \(\mathrm{I}^{2} \mathrm{C}\)-bus
(Table 9 on page 32) by the bits BRIG(7-0) and
CONT(6-0).
\begin{tabular}{cc}
Brightness control: & \begin{tabular}{c}
value \\
00 (hex) \\
80 (hex)
\end{tabular} \\
minimum offset \\
FF (hex) & CCIR level \\
maximum offset
\end{tabular}

\section*{SATURATION CONTROL:}
the chrominance signal can be controlled via \(1^{2} \mathrm{C}\)-bus
(Table 9 on page 32) by the bits SAT(\(6-0\)) and
HUE(7-0).
\begin{tabular}{cc}
Saturation control: & value \\
00 (hex) & colour off \\
40 (hex) & CCIR level \\
\(7 F\) (hex) & 1.9999 amplitude
\end{tabular}

\section*{Clipping:}

All resulting output values are clipped to minimum (equals 1) and maximum (equals 254).

Table 1 Operation modes
\begin{tabular}{|c|ccc|c|cccc|}
\hline \multirow{2}{*}{ MODE } & \multicolumn{3}{|c|}{ I'C BIT \(^{2}\) BIT } & \multicolumn{5}{c|}{ DIR } \\
& OEYC OEHV OECL & PIN 95 & & YUV & HREF & VS & LLCB CREFB \\
\hline 0 & 1 & 1 & 1 & LOW & 0 & 0 & 0 & 0 \\
0 \\
1 & \(X\) & 1 & 1 & HIGH & 1 & 0 & 0 & 0 \\
2 & \(X\) & 0 & 0 & HGH & 1 & 1 & 1 & 1 \\
3 & \(X\) & 0 & 1 & HIGH & 1 & 1 & 1 & 0 \\
\hline
\end{tabular}

X = don't care; \(\mathrm{I}=\) input to monitor control/scaler; \(\mathrm{O}=\) output from decoder

Digital video decoder, scaler and clock generator circuit (DESCPro)

Table 2 YUV-bus format on Expansion Port
\begin{tabular}{|c|c|c|c|c|c|}
\hline PIN & \multicolumn{5}{|l|}{SIGNALS ON EXPANSION PORT (PIXEL BYTE SEQUENCE ON PINS)} \\
\hline YUV15 & Ye7 & Yo7 & Ye7 & Yo7 & Ye7 \\
\hline YUV14 & Ye6 & Yo6 & Ye6 & Yo6 & Ye6 \\
\hline YUV13 & Ye5 & Yo5 & Ye5 & Yo5 & Ye5 \\
\hline YUV12 & Ye4 & Yo4 & Ye4 & Yo4 & Ye4 \\
\hline YUV11 & Ye3 & Yo3 & Ye3 & Yo3 & Ye3 \\
\hline YUV10 & Ye2 & Yo2 & Ye2 & Yo2 & Ye2 \\
\hline YUV9 & Ye1 & Yo1 & Ye1 & Yo1 & Ye1 \\
\hline YUV8 & YeO & Yoo & YeO & Yoo & Ye0 \\
\hline YUV7 & Ue7 & Ve7 & Ue7 & Ve7 & Ue7 \\
\hline YUV6 & Ue6 & Ve6 & Ue6 & Ve6 & Ue6 \\
\hline YUV5 & Ue5 & Ve5 & Ue5 & Ve5 & Ue5 \\
\hline YUV4 & Ue4 & Ve4 & Ue4 & Ve4 & Ue4 \\
\hline YUV3 & Ue3 & Ve3 & Ue3 & Ve3 & Ue3 \\
\hline YUV2 & Ue2 & Ve 2 & Ue2 & V 2 & Ue2 \\
\hline YUV1 & Ue1 & Ve 1 & Ue1 & Ve1 & Ue1 \\
\hline YUVO & Ue0 & Ve 0 & Ue0 & VeO & Ue0 \\
\hline Pixel order & n & \(\mathrm{n}+1\) & \(\mathrm{n}+2\) & \(\mathrm{n}+3\) & \(\mathrm{n}+4\) \\
\hline
\end{tabular}
\(\mathrm{e}=\) even pixel number; \(\mathrm{o}=\) odd pixel number

Fig. 4 Real-time switching between Mode 0 and Mode 1 (internal/external YUV(15-0)).

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}

Fig. 5 VS and ODD timing on Expansion Port.

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}

Fig. 6 Horizontal sync timing at HRMV \(=0\) and HRFS \(=0\) (signals HSY, HCL, HREF, PLIN and HS (\(50 / 60 \mathrm{~Hz}\))).

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}

Fig. 7 Horizontal and data multiplex timing on Expansion Port.

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}

\section*{RTCO output (pin 44; Fig.9)}

This real-time control and status output signal contains serial information about actual sytem clock, subcarrier frequency and PALSECAM sequence. The signal can be used for various applications in external circuits, e.g. in a digital encoder to achieve "clean" encoding.

RTS1 and RTS0 outputs (pins 34 and 35)
These outputs can be configured in two modes
dependent on RTSE bit (subaddress OD).
RTSE \(=0\) : the output RTS0 contains the odd/even field identification bit (HIGH equals odd); output RTS1 contains the inverted PAL/SECAM sequence bit (HIGH equals non-inverted (R-Y)-line/DB-line).

RTSE \(=1\) : the output RTSO contains the horizontal lock bit (HIGH equals PLL locked); output RTS1 contains the vertical detection bit (HIGH equals vertical sync detected).

Fig. 9 RTCO timing.

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}

\subsection*{7.4. FUNCTIONAL DESCRIPTION SCALER PART}

The scaler part receives \(\mathrm{YUV}(15-0)\) input data in 4:2:2 format.
The video data from the BCS control are processed in horizontal direction in two separate decimation filters. The luminance component is also processed in vertical direction (VPU_Y).
Chrominance data are interpolated to a 4:4:4 format; a chroma keying bit is generated.
The 4:4:4 YUV data are then converted from the YUV to the RGB domain in a digital matrix. ROM tables in the RGB data path can be used for anti-gamma correction of gamma-corrected input signals. Uncorrected RGB and YUV signals can be bypassed.
A scale control unit generates reference and gate signals for scaling of the processed video data. After data formating to the various VRAM port formats, the scaled video data are buffered in the 16 word 32-bit output FIFO register. The scaling is performed by pixel and line dropping at the FIFO input. The FIFO output is directly connected to the VRAM output bus VRO(31-0).
Specific reference signals support an easy memory interfacing.

\section*{Decimation filters}

The decimation filters perform accurate horizontal filtering of the input data stream.
The signal bandwith is matched in front of the pixel decimation stage, thus disturbing artifacts, caused by the pixel dropping, are reduced.
The signal bandwidth can be reduced in steps of (Figures 27 and 28 on page 46):

2-tap filter \(=-6 \mathrm{~dB}\) at 0.325 pixel rate
3 -tap filter \(=-6 \mathrm{~dB}\) at 0.25 pixel rate
4 -tap filter \(=-6 \mathrm{~dB}\) at 0.21 pixel rate
5 -tap filter \(=-6 \mathrm{~dB}\) at 0.125 pixel rate
9 -tap filter \(=-6 \mathrm{~dB}\) at 0.075 pixel rate
The different characteristics are choosen independently by \(\mathrm{I}^{2} \mathrm{C}\)-bus control bits HF2 to HFO when AFS \(=0\) (Subaddress 28). In the adaptive mode with AFS \(=1\), the filter characteristics are choosen dependent on the defined sizing parameters (see Table 3).

\section*{Vertical processing (VPU-Y)}

Luminance data are fed to a vertical filter consisting of a \(384 \times 8\)-bit RAM and an arithmetic block
(Fig.1(b) on page 6). Sub-sampling and interpolation operations are applied. The luminance data are processed in vertical direction to preserve the video information for small scaling factors and to reduce artifacts caused by the dropping.
The available modes respectively transfer functions are selectable by bits VP1 and VPO (subaddress 28). Adaptive modes, controlled by AFS and AFG bits (subaddresses 28 and 30) are also available (see Table 3).

Table 3 Adaptive filter selection (AFS =1)
\begin{tabular}{|c|c|}
\hline scaling ratio & \begin{tabular}{c}
filter function \\
(refer to I \({ }^{2}\) C section)
\end{tabular} \\
\hline \multicolumn{1}{|c|}{\(\mathrm{XD} / \mathrm{XS}\)} & horizontal \\
\hline\(\leq 1\) & bypassed \\
\(\leq 14 / 15\) & filter 1 \\
\(\leq 11 / 15\) & filter 6 \\
\(\leq 7 / 15\) & filter 3 \\
\(\leq 3 / 15\) & filter 4 \\
\hline \multicolumn{1}{|c|}{\(\mathrm{YD} / \mathrm{YS}\)} & vertical \\
\hline\(\leq 1\) & bypassed \\
\(\leq 13 / 15\) & filter 1 \\
\(\leq 4 / 15\) & filter 2 \\
\hline
\end{tabular}

\section*{RGB matrix}

Y data and UV data are converted after interpolation into RGB data according to CCIR601 recommendation. Data are bypassed in 16-bit YUV formats or monochrome modes.

The matrix equations are these considering the digital quantization:
\(\mathrm{R}=\mathrm{Y}+1.375 \mathrm{~V}\)
\(\mathrm{G}=\mathrm{Y}-0.703125 \mathrm{~V}-0.34375 \mathrm{U}\)
\(B=Y+1.734375 \mathrm{U}\)
Anti-gamma ROM tables:
ROM tables are implemented at the matrix output to

Digital video decoder, scaler and clock generator circuit (DESCPro)
provide anti-gamma correction of the RGB data. A curve for a gamma of 1.4 is implemented. The tables can be used (RTB-bit \(=0\), subaddress 20) to compensate gamma correction for linear data representation of RGB output data.

\section*{Chrominance signal keyer}

The keyer generates an alpha signal to achieve a \(5-5-5+\alpha\) RGB alpha output signal. Therefore, the processed UV data amplitudes are compared with thresholds set via \(I^{2} \mathrm{C}\)-bus (subaddresses " 2 C to \(2 F\) "). A logical "1" signal is generated if the amplitude is inside the specified amplitude range, otherwise a logical " 0 " is generated.
Keying can be switched off by setting the lower limit higher than the upper limit (" 2 C or 2 E " and " 2 D or \(2 F^{\prime \prime}\)).

\section*{Scale control and vertical regions}

The scale control block SC includes address/ sequence counters to define the current position in the input field and to address the internal VPU memories.
To perform scaling, XD of XS pixel selection in horizontal direction and YD of YS line selection in vertical direction are applied. The pixel and line dropping are controlled at the input of the FIFO register.
The scaling ratio in horizontal and vertical direction is estimated to control the decimation filter function and the vertical data processing in the adaptive mode (AFS and AFG bits).
The input field can be divided into two vertical regions - the bypass region and the scaling region, which are defined via \(I^{2} \mathrm{C}\)-bus by the parameters VS, VC, YO and YS.

Vertical bypass region:
Data are not scaled, and independent of IIC-bits FS1 and FSO, the output format is always 8-bit grayscale (monochrome). The SAA7196 outputs all active pixels of a line, defined by the HREF input signal if the vertical bypass region is active.
This can be used, for example, to store videotext information in the field memory.
The start line of the bypass region is defined by the \(I^{2} \mathrm{C}\)-bits VS; the number of lines to be bypassed is defined by VC.

Vertical scaling region:
Data is scaled with start at line YO and the output format is selected when FS1 and FS0 are valid. This is the "normal operation" area. The input/output screen dimensions in horizontal and vertical direction are defined by the parameters

XO, XS and XD for horizontal
YO, YS and YD for vertical.
The circuit processes XS samples of a line. Remaining pixels are ignored if a line is longer than XS. If a line is shorter than XS, processing is aborted when the falling edge of HREF is detected. In this case the output line will have less than XD samples.

Vertical regions in Fig.10:
- the two regions can be programmed via \(I^{2} C\)-bus, whereby regions should not overlap (active region overrides the bypass region).
- the start of a normal active picture depends on video standard and has to be programmed to the correct value.
- the offsets XO and YO have to be set according to the internal processing delays to ensure the complete number of destination pixels and lines (refer to Table 12 on page 42).
- the scaling parameters can be used to perform a panning function over the video frame/field.

Fig. 10 Vertical regions.

\title{
Digital video decoder, scaler and clock generator circuit (DESCPro)
}

\section*{Output data representation and levels}

Output data representation of the YUV data can be modified by bit MCT (subaddress 30).
The DC gain is 1 for YUV input data. The corresponding RGB levels are defined by the matrix equations; they are limited to the range of 1 to 254 in the 8 -bit domain according to CCIR 601.
The luminance levels can be limited to:
16 (239) = black
\(235(20)=\) white
(..) = grayscale luminance levels
(if the YUV or monochrome luminance output formats are selected and LLV-bit \(=1\)).

For the 5 -bit RGB formats a truncation from 8-bit to 5 -bit word width is implemented. Fill values are inserted dependent on longword position and destination size (see data burst transfer mode):
- "1" for 24-bit RGB, Y and two's complement UV
- "128" for UV (straight binary)
- "254" in 8-bit grayscale format.

\section*{Output FIFO register and VRAM port}

The output FIFO register is the buffer between the video data stream and the VRAM data input port. Resized video data are buffered and formatted. 32-, 24 and 16 -bit video data modes are supported. The various formats are selected by the bits EFE, VOF, FS1 and FS0. VRAM port formats are shown in Tables 4,5 and 6. The FIFO register capacity is 16 word \(\times 32\) bit (for 32-, 24- or 16 -bit video data). The \(I^{2} \mathrm{C}\)-bits LW1, LWO can be used to define the position of the first pixel each line in the 32-bit-longword formats or to shift the UV sequence to VU in the 16 -bit YUV formats. In case of YUV output, an odd pixel count XD results in an incomplete pair of UV data at the end \((\mathrm{LW}=0)\) or beginning \((\mathrm{LW}=2)\) of a line.

VRAM port inputs:
- VMUX, the VRAM output multiplexing signal
- VCLK to clock the FIFO register output data
- VOEN to enable output data.

VRAM port outputs:
- HFL flag (half-full fiag)
- INCADR (refer to section "data burst transfer")
- VRO(31-0) VRAM port output data
- the reference signals for pixel and line selection on outputs VRO(7-0) (only for 24 - and 16 -bit video data formats refer to "transparent data transfer").

\section*{VRAM port transfer procedures}

Data transfer on the VRAM port can be done asynchronously controlled by outputs HFL, INCADR and input VCLK (data burst transfer with bit \(T T R=0\)).

Data transfer on the VRAM port can be done synchronously controlled by output reference signals on outputs VRO(7-0) and a continuous VCLK of clock rate of LLC/2 (transparent data transfer with bit TTR = 1).
So the scaling capability of the SAA7196 can be used in various applications.

\section*{Data burst transfer mode}

Data transfer on the VRAM port is asynchronously (TTR = 0). This mode can be used for all output formats. Four signals for communication with the external memory are provided.
- HFL flag, the half-full flag of the FIFO output register is raised when the FIFO contains at least 8 data words (HFL = HIGH).
By setting HFL = 1, the SAA7196 requests a data burst transfer by the external memory controller, that has to start a transfer cycle within the next 32 LLC cycles for 32-bit longword modes (16 LLC cycles for 16 - and 24 -bit modes). If there are pixels in the FIFO at the end of the line, which are not transferred, the circuit fills up the FIFO register with "fill pixels" until it is half-full and sets the HFL flag to request a data burst transfer.
After transfer is done, HFL is used in combination with INCADR to indicate the line increments (Fig. 11 on page 27).
- INCADR output signal is used in combination with HFL to control horizontal and vertical address gen-

Digital video decoder, scaler and clock generator circuit (DESCPro)
eration for a memory controller. The pulse sequence depends on field formats (interlace/ non-interlace or odd/even fields, Figures 12 and 13 on page 27 and page 28) and control bits OF1 and OFO (subaddress 20).
It means:
HFL = 1 at the rising edge of INCADR:
the END OF LINE is reached; request for line address increment
HFL \(=0\) at the rising edge of INCADR:
the END OF FIELD/FRAME is reached; request for line and pixel address reset
- VCLK input signal to clock the FIFO register output data VRO(n). New data are placed on the VRO(n) port with the rising edge of VCLK (Fig. 11 on page 27).
- VOEN input enables output data VRO(n). The outputs are in 3-state mode at VOEN \(=\) HIGH.
VOEN changes only when VCLK is LOW. If VCLK pulses are applied during VOEN \(=\) HIGH, the outputs remain inactive, but the FIFO register accepts the pulses.

\section*{Transparent data transfer mode}

Data transfer on the VRAM port can be achieved synchronously (TTR = 1) controlled by output reference signals on outputs VRO(7-0), and a continuous clock rate of LLC/2 on input VCLK. The SAA7196 delivers a continuously processed data stream. Therefore, the extended formats of the VRAM output port are selected (bit EFE \(=1\); Table 6 on page 25). The output signals VRO(7-0) have to be used to buffer qualified pre-processed RGB or YUV video data. To avoid read/write collision at the internal FIFO, the VCLK timing and polarity must accord to the CREFB specification.
The YUV data are only valid in qualified time slots. Control output signals are (refer to Table 6 on page 25 and Fig. 14 on page 28):
\(\alpha \quad\) keying signal of the chroma keyer
O/E odd/even field bit according to the internal field processing
VGT vertical gate signal, " 1 " marks the scaling window in vertical direction from YO to \((Y O+Y S)\) lines, cut by \(V S\).

LNQ line qualifier signal, active polarity is defined by QPL bit.
PXQ pixel qualifier signal, active polarity is defined by QPP bit.
Note: Interlaced processing (OF bits, subaddress 20):
To support correct interlaced data storage, the scaler delivers two INCADR/HFL sequences in each qualified line and an additional INCADR/HFL sequence after the vertical reset sequence at the beginning of an ODD field. Thereby, the scaled lines are automatically stored in the right sequence.

INCADR timing:
The distance from the last half-full request (HFL) to the INCADR pulse may be longer than \(64 \times\) LLC. The state of HFL is defined for minimum \(2 \times\) LLC afterwards.

Monochrome format: (refer to Table 6 on page 25) In case of TTR = 1 and EFE \(=1\) is \(\mathrm{Ya}=\mathrm{Yb}\).

Table 4 VMUX control
\begin{tabular}{|c|cc|cc|}
\hline \begin{tabular}{c}
BIT \\
VOF
\end{tabular} & \begin{tabular}{c}
PIN 53 \\
VOEN
\end{tabular} & \begin{tabular}{c}
PIN 46 \\
VMUX
\end{tabular} & \begin{tabular}{c}
VRAM BUS \\
VRO(31-16) \\
VRO(15-0)
\end{tabular} \\
\hline 0 & 0 & 0 & 3-state & active \\
0 & 0 & 1 & active & 3-state \\
1 & 0 & \(X\) & active & active \\
X & 1 & X & 3-state & 3-state \\
\hline
\end{tabular}

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}

Table 5 VRAM port output data formats at EFE-bit \(=0\) and VOF-bit =1 (settable via \(I^{2} \mathrm{C}\)-bus), burst mode only
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline PIXEL
OUTPUT
BITS & \multicolumn{3}{|l|}{FS1 \(=0 ; \mathbf{F S 0}=0\) RGB 5-5-5 \(+\alpha\) 32-BIT WORDS} & \multicolumn{3}{|l|}{\[
\begin{gathered}
\text { FS1 }=0 ; \text { FS0 }=1 \\
\text { YUV 4:2:2 } \\
\text { 32-BIT WORDS }
\end{gathered}
\]} & \multicolumn{3}{|l|}{\begin{tabular}{l}
FS1 = 1; \(\mathrm{FS} 0=0\) \\
YUV 4:2:2 \\
16-BIT WORDS
\end{tabular}} & \multicolumn{3}{|l|}{\(F S 1=1 ; F S 0=1\) 8-bit monochrome 32-BIT WORDS} \\
\hline PIXEL. & n & n+2 & \(\mathrm{n}+4\) & n & n+2 & n+4 & n & n+1 & n+2 & \[
\underset{n+1}{n}
\] & \[
\begin{aligned}
& n+4 \\
& n+5
\end{aligned}
\] & \[
\begin{aligned}
& n+8 \\
& n+9
\end{aligned}
\] \\
\hline VRO31 & \(\alpha\) & \(\alpha\) & \(\alpha\) & Ye7 & Ye7 & Ye7 & Ye7 & Yo7 & Ye7 & Ya7 & Ya7 & Ya7 \\
\hline VRO30 & R4 & R4 & R4 & Ye6 & Ye6 & Ye6 & Ye6 & Yo6 & Ye6 & Ya6 & Ya6 & Ya6 \\
\hline VRO29 & R3 & R3 & R3 & Ye5 & Ye5 & Ye5 & Ye5 & Yo5 & Ye5 & Ya5 & Ya5 & Ya5 \\
\hline VRO28 & R2 & R2 & R2 & Ye4 & Ye4 & Ye4 & Ye4 & Yo4 & Ye4 & Ya4 & Ya4 & Ya4 \\
\hline VRO27 & R1 & R1 & R1 & Ye3 & Ye3 & Ye3 & Ye3 & Yo3 & Ye3 & Ya3 & Ya3 & Ya3 \\
\hline VRO26 & R0 & R0 & Ro & Ye2 & Ye 2 & Ye 2 & Y 2 & Yo2 & Ye 2 & Ya2 & Ya 2 & Ya2 \\
\hline VRO25 & G4 & G4 & G4 & Ye1 & Ye1 & Ye1 & Ye1 & Yo1 & Ye1 & Ya1 & Ya1 & Ya1 \\
\hline VRO24 & G3 & G3 & G3 & YeO & YeO & YeO & Ye0 & YoO & YeO & YaO & Ya & YaO \\
\hline VRO23 & G2 & G2 & G2 & Ue7 & Ue7 & Ue7 & Ue7 & Ve7 & Ue7 & Yb7 & Yb7 & Yb7 \\
\hline VRO22 & G1 & G1 & G1 & Ue6 & Ue6 & Ue6 & Ue6 & Ve6 & Ue6 & Yb6 & Yb6 & Yb6 \\
\hline VRO21 & G0 & G0 & G0 & Ue5 & Ue5 & Ue5 & Ue5 & \(\mathrm{Ve5}\) & Ue5 & Yb5 & Yb5 & Yb5 \\
\hline VRO20 & B4 & B4 & B4 & Ue4 & Ue4 & Ue4 & Ue4 & Ve4 & Ue4 & Yb4 & Yb4 & Yb4 \\
\hline VRO19 & B3 & B3 & B3 & Ue3 & Ue3 & Ue3 & Ue3 & Ve3 & Ue3 & Yb3 & Yb3 & Yb3 \\
\hline VRO18 & B2 & B2 & B2 & Ue2 & Ue2 & Ue2 & Ue2 & Ve2 & Ue2 & Yb2 & Yb2 & Yb2 \\
\hline VRO17 & B1 & B1 & B1 & Ue1 & Ue1 & Ue1 & Ue1 & Ve1 & Ue1 & Yb1 & Yb1 & Yb1 \\
\hline VRO16 & B0 & B0 & B0 & Ue0 & Ue0 & Ue0 & Ue0 & \(\mathrm{Ve0}\) & Ue 0 & Ybo & Ybo & Ybo \\
\hline PIXEL ORDER & \(\mathrm{n}+1\) & n+3 & n+5 & n+1 & n+3 & n+5 & & PUTS USED & & \[
\begin{aligned}
& n+2 \\
& n+3
\end{aligned}
\] & \[
\begin{aligned}
& n+6 \\
& n+7
\end{aligned}
\] & \[
\begin{aligned}
& n+10 \\
& n+11
\end{aligned}
\] \\
\hline VRO15 & \(\alpha\) & \(\alpha\) & \(\alpha\) & Yo7 & Yo7 & Yo7 & X & X & X & Yc7 & Yc7 & Yc7 \\
\hline VRO14 & R4 & R4 & R4 & Yo6 & Yo6 & Yo6 & X & X & X & Yc6 & Yc6 & Yc6 \\
\hline VRO13 & R3 & R3 & R3 & Yo5 & Yo5 & Yo5 & X & X & X & Yc5 & Yc5 & Yc5 \\
\hline VRO12 & R2 & R2 & R2 & Yo4 & Yo4 & Yo4 & X & X & X & Yc4 & Yc4 & Yc4 \\
\hline VRO11 & R1 & R1 & R1 & Yo3 & Yo3 & Yo3 & X & X & X & Yc3 & Yc3 & Yc3 \\
\hline VRO10 & Ro & R0 & R0 & Yo2 & Yo2 & Yo2 & x & X & X & Yc2 & Yc2 & Yc2 \\
\hline VRO9 & G4 & G4 & G4 & Yo1 & Yo1 & Yo1 & X & X & X & Yc1 & Yc1 & Yc1 \\
\hline VRO8 & G3 & G3 & G3 & Yo0 & Yoo & Yoo & X & X & X & Yc0 & Yc0 & Yco \\
\hline VRO7 & G2 & G2 & G2 & Ve7 & Ve7 & Ve 7 & X & X & x & Yd7 & Yd7 & Yd7 \\
\hline VRO6 & G1 & G1 & G1 & Ve6 & Ve6 & Ve6 & X & X & X & Yd6 & Yd6 & Yd6 \\
\hline VRO5 & G0 & G0 & G0 & Ve5 & Ve5 & Ve5 & X & X & X & Yd5 & Yd5 & Yd5 \\
\hline VRO4 & B4 & B4 & B4 & Ve4 & Ve4 & Ve4 & X & X & X & Yd4 & Yd4 & Yd4 \\
\hline VRO3 & B3 & B3 & B3 & Ve3 & Ve3 & Ve3 & X & X & X & Yd3 & Yd3 & Yd3 \\
\hline VRO2 & B2 & B2 & B2 & Ve 2 & Ve 2 & Ve 2 & X & X & X & Yd2 & Yd2 & Yd2 \\
\hline VRO1 & B1 & B1 & B1 & Ve1 & Ve1 & Ve1 & X & X & x & Yd1 & Yd1 & Yd1 \\
\hline VROO & B0 & B0 & B0 & VeO & VeO & VeO & X & X & X & Ydo & Yd0 & Ydo \\
\hline
\end{tabular}
\(\alpha=\) keying bit; R, G, B Y, \(U\) and \(V=\) digital signals; \(e=\) even pixel number; \(o=\) odd pixel number;
abcd=consecutive pixels

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}

Table 6 VRAM port output data formats at EFE-bit \(=1\) and VOFbit \(=1\) (settable via \({ }^{2} \mathrm{C}\)-bus), burst- and transparent- modes
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline PIXEL OUTPUT BITS & \multicolumn{3}{|l|}{\[
\begin{gathered}
\text { FS1 = } 0 ; \text { FS0 }=0 \\
\text { RGB } 5-5-5+\alpha \\
\text { 16-BIT WORDS }
\end{gathered}
\]} & \multicolumn{3}{|l|}{\[
\begin{gathered}
\text { FS1 }=0 ; \text { FS0 }=1 \\
\text { YUV } 4: 2: 2 \\
\text { 16-BIT WORDS }
\end{gathered}
\]} & \multicolumn{3}{|l|}{\begin{tabular}{l}
\[
F S 1=1 ; F S 0=0
\] \\
RGB 8-8-8 24-BIT WORDS
\end{tabular}} & \multicolumn{3}{|l|}{FS1 = 1; FS0 = 1 8 -bit monochrome 16-BIT WORDS} \\
\hline PIXEL ORDER & n & n+1 & n+2 & n & n+1 & n+2 & n & n+1 & n+2 & \[
\underset{n+1}{n}
\] & \[
\begin{aligned}
& n+2 \\
& n+3
\end{aligned}
\] & \[
\begin{aligned}
& n+4 \\
& n+5
\end{aligned}
\] \\
\hline VRO31 & \(\alpha\) & \(\alpha\) & \(\alpha\) & Ye7 & Yo7 & Ye7 & R7 & R7 & R7 & Ya7 & Ya7 & Ya7 \\
\hline VRO30 & R4 & R4 & R4 & Ye6 & Yo6 & Ye6 & R6 & R6 & R6 & Ya6 & Ya6 & Ya6 \\
\hline VRO29 & R3 & R3 & R3 & Ye5 & Yo5 & Ye5 & R5 & R5 & R5 & Ya5 & Ya5 & Ya5 \\
\hline VRO28 & R2 & R2 & R2 & Ye4 & Yo4 & Ye4 & R4 & R4 & R4 & Ya4 & Ya4 & Ya4 \\
\hline VRO27 & R1 & R1 & R1 & Ye3 & Yo3 & Ye3 & R3 & R3 & R3 & Үa3 & Ya3 & Ya3 \\
\hline VRO26 & R0 & R0 & R0 & Ye2 & Yo2 & Ye2 & R2 & R2 & R2 & Ya2 & Ya2 & Ya2 \\
\hline VRO25 & G4 & G4 & G4 & Ye1 & Yo1 & Ye1 & R1 & R1 & R1 & Ya1 & Ya1 & Ya1 \\
\hline VRO24 & G3 & G3 & G3 & Ye0 & Yoo & Ye0 & R0 & R0 & Ro & YaO & Yao & Yao \\
\hline VRO23 & G2 & G2 & G2 & Ue7 & Ve7 & Ue7 & G7 & G7 & G7 & Yb7 & Yb7 & Yb7 \\
\hline VRO22 & G1 & G1 & G1 & Ue6 & Ve6 & Ue6 & G6 & G6 & G6 & Yb6 & Yb6 & Yb6 \\
\hline VRO21 & G0 & G0 & G0 & Ue5 & Ve5 & Ue5 & G5 & G5 & G5 & Yb5 & Yb5 & Yb5 \\
\hline VRO20 & B4 & B4 & B4 & Ue4 & Ve4 & Ue4 & G4 & G4 & G4 & Yb4 & Yb4 & Yb4 \\
\hline VRO19 & B3 & B3 & B3 & Ue3 & Ve3 & Ue3 & G3 & G3 & G3 & Yb3 & Yb3 & Yb3 \\
\hline VRO18 & B2 & B2 & B2 & Ue2 & Ve 2 & Ue2 & G2 & G2 & G2 & Yb2 & Yb2 & Yb2 \\
\hline VRO17 & B1 & B1 & B1 & Ue1 & Ve1 & Ue1 & G1 & G1 & G1 & Yb1 & Yb1 & Yb1 \\
\hline VRO16 & B0 & B0 & B0 & Ueo & VeO & Ue0 & GO & G0 & GO & Ybo & Ybo & Ybo \\
\hline PIXEL ORDER & n & n+1 & n+2 & n & n+1 & n+2 & n & n+1 & n+2 & \[
\begin{gathered}
n \\
n+1
\end{gathered}
\] & \[
\begin{aligned}
& n+2 \\
& n+3
\end{aligned}
\] & \[
\begin{aligned}
& n+4 \\
& n+5
\end{aligned}
\] \\
\hline VRO15 & X & X & X & X & X & X & B7 & B7 & B7 & X & X & X \\
\hline VRO14 & X & X & X & X & X & X & B6 & B6 & B6 & X & X & X \\
\hline VRO13 & X & X & X & X & X & X & B5 & B5 & B5 & X & X & X \\
\hline VRO12 & X & X & X & X & X & X & B4 & B4 & B4 & X & X & X \\
\hline VRO11 & X & X & X & X & x & X & B3 & B3 & B3 & X & X & X \\
\hline VRO10 & X & X & X & X & X & X & B2 & B2 & B2 & X & X & X \\
\hline VRO9 & X & X & X & X & X & X & B1 & B1 & B1 & X & X & X \\
\hline VRO8 & X & X & X & X & X & X & B0 & B0 & B0 & X & X & X \\
\hline \(\mathrm{VRO}^{(1)(2)}\) & \(\alpha\) & \(\alpha\) & \(\alpha\) & \(\alpha\) & x & \(\alpha\) \\
\hline VRO6 \({ }^{(2)}\) & O/E \\
\hline VRO5 \({ }^{(2)}\) & VGT \\
\hline VRO4 \({ }^{(2)}\) & HGT \\
\hline VRO3 & X & X & X & X & \(X\) & X & X & X & X & X & X & X \\
\hline VRO2 \({ }^{(2)}\) & HRF \\
\hline VRO1 \({ }^{(2)}\) & LNQ \\
\hline VROO \({ }^{(2)}\) & PXQ \\
\hline
\end{tabular}
\(\alpha=\) keying bit; \(\mathrm{R}, \mathrm{G}, \mathrm{B}, \mathrm{Y}, \mathrm{U}\) and \(\mathrm{V}=\) digital signals; \(\mathrm{e}=\) even pixel number; \(\mathrm{o}=\) odd pixel number; \(\mathrm{a} \mathrm{b}=\) consecutive pixels; \(\mathrm{O} / \mathrm{E}=\) odd/even flag
(1) YUV 16-bit format: the keying signal \(\alpha\) is defined only for YU time steps. The corresponding \(Y V\) sample has also to be keyed. The \(\alpha\) signal in monochrome mode can be used only in the transparent mode \((T T R=1)\), in this case \(\mathrm{Ya}=\mathrm{Yb}\).
(2) Data valid only when transparent mode active (TTR-bit \(=1\)) and VCLK pin connected to LLC/2 clock rate.

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}

Table 7 VRAM port output data formats at \(E F E-\) bit \(=0\) and VOF-bit \(=0\) (settable via \(I^{2} \mathrm{C}\)-bus), burst mode only
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline PIXEL
OUTPUT
BITS & \multicolumn{4}{|c|}{\begin{tabular}{l}
\[
F S 1=0 ; F S 0=0
\] \\
RGB 5-5-5 \(+\alpha\) \\
32-BIT LONGWORD
\end{tabular}} & \multicolumn{4}{|c|}{FS1 \(=0 ; F S 0=1\) YUV 4:2:2 32-BIT LONGWORD} & \multicolumn{4}{|c|}{\begin{tabular}{l}
\[
F S 1=1 ; F S 0=1
\] \\
8-bit monochrome 32-BIT LONGWORD
\end{tabular}} \\
\hline PIXEL ORDER & n & & n+2 & & n & & n+2 & & \[
\begin{aligned}
& n \\
& n+1
\end{aligned}
\] & & \[
\begin{aligned}
& n+4 \\
& n+5
\end{aligned}
\] & \\
\hline vmux & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\hline VRO31 & \(\alpha\) & z & \(\alpha\) & z & Ye7 & z & Ye7 & z & Ya7 & z & Ya7 & z \\
\hline VRO30 & R4 & z & R4 & z & Ye6 & z & Ye6 & z & Ya6 & z & Ya6 & z \\
\hline VRO29 & R3 & z & R3 & z & Ye5 & z & Ye5 & z & Ya5 & z & Ya5 & z \\
\hline VRO28 & R2 & z & R2 & z & Ye4 & z & Ye4 & z & Ya4 & z & Ya4 & z \\
\hline VRO27 & R1. & z & R1 & z & Ye3 & z & Ye3 & z & Ya3 & z & Ya3 & z \\
\hline VRO26 & R0 & Z & Ro & z & Ye2 & z & Ye2 & z & Ya2 & z & Ya2 & z \\
\hline VRO25 & G4 & z & G4 & z & Ye1 & z & Ye1 & z & Ya1 & z & Ya1 & z \\
\hline VRO24 & G3 & z & G3 & z & Ye0 & z & Ye0 & z & YaO & z & Ya0 & z \\
\hline VRO23 & G2 & Z & G2 & z & Ue7 & z & Ue7 & z & Yb7 & z & Yb7 & z \\
\hline VRO22 & G1 & Z & G1 & Z & Ue6 & z & Ue6 & z & Yb6 & Z & Yb6 & Z \\
\hline VRO21 & G0 & z & G0 & z & Ue5 & Z & Ue5 & z & Yb5 & z & Yb5 & z \\
\hline VRO20 & B4 & z & B4 & z & Ue4 & z & Ue4 & z & Yb4 & z & Yb4 & z \\
\hline VRO19 & B3 & z & B3 & z & Ue3 & z & Ue3 & Z & Yb3 & z & Yb3 & z \\
\hline VRO18 & B2 & z & B2 & Z & Ue2 & z & Ue2 & z & Yb2 & z & Yb2 & z \\
\hline VRO17 & B1 & Z & B1 & z & Ue1 & z & Ue1 & z & Yb1 & z & Yb1 & z \\
\hline VRO16 & B0 & z & B0 & z & UeO & Z & U 0 & z & Ybo & z & Ybo & z \\
\hline PIXEL ORDER & & n+1 & & n+3 & & n+1 & & n+3 & & \[
\begin{aligned}
& n+2 \\
& n+3
\end{aligned}
\] & & \[
\begin{aligned}
& n+6 \\
& n+7
\end{aligned}
\] \\
\hline Vmux & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\hline VRO15 & z & \(\alpha\) & z & \(\alpha\) & z & Yo7 & Z & Yo7 & \(z\) & Yc7 & z & Yc7 \\
\hline VRO14 & Z & R4 & Z & R4 & z & Yo6 & z & Yo6 & z & Yc6 & z & Yc6 \\
\hline VRO13 & Z & R3 & z & R3 & z & Yo5 & z & Yo5 & z & Yc5 & z & Yc5 \\
\hline VRO12 & Z & R2 & z & R2 & 7 & Yo4 & z & Yo4 & z & Yc4 & Z & Yc4 \\
\hline VRO11 & z & R1 & z & R1 & z & Yo3 & z & Yo3 & z & Yc3 & Z & Yc3 \\
\hline VRO10 & Z & R0 & Z & R0 & z & Yo2 & z & Yo2 & Z & Yc2 & Z & Yc2 \\
\hline VRO9 & Z & G4 & z & G4 & z & Yo1 & Z & Yo1 & z & Yc1 & z & Yc1 \\
\hline VRO8 & Z & G3 & Z & G3 & z & Yoo & z & Yoo & z & Yc0 & z & Yco \\
\hline VRO7 & z & G2 & Z & G2 & z & Ve7 & z & Ve7 & z & Yd7 & Z & Yd7 \\
\hline VRO6 & z & G1 & z & G1 & z & Ve6 & z & Ve6 & z & Yd6 & z & Yd6 \\
\hline VRO5 & Z & G0 & z & G0 & Z & Ve5 & Z & Ve5 & z & Yd5 & z & Yd5 \\
\hline VRO4 & z & B4 & z & B4 & Z & Ve4 & z & Ve4 & z & Yd4 & Z & Yd4 \\
\hline VRO3 & z & B3 & z & B3 & z & ve3 & z & Ve3 & z & Yd3 & Z. & Yd3 \\
\hline VRO2 & Z & B2 & Z & B2 & z & Ve2 & z & Ve2 & z & Yd2 & z & Yd2 \\
\hline VRO1 & z & B1 & Z & B1 & z & Ve1 & z & Ve1 & z & Yd1 & z & Yd1 \\
\hline VROO & Z & B0 & Z & B0 & Z & Ve0 & 7 & Ve0 & & Ydo & z & Ydo \\
\hline
\end{tabular}
\(\alpha=\) keying bit; \(\mathrm{R}, \mathrm{G}, \mathrm{B}, \mathrm{Y}, \mathrm{U}\) and \(\mathrm{V}=\) digital signals; \(\mathrm{e}=\) even pixel number; \(\mathrm{O}=\) odd pixel number; \(\mathrm{abc} \mathrm{d}=\) consecutive pixels;
\(Z=\) high-ohmic (3-state).

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}

Fig. 11 Output port transfer to VRAM at 32-bit data format without scaling. If VCLK cycles occur at VOEN \(=\) HIGH, the FIFO register is unchanged, but the outputs \(\mathrm{VRO}\left(31-0^{\prime}\right)\) remain in 3-state position.

(1) only available for interlaced processing at the beginning of an odd field

Fig. 12 Vertical reset timing to the VRAM.

\section*{Digital video decoder, scaler} and clock generator circuit (DESCPro) SAA7196

(1) pulse only at interlace scan

Fig. 13 Horizontal increment timing to the VRAM.

Fig. 14 Reference signals for scaling window.

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}

Fig. 15 Operation cycle.

\title{
Digital video decoder, scaler and clock generator circuit (DESCPro)
}

\section*{Field processing}

The phase of the field sequence (odd/even dependent on inputs HREF and VS) is detected by means of the falling edge of VS. The current field phase is reported in the status byte by the OEF bit (Table 8 on page 31). OEF bit can be stable 0 or 1 for non-interlaced input frames or non-standard input signals VS and/or HREF (nominal condition for VS and HREF - SAA7196 with active vertical noise limiter). A free-running odd/even flag is generated for internal field processing if the detection reports a stable OEF bit. The POE bit (subaddress OB) can be used to change the polarity of the internal flag (in case of non-standard VS and HREF signals) to control the phase of the free-running flag and to compensate mis-detections. Thus, the SAA7196 can be used under various VS/HREF timing conditions.

The SAA7196 operates on fields. To support progressive displays and to avoid movement blurring and artifacts, the circuit can process both or single fields of interlaced or non-interlaced input data.
Therefore the OF bits can be used. The bits OF1 and OFO (Table 12 on page 42) determine the INCADR/ HFL generation in "data burst transfer mode". One of the fields (odd or even) is ignored when OF1 = 1; then no line increment sequence (INCADR/HFL) is generated, the vertical reset pulse is only generated.

With OF1 = OFO = 0 the circuit supports correct interlaced data storage (see note of previously described "transparent data transfer").

\section*{Operation cycle}

The operation is synchronized by the input field. The cycle is specified in the flow chart (Fig. 15 on page 29).

The circuit is inactive after power-on reset, VPE is 0 and the FIFO control is set "empty". The internal control registers are updated with the falling edge of VS signal. The circuit is switched active and waits for a transmission of VS and a vertical reset sequence to the memory controller. Afterwards, the scaler waits for the beginning of a scaling or bypass region. If the active scaling region begins, while the bypass region is active, the bypass region is interrupted. If a vertical sync appears, the processing of the current
line is finished. Then, the scaler performs a coefficient update and generates a new vertical reset (if it is still active).
Line processing starts when a line is decided to be active, the circuit starts to scale it. Active pixels are loaded into the FIFO register. An HFL flag is generated to initialize a data transfer when eight words are completed. The end of a line is reached when the programmed pixel number is processed or when a horizontal sync pulse occurs. If there are pixels in the FIFO register, it is filled up until it is half-full to cause a data transfer. Horizontal increment pulses are transmitted after this data transfer.

\section*{Remarks:}

The scaler part will always wait for the HREFNS pulse before the line increment/vertical reset sequence is performed.
After each line/field, the FIFO control is set to empty when the increment/vertical reset pulses are transmitted. No additional actions are necessary if the memory controller has ignored the HFL signal. There is no need to handle over-/underflow of the FIFO register.

\subsection*{7.5. POWER-ON RESET}

Power-on reset is activated at power-on or when the supply voltage decreases below 3.5 V . The indicator output RESN is low for a time. The RESN signal can be applied to reset other circuits of the digital TV system.
- the bits VTRC and SSTB in subaddress "ODh" are set to zero
- all bits in subaddress "OEh" are set to zero
- the FIFO register contents are undefined
- outputs VRO, YUV, CREFB, LLCB, HREF, HS and VS are set to 3-state
- output INCADR = HIGH
- output HFL = LOW until the VPE bit is set to "1"
- subaddress " 30 " is set to 00 h and VPE-bit in subaddress " 20 h " is set to zero (Table 11 on page 42).

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}

\section*{8. \(I^{2} \mathrm{C}\)-BUS FORMAT}
\begin{tabular}{|c|l|l|l|l|l|l|l|l|l|l|}
\hline S & SLAVE ADDRESS & A & SUBADDRESS & A & DATAO & A & & & DATAn & A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline S & = & start condition \\
\hline SLAVE ADDRESS & \(=\) & 0100 000X (IICSA = LOW) or 0100 001X (IICSA = HIGH) \\
\hline A & = & acknowledge, generated by the slave \\
\hline SUBADDRESS* & = & subaddress byte (Tables 9 to 12) \\
\hline DATA & = & data byte (Tables 9 to 12) \\
\hline P & = & stop condition \\
\hline X & = & read/write control bit \\
\hline & & \(\mathrm{X}=0\), order to write (the circuit is slave receiver) \\
\hline & & \(X=1\), order to read (the circuit is slave transmitter) \\
\hline
\end{tabular}
* If more than 1 byte DATA are transmitted, then auto-increment of the subaddress is performed.

Table \(8 \quad I^{2}\) C-bus status byte (\(X\) in address byte \(=1 ; 41 \mathrm{~h}\) at IICSA \(=\) LOW or 43 h at IICSA \(=\) HIGH).
\begin{tabular}{|c|cccccccc|}
\hline FUNCTION & D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\hline \begin{tabular}{c}
status byte 0 (transmitted after \\
RESN \(=0\) or at SSTB \(=0)\) \\
status byte \(1(\) transmitted at \\
SSTB \(=1)\)
\end{tabular} & ID3 & ID2 & ID1 & ID0 & DIR & X & OEF & SVP \\
\hline
\end{tabular}

Function of status bits:
ID3 to ID0 Software model of SAA7196 compatible with
\begin{tabular}{cccc|c}
ID3 & ID2 & ID1 & IDO & VERSION \\
\hline 0 & 0 & 0 & 0 & V0 (first version)
\end{tabular}

DIR State of input DIR (pin 95): direction control of Expansion port YUV DIR \(=0\) : the scaler uses internal source (decoder output) DIR = 1: the scaler uses external data of expansion bus
OEF
Identification of field sequence dependent on HREF and VS: \(0=\) even field detected; \(1=\) odd field detected
SVP State of VRAM port (state of, VPE-bit cleared by RESN):
\(0=\) inputs HFL and INCADR inactive
1 = inputs HFL and INCADR active
STTC Horizontal time constant information (for future application with logical comb-filter only):
\(0=\) TV time constant (slow)
\(1=\) VCR time constant (fast)
HLCK
FIDT
ALTD
CODE
X
April 1994
Horizontal PLL information: \(0=\) HPLL locked; \(1=\) HPLL unlocked
Field information: \(0=50 \mathrm{~Hz}\) system detected; \(1=60 \mathrm{~Hz}\) system detected
Line alternation: \(0=\) no line alternating colour burst detected
1 = line alternating colour burst detected (PAL or SECAM)
Colour information: \(0=\) no colour detected; \(1=\) colour detected
for future enhancements, do not evaluate

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}

Table \(9 \quad \mathrm{I}^{2} \mathrm{C}\)-bus decoder control; subaddress and data bytes for writing (X in address byte \(=0\); 40 h at IICSA \(=\) LOW or 42 h at IICSA \(=\mathrm{HIGH}\))
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow{2}{*}{FUNCTION SUBADDRESS}} & \multicolumn{8}{|c|}{DATA} & \multirow{2}{*}{DF*} \\
\hline & & D7 & D6 & D5 & D4 & D3 & D2 & D1 & DO & \\
\hline Increment delay & 00 & IDEL7 & IDEL6 & IDEL5 & IDEL4 & IDEL3 & IDEL2 & IDEL1 & IDELO & \\
\hline H -sync begin; 50 Hz & 01 & HSYB7 & HSYB6 & HSYB5 & HSYB4 & HSYB3 & HSYB2 & HSYB1 & HSYBO & \\
\hline H-sync stop; 50 Hz & 02 & HSYS7 & HSYS6 & HSYS5 & HSYS4 & HSYS3 & HSYS2 & HSYS1 & HSYSO & \\
\hline H-clamp begin; 50 Hz & 03 & HCLB7 & HCLB6 & HCLB5 & HCLB4 & HCLB3 & HCLB2 & HCLB1 & HCLBO & \\
\hline H-clamp stop; 50 Hz & 04 & HCLS7 & HCLS6 & HCLS5 & HCLS4 & HCLS3 & HCLS2 & HCLS1 & HCLSO & \\
\hline H-sync after PHI1; 50 Hz & 05 & HPHI7 & HPHI6 & HPHI5 & HPHI4 & HPHI3 & HPHI2 & HPHI1 & HPHIO & \\
\hline Luminance control & 06 & BYPS & PREF & BPSS1 & BPSSO & CORI1 & CORIO & APER1 & APERO & \\
\hline Hue control & 07 & HUEC7 & HUEC6 & HUEC5 & HUEC4 & HUEC3 & HUEC2 & HUEC1 & HUECO & \\
\hline Colour-killer QUAM & 08 & CKTQ4 & CKTQ3 & CKTQ2 & CKTQ1 & CKTQO & 0 & 0 & 0 & \\
\hline Colour-killer SECAM & 09 & CKTS4 & CKTS3 & CKTS2 & CKTS1 & CKTSO & 0 & 0 & 0 & \\
\hline PAL switch sensitivity & OA & PLSE7 & PLSE6 & PLSE5 & PLSE4 & PLSE3 & PLSE2 & PLSE1 & PLSEO & \\
\hline SECAM switch sensitivity & OB & SESE7 & SESE6 & SESE5 & SESE4 & SESE3 & SESE2 & SESE1 & SESEO & \\
\hline Chroma gain control & 0 C & COLO & LFIS1 & LFISO & 0 & 0 & 0 & 0 & 0 & \\
\hline Standard/mode control & OD & VTRC & 0 & 0 & 0 & RTSE & HRMV & SSTB & SECS & \\
\hline I/O and clock control & OE & HPLL & 0 & OECL & OEHV & OEYC & CHRS & GPSW2 & GPSW1 & \\
\hline Control \#1 & OF & AUFD & FSEL & SXCR & SCEN & 0 & YDEL2 & YDEL1 & YDELO & \\
\hline Control \#2 & 10 & 0 & 0 & 0 & 0 & 0 & HRFS & VNOI1 & VNOIO & \\
\hline Chroma gain reference & 11 & CHCV7 & CHCV6 & CHCV5 & CHCV4 & CHCV3 & CHCV2 & CHCV1 & CHCVO & \\
\hline Chroma saturation & 12 & 0 & SATN6 & SATN5 & SATN4 & SATN3 & SATN2 & SATN1 & SATNO & \\
\hline Luminance contrast & 13 & 0 & CONT6 & CONT5 & CONT4 & CONT3 & CONT2 & CONT1 & CONTO & \\
\hline H -sync begin; 60 Hz & 14 & HS6B7 & HS6B6 & HS6B5 & HS6B4 & HS6B3 & HS6B2 & HS6B1 & HS6B0 & \\
\hline H-sync stop; 60 Hz & 15 & HS6B7 & HS6B6 & HS6B5 & HS6B4 & HS6B3 & HS6B2 & HS6B1 & HS6B0 & \\
\hline H-clamp begin; 60 Hz & 16 & HC6B7 & HC6B6 & HC6B5 & HC6B4 & HC6B3 & HC6B2 & HC6B1 & HC6B0 & \\
\hline H-clamp stop; 60 Hz & 17 & HC6S7 & HC6S6 & HC6S5 & HC6S4 & HC6S3 & HC6S2 & HC6S1 & HC6S0 & \\
\hline H -sync after PHI1; 60 Hz & 18 & HP617 & HP6i6 & HP615 & HP614 & HP613 & HP612 & HP6I1 & HP610 & \\
\hline Luminance brightness & 19 & BRIG7 & BRIG6 & BRIG5 & BRIG4 & BRIG3 & BRIG2 & BRIG1 & BRIGO & \\
\hline Reserved & \[
\begin{aligned}
& \text { 1A to } \\
& 1 F
\end{aligned}
\] & 0 & & & & & 0 & 0 & 0 & \\
\hline
\end{tabular}
*) Default register contents fill in by hand

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}

Table 10 Function of the register bits of Table 9 for subaddresses " 00 " to " 19 "
\begin{tabular}{|c|c|}
\hline IDEL7 to IDELO "00" & \begin{tabular}{l}
Increment delay time (dependent on application), step size \(=4 /\) LLC. The delay time is selectable from -4 / LLC (-1 decimal multiplier) to -1024 / LLC (-256 decimal multiplier) equals data FF to 00 (hex). A sign-bit, designated A08 and internally set HIGH, indicates always negative values. \\
The maximum delay time in 60 Hz systems is -780 equally to 3D (hex); the maximum delay time in 50 Hz systems is -944 equally to 14 (hex). \\
Different processing times in the chrominance channel and the clock generation could result in phase errors in the chrominance processing by transients in clock frequency. \\
An adjustable delay (IDEL) is necessary if the processing time in the clock generation is unknown. \\
(The horizontal PLL does not operate if the maximum delays are exeeded. The system clock frequency is set to a value of the last update and is within \(\pm 7.1 \%\) of nominal frequency).
\end{tabular} \\
\hline HSYB7 to HSYB0 "01" & Horizontal sync begin for 50 Hz , step size \(=2\) / LLC. The delay time is selectable from \(-382 /\) LLC (+191 decimal multiplier) to +128/LLC (-64 decimal multiplier) equals data BF to C0 (hex). Two's complement numbers with "hidden" sign-bit. The sign-bit is generated internally by evaluating the MSB and the MSB-1 bits. \\
\hline HSYS7 to HSYSO "02" & Horizontal sync stop for 50 Hz , step size \(=2\) / LLC. The delay time is selectable from -382/LLC (+191 decimal multiplier) to \(+128 / L L C\) (-64 decimal multiplier) equals data BF to C 0 (hex). Two's complement numbers with "hidden" sign-bit. The sign-bit is generated internally by evaluating the MSB and the MSB-1 bits. \\
\hline HCLB7 to HCLB0 "03" & Horizontal clamp start for 50 Hz , step size \(=2\) / LLC. The delay, time is selectable from -254/ LLC (+127 decimal multiplier) to \(+256 /\) LLC (-128 decimal multiplier) equals data 7 F to 80 (hex). \\
\hline HCLS7 to HCLSO "04" & Horizontal clamb stop for 50 Hz , step size \(=2 /\) LLC. The delay time is selectable from \(-254 /\) LLC (+127 decimal multiplier) to \(+256 / L L C\) (-128 decimal multiplier) equals data 7 F to 80 (hex). \\
\hline HPHI7 to HPHIO "05" & \begin{tabular}{l}
Horizontal sync start after PHI1 for 50 Hz , step size \(=8\) / LLC. The delay time is selectable from -32 to \(+31.7 \mu \mathrm{~s}\) (+118 to -118 decimal multiplier) equals data 75 to 8 A (hex). \\
Forbidden, outside available central counter range, are +127 to +118 decimal multiplier equals data 7 E to 76 (hex) as well as -119 to -128 decimal multiplier equals data 89 to 80 (hex).
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { BYPS } \\
& \text { "06" }
\end{aligned}
\] & \[
\begin{aligned}
& \text { input mode select bit: } \\
& 0=\text { CVBS mode (chrominance trap active) } \\
& 1=\text { S-Video mode (chrominance trap bypassed) }
\end{aligned}
\] \\
\hline PREF & \begin{tabular}{l}
use of pre-filter: \\
\(0=\) pre-filter off (bypassed) \\
1 = pre-filter on; PREF may be used if chrominance trap is active
\end{tabular} \\
\hline BPSS1 to BPSS0 & \begin{tabular}{l}
Aperture bandpass to select different characteristics with maximums (0.2 to \(0.3 \times \operatorname{LLC} / 2\)): \\
Figures 17 to 26
\end{tabular} \\
\hline
\end{tabular}

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \text { CORI1 } \\
& \text { "06" }
\end{aligned}
\] & to CORIO & Coring range for high frequency components according to 8-bit luminance, Fig. 16 on page 37: \\
\hline APER1 to & to APERO & Aperture bandpass filter weights high frequency components of luminance signal: \\
\hline HUE7 "07" & to HUEO & Hue control from \(+178.6^{\circ}\) to \(-180.0^{\circ}\) equals data bytes 7 F to 80 (hex); \(0^{\circ}\) equals 00 \\
\hline \[
\begin{aligned}
& \text { CKTQ4 } \\
& \text { "08" }
\end{aligned}
\] & to CKTQ0 & Colour-killer threshold QAM (PAL,NTSC) from approximately -30 dB to -18 dB equals data bytes F8 to 07 (hex) \\
\hline \[
\begin{aligned}
& \text { CKTS4 } \\
& \text { "09" }
\end{aligned}
\] & to CKTSO & Colour-killer threshold SECAM from approximately -30 dB to -18 dB equals data bytes F 8 to 07 (hex) \\
\hline \[
\begin{array}{|l}
\hline \text { PLSE7 } \\
\text { "OA" }
\end{array}
\] & to PLSEO & PAL switch sensitivity from LOW to HIGH (HIGH means immediate sequence correction) equals FF to 00 (hex), MEDIUM equals 80 \\
\hline \[
\begin{aligned}
& \text { SESE7 } \\
& \text { "OB" }
\end{aligned}
\] & to SESEO & SECAM switch sensitivity from LOW to HIGH (HIGH means immediate sequence correction) equals FF to 00 (hex), MEDIUM equals 80 \\
\hline \[
\begin{array}{|l}
\hline \text { COLO } \\
\text { "OC" }
\end{array}
\] & & \[
\begin{aligned}
& \text { Colour-on bit: } \\
& \begin{array}{l}
0=\text { automatic colour-killer } \\
1=\text { forced colour-on. }
\end{array}
\end{aligned}
\] \\
\hline LFIS1 & to LFISO & Automatic gain control (AGC filter): \\
\hline VTRC "OD" & & \begin{tabular}{l}
VTR/TV mode bit: \(0=\) TV mode \\
\(1=\) VTR mode
\end{tabular} \\
\hline RTSE & & \begin{tabular}{l}
Realtime output mode select bit: \\
\(0=\) PLIN switched to output RTS1 (pin 34); ODD switched to RTS0 (pin 35) \\
\(1=\) HL switched to output RTS1 (pin34); VL switched to RTS0 (pin 35)
\end{tabular} \\
\hline HRMV & & HREF position select:
\[
\begin{aligned}
& 0=\text { default } \\
& 1=\text { HREF is } 8 \times \text { LLC2 clocks earlier }
\end{aligned}
\] \\
\hline SSTB & & \begin{tabular}{l}
Status byte select: \\
\(0=\) status byte 0 selected
\(1=\) status byte 1 selected
\end{tabular} \\
\hline
\end{tabular}

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { SECS } \\
& \text { "OD" }
\end{aligned}
\] & \[
\begin{aligned}
& \text { SECAM mode bit: } \\
& 0=\text { other standards } \\
& 1=\text { SECAM }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { HPLL } \\
& \text { "OE" }
\end{aligned}
\] & \begin{tabular}{l}
Horizontal clock PLL: \\
\(0=\) PLL closed \\
\(1=\) PLL open and horizontal frequency fixed
\end{tabular} \\
\hline OECL & \begin{tabular}{l}
Select internal/external clock source: \\
\(0=\) LLCB and CREFB are inputs \\
\(1=\) LLCB and CREFB are outputs
\end{tabular} \\
\hline OEHV & \begin{tabular}{l}
Output enable of horizontal/vertical sync: \\
\(0=H S\), HREF and VS pins are inputs (outputs high-impedance) \\
\(1=\mathrm{HS}\), HREF and VS pins are outputs
\end{tabular} \\
\hline OEYC & Data output YUV(15-0) enable: \(0=\) data pins are inputs 1 = data pins are controlled by DIR (pin 95) \\
\hline CHRS & \begin{tabular}{l}
S-VHS bit (chrominance from CVBS or from chrominance input): \\
\(0=\) controlled by BYPS-bit (subaddress 06) \\
1 = chrominance from chrominance input (CHR(7-0))
\end{tabular} \\
\hline GPSW2 to GPSW1 & General purpose switches: \\
\hline \[
\begin{aligned}
& \text { AUFD } \\
& \text { "OF" }
\end{aligned}
\] & \begin{tabular}{ll}
Automatic field detection: & \(0=\) field selection by FSEL-bit \\
\(1=\) automatic field detection by SAA7196
\end{tabular} \\
\hline FSEL & \[
\begin{array}{ll}
\text { Field select (AUFD-bit }=0): & 0=50 \mathrm{~Hz}(625 \text { lines) } \\
& 1=60 \mathrm{~Hz} \text { (525 lines) }
\end{array}
\] \\
\hline SXCR & SECAM cross-colour reduction: \(\quad \begin{aligned} & 0=\text { reduction off } \\ & 1=\text { reduction on }\end{aligned}\) \\
\hline SCEN & \(\begin{array}{ll}\text { Enable sync and clamping pulse: } & 0=\mathrm{HSY} \text { and HCL outputs HIGH (pins } 25 \text { and 26) } \\ & 1=\mathrm{HSY} \text { and HCL outputs active }\end{array}\) \\
\hline YDEL2 to YDELO & Luminance delay compensation: \\
\hline \[
\begin{aligned}
& \text { HRFS } \\
& \text { "10" }
\end{aligned}
\] & \begin{tabular}{l}
Select HREF position: \\
\(0=\) normal, HREF is matched to YUV output on Expansion Port \\
\(1=\) HREF is matched to CVBS input port
\end{tabular} \\
\hline
\end{tabular}

Digital video decoder, scaler and clock generator circuit (DESCPro)

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}
\begin{tabular}{|c|c|}
\hline HC6S7 to HC6S0 "17" & Horizontal clamp stop for 60 Hz , step size \(=2\) / LLC. The delay time is selectable from \(-254 /\) LLC (+127 decimal multiplier) to \(+256 /\) LLC (-128 decimal multiplier) equals data 7 F to 80 (hex). \\
\hline HP617 to HP610 "18" & \begin{tabular}{l}
Horizontal sync start after PHI1 for 60 Hz , step size \(=8\) /LLC. The delay time is selectable from -32 to \(+31.7 \mu \mathrm{~s}\) (+97 to -97 decimal multiplier) equals data 61 to \(9 F\) (hex). \\
Forbidden, outside available central counter range, are +127 to +98 decimal multiplier equals data 7E to 62 (hex) as well as -98 to -128 decimal multiplier equals data 9 E to 80 (hex).
\end{tabular} \\
\hline BRIG7 to BRIG0 "19" & Luminance brightness control for VRAM port: \\
\hline
\end{tabular}

(a) CORI1 \(=0 ;\) CORIO \(=1\)
(b) CORI \(1=1\); CORIO \(=0\)
(c) CORI \(1=1 ;\) CORIO \(=1\)

Fig. 16 Coring function adjustment by subaddress 06 to affect the bandfilter output signal. The thresholds are related to the 13 -bit word width in the luminance processing part and influence the 1 LSB to 3 LSB (YO to Y 2) with respect to the 8 -bit luminance output.

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}

Fig. 17 Luminance control in 50 Hz / CVBS mode controllable by subaddress byte 06; pre-filter on and coring off; maximum aperture bandpass filter characteristic.

Fig. 18 Luminance control in 50 Hz / CVBS mode controllable by subaddress byte 06; pre-filter on and coring off; other aperture bandpass filter characteristics.

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}

Fig. 19 Luminance control in 50 Hz / CVBS mode controllable by subaddress byte 06; pre-filter off and coring off; maximum aperture bandpass filter characteristic.

Fig. 20 Luminance control in 60 Hz / CVBS mode controllable by subaddress byte 06; pre-filter on and coring off; maximum aperture bandpass filter characteristic.

Digital video decoder, scaler
and clock generator circuit (DESCPro)

Fig. 21 Luminance control in 60 Hz / CVBS mode controllable by subaddress byte 06 ; pre-filter on and coring off; other aperture bandpass filter characteristics.

Fig. 22 Luminance control in 60 Hz / CVBS mode controllable by subaddress byte 06; pre-filter off and coring off; maximum and minimum aperture bandpass filter characteristics.

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}

Fig. 23 Luminance control in 50 Hz / S-VHS mode controllable by subaddress byte 06; pre-filter off and coring off; different aperture bandpass filter characteristics.

Fig. 25 Luminance control in 60 Hz / S-VHS mode controllable by subaddress byte 06; pre-filter off and coring off; different aperture bandpass filter characteristics.

Fig. 24 Luminance control in \(50 \mathrm{~Hz} / \mathrm{S}-\mathrm{VHS}\) mode controllable by subaddress byte 06; pre-filter on and coring off; different aperture bandpass filter characteristics.

Fig. 26 Luminance control in 60 Hz / S-VHS mode controllable by subaddress byte 06; pre-filter on and coring off; different aperture bandpass filter characteristics.

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}

Table \(11 \mathrm{I}^{2} \mathrm{C}\)-bus scaler control; subaddress and data bytes for writing
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow{2}{*}{FUNCTION SUBADDRESS}} & \multicolumn{8}{|c|}{DATA} & \multirow{2}{*}{DF*} \\
\hline & & D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 & \\
\hline \multirow[t]{5}{*}{Formats and sequence Output data pixel/line (1) Input data pixel/line (1) Horiz. window start (1) Horizontal filter} & 20 & RTB & OF1 & OFO & VPE & LW1 & LWO & FS1 & FSO & \\
\hline & 21 & XD7 & XD6 & XD5 & XD4 & XD3 & XD2 & XD1 & XDO & \\
\hline & 22 & XS7 & XS6 & XS5 & XS4 & XS3 & XS2 & XS1 & XSO & \\
\hline & 23 & X07 & X06 & XO5 & XO4 & XO3 & XO2 & XO1 & XOO & \\
\hline & 24 & HF2 & HF1 & HFO & XO8 & XS9 & XS8 & XD9 & XD8 & \\
\hline \multirow[t]{4}{*}{Output data lines/field (2) Input data lines/field (2) Vertical window start (2) AFS/vertical Y processing} & 25 & YD7 & YD6 & YD5 & YD4 & YD3 & YD2 & YD1 & YDO & \\
\hline & 26 & YS7 & YS6 & YS5 & YS4 & YS3 & YS2 & YS1 & YSO & \\
\hline & 27 & YO7 & YO6 & YO5 & YO4 & YO3 & YO2 & YO1 & YOO & \\
\hline & 28 & AFS & VP1 & VPO & YO8 & YS9 & YS8 & YD9 & YD8 & \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Vertical bypass start (3) \\
Vertical bypass count (3)
\end{tabular}} & 29 & VS7 & VS6 & VS5 & VS4 & VS3 & VS2 & VS1 & VSo & \\
\hline & 2A & VC7 & VC6 & VC5 & VC4 & VC3 & VC2 & VC1 & VCO & \\
\hline & 2B & 0 & 0 & 0 & VS8 & 0 & VC8 & 0 & POE & \\
\hline \multirow[t]{4}{*}{Chroma keying lower limit for \(V\) upper limit for \(V\) lower limit for \(U\) upper limit for \(U\)} & 2C & VL7 & VL6 & VL5 & VL4 & VL3 & VL2 & VL1 & VLO & \\
\hline & 2D & VU7 & VU6 & VU5 & VU4 & VU3 & VU2 & VU1 & VU0 & \\
\hline & 2E & UL7 & UL6 & UL5 & UL4 & UL3 & UL2 & UL1 & ULO & \\
\hline & 2 F & UU7 & UU6 & UU5 & UU4 & UU3 & UU2 & UU1 & UUO & \\
\hline \multirow[t]{2}{*}{Data path setting * unused} & 30 & VOF & AFG & LLV & MCT & QPL & QPP & TTR & EFE & \\
\hline & 31 to 3F & & & & & & & & & \\
\hline
\end{tabular}
(1) continued in " 24 ";
(2) continued in " 28 ";
(3) continued in "2B";
*) Default register contents fill in by hand;
**) Data representation, transfer mode and adaptivity

Table 12 Function of the register bits of Table 11 for subaddresses " 20 " to " 30 "
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { RTB } \\
& \text { " } 20 \text { " }
\end{aligned}
\] & \begin{tabular}{l}
ROM table bypass switch: \\
0 = anti-gamma ROM active \\
\(1=\) table is bypassed
\end{tabular} \\
\hline OF. 1 to OF0 & Set output field mode: \\
\hline VPE & \begin{tabular}{l}
VRAM port outputs enable: \\
\(0=\mathrm{HFL}\) and INCADR inactive (HFL = LOW, INCADR = HIGH); VRO outputs in 3-state \\
\(1=\mathrm{HFL}\) and INCADR enabled; VRO outputs dependent on VOEN
\end{tabular} \\
\hline
\end{tabular}

Digital video decoder, scaler and clock generator circuit (DESCPro)
\begin{tabular}{|c|c|c|}
\hline LW1 to
" 20 " & LW0 & \begin{tabular}{l}
First pixel position in VRO data for \(F S 1=0 ; F S 0=0(R G B)\) and \(F S 1=0 ; F S 0=1(\mathrm{YUV})\) : \\
First pixel position in VRO data for FS1 \(=1 ;\) FS0 \(=1\) (monochrome):
\end{tabular} \\
\hline FS1 to & FS0 & FIFO output register format select (EFE-bit see " \(30^{\circ}\)): \\
\hline \[
\begin{aligned}
& \text { XD9 to } \\
& \text { "21 and } 24 \text { " }
\end{aligned}
\] & XD0 & Pixel number per line (straight binary) on output (VRO): 0000000000 to 1111111111 (number of XS pixels as a maximum; take care of vertical processing) \\
\hline \[
\begin{aligned}
& \text { XS9 to } \\
& \text { "22 and } 24 \text { " }
\end{aligned}
\] & XS0 & Pixel number per line (straight binary) on inputs (YIN and UVIN): 0000000000 to 1111111111 (number of input pixels per line as a maximum; take care of vertical processing) \\
\hline \[
\begin{array}{lr}
\text { XO8 } & \text { to } \\
\text { "23 and } 24 \text { " }
\end{array}
\] & XOO & \begin{tabular}{l}
Horizontal start position (straight binary) of scaling window (take care of active pixel number per line): \\
start with 1st pixel after HREF rise \(=000000011\) to 111111111 (003 to 1FF) \\
Window start and window end may be cut by internal delay compensated HREF \(=0\) phase.
\end{tabular} \\
\hline
\end{tabular}

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}
\begin{tabular}{|c|c|c|}
\hline \[
\begin{array}{|ll}
\hline \mathrm{HF2} \\
\text { " } 24 \text { " }
\end{array}
\] & HFO & \begin{tabular}{l}
Horizontal decimation filter: \\
The filter coefficients are related to the luminance path. The filter coefficient may differ from upper table when a combination with vertical Y processing and adaptive modes are provided.
\end{tabular} \\
\hline \[
\begin{array}{lr}
\text { YD9 to } \\
\text { "25 and } 28 \text { " }
\end{array}
\] & YD0 & Line number per output field (straight binary): 0000000000 to 1111111111 (number of YS lines as a maximum) \\
\hline \[
\begin{array}{|lr}
\hline \text { YS9 } & \text { to } \\
\text { "26 and } 28 \text { " }
\end{array}
\] & YSO & ```
Line number per input field (straight binary):
 00 0000 00000 line
 11 1111 1111.1023 lines (maximum = number of lines/field - 3)
``` \\
\hline \[
\begin{array}{|lr}
\hline \text { YO8 } & \text { to } \\
\text { "27 and } 28 \text { " }
\end{array}
\] & YOO & \begin{tabular}{l}
Vertical start of scaling window. Take care of active line number per field (straight binary); window start and window end may be cut by the external VS signal: \\
000000000 start with 3rd line after the rising slope of VS \\
000000011 start with 1st line after the falling slope of nominal VS (7151B, 7191B input) \\
\(111111111511+3\) lines after the rising slope of VS (maximum value)
\end{tabular} \\
\hline \[
\begin{array}{|l}
\hline \text { AFS } \\
" 28 "
\end{array}
\] & & \begin{tabular}{l}
Adaptive filter switch: \\
\(0=\) off; use VP1, VPO and HF2 to HFO bits \\
\(1=\) on; filter characteristics are selected by the scaler
\end{tabular} \\
\hline VP1 to & VPO & Vertical luminance data processing: \\
\hline \[
\begin{array}{|l|}
\hline \text { VS8 to } \\
\text { "29 and 2B" }
\end{array}
\] & VSO & \begin{tabular}{l}
Vertical bypass start, sets begin of the bypass region (straight binary). Scaling region overrides bypass region (YO bits): \\
000000000 start with 3rd line after the rising slope of VS \\
000000011 start with 1st line after the falling slope of nominal VS (7151B, 7191B input) \\
\(11111 \quad 1111 \quad 511+3\) lines after the rising slope of VS (maximum value)
\end{tabular} \\
\hline \[
\begin{array}{|lr}
\hline \text { VC8 } \quad \text { to } \\
\text { " } 2 \mathrm{~A} \text { and } 2 \mathrm{~B} \text { " }
\end{array}
\] & VC0 & \begin{tabular}{l}
Vertical bypass count, sets length of bypass region (straight binary): \\
0000000000 line length \\
111111111511 lines length (maximum = number of lines/field - 3)
\end{tabular} \\
\hline POE & & \begin{tabular}{l}
Polarity, internally detected odd/even flag O/E: \\
\(0=\) flag unchanged \\
1 = flag inverted
\end{tabular} \\
\hline
\end{tabular}

Digital video decoder, scaler and clock generator circuit (DESCPro)
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { VL7 to VLO } \\
& \text { "2C" }
\end{aligned}
\] & \begin{tabular}{l}
Set lower limit \(V\) for colour-keying ( 8 bit; two's complement): \\
10000000 as maximum negative value \(=\mathbf{- 1 2 8}\) signal level \\
00000000 limit \(=0\); \\
01111111 as maximum positive value \(=+127\) signal level
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { VU7 to VUo } \\
& \text { "2D" }
\end{aligned}
\] & \begin{tabular}{l}
Set upper limit V for colour-keying ( 8 bit; two's complement): \\
10000000 as maximum negative value \(=-128\) signal level \\
\(00000000 \quad\) limit \(=0\) \\
01111111 as maximum positive value \(=+127\) signal level
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { UL7 to ULO } \\
& \text { "2E" }
\end{aligned}
\] & \begin{tabular}{l}
Set lower limit U for colour-keying ( 8 bit; two's complement): \\
10000000 as maximum negative value \(=\mathbf{- 1 2 8}\) signal level \\
\(00000000 \quad\) limit \(=0\) \\
01111111 as maximum positive value \(=+127\) signal level
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { UU7 to UUO } \\
& \text { " } 2 \mathrm{F"} \text { " }
\end{aligned}
\] & \begin{tabular}{l}
Set upper limit U for colour-keying ( 8 bit; two's complement): \\
10000000 as maximum negative value \(=-128\) signal level \\
\(00000000 \quad\) limit \(=0\) \\
01111111 as maximum positive value \(=+127\) signal level
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { VOF } \\
& \text { "30" }
\end{aligned}
\] & \begin{tabular}{l}
VRAM bus output format: \\
\(0=\) enabling of 32 to 16 bit multiplexing via VMUX (pin 46) \\
1 = disabling of 32 to 16 bit multiplexing via VMUX (pin 46)
\end{tabular} \\
\hline AFG & \begin{tabular}{l}
Adaptive geometrical filter: \\
\(0=\) linear \(H\) and \(V\) data processing \\
1 = approximated geometrical H and V interpolation (improved scaling accuracy of luminance)
\end{tabular} \\
\hline LLV & \begin{tabular}{l}
Luminance limiting value: \\
\(0=\) amplitude range between 1 and 254 \\
\(1=\) amplitude range between 16 and 235 , suitable for monochrome and YUV modes
\end{tabular} \\
\hline MCT & \begin{tabular}{l}
Monochrome and two's complement output data select: \\
\(0=\) inverse grayscale luminance (if grayscale is selected by FS bits) or straight binary U, V data output \\
1 = non-inverse monochrome luminance (if grayscale is selected by FS bits) or two's complement \(\mathrm{U}, \mathrm{V}\) data output
\end{tabular} \\
\hline QPL & Line qualifier polarity flag:
\[
\begin{aligned}
& 0=\text { LNQ is active-LOW }(\text { pin } 52) \\
& 1=\text { LNQ is active-HIGH }
\end{aligned}
\] \\
\hline QPP & Pixel qualifier polarity flag:
\[
\begin{aligned}
& 0=\text { PXQ is active-LOW }(\text { pin } 51) \\
& 1=\text { PXQ is active-HIGH }
\end{aligned}
\] \\
\hline TTR & \[
\begin{aligned}
& \text { Transparent data transfer: } \\
& \begin{array}{l}
0=\text { normal operation (VRAM data burst transfer) } \\
1
\end{array}=\text { FIFO register transparent }
\end{aligned}
\] \\
\hline EFE & \begin{tabular}{l}
Extended formats enable bit (see FS-bits in subaddress " 20 "): \(0=32\)-bit longword output formats \\
1 = extended output formats ("one pixel a time")
\end{tabular} \\
\hline
\end{tabular}

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}


Fig. 27 Horizontal frequency characteristic of luminance signal \((\mathrm{Y})\) dependent on HF2 to HFO bits (subaddress 24).


Fig. 28 Horizontal frequency characteristic of chrominance signals (UV) without UV interpolation dependent on HF2 to HFO bits (subaddresses 24).


Purchase of Philips' \({ }^{2} \mathrm{C}\) components conveys a license under the Philips' \(I^{2} C\) patent to use the components in the \(I^{2} \mathrm{C}\)-system provided the system conforms to the \(1^{2} \mathrm{C}\) specifications defined by Philips.

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}

\section*{9. LIMITING VALUES}

In accordance with the Absolute Maximum Rating System (IEC 134).
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\mathrm{DD}}\) & \begin{tabular}{c} 
supply voltage (pins 14, 27, 31, 45, \\
\(61,77,91\) and 106)
\end{tabular} & -0.5 & 6.5 & V \\
\hline \(\mathrm{~V}_{\mathrm{l}}\) & voltage on all input/output pins & -0.5 & \(\mathrm{~V}_{\mathrm{DD}}+0.5 \mathrm{~V}\) \\
\hline \(\mathrm{P}_{\mathrm{tot}}\) & total power dissipation & - & 1.5 & W \\
\hline \(\mathrm{~T}_{\text {stg }}\) & storage temperature range & -65 & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{amb}}\) & operating ambient temperature range & 0 & 70 & \({ }^{\circ} \mathrm{C}\) & \begin{tabular}{c} 
Equivalent to discharging a \\
100 pF capacitor through a \\
\(1.5 \mathrm{k} \Omega\) series resistor.
\end{tabular} \\
\hline \(\mathrm{V}_{\mathrm{ESD}}\) & electrostatic handling* for all pins & - & \(\pm 2000\) & V \\
\hline
\end{tabular}
10. CHARACTERISTICS
\(\mathrm{V}_{\mathrm{DD}}=4.5\) to \(5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=0\) to \(70^{\circ} \mathrm{C}\) unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\text {DDD }}\) & digital supply voltage range (pins \(14,31,45\), 61, 77, 91 and 106) & & 4.5 & 5 & 5.5 & V \\
\hline \(\mathrm{V}_{\text {DDA }}\) & analog supply voltage range (pin 27) & & 4.5 & 5 & 5.5 & V \\
\hline ldDD & digital supply current & inputs LOW; outputs without load & - & 170 & 260 & mA \\
\hline IDDA & analog supply current & & - & 10 & 20 & mA \\
\hline \multicolumn{7}{|l|}{Data, clock and control inputs} \\
\hline \(\mathrm{V}_{\mathrm{IL}}\) & input voltage LOW & clocks & -0.5 & - & 0.6 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & input voltage HIGH & clocks & 2.4 & - & \(\mathrm{V}_{\mathrm{DD}}+0.5\) & V \\
\hline \(\mathrm{V}_{\mathrm{IL}}\) & input voltage LOW & other inputs & -0.5 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & input voltage HIGH & other inputs & 2.0 & - & \(\mathrm{V}_{\mathrm{DD}}+0.5\) & V \\
\hline \(\mathrm{I}_{\mathrm{LI}}\) & input leakage current & \(\mathrm{V}_{\text {IL }}=0\) & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{3}{*}{\(\mathrm{C}_{1}\)} & input capacitance data & & - & - & 8 & pF \\
\hline & input capacitance clocks & & - & - & 10 & pF \\
\hline & input capacitance 3-state 1/O & high-impedance state & - & - & 8 & pF \\
\hline \multicolumn{7}{|l|}{Data and control outputs note 1} \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & output voltage LOW & & 0 & - & 0.6 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & output voltage HIGH & & 2.4 & - & \(\mathrm{V}_{\mathrm{DD}}\) & V \\
\hline \multicolumn{7}{|l|}{LFCO output (pin 28)} \\
\hline \(V_{0}\) & LFCO output signal (peak-to-peak value) & & 1.4 & 2.1 & 2.6 & V \\
\hline \(\mathrm{V}_{28}\) & output voltage range & & 1 & - & \(\mathrm{V}_{\mathrm{DD}}\) & V \\
\hline \multicolumn{7}{|l|}{\(1^{2} \mathrm{C}\)-bus, SDA and SCL (pins 3 and 4)} \\
\hline \(\mathrm{V}_{\text {IL }}\) & input voltage LOW & & -0.5 & - & 1.5 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & input voltage HIGH & & 3 & - & \(\mathrm{V}_{\mathrm{DD}}+0.5\) & V \\
\hline
\end{tabular}

Digital video decoder, scaler and clock generator circuit (DESCPro)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline\(I_{3,4}\) & input current & & - & - & \(\pm 10\) & \(\mu \mathrm{~A}\) \\
\hline \(\mathrm{I}_{\mathrm{ACK}}\) & output current on pin 3 & acknowledge & 3 & - & - & mA \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & output voltage at acknowledge & \(I_{3}=3 \mathrm{~mA}\) & - & - & 0.4 & V \\
\hline
\end{tabular}

Clock input timing (LLCB)
\begin{tabular}{|c|c|}
\hline \(\mathrm{t}_{\text {LLCB }}\) & cycle time \\
\hline\(\delta\) & duty factor \\
\hline \(\mathrm{t}_{\mathrm{r}}\) & rise time \\
\hline \(\mathrm{t}_{\mathrm{f}}\) & fall time \\
\hline
\end{tabular}

Fig. 30
\begin{tabular}{|c|c|c|c|c|} 
& & 31 & - & 45 \\
ns \\
\hline & \(\mathrm{t}_{\mathrm{LLCBH}} / \mathrm{LLLCB}\) & 40 & 50 & 60 \\
\(\%\) & - & - & 5 & ns \\
\hline & & - & - & 6 \\
ns \\
\hline
\end{tabular}

Fig. 30
and Fig. 31
; note 2
\begin{tabular}{|c|c|}
\hline \(\mathrm{t}_{\mathrm{SU}}\) & set-up time \\
\hline \(\mathrm{t}_{\mathrm{HD}}\) & hold-time \\
\hline \multicolumn{2}{|c|}{ Data and control output timing } \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|}
\hline & & 11 & - & - \\
ns \\
\hline
\end{tabular}

Fig. 30 ; note 3
\begin{tabular}{|c|c|}
\hline \(\mathrm{C}_{\mathrm{L}}\) & load capacitance \\
\cline { 3 - 3 } & \\
\hline \(\mathrm{t}_{\mathrm{OH}}\) & output hold time \\
\hline \(\mathrm{t}_{\mathrm{PD}}\) & \begin{tabular}{c} 
propagation delay from negative edge of \\
LLCB
\end{tabular} \\
\hline \(\mathrm{t}_{\mathrm{PZ}}\) & \begin{tabular}{c} 
propagation delay from negative edge of \\
LLCB (to 3-state)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline data, HREF and VS & 15 & - & 50 & pF \\
\hline control & 7.5 & - & 25 & pF \\
\hline \(\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\) & 13 & - & - & ns \\
\hline \begin{tabular}{c} 
data, \(H R E F\) and \(\mathrm{VS} ;\) \\
\(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\)
\end{tabular} & - & & 29 & ns \\
\hline control \(\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}\) & - & & 29 & ns \\
\hline note 4 & - & & 15 & ns \\
\hline
\end{tabular}

Clock output timing (LLC, LLC2, LLCB)
Fig. 30
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathrm{C}_{\mathrm{L}}\) & output load capacitance & & 15 & - & 40 & pF \\
\hline \({ }_{\text {tLC, }}\) LILCB & cycle time & & 31 & - & 45 & ns \\
\hline tLC2 & cycle time & & 62 & & 90 & ns \\
\hline \(\delta\) & duty factor & \(\mathrm{t}_{\mathrm{LLCH}} / \mathrm{LLLC}\) \(\mathrm{t}_{\mathrm{LLC} 2 \mathrm{H}} / \mathrm{tLLC}_{2}\) tLLCBH/tLCB & 40 & 50 & 60 & \% \\
\hline \(\mathrm{t}_{\mathrm{r}}\) & rise time & 0.6 to 2.6 V & - & - & 5 & ns \\
\hline \(t_{f}\) & fall time & 2.6 to 0.6 V & - & - & 5 & ns \\
\hline \(\mathrm{t}_{\text {dLL }}\) & delay between LLCB \(_{\text {out }}\) and \(\mathrm{LLC2}_{\text {out }}\) & at \(1.5 \mathrm{~V}, 40 \mathrm{pF}\) & - & - & 8 & ns \\
\hline
\end{tabular}

Data qualifier output timing (CREFB)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathrm{t}_{\mathrm{OH}}\) & output hold time & \(\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\) & 3 & - & - & ns \\
\hline \({ }_{\text {tP }}\) & propagation delay from positive edge of LLCB & \(\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}\) & - & - & 18 & ns \\
\hline \multicolumn{7}{|l|}{Horizontal PLL} \\
\hline \multirow[t]{2}{*}{\(\mathrm{f}_{\mathrm{H}}\)} & \multirow[t]{2}{*}{nominal line frequency} & 50 Hz system & - & 15625 & - & Hz \\
\hline & & 60 Hz system & - & 15734 & - & Hz \\
\hline \multirow[t]{2}{*}{\(\Delta f_{H} / f_{H n}\)} & \multirow[t]{2}{*}{permissible static deviation} & 50 Hz system & - & - & \(\pm 5.6\) & \% \\
\hline & & 60 Hz system & - & - & \(\pm 6.7\) & \% \\
\hline
\end{tabular}

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Subcarrier PLL} \\
\hline \multirow[t]{2}{*}{\(\mathrm{f}_{\mathrm{SC}} \mathrm{n}\)} & \multirow[t]{2}{*}{nominal subcarrier frequency} & PAL & - & 4.433618 & - & MHz \\
\hline & & NTSC & - & 3.579545 & - & MHz \\
\hline \({ }^{\dagger}{ }_{\text {S }} \mathrm{C}\) & lock-in range & PAL/NTSC & \(\pm 400\) & - & - & Hz \\
\hline \multicolumn{2}{|l|}{Crystal oscillator} & Fig. 32 & ; note 11 & & & \\
\hline \(f_{n}\) & nominal frequency & 3rd harmonic & - & 26.8 & - & MHz \\
\hline \multirow[t]{2}{*}{\(\Delta f / f_{n}\)} & permissible deviation \(f_{n}\) & & - & - & \(\pm 50\) & \(10^{-6}\) \\
\hline & temperature deviation from \(f_{n}\) & & - & - & \(\pm 20\) & \(10^{-6}\) \\
\hline \multirow[t]{7}{*}{X1} & crystal specification: & \multicolumn{5}{|l|}{} \\
\hline & temperature range \(\mathrm{T}_{\text {amb }}\) & & 0 & - & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline & load capacitance \(C_{L}\) & & 8 & - & - & pF \\
\hline & series resonance resistance \(\mathrm{R}_{S}\) & & - & 50 & 80 & \(\Omega\) \\
\hline & motional capacitance \(\mathrm{C}_{1}\) & & - & 1.1 \(\pm 20 \%\) & - & fF \\
\hline & parallel capacitance \(\mathrm{C}_{0}\) & & - & 3.5 \(\pm 20 \%\) & - & pF \\
\hline & Philips catalogue number & & \multicolumn{3}{|c|}{992252030004} & \\
\hline \multicolumn{2}{|l|}{VCLK timing} & Fig. 29 & ; note 12 & & & \\
\hline \(t_{\text {VCLK }}\) & VRAM port clock cycle time & note 5 & 50 & - & 200 & ns \\
\hline \(\mathrm{t}_{\mathrm{pL}}, \mathrm{t}_{\mathrm{pH}}\) & LOW and HIGH times & note 6 & 17 & - & - & ns \\
\hline \(\mathrm{t}_{\mathrm{r}}\) & rise time & & - & - & 5 & ns \\
\hline \(t_{\text {f }}\) & fall time & & - & - & 6 & ns \\
\hline \multicolumn{2}{|l|}{VRO and reference signal output timing} & Fig. 29 & & & & \\
\hline \multirow[t]{2}{*}{\(\mathrm{C}_{\mathrm{L}}\)} & \multirow[t]{2}{*}{output load capacitance} & VRO outputs & 15 & - & 40 & pF \\
\hline & & other outputs & 7.5 & - & 25 & pF \\
\hline \(\mathrm{t}_{\mathrm{OH}}\) & VRO data hold time & \(\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}\); note 7 & 0 & - & - & ns \\
\hline \(\mathrm{t}_{\mathrm{OHL}}\) & related to LCCB (INCADR, HFL) & \(\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}\); note 8 & 0 & - & - & ns \\
\hline \(\mathrm{t}_{\mathrm{OHV}}\) & related to VCLK (HFL) & \(\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}\); note 8 & 0 & - & - & ns \\
\hline tod & VRO data delay time & \(\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}\); note 7 & - & - & 25 & ns \\
\hline \(\mathrm{t}_{\text {ODL }}\) & related to LCCB (INCADR,HFL) & \(\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}\); note 8 & - & - & 60 & ns \\
\hline todv & related to VCLK (HFL) & \(\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}\); note 8 & - & - & 60 & ns \\
\hline \multirow[t]{2}{*}{\(\mathrm{t}_{\mathrm{D}}\)} & \multirow[t]{2}{*}{VRO disable time to 3-state} & \(\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}\); note 9 & - & - & 40 & ns \\
\hline & & \(\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}\); note 10 & - & - & 24 & ns \\
\hline \multirow[t]{2}{*}{\(t_{E}\)} & \multirow[t]{2}{*}{VRO enable time from 3-state} & \(\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}\); note 9 & - & - & 40 & ns \\
\hline & & \(\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}\); note 10 & - & - & 25 & ns \\
\hline \multicolumn{7}{|l|}{Response times to HFL flag} \\
\hline \(t_{\text {HFL VOE }}\) & HFL rising edge to VRAM port enable & & - & - & 810 & ns \\
\hline \(\mathrm{t}_{\text {HFL VCLK }}\) & HFL rising edge to VCLK burst & & - & - & 840 & ns \\
\hline
\end{tabular}

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}

\section*{Notes to the characteristics}
1. Levels measured with load circuits dependent on output type. Control outputs (HREF, VS excluded): \(1.2 \mathrm{k} \Omega\) at 3 V (TTL load) and \(C_{L}=25 \mathrm{pF}\). Data, HREF and VS outputs: \(1.2 \mathrm{k} \Omega\) at 3 V (TTL load) and \(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\).
2. Data input signals are CVBS (7-0), \(\operatorname{CHR}(7-0)\) (related to LLC) and \(Y U V(15-0)\). Control input signals are HREF, VS and DIR.
3. Data outputs are YUV(15-0). Control outputs are HREF, VS, HS, HSY, HCL, SODD, SVS, SHREF, PXQ, LNQ, RTCO and RTS(1-0).
4. The minimum propagation delay from 3 -state to data active is 0 related to the falling edge of LLCB.
5. Maximum \(t_{\text {VCLK }}=200 \mathrm{~ns}\) for test mode only. The applicable maximum cycle time depends on data format, horizontal scaling and input data rate.
6. Measured at 1.5 V level; \(\mathrm{t}_{\mathrm{p}}\) may be unfinite.
7. Timings of VRO refer to the rising edge of VCLK.
8. The timing of INCADR refers to LLCB; the rising edge of HFL always refers to LLCB. During a VRAM transfer, the falling edge of HFL is generated by VCLK. Both edges of HFL refer to LLCB during horizontal increment and vertical reset cycles.
9. Asynchronous signals. Its timing refers to the 1.5 V switching point of VOEN input signal (pin 53 ).
10. The timing refers to the 1.5 V switching point of VMUX signal (pin 46) in 32 - to 16 -bit multiplexing mode. Corresponding pairs of VRO outputs are together connected.
11. If the internal oscillator is not being used, the applied clock signal must be TTL-compatible.
12. CREFB-timing also valid for VCLK in transparent mode (see Fig. 30


Fig. 29 Data output timing (VCLK).

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}


Fig. 30 Data input/output timing by LLCB.

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}


Fig. 32 Oscillator application (a) and optional clock from external source (b).

\section*{11. PROCESSING DELAYS}

Table 13 Processing delays of signals
\begin{tabular}{|c|c|c|}
\hline PORTS & DELAY IN LLC/LLCB CYCLES & REMARKS \\
\hline CVBS/CHR to YUV & 216 & - \\
\hline YUV to VRO & 56 in YUV mode; 58 in RGB mode & only in transparent mode \\
\hline CVBS/CHR to VRO & 272 in YUV mode; 274 in RGB modes & only in transparent mode \\
\hline
\end{tabular}
t66L ! ! \(1 \mathrm{~d} \forall\)

12. APPLICATION INFORMATION


Fig. 33 Application circuit analog-to-digital convertions.

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}


Fig. 34 Application of SAA7196.

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}

\subsection*{12.2. PROGRAMMING EXAMPLE}

Coefficients to set operation for application circuits Figures 33 and 34 on page 53 and page 54. Slave address byte is 40 h at pin 5 connected to \(\mathrm{V}_{\text {SSD }}\) (or 42 h at pin 5 connected to \(\mathrm{V}_{\text {DDD }}\) )

Table 14 Programming examples
\begin{tabular}{|c|c|c|c|}
\hline SUBADDRESS & BITS & FUNCTION & VALUE (hex) \\
\hline 00 & IDEL(7:0) & increment delay & 4C \\
\hline 01 & HSYB(7:0) & H -sync beginning for 50 Hz & 30 \\
\hline 02 & HSYS(7:0) & H -sync stop for 50 Hz & 00 \\
\hline 03 & HCLB(7:0) & H -clamp beginning for 50 Hz & E8 \\
\hline 04 & HCLS(7:0) & H-clamp stop for 50 Hz & B6 \\
\hline 05 & HPHI(7:0) & HS pulse position for 50 Hz & F4 \\
\hline 06 & BYPS, PREF, BPSS(1:0), \(\operatorname{CORI}(1: 0), \operatorname{APER}(1: 0)\) & & \\
\hline 07 & \begin{tabular}{l}
CORI(1:0), APER(1:0) \\
HUEC(7:0)
\end{tabular} & luminance bandwidth control hue control (0 degree) & \[
\begin{aligned}
& 01(1) \\
& 00
\end{aligned}
\] \\
\hline 08 & CKTQ(4:0) & colour-killer threshold QUAM & F8 \\
\hline 09 & CKTS(4:0) & colour-killer threshold SECAM & F8 \\
\hline OA & PLSE(7:0) & PAL-switch sensivity & 40 \\
\hline OB & SESE(7:0) & SECAM switch sensivity & 40 \\
\hline \({ }_{0} \mathrm{C}\) & COLO, LFIS(1:0) & chrominance gain control settings & 00 \\
\hline OD & VTRC, RTSE, HRMV, SSTB, SECS & standard/mode control & \\
\hline OE & HPLL, OECL, OEHV, & & \\
\hline & OEYC, CHRS, GPSW(2:1) & I/O and clock controls & 38, 3B (5) \\
\hline OF & AUFD, FSEL, SXCR, SCEN, YDEL(2:0) & miscellaneous controls \#1 & 90 \\
\hline 10 & HRFS, VNOI(1:0) & miscellaneous controls \#2 & 00 \\
\hline 11 & CHCV(7:0) & chrominance gain nominal value & 2C (6); 59 (7) \\
\hline 12 & SATN(6:0) & chrominance saturation control value & 40 \\
\hline 13 & CONT(6:0) & luminance contrast control value & 40 \\
\hline 14 & HS6B(7:0) & H -sync beginning for 60 Hz & 34 \\
\hline 15 & HS6S(7:0) & H -sync stop for 60 Hz & OA \\
\hline 16 & HC6B(7:0) & H -clamp beginning for 60 Hz & F4 \\
\hline 17 & HC6S(7:0) & H-clamp stop for 60 Hz & CE \\
\hline 18 & HP6I(7:0) & HS pulse position for 60 Hz & F4 \\
\hline 19 & BRIG(7:0) & luminance brightness control value & 80 \\
\hline 1 A to 1F & reserved & set to zero & 00 \\
\hline 20 & RTB, OF(1:0), VPE, \(\operatorname{LW}(1: 0), \mathrm{FS}(1: 0)\) & data formats and field sequence processing & 10 (8) \\
\hline 21 & XD(7:0) & LSB's output pixel/line & 80 (9); FF (13) \\
\hline 22 & XS(7:0) & LSB's input pixe//line & 80 (9); FF (13) \\
\hline 23 & \(\mathrm{XO}(7: 0)\)
\(\mathrm{HF}(200)\)
XO
(8)
\(\mathrm{XS}(9,8)\) & LSB's for horizontal window start position & 03 (9); 00 (13) \\
\hline 24 & \[
\begin{aligned}
& \mathrm{HF}(2: 0), \mathrm{XO}(8), \mathrm{XS}(9,8), \\
& \mathrm{XD}(9,8)
\end{aligned}
\] & horizontal filter select and MSB's of subaddresses 21, 22, 23 & 85 (9); 8F (13) \\
\hline
\end{tabular}

\section*{Digital video decoder, scaler and clock generator circuit (DESCPro)}
\begin{tabular}{|c|c|c|c|}
\hline SUBADDRESS & BITS & FUNCTION & VALUE (hex) \\
\hline 25 & YD(7:0) & LSB's output lines/field & 90 (9); FF (13) \\
\hline 26 & YS(7:0) & LSB's input lines/field & 90 (9); FF (13) \\
\hline 27 & YO(7:0) & LSB's vertical window start position & 03 (9); 00 (13) \\
\hline 28 & AFS, VP(1:0), YO(8), & adaptive and vertical filter select and & \\
\hline & YS ( 9,8\(), \mathrm{YD}(9,8)\) & MSB's of subaddresses 25, 26, 27 & OO (9); OF (13) \\
\hline 29 & VS(7:0) & LSB's vertical bypass start position & 00 (10) \\
\hline 2A & \(\mathrm{VC}(7: 0)\) & LSB's vertical bypass lines/field & 00 (10) \\
\hline 2B & \(\mathrm{VS}(8), \mathrm{VC}(8), \mathrm{POE}\) & MSB's of subaddresses 29, 2A and odd/even polarity switch & 00 (10) \\
\hline 2 C & VL(7:0) & chroma key: lower limit V (R-Y) & 00 \\
\hline 2D & \(\mathrm{VU}(7: 0)\) & chroma key: upper limit V (R-Y) & FF (11) \\
\hline 2E & UL(7:0) & chroma key: lower limit \(U(B-Y)\) & 00 \\
\hline 2 F & UU(7:0) & chroma key: upper limit \(U\) (B-Y) & 00 \\
\hline 30 & VOF, AFG & VRAM port MUX enable, adaptivity & 80 (12) \\
\hline
\end{tabular}

\section*{Notes to Table 14}
1. dependent on application (Figures 33 and 34 on page 53 and page 54)
2. for QUAM standards
3. for SECAM
4. HPLL is in TV-mode, value for VCR-mode is 84 h ( 85 h for SECAM VCR-mode)
5. for \(\mathrm{Y} / \mathrm{C}\)-mode
6. nominal value for UV-CCIR-level with NTSC source
7. nominal value for UV-CCIR-level with PAL source
8. ROM-table is active, scaler processes both fields for interlaced display; VRAM port enabled; longword position = 0; 16-bit 4:2:2 YUV output format selected
9. scaler processes a segment of ( 384 pixels \(\times 144\) lines) with defaults XO and YO set to the first valid pixel/ line and line/field (for decoder as input source) with scaler factors of 1:1; horizontal and vertical filters are bypassed, filter select adaptivity is disabled
10. no vertical bypass region is defined
11. chrominance keyer is disabled ( \(\mathrm{VL}=0, \mathrm{VU}=-1\) )
12. 32-bit to 16 VRAM port MUX, adaptive scale and Y-limiter are disabled; pixel and line qualifier polarity for transparent mode are set to zero (active); data burst transfer for the 32-bit longword formats is set
13. if no scaling and panning is wanted, the parameters \(X D, X S, Y D\) and \(Y S\) should be set to maximum (3FFh) and the parameters XO and YO should be set to minimum ( 000 h ). In this case, the HREF and VS signals define the processing window of the scaler

\section*{FEATURES}
- Suitable for Desktop Video systems
- Two different sync sources selectable
- PLL frequency multiplier to generate 4 times of input frequency
- Dividers to generate clocks LLCA, LLCB, LLC2A and LLC2B (2nd and 4th multiples of input frequency)
- PLL mode or VCO mode selectable
- Reset control and power fail detection

GENERAL DESCRIPTION
The SAA7197 generates all clock signals required for a digital TV system suitable for the SAA719x family. The circuit operates in either the phase-locked loop mode (PLL) or voltage controlled oscillator mode (VCO).

QUICK REFERENCE DATA
\begin{tabular}{|l|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & MIN. & TYP. & MAX. & UNIT \\
\hline\(V_{\text {DDA }}\) & analog supply voltage (pin 5) & 4.5 & 5.0 & 5.5 & V \\
\hline \(\mathrm{~V}_{\text {DDD }}\) & digital supply voltage (pins 8, 17) & 4.5 & 5.0 & 5.5 & V \\
\hline IDDA & analog supply current & 5 & - & 9 & mA \\
\hline IDDD & digital supply current & 10 & - & 60 & mA \\
\hline \(\mathrm{~V}_{\text {LFCO }}\) & \begin{tabular}{l} 
LFCO input voltage \\
(peak-to-peak value)
\end{tabular} & 1 & - & \(\mathrm{V}_{\mathrm{DDA}}\)
\end{tabular} V.

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
EXTENDED
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } TYPE NUMBER & PINS & PIN POSITION & MATERIAL & CODE \\
\hline SAA7197 & 20 & DIL & plastic & SOT146 \\
\hline SAA7197T & 20 & mini-pack (SO20) & plastic & SOT163A \\
\hline
\end{tabular}


Fig. 1 Block diagram.

\section*{FUNCTION DESCRIPTION}

The SAA7197 generates all clock signals required for a digital TV system suitable for the SAA719x family consisting of an 8-bit analog-to-digital converter (ADC8), digital video multistandard decoder, square pixel (DMSD-SQP), digital video colour space converter (DCSC) and optional extentions. The SAA7197 completes a system for Desktop Video applications in conjunction with memory controllers.

The input signal LFCO is a digital-toanalog converted signal provided by the DMDS-SQPs horizontal PLL. It is the multiple of the line frequency:
\(7.38 \mathrm{MHz}=472 \times f_{H}\) in 50 Hz systems \(6.14 \mathrm{MHz}=360 \times f_{H}\) in 60 Hz systems
LFCO2 (TTL-compatible signal from an external reference source) can be applied to pin 19 (LFCOSEL = HIGH).
The input signal LFCO or LFCO2 is
multiplied by factors 2 or 4 in the PLL (including phase detector, loop filter, VCO and frequency divider) and output on LLCA (pin7), LLCB (pin 10), LLC2A (pin 14) and LLC2B (pin 20). The rectangular output signals have \(50 \%\) duty factor. Outputs with equal frequency may be connected together externally. The clock outputs go HIGH during power-on reset (and chip enable) to ensure that no output clock signals are available the PLL has locked-on.

\section*{Mode select MS}

The LFCO input signal is directly connected to the VCO at MS = HIGH. The circuit operates as an oscillator and frequency divider. This function is not tested.

\section*{Source select LFCOSEL}

Line frequency control signal LFCO (pin 11) is selected by LFCOSEL = LOW. LFCOSEL \(=\) HIGH selects LFCO2 input signal (pin 19). This function is not tested.

\section*{Chip enable CE}

The buffer outputs are enabled and RESN set HIGH by CE \(=\) HIGH (Fig.4).
\(C E=\) LOW sets the clock outputs HIGH and RESN output LOW.

\section*{CREF output}

2 flFCO output to control the clock dividers of the DMSD-SQP chip family.

\section*{Power-on reset}

Power-on reset is activated at power-on, when the supply voltage decreases below 3.5 V (Fig.4) or when chip enable is done. The indicator output RESN is LOW for a time determined by capacitor on pin 3. The RESN signal can be applied to reset other circuits of this digital TV system.
The LFCO or LFCO2 input signals have to be applied before RESN becomes HIGH.

Clock signal generator circuit for Destop Video systems (SCGC)

\section*{PINNING}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline MS & 1 & mode select input (LOW = PLL mode)* \\
\hline CE & 2 & chip enable /reset (HIGH = outputs enabled) \\
\hline PORD & 3 & power-on reset delay, dependent on external capacitor \\
\hline \(V_{\text {SSA }}\) & 4 & analog ground (0 V ) \\
\hline \(V_{\text {DDA }}\) & 5 & analog supply voltage ( +5 V ) \\
\hline \(\mathrm{V}_{\text {SSD1 }}\) & 6 & digital ground \(1(0 \mathrm{~V}\) ) \\
\hline LLCA & 7 & line-locked clock output signal (4 times fifco) \\
\hline \(\mathrm{V}_{\text {DDD1 }}\) & 8 & digital supply voltage \(1(+5 \mathrm{~V}\) ) \\
\hline \(\mathrm{V}_{\text {SSD2 }}\) & 9 & digital ground \(2(0 \mathrm{~V}\) ) \\
\hline LLCB & 10 & line-locked clock output signal (4 times f LFCO) \\
\hline LFCO & 11 & line-locked frequency control input signal 1 \\
\hline RESN & 12 & reset output (active-LOW, Fig.4) \\
\hline \(\mathrm{V}_{\text {SSD }}\) & 13 & digital ground 3 ( 0 V ) \\
\hline LLC2A & 14 & line-locked clock output signal 2A (2 times f LFCO) \\
\hline CREF & 15 & clock reference output, qualifier signal (2 times f LFCO) \\
\hline LFCOSEL & 16 & LFCO source select (LOW = LFCO selected)* \\
\hline \(\mathrm{V}_{\text {DDD2 }}\) & 17 & digital supply voltage \(2(+5 \mathrm{~V}\) ) \\
\hline \(\mathrm{V}_{\text {SSD4 }}\) & 18 & digital ground \(4(0 \mathrm{~V}\) ) \\
\hline LFCO2 & 19 & line-locked frequency control input signal \(2^{*}\) \\
\hline LLC2B & 20 & line-locked clock output signal 2B (2 times \(\mathrm{f}_{\text {LFCO }}\) ) \\
\hline
\end{tabular}

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum Rating System (IEC 134); ground pins as well as supply pins together connected.
\begin{tabular}{|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & MIN. & MAX. & UNIT \\
\hline\(V_{\text {DDA }}\) & analog supply voltage (pin 5) & -0.5 & 7.0 & V \\
\hline \(\mathrm{~V}_{\text {DDD }}\) & digital supply voltage (pins 8 and 17) & -0.5 & 7.0 & V \\
\hline \(\mathrm{~V}_{\text {diff }}\) GND & difference voltage \(\mathrm{V}_{\text {DDA }}-\mathrm{V}_{\text {DDD }}\) & - & \(\pm 100\) & mV \\
\hline \(\mathrm{V}_{\mathrm{O}}\) & output voltage ( \(\mathrm{I}_{\mathrm{OM}}=20 \mathrm{~mA}\) ) & -0.5 & \(\mathrm{~V}_{\mathrm{DDD}}\) & V \\
\hline \(\mathrm{P}_{\text {tot }}\) & total power dissipation (DIL20) & 0 & 1.1 & W \\
\hline \(\mathrm{~T}_{\text {stg }}\) & storage temperature range & -65 & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature range & 0 & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{V}_{\text {ESD }}\) & electrostatic handling** for all pins & - & tbf & V \\
\hline
\end{tabular}

\section*{PIN CONFIGURATION}


Fig. 2 Pin configuration.
* MS and LFCO2 functions are not tested. LFCO2 is a multiple of horizontal frequency.
** Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is recommended to take normal handling precautions appropriate to "Handling MOS devices ".

Clock signal generator circuit for Destop Video systems (SCGC)

\section*{CHARACTERISTICS}
\(\mathrm{V}_{\mathrm{DDA}}=4.5\) to \(5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DDD}}=4.5\) to 5.5 V ; f LFCO \(=5.5\) to 8.0 MHz and \(\mathrm{T}_{\mathrm{amb}}=0\) to \(70^{\circ} \mathrm{C}\) unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(V_{\text {DDA }}\) & analog supply voltage (pin 5) & & 4.5 & 5.0 & 5.5 & V \\
\hline \(V_{\text {DDD }}\) & digital supply voltage (pins 8 and 17) & & 4.5 & 5.0 & 5.5 & V \\
\hline IDDA & analog supply current (pin 5) & & 5 & - & 9 & mA \\
\hline IDDD & digital supply current ( \(\mathrm{l}_{8}+\mathrm{l}_{17}\) ) & note 1 & 10 & - & 60 & mA \\
\hline \(\mathrm{V}_{\text {reset }}\) & power-on reset threshold voltage & Fig. 4 & - & 3.5 & - & V \\
\hline \multicolumn{7}{|l|}{Input LFCO (pin 11)} \\
\hline \(\mathrm{V}_{11}\) & DC input voltage & & 0 & - & \(V_{\text {DDA }}\) & V \\
\hline \(V_{i}\) & input signal (peak-to-peak value) & & 1 & - & \(V_{\text {DDA }}\) & V \\
\hline flFCO & input frequency range & & 5.5 & - & 8.0 & MHz \\
\hline \(\mathrm{C}_{11}\) & input capacitance & & - & - & 10 & pF \\
\hline
\end{tabular}

Inputs MS, CE, LFCOSEL and LFCO2 (pins 1, 2, 16 and 19)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(V_{\text {IL }}\) & input voltage LOW & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & input voltage HIGH & & 2.0 & - & \(V_{\text {DDD }}\) & V \\
\hline \(\mathrm{f}_{\text {LFCO2 }}\) & input frequency range for LFCO2 & note 3 & 5.5 & - & 8.0 & MHz \\
\hline \(\mathrm{I}_{\text {LI }}\) & input leakage current & & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{C}_{1}\) & \multicolumn{2}{|l|}{input capacitance} & - & \multicolumn{2}{|l|}{- 5} & pF \\
\hline \multicolumn{2}{|l|}{Output RESN (pin 12)} & & & & & \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & output voltage LOW & & 0 & - & 0.4 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & output voltage HIGH & & 2.4 & - & \(\mathrm{V}_{\text {DDD }}\) & V \\
\hline \(\mathrm{t}_{\mathrm{d}}\) & RESN delay time & \(\mathrm{C}_{3}=0.1 \mu \mathrm{~F} ;\) Fig. 4 & 20 & - & 200 & ms \\
\hline \multicolumn{2}{|l|}{Output CREF (pin 15)} & & & & & \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & output voltage LOW & & 0 & - & 0.6 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & output voltage HIGH & & 2.4 & - & \(\mathrm{V}_{\text {DDD }}\) & V \\
\hline \({ }^{\text {f CREF }}\) & output frequency CREF & Fig. 3 & - & \multicolumn{2}{|l|}{2 f LFCO(2)} & MHz \\
\hline \(\mathrm{C}_{\mathrm{L}}\) & output load capacitance & & 15 & - & 40 & pF \\
\hline \({ }_{\text {t }}\) SU & set-up time & Fig.3; note 1 & 12 & - & - & ns \\
\hline \(t_{\text {HD }}\) & hold time & Fig.3; note 1 & 4 & - & - & ns \\
\hline
\end{tabular}

Output signals LLCA, LLCB, LLC2A and LLC2B (pins 7, 10, 14, and 20); note 3
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{V}_{\mathrm{OL}}\) & output voltage LOW & \(\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}\) & 0 & - & 0.6 & V \\
\hline \(\mathrm{~V}_{\mathrm{OH}}\) & output voltage HIGH & \(\mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}\) & 2.6 & - & \(\mathrm{V}_{\mathrm{DDD}}\) & V \\
& & \(\mathrm{CE}=\mathrm{HIGH}\) (pin 2) & 2.6 & - & \(\mathrm{V}_{\mathrm{DDD}}\) & V \\
\hline \(\mathrm{t}_{\text {comp }}\) & composite rise time & Fig.3; notes 1 and 2 & - & - & 8 & ns \\
\hline
\end{tabular}

Clock signal generator circuit for Destop Video systems (SCGC)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multirow[t]{4}{*}{\(\mathrm{f}_{\mathrm{LL}}\)} & output frequency LLCA & Fig. 3 & - & \multicolumn{2}{|l|}{\(4 \mathrm{fLFCO}(2)\)} & MHz \\
\hline & output frequency LLCB & & - & \multicolumn{2}{|l|}{4 flFCO(2)} & MHz \\
\hline & output frequency LLC2A & & - & \multicolumn{2}{|l|}{\(2 \mathrm{fLFCO}(2)\)} & MHz \\
\hline & output frequency LLC2B & & - & \multicolumn{2}{|l|}{\(2 \mathrm{fLFCO}(2)\)} & MHz \\
\hline \(t_{r}, t_{r}\) & rise and fall times & Fig.3; & - & - & 5 & ns \\
\hline \(t_{\text {LL }}\) & duty factor LLCA, LLCB, LLC2A and LLC2B (mean values) & note 1; Fig.3; at 1.5 V level & 40 & 50 & 60 & ns \\
\hline
\end{tabular}

\section*{Notes to the characteristics}
1. f LFCO \(=7.0 \mathrm{MHz}\) and output load 40 pF (Fig.3)
2. \(t_{\text {comp }}\) is the rise time from LOW of all clocks to HIGH of all clocks (Fig.3) including rise time, skew and jitter components. Measurements taken between 0.6 V and 2.6 V . Skew between two LLx clocks will not deviate more than \(\pm 2 \mathrm{~ns}\) if output loads are matched within \(20 \%\).
3. LFCO2 functions not tested.


Clock signal generator circuit for Destop Video systems (SCGC)


Fig. 4 Reset procedure.

\section*{1. FEATURES}
- Monolithic integrated CMOS video encoder circuit
- Standard MPU (12 lines) and \(1^{2} \mathrm{C}\)-bus interfaces for controls
- Three 8 -bit signal inputs PD(7-0) for RGB respectively YUV or indexed colour signals (Tables 10 to 17)
- Square pixel and CCIR input data rates
- Band-limited composite sync pulses
- Three 256X8 colour look-up tables (CLUTs) e. g. for gammacorrection
- External subcarrier from a digital decoder (SAA7151B or SAA7191B)
- Multi-purpose key for real-time format switching
- Autonomous internal blanking
- Optional GENLOCK operation with adjustable horizontal sync timing and adjustable subcarrier phase
- Stable GENLOCK operation in VCR standard playback mode
- Optional still video capture extension
- Three suitable video 9-bit digital-to-analog converters
- Composite analog output signals CVBS, Y and C for PALNTSC
- "Line 21" data insertion possible

\section*{2. GENERAL DESCRIPTION}

The SAA7199B encodes digital base-band colour/video data into analog \(\mathrm{Y}, \mathrm{C}\) and CVBS signals (S-Video included). Pixel clock and data are line-locked to the horizontal scanning frequency of the video signal. The circuit can be used in a square pixel or in a consumer TV application. Flexibility is provided by programming facilities via MPU-bus (parallel) or \(\mathrm{I}^{2} \mathrm{C}\)-bus (serial).

\section*{3. QUICK REFERENCE DATA}
\begin{tabular}{|l|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & MIN. & TYP. & MAX. & UNIT \\
\hline\(V_{\text {DDD }}\) & \begin{tabular}{l} 
digital supply voltage range \\
(pins 2, 21 and 41)
\end{tabular} & 4.5 & 5.0 & 5.5 & V \\
\hline V \(_{\text {DDA }}\) & \begin{tabular}{l} 
analog supply voltage range \\
(pins 64, 66, 70 and 72)
\end{tabular} & 4.75 & 5.0 & 5.25 & V \\
\hline \(\mathrm{I}_{\mathrm{P}}\) & total supply current & - & - & 200 & mA \\
\hline \(\mathrm{~V}_{\mathrm{l}}\) & input signal levels & \multicolumn{2}{|c|}{ TTL-compatible } & \\
\hline \(\mathrm{V}_{\mathrm{O}}\) & \begin{tabular}{l} 
analog output signals Y, C and \\
CVBS without load \\
(peak-to-peak value)
\end{tabular} & & & & \\
\hline\(R_{\mathrm{L}}\) & \begin{tabular}{l} 
output load resistance
\end{tabular} & - & 2 & - & V \\
\hline ILE & \begin{tabular}{l} 
LF integral linearity error in \\
output signal (9-bit DAC)
\end{tabular} & - & - & \(\pm 1\) & LSB \\
\hline DLE & \begin{tabular}{l} 
LF differential linearity error in \\
output signal (9-bit DAC)
\end{tabular} & - & - & \(\pm 0.5\) & LSB \\
\hline\(T_{\text {amb }}\) & \begin{tabular}{l} 
operating ambient temperature \\
range
\end{tabular} & 0 & - & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{4. ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
EXTENDED \\
TYPE NUMBER
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline SAA7199B & 84 & PLCC & plastic & SOT189CG \\
\hline
\end{tabular}

Fig. 1 Block diagram (application details Fig.4).

Digital video encoder, GENLOCK-capable

\section*{PINNING}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline \(V_{\text {SSD1 }}\) & 1 & digital ground \(1(0 \mathrm{~V}\) ) \\
\hline \(\mathrm{V}_{\text {DDD1 }}\) & 2 & +5 V digital supply 1 \\
\hline VSN & 3 & vertical sync output (3-state), conditionally composite sync output; active LOW or active HIGH \\
\hline \begin{tabular}{l}
PD1 (0) \\
PD1(1) \\
PD1(2) \\
PD1 (3) \\
PD1(4) \\
PD1(5) \\
PD1 (6) \\
PD1(7)
\end{tabular} & \[
\begin{gathered}
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11
\end{gathered}
\] & data 1 input: digital signal \(R\) (red) respectively \(V\) signal (formats in Table 6) \\
\hline \[
\begin{aligned}
& \hline \mathrm{PD} 2(0) \\
& \mathrm{PD} 2(1) \\
& \mathrm{PD} 2(2) \\
& \mathrm{PD} 2(3) \\
& \mathrm{PD} 2(4) \\
& \mathrm{PD} 2(5) \\
& \mathrm{PD} 2(6) \\
& \mathrm{PD} 2(7)
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& 13 \\
& 14 \\
& 15 \\
& 16 \\
& 17 \\
& 18 \\
& 19
\end{aligned}
\] & data 2 input: digital signal \(G\) (green) respectively \(Y\) signal or indexed colour data (formats in Table 6) \\
\hline LDV & 20 & load data clock input signal to input interface (samples PDn(7-0), CBN, MPK, KEY and RTCI) \\
\hline \(\mathrm{V}_{\text {DDD2 }}\) & 21 & +5 digital supply 2 \\
\hline \(\mathrm{V}_{\text {SSD2 }}\) & 22 & digital ground \(2(0 \mathrm{~V}\) ) \\
\hline CBN & 23 & composite blanking input; active LOW \\
\hline \[
\begin{aligned}
& \mathrm{PD} 3(0) \\
& \mathrm{PD} 3(1) \\
& \mathrm{PD} 3(2) \\
& \mathrm{PD} 3(3) \\
& \mathrm{PD} 3(4) \\
& \mathrm{PD} 3(5) \\
& \mathrm{PD} 3(6) \\
& \mathrm{PD} 3(7)
\end{aligned}
\] & \begin{tabular}{l}
24 \\
25 \\
26 \\
27 \\
28 \\
29 \\
30 \\
31
\end{tabular} & data 3 input: digital signal \(B\) (blue) respectively \(U\) signal (formats in Table 6) \\
\hline MPK & 32 & multi-purpose key; active HIGH \\
\hline AO & 33 & subaddress bit A0 for microcomputer access (Table 3) \\
\hline A1 & 34 & subaddress bit At for microcomputer access (Table 3) \\
\hline
\end{tabular}

\section*{Digital video encoder, GENLOCK-capable}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline R/WN & 35 & read/ write not input signal from microcontroller \\
\hline CSN & 36 & chip select input for parallel interface; active LOW \\
\hline D0 & \[
\begin{aligned}
& 37 \\
& 38 \\
& 39 \\
& 40
\end{aligned}
\] & bidirectional port from/to microcontroller (bits D3 to D0) \\
\hline \(V_{\text {DDD3 }}\) & 41 & +5 V digital supply 3 \\
\hline \(\mathrm{V}_{\text {SSD3 }}\) & 42 & digital ground 3 \\
\hline D4 & \[
\begin{aligned}
& 43 \\
& 44 \\
& 45 \\
& 46
\end{aligned}
\] & bidirectional port from/to microcontroller (bits D7 to D4) \\
\hline SDA & 47 & \(1^{2} \mathrm{C}\)-bus data line \\
\hline SCL & 48 & \({ }^{2} \mathrm{C}\)-bus clock line \\
\hline CLKIN & 49 & external clock signal input (maximum 60 MHz ) \\
\hline CLKSEL & 50 & clock source select input \\
\hline PIXCLK & 51 & CLKO/2 or conditionally CLKO output signal \\
\hline CLKO & 52 & selected clock output signal (LLC or CLKIN) \\
\hline TP & 53 & connect to ground (test pin) \\
\hline RESN & 54 & reset input; active LOW \\
\hline LLC & 55 & line-locked clock input signal from external CGC \\
\hline CREF & 56 & clock qualifier of external CGC \\
\hline \begin{tabular}{l}
GPSW / \\
RTCI
\end{tabular} & 57 & general purpose switch output (set via \(1^{2} \mathrm{C}\)-bus or MPU-bus); real-time control input, defined by \(\mathrm{I}^{2} \mathrm{C}\) or MPU programming \\
\hline SLT & 58 & GENLOCK flag (3-state): \(\mathrm{HIGH}=\) sync lost in GENLOCK mode; LOW = otherwise \\
\hline XTALI & 59 & crystal oscillator input ( 26.8 or 24.576 MHz ) \\
\hline XTAL & 60 & crystal oscillator output \\
\hline LFCO & 61 & line frequency control output signal for external CGC \\
\hline \(\mathrm{V}_{\text {ref } L}\) & 62 & reference LOW voltage of DACs (resistor chains) \\
\hline \(V_{\text {ref }}\) & 63 & reference HIGH voltage of DACs (resistor chains) \\
\hline \(\mathrm{V}_{\text {DDA4 }}\) & 64 & +5 V analog supply 4 for resistor chains of the DACs \\
\hline C & 65 & chrominance analog output signal C \\
\hline V \({ }_{\text {DDA } 1}\) & 66 & +5 V analog supply 1 for output buffer amplifier of DAC1 \\
\hline Y & 67 & luminance analog output signal Y \\
\hline \(\mathrm{V}_{\text {SSA }}\) & 68 & analog ground ( 0 V ) \\
\hline
\end{tabular}

\section*{Digital video encoder, GENLOCK-capable}
\begin{tabular}{|l|l|l|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline CVBS & 69 & CVBS analog output signal \\
\hline VDDA2 & 70 & +5 V analog supply 2 for output buffer amplifier of DAC2 \\
\hline CUR & 71 & current input for analog output buffers \\
\hline V DDA3 & 72 & +5 V analog supply 3 for output buffer amplifier of DAC3 \\
\hline KEY & 73 & key signal to insert CVBS input signal into encoded CVBS output signal; active HIGH \\
\hline HSY & 74 & horizontal sync indicator output signal; active HIGH (3-state output to ADC) \\
\hline HCL & 75 & horizontal clamping output; active HIGH (3-state output) \\
\hline CVBS0 & 76 & \\
CVBS1 & 77 & \\
CVBS2 & 78 & \\
CVBS3 & 79 & digital CVBS input signal \\
CVBS4 & 80 & \\
CVBS5 & 81 & \\
CVBS6 & 82 & \\
CVBS7 & 83 & \\
\hline HSN & 84 & horizontal sync output; active LOW or active HIGH for 60/66/72 \(\times\) PIXCLK \\
& & at 12.27/13.5/14.75 MHz (3-state output) \\
\hline
\end{tabular}

\section*{FUNCTIONAL DESCRIPTION}

The SAA7199B is a digital video encoder that translates digital RGB, YUV or 8-bit indexed colour signals into the analog PAL/NTSC output signals \(Y\) (luminance), C (4.43/3.58 MHz chrominance) and CVBS (composite signal including sync).
Four different modes are selectable (Table 9):
- stand-alone mode (horizontal and vertical timings are generated)
- slaver mode (stand-alone unit that accepts external horizontal and vertical timing), and optional real-time information for subcarrier/clock from a digital colour decoder
- GENLOCK mode (GENLOCK capabilities are achieved in conjunction with determined ICs).
- test mode (only clock signal is required)
The input data rate (pixel sequence) has
an integer relationship to the number of horizontal clock cycles (Table 1). A sufficient stable external clock signal ensures correct encoding. The generated clock frequency in the GENLOCK mode may deviate by \(\pm 7 \%\) depending on the reference signal which is corresponding to its input sync signal. The clock will be nominal in the GENLOCK mode when the reference signal is absent (nominal with crystal oscillator accuracy for TV time constants, and nominal \(\pm 1.4 \%\) for VCR time constants).
The on-chip colour conversion matrix provides CCIR 601 code-compatible transcoding of RGB to YUV data.

RGB data out of bounds, with respect to CCIR 601 specification, can be clipped to prevent over-loading of the colour modulator. RGB data input can be either in linear colour space or in gamma-corrected colour space. YUV data must be gamma-corrected according to CCIR 601. This circuit operates primarily in a 24 -bit colour space ( \(3 \times 8\)-bit) but can also accomodate different data formats (4:1:1, 4:2:2 and 4:4:4) as well as 8 -bit indexed pseudo-colour space operations (FMT-bits in Table 6).
RGB CLUTs on chip provide gamma-correction and/or other CLUT functions. They consist of programmable tables to be loaded

Table 1 Pixel relationships
\(\left.\left.\begin{array}{|l|l|l|l|l|}\hline \text { ACTIVE PIXELS } \\ \text { PER LINE }\end{array} \begin{array}{l}\text { FIELD } \\ \text { RATE }\end{array}\right) \begin{array}{l}\text { MULTIPLES OF LINE } \\ \text { FREQUENCY }\end{array}\right)\)

Digital video encoder, GENLOCK-capable

SAA7199B


Fig. 2 Pin configuration.
independently, and they generate 24-bit gamma-corrected output signals from 24-bit data of one of the input formats or from 8-bit indexed pseudo-colour data.
Required modulation is performed. The digital YUV data is encoded according to standards RS-170A (composite NTSC) and CCIR 624-4 (composite PAL-B/G). S-Video
output signal is available ( \(\mathrm{Y} / \mathrm{C}\) ) as well as some sub-standard output signals (STD-bits in Table 6). A 7.5 IRE set-up level is automatically selected in the 60 Hz mode - there is none in 50 Hz mode.

The analog signal outputs can drive directly into terminated \(75 \Omega\) coaxial lines, a passive external filter is recommended (Figures 3 and 13).

Analog post-filtering is required (LP in Fig.3).

GENLOCK to an external reference signal is achieved by addition of a video ADC and a clock generator combination. Thus, the system is enabled to lock on a stable video source or to a stable VCR source (normal playback). The SAA7199B, the ADC and the clock generator


\section*{Digital video encoder, GENLOCK-capable}
combination (Fig.3) form a control loop achieving a highly stable line-locked clock. The clock has to be generated by a crystal oscillator without this possibility.
The GENLOCK mode is not available in a single device set-up.

\section*{Control interface}

The SAA7199B supports a standard parallel MPU interface as well as the serial \({ }^{2} \mathrm{C}\)-bus interface. The MPU has a direct access to internal control registers and colour tables. Update is possible at any time, excluding coincident internal reading and external writing of the same cell (the current pixel value could be destroyed).
The two interfaces of Table 2 are selected automatically. However, the \({ }^{2} \mathrm{C}\) control is inactive when the MPU interface is selected by CSN \(=\) LOW. No simultaneous access must occur. \({ }^{2} \mathrm{C}\)-bus and MPU control complement each other and have access to common registers controlled via a common internal bus. The programmer can use virtually identical programs.
The internal memory space is devided into the look-up table and the control table, each with its own 8 -bit address register is used as a pointer for specific location. This address register is provided with auto-incrementation and can be written by only one addressing.
The look-up table contains three banks of 256 bytes. Therefore, each read or write cycle must access to all three banks in a determined order.
The support logic is part of the control interface.
Timing (Fig.3).
The reference to generate internal clocks from LLC in GENLOCK operation with SAA7197 is CREF (CREF = LLC/2). In this case input CLKSEL is HIGH and the SRC-bit is 1 .

In non-GENLOCK operation the signal from CLKIN is used and LDV is clock reference (input CLKSEL = \(0 ;\) SCR-bit \(=\) CPR-bit \(=0\) ).

Table 2 Access to the contol interface
\begin{tabular}{|l|l|}
\hline SYMBOL & DESCRIPTION \\
\hline SDA (I2C-bus) & \begin{tabular}{l} 
serial data line (bi-directional) \\
clock line
\end{tabular} \\
\hline SCL & \begin{tabular}{l} 
A1, AO (MPU-bus)
\end{tabular} \\
\begin{tabular}{l} 
address inputs \\
RNN
\end{tabular} & \begin{tabular}{l} 
read/write control \\
Chip select; I \(^{2}\) C-bus disabled (at LOW) \\
general purpose switch output (bit of control register) \\
CSN
\end{tabular} \\
GPSW & reset signal (active-LOW)
\end{tabular}

Table 3 Address assignment
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \text { ADDRESS INPUTS } \\
& \text { A1 }
\end{aligned}
\] & \[
\begin{aligned}
& 1^{2} \mathrm{C}-\mathrm{BUS} \\
& \text { SUBADDRESS }
\end{aligned}
\] & SELECTION \\
\hline \(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\) & 00 & \begin{tabular}{l}
ADR-CLUT (address register of look-up tables) \\
DATA-CLUT
\end{tabular} \\
\hline \[
\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}
\] & 02 & ADR-CTRL (index register of control table) DATA-CTRL \\
\hline
\end{tabular}

Pins LLC and CLKIN are tied together when no switching between LLC and CLKIN is applied. In Fig. 3 it is assumed that LLC and CLKIN are double the pixel clock frequency of CREF respectively LDV.
CREF must be at the same frequency (or constant HIGH or LOW) when LLC is at pixel clock frequency. CPR-bit \(=1\) if CLKIN is at pixel clock frequency.
Buffered CLKO signal is always delayed. LLC or CLKIN signals are according to CLKSEL

\section*{Mapping}

Mapping of external control signals onto internal bus. The method is simple. The MPU- bus contains the signals of Table 4 (names in chip-internal nomenclature).

\section*{Bit allocation}

The Bit Allocation Map (BAM) shows the individual control signals, used to control the different operational modes of the circuit. The \(1^{2} \mathrm{C}\)-bus is normally used for control. The SAA7199B additionally has a MPU-bus interface for direct microprocessor connection. The
following BAM resembles the \({ }^{2} \mathrm{C}\)-bus type but can be also used for the parallel bus. The control registers of Table 5 are indexed from 00 to OF (hex). Auto-incrementation is applied.

\section*{Digital-to-analog converters}

The converters use a combination of resistor chains with low-impedance output buffers. The bottom output voltage is 200 mV to reduce integral non-linearity errors. The analog signal, without load on output pin, is between 0.2 and 2.2 V . Fig. 15 shows the application for \(1.23 \mathrm{~V} / 75 \Omega\) outputs, using the serial \(25 \Omega+22 \Omega\) resistors.
Each digital-to-analog converter has its own supply pin for purpose of decoupling. \(V_{\text {DDA } 4}\) is the supply voltage for the resistor chains of the three DACs. The accuracy of this supply voltage influences directly the output amplitudes.
The current CUR into pin 71 is \(0.3 \mathrm{~mA}\left(\mathrm{~V}_{\text {DDA } 4}=5 \mathrm{~V}, \mathrm{R}_{64.71}=20 \mathrm{k} \Omega\right.\) ); a larger current improves the bandwidth but increases the integral non-linearity.

Digital video encoder, GENLOCK-capable

Table 4 Signals on the internal bus
\begin{tabular}{|c|c|c|}
\hline SYMBOL & \multicolumn{2}{|l|}{DESCRIPTION} \\
\hline R-WN & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Select read/write (read =1; write \(=0\) ) \\
Control table/look-up table (control table \(=1\); look-up table \(=0\) ) \\
Select data/address (data \(=1\); address \(=0\) )
\end{tabular}}} \\
\hline C-TN & & \\
\hline D-AN & & \\
\hline DI/DO(0-7) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Data bus on port inputs/outputs D7 to D0 \\
Enable from control interface to synchronize data transfer
\end{tabular}}} \\
\hline EN & & \\
\hline INTERNAL PARALLEL BUS & PARALLEL INTERFACE & \(1^{2} \mathrm{C}\)-BUS INTERFACE \\
\hline R-WN & R/WN (pin 35) & LSB of slave address byte (read = HIGH; write = LOW) \\
\hline C-TN & A1 (pin 34) & X) 4 subaddresses after decoding \\
\hline A-TN & A0 (pin 33) & \[
\text { X) } 4 \text { subaddresses atter decoding }
\] \\
\hline DI/DO(0-7) & D7 to Do & Data bits D7 to D0 for each subaddress \\
\hline EN & CSN and R/WN & Enable by every 9th clock of sample of SCL (control of serial-to-parallel conversion) \\
\hline
\end{tabular}

Table 5 Bit allocation map ( \({ }^{2} \mathrm{C}\)-bus access in Table 8)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline INDEX BINARY & HEX & DATA B
D7 & & D5 & D4 & D3 & D2 & D1 & D0 & DF** \\
\hline \multicolumn{11}{|l|}{Input processing} \\
\hline 00000000 & 00 & VTBY & FMT2 & FMT1 & FMTO & SCBW & CCIR & MOD1 & MODO & 5 C \\
\hline 00000001 & 01 & TRER7 & TRER6 & TRER5 & TRER4 & TRER3 & TRER2 & TRER1 & TRERO & XX \\
\hline 00000010 & 02 & TREG7 & TREG6 & TREG5 & TREG4 & TREG3 & TREG2 & TREG1 & TREGO & XX \\
\hline 00000011 & 03 & TREB7 & TREB6 & TREB5 & TREB4 & TREB3 & TREB2 & TREB1 & TREBO & XX \\
\hline \multicolumn{11}{|l|}{Sync processing} \\
\hline 00000100 & 04 & SYSEL1 & SYSELO & SCEN & VTRC & NINT & HPLL & HLCK* & OEF* & 10 \\
\hline 00000101 & 05 & 0 & 0 & GDC5 & GDC4 & GDC3 & GDC2 & GDC1 & GDC0 & 21 \\
\hline 00000110 & 06 & IDEL7 & IDEL6 & IDEL5 & IDEL4 & IDEL3 & IDEL2 & IDEL1 & IDELO & 52 \\
\hline 00000111 & 07 & 0 & 0 & PSO5 & PSO4 & PSO3 & PSO2 & PSO1 & PSOO & 32 \\
\hline \multicolumn{11}{|l|}{Control, clock and output formatter} \\
\hline 00001000 & 08 & DD & KEYE & SRC & CPR & COKI & IM & GPSW & SRSN & 64 \\
\hline 00001001 & 09 & 0 & BAME & MPKC1 & MPKCO & IEPI & RTSC & RTIN & RTCE & 02 \\
\hline 0000 1010+ & 0A \({ }^{+}\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 00 \\
\hline 0000 1011+ & \(0 \mathrm{~B}^{+}\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 00 \\
\hline \multicolumn{11}{|l|}{Encoder control} \\
\hline 00001100 & OC & CHPS7 & CHPS6 & CHPS5 & CHPS4 & CHPS3 & CHPS2 & CHPS 1 & CHPSO & XX \({ }^{++}\) \\
\hline 00001101 & OD & FSCO7 & FSCO6 & FSCO5 & FSCO4 & FSCO3 & FSCO2 & FSCO1 & FSCOO & 00 \\
\hline 00001110 & OE & 0 & 0 & 0 & CLCK* & STD3 & STD2 & STD1 & STD0 & OC \\
\hline 0000 1111+ & OF+ & 0 & 0 & 0 & 0 & 0 . & 0 & 0 & 0 & \\
\hline
\end{tabular}
*) read only bits \({ }^{+}\)) reserved \({ }^{++}\)) adjust as required.
**) DF is the default value for a typical programming example: GENL.OCK mode for a VCR; non-gamma-corrected RGB data (realtime keying is possible). SLT will be set if there is no horizontal lock. NTSC-M standard with normal colour bandwidth and 12.2727 MHz pixel rate. CSYN signal will be provided, coming 8 pixel clocks earlier, to compensate pipeline delay in the previous RAM interface. The encoded CVBS is 12 clocks earlier than the CVBS reference on the input of the previous ADC. The CLUTs are bypassed at MPK \(=\) HIGH in real-time.

Digital video encoder, GENLOCK-capable

Table 6 Function of register bits of Table 5


\section*{Digital video encoder,} GENLOCK-capable


Digital video encoder, GENLOCK-capable


\section*{Digital video encoder, GENLOCK-capable}


\section*{Note to Table 6}

Field blanking (Figures 11 and 12): normally, video to be encoded should not become active after the active edge of VSN or CSYN before line 22.5 at 50 Hz (line 18 at 60 Hz ). Total internal field blanking is 11 lines at 50 Hz ( 13 lines at 60 Hz ).

\section*{Colour look-up tables (CLUTs)}

The CLUTs consist of RAM tables. The RAM tables can be loaded - with X \(=0\) to 255 according to equation 1 - for the signals R, G and B. Gamma-correction (pre-distortion) by following equation:
\[
\begin{array}{ll}
Y=\operatorname{NINT}\left(b+a \times X 1^{1 / g}\right) ; & Y(X \leq 16)=16 ; Y(X \geq 235)=235 \text { (equation 1) } \\
\text { with } g=2.2 \text { is } & a=219 /\left(235^{-2.2}-16^{-2.2}\right) \\
& b=16-a \times 16^{-2.2}
\end{array}
\]

The RAM tables are loaded via MPU-bus or via \(\mathrm{I}^{2} \mathrm{C}\)-bus (Table 8).

\section*{Digital video encoder, GENLOCK-capable}

\section*{\({ }^{2}\) ²C-BUS FORMAT}

* If more than 1 byte DATA are transmitted, then auto-increment of the subaddress is performed.

Table \(71^{12} \mathrm{C}\)-bus status byte (address byte "B1")
\begin{tabular}{|l|l|llllllll|}
\hline FUNCTION & & \multicolumn{7}{|c|}{ STATUS BYTE } & \\
D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\hline Read status & & 0 & 0 & 0 & 0 & FFOS & OEF & CLCK & HLCK \\
\hline
\end{tabular}

Function of the bits:

FFOS
OEF
CLCK
HLCK
```

first field of sequence: $0=$ false; $1=$ first of 4 fields for NTSC (first of 8 fields for PAL). FFOS is not valid for non-interlaced signals.
field organization: $0=$ even field; $1=$ odd field
possibility of lock to external chrominance: $\quad 0=$ possible; $1=$ not possible sync indication: $\quad 0=$ locked to external sync; $1=$ external sync lost.

```

Table \(81^{2} \mathrm{C}\)-bus write bytes (address byte "BO")

\section*{ACCESS TO CONTROL REGISTERS}

Address byte "B0" - subaddress byte " 02 " - index byte ( 00 to OF , Table 5) - data bytes (auto-increment)

\section*{ACCESS TO CLUTS REGISTERS}

Address byte " BO " - subaddress byte " 00 " — CLUT address bytes ( 00 to FF) - 3 data bytes for one


Purchase of Philips \({ }^{1}{ }^{2} \mathrm{C}\) components conveys a license under the Philips \({ }^{\prime} I^{2} \mathrm{C}\) patent to use the components in the \(\mathrm{I}^{2} \mathrm{C}\)-system provided the system conforms to the \(1^{2} \mathrm{C}\) specifications defined by Philips.

\section*{Digital video encoder, GENLOCK-capable}

\section*{SAA7199B}

Table 9 Four different modes

\section*{STAND-ALONE MODE}

The SAA7199B receives a line-locked clock CLKIN and generates CSYN or HSN/VSN output signals, which trigger the RGB respectively the YUV source signal to provide data and composite blanking CBN.

\section*{SLAVE MODE}

The SAA7199B receives the line-locked clock CLKIN, CSYN or HSN/VSN, CBN and data from an RGB respectively YUV source. The sync inputs are edge-sensitive; the minimum active length is 1 PIXCLK. Optionally, a real-time control signal RTCI is received from a digital colour decoder.

\section*{GENLOCK MODE}

Horizontal and vertical sync as well as colour are locked on a received CVBS reference signal. The CVBS reference signal generates also a line-locked clock by the SAA7197 clock generator. Auxiliary signals HCL and HSY as well as CSYN or HSN/VSN are generated to trigger the RGB respectively the YUV source providing data and composite blanking CBN.

\section*{TEST MODE}

Like stand-alone mode, but data to be encoded are the contents of the test registers TRER, TREGand TREB. VSN/CSYN and HSN outputs are in 3 -state condition.

Relationship between horizontal frequency and colour subcarrier frequency in non-GENLOCK mode
a) Internal subcarrier frequency with \(n=\) integer:

PAL: \(f_{S C}=f_{H}(n / 4+1 / 625)\) respectively \(f_{H}(n / 4+1 / 525) \quad\) NTSC: \(f_{S C}=f_{H}(n / 2)\)
Necessary conditions: Non-GENLOCK mode; RTCE \(=0, \mathrm{FSCO}=00 \mathrm{~h}\); phase coupling of the two frequencies is given by definite phase reset every 8th fields at PAL (4th fields at NTSC).
FSCO \(\neq 00 \mathrm{~h}\) adjusts the subcarrier frequency, phase reset is disabled and phase between \(\mathrm{f}_{\mathrm{SC}}\) and \(\mathrm{f}_{\mathrm{H}}\) is not constant.
b) External subcarrier frequency:
\(\mathrm{f}_{\mathrm{SC}}\) is given by RTCI real-time input from a digital colour decoder.
Necessary conditions: Slave mode; \(\operatorname{RTCE}=1\), RTSC \(=1\). The 8th respectively 4th field reset is enabled at \(\mathrm{FSCO}=00 \mathrm{~h}\) (disabled at \(\mathrm{FSCO} \neq 00 \mathrm{~h}\) ). The subcarrier frequency itself is not influenced by FSCO bits, it is given by real-time increment.
c) External HPLL increment:
\(f_{S C}\) is calculated by means of RTCl real-time input signal from a digital colour decoder. The frequency of \(\mathrm{f}_{\mathrm{SC}}\) depends on the absolute crystal frequency value used by the digital colour decoder.
Necessary conditions: Slave mode; RTCE \(=1\), RTSC \(=0\). The 8 th respectively 4th field reset is enabled at \(\mathrm{FSCO}=00 \mathrm{~h}\) (disabled at \(\mathrm{FSCO} \neq 00\) ). The subcarrier frequency itself is influenced by FSCO bits.

The absolute phase relationship between sync and subcarrier (colour burst out) can be influenced in all three cases by CHPS(7-0) register byte (index " 0 C").

\section*{Digital video encoder, GENLOCK-capable}

Data input formats
One clock cycle equals \(12.27 \mathrm{MHz}, 13.5 \mathrm{MHz}\) or \(14.75 \mathrm{MHz}(\mathrm{Cb}=(\mathrm{B}-\mathrm{Y})\) equals \(\mathrm{U} ; \mathrm{Cr}=(\mathrm{R}-\mathrm{Y})\) equals V ; ( \(n\) ) = number of pixel).

Table 10 Format 0: DMSD2-compatible YUV 4:1:1 format (FMT-bits in index "00" \(=000\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{INPUT SIGNAL} & \multicolumn{8}{|c|}{CLOCK CYCLE (PIXEL SEQUENCE)} \\
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline PD2(7-0) & \(Y(0)\) & \(Y(1)\) & \(Y(2)\) & \(Y(3)\) & \(Y(4)\) & \(Y(5)\) & \(\mathrm{Y}(6)\) & \(Y(7)\) \\
\hline PD3(7) & Cb7(0) & Cb5(0) & Cb3(0) & Cb1 (0) & Cb7(4) & Cb5(4) & Cb3(4) & Cb1(4) \\
\hline PD3(6) & Cb6(0) & Cb4(0) & Cb2(0) & Cbo(0) & Cb6(4) & Cb4(4) & Cb2(4) & Cbo(4) \\
\hline PD3(5) & Cr7(0) & Cr 5 (0) & Cr3(0) & Cr 1 (0) & Cr7(4) & Cr5(4) & Cr3(4) & Cr 1 (4) \\
\hline PD3(4) & Cr 6 (0) & Cr 4 (0) & \(\mathrm{Cr} 2(0)\) & Cro(0) & Cr6(4) & Cr4(4) & Cr2(4) & CrO(4) \\
\hline \[
\begin{aligned}
& \text { PD3(3-0) } \\
& \text { PD1(7-0) }
\end{aligned}
\] & not used not used & & & & & & & \\
\hline
\end{tabular}

Table 11 Format 1: Customized YUV 4:1:1 format (FMT-bits in index " 00 " \(=001\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{INPUT SIGNAL} & \multicolumn{8}{|c|}{CLOCK CYCLE (PIXEL SEQUENCE)} \\
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline PD2(7-0) & Y(0) & \(Y(1)\) & Y(2) & \(Y(3)\) & \(Y(4)\) & \(\mathrm{Y}(5)\) & \(Y(6)\) & \(Y(7)\) \\
\hline PD3(7) & Cb7(0) & - & Cr7(0) & - & Cb7(4) & - & Cr7(4) & - \\
\hline PD3(6) & Cb6(0) & - & Cr6(0) & - & Cb6(4) & - & Cr6(4) & - \\
\hline PD3(5) & Cb5(0) & - & Cr5(0) & - & Cb5(4) & - & Cr5(4) & - \\
\hline PD3(4) & Cb4(0) & - & Cr4(0) & - & Cb4(4) & - & Cr 4 (4) & - \\
\hline PD3(3) & Cb3(0) & - & Cr3(0) & - & Cb3(4) & - & Cr3(4) & - \\
\hline PD3(2) & Cb2(0) & - & \(\mathrm{Cr} 2(0)\) & - & Cb2(4) & - & Cr2(4) & - \\
\hline PD3(1) & Cb1(0) & - & Cr 1 (0) & - & Cb1(4) & - & Cr1(4) & - \\
\hline PD3(0) & \(\mathrm{CbO}(0)\) & - & \(\mathrm{CrO}(0)\) & - & Cbo(4) & - & CrO(4) & - \\
\hline PD1(7-0) & not used & & & & & & & \\
\hline
\end{tabular}

Table 12 Format 2: DMSD2-compatible YUV 4:2:2 format (FMT-bits in index "00" \(=010\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{INPUT SIGNAL} & \multicolumn{8}{|c|}{CLOCK CYCLE (PIXEL SEQUENCE)} \\
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline PD2(7-0) & Y(0) & \(\mathrm{Y}(1)\) & \(Y(2)\) & \(Y(3)\) & \(Y(4)\) & \(Y(5)\) & \(Y(6)\) & \(Y(7)\) \\
\hline PD3(7) & Cb7(0) & Cr7(0) & Cb7(2) & Cr7(2) & Cb7(4) & Cr7(4) & Cb7(6) & Cr7(6) \\
\hline PD3(6) & Cb6(0) & Cr6(0) & \(\mathrm{Cb6}\) (2) & Cr6(2) & Cb6(4) & Cr6(4) & Cb6(6) & Cr6(6) \\
\hline PD3(5) & Cb5(0) & Cr5(0) & \(\mathrm{Cb5}(2)\) & Cr5(2) & Cb5(4) & Cr5(4) & Cb5(6) & Cr5(6) \\
\hline PD3(4) & Cb4(0) & Cr4(0) & Cb4(2) & Cr4(2) & Cb4(4) & Cr4(4) & Cb4(6) & Cr4(6) \\
\hline PD3(3) & Cb3(0) & Cr3(0) & Cb3(2) & Cr3(2) & Cb3(4) & Cr3(4) & Cb3(6) & Cr3(6) \\
\hline PD3(2) & Cb2(0) & Cr2(0) & Cb2(2) & \(\mathrm{Cr} 2(2)\) & Cb2(4) & \(\mathrm{Cr2}(4)\) & Cb2(6) & Cr 2 (6) \\
\hline PD3(1) & Cb1 (0) & Cr1(0) & Cb1(2) & Cr1(2) & Cb1 (4) & Cr1(4) & Cb1 (6) & Cr1 (6) \\
\hline PD3(0) & \(\mathrm{CbO}(0)\) & Cro(0) & \(\mathrm{CbO}(2)\) & \(\mathrm{CrO}(2)\) & \(\mathrm{CbO}(4)\) & Cro(4) & \(\mathrm{CbO}(6)\) & Cro(6) \\
\hline PD1 7 (-0) & not used & & & & & & & \\
\hline
\end{tabular}

Table 13 Format 3: Customized YUV 4:2:2 format (FMT-bits in index "00" = 011)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{INPUT SIGNAL} & \multicolumn{8}{|c|}{CLOCK CYCLE (PIXEL SEQUENCE)} \\
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline PD2(7-0) & \(Y(0)\) & \(\mathrm{Y}(1)\) & Y(2) & \(Y(3)\) & \(Y(4)\) & \(Y(5)\) & \(Y(6)\) & \(Y(7)\) \\
\hline PD3(7-0) & \(\mathrm{Cb}(0)\) & - & Cb (2) & - & Cb (4) & - & Cb (6) & - \\
\hline PD1(7-0) & \(\mathrm{Cr}(0)\) & - & Cr (2) & - & \(\mathrm{Cr}(4)\) & - & \(\mathrm{Cr}(6)\) & - \\
\hline
\end{tabular}

Table 14 Format 4: YUV 4:4:4 format (FMT-bits in index "00" \(=100\) )
\begin{tabular}{|l|llllllll|}
\hline \multirow{2}{|c|}{ INPUT SIGNAL } & \multicolumn{7}{|c|}{ CLOCK CYCLE (PIXEL SEQUENCE) } \\
& \(\mathbf{0}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) \\
\hline \(\mathrm{PD} 2(7-0)\) & \(\mathrm{Y}(0)\) & \(\mathrm{Y}(1)\) & \(\mathrm{Y}(2)\) & \(\mathrm{Y}(3)\) & \(\mathrm{Y}(4)\) & \(\mathrm{Y}(5)\) & \(\mathrm{Y}(6)\) & \(\mathrm{Y}(7)\) \\
\(\mathrm{PD} 3(7-0)\) & \(\mathrm{Cb}(0)\) & \(\mathrm{Cb}(1)\) & \(\mathrm{Cb}(2)\) & \(\mathrm{Cb}(3)\) & \(\mathrm{Cb}(4)\) & \(\mathrm{Cb}(5)\) & \(\mathrm{Cb}(6)\) & \(\mathrm{Cb}(7)\) \\
\(\mathrm{PD} 1(7-0)\) & \(\mathrm{Cr}(0)\) & \(\mathrm{Cr}(1)\) & \(\mathrm{Cr}(2)\) & \(\mathrm{Cr}(3)\) & \(\mathrm{Cr}(4)\) & \(\mathrm{Cr}(5)\) & \(\mathrm{Cr}(6)\) & \(\mathrm{Cr}(7)\) \\
\hline
\end{tabular}

Table 15 Format 5: RGB 4:4:4 format (FMT-bits in index " 00 " \(=101\) )
\begin{tabular}{|l|llllllll|}
\hline \multirow{2}{|c|}{ INPUT SIGNAL } & \multicolumn{8}{|c|}{ CLOCK CYCLE (PIXEL SEQUENCE) } \\
& \(\mathbf{0}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) \\
\hline PD1 \((7-0)\) & \(\mathrm{R}(0)\) & \(\mathrm{R}(1)\) & \(\mathrm{R}(2)\) & \(\mathrm{R}(3)\) & \(\mathrm{R}(4)\) & \(\mathrm{R}(5)\) & \(\mathrm{R}(6)\) & \(\mathrm{R}(7)\) \\
\(\mathrm{PD} 2(7-0)\) & \(\mathrm{G}(0)\) & \(\mathrm{G}(1)\) & \(\mathrm{G}(2)\) & \(\mathrm{G}(3)\) & \(\mathrm{G}(4)\) & \(\mathrm{G}(5)\) & \(\mathrm{G}(6)\) & \(\mathrm{G}(7)\) \\
PD3 \((7-0)\) & \(\mathrm{B}(0)\) & \(\mathrm{B}(1)\) & \(\mathrm{B}(2)\) & \(\mathrm{B}(3)\) & \(\mathrm{B}(4)\) & \(\mathrm{B}(5)\) & \(\mathrm{B}(6)\) & \(\mathrm{B}(7)\) \\
\hline
\end{tabular}

Table 16 Format 7: Indexed colour format (FMT-bits in index " 00 " \(=111\) ). Input codes 0 to 255 are allowed, output code of CLUTs should preferably be the same as given in Format 5
\begin{tabular}{|l|llllllll|}
\hline INPUT SIGNAL & \multicolumn{8}{|c|}{ CLOCK CYCLE (PIXEL SEQUENCE) } \\
& 0 & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) \\
\hline \(\operatorname{PD2}(7-0)\) & \(\operatorname{INC}(0)\) & \(\operatorname{INC}(1)\) & \(\operatorname{INC}(2)\) & \(\operatorname{INC}(3)\) & \(\operatorname{INC}(4)\) & \(\operatorname{INC}(5)\) & \(\operatorname{INC}(6)\) & \(\operatorname{INC}(7)\) \\
\hline
\end{tabular}

\section*{Digital video encoder, GENLOCK-capable}

Table 17 Input data levels for formats 0 to 4 and 5; EBU colour bar: \(100 \%\) white equals 100 IRE intensity; \(75 \%\) colour saturation for formats 1 to \(4 ; 100 \%\) for format 5
\begin{tabular}{|c|c|c|c|c|c|}
\hline INPUT CHANNEL & LEVEL & DIGITAL LEVEL & CODE & CCIR-BIT & FORMAT \\
\hline \begin{tabular}{l}
Y channel \\
Cb channel \\
Cr channel
\end{tabular} & \begin{tabular}{l}
0 IRE 100 IRE \\
bottom peak colourless top peak \\
bottom peak colourless top peak
\end{tabular} & \[
\begin{aligned}
& 12 \\
& 230 \\
& -101 \\
& 0 \\
& 100 \\
& \\
& -106 \\
& 0 \\
& 105
\end{aligned}
\] & \begin{tabular}{l}
offset binary \\
two's complement \\
two's complement
\end{tabular} & \begin{tabular}{l}
\[
0
\] \\
0
\end{tabular} & \begin{tabular}{l}
formats 0 to 4 \\
formats 0 to 4 \\
formats 0 to 4
\end{tabular} \\
\hline \begin{tabular}{l}
Y channel \\
Cb channel \\
Cr channel
\end{tabular} & \begin{tabular}{l}
0 IRE \\
100 IRE \\
bottom peak colourless top peak \\
bottom peak colourless top peak
\end{tabular} & \[
\begin{aligned}
& 16 \\
& 235 \\
& \\
& 44 \\
& 128 \\
& 212 \\
& \\
& 44 \\
& 128 \\
& 212
\end{aligned}
\] & \begin{tabular}{l}
offset binary \\
offset binary \\
offset binary
\end{tabular} & \begin{tabular}{l}
1 \\
1 \\
1
\end{tabular} & \begin{tabular}{l}
formats 0 to 4 \\
formats 0 to 4 \\
formats 0 to 4
\end{tabular} \\
\hline R, G and B & \[
\begin{aligned}
& 0 \text { IRE } \\
& 100 \text { IRE }
\end{aligned}
\] & \[
\begin{aligned}
& 16 \\
& 235
\end{aligned}
\] & offset binary & 1 & format 5 \\
\hline
\end{tabular}

\section*{GENLOCK input data}

Table 18 Format 7: CVBS GENLOCK input data format has 8 -bit word length. The input data come from an analog-to-digital converter (TDA8708) with gain-controlled and clamped CVBS or VBS signals
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{INPUT SIGNAL} & \multicolumn{8}{|c|}{CLOCK CYCLE (PIXEL SEQUENCE)} \\
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline CVBS7 to CVBS0 & CVBS(0) & CVBS(1) & CVBS(2) & CVBS(3) & C & CVBS(5) & CVBS(6) & CVBS(7) \\
\hline \multicolumn{4}{|l|}{CONDITIONS OF CVBS INPUT SIGNAL} & \multicolumn{5}{|l|}{TWO'S COMPLEMENT REPRESENTATION} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
sync bottom \\
0 IRE (black) \\
100 IRE (white) \\
top peak of \(75 \%\) colour \\
bottom peak of \(75 \%\) colour
\end{tabular}} & & & \multicolumn{3}{|l|}{coresponding to binary code coresponding to binary code coresponding to binary code coresponding to binary code coresponding to binary code} & \[
\begin{aligned}
& \hline-128 \\
& -64^{*} \\
& 95 \\
& 95 \\
& -100
\end{aligned}
\] & \\
\hline
\end{tabular}
* If exactly matched levels are wanted in the internal multiplexer, the value 0 IRE should correspond to -68 and 100 IRE to 82.

\section*{Digital video encoder, GENLOCK-capable}

\section*{Encoding data levels}

Input data levels are transformed in three stages
- in the matrix when RGB or indexed colour is applied (formats 5 and 7)
- in the normalizing amplifier depending on \(50 / 60 \mathrm{~Hz}\) mode and CCIR-bit (index "00")
- in the modulator

Table 19(a) \(Y\) and \(C\) output levels in 50 Hz mode (PAL) for RGB input levels (100/100 colour bar)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{SIGNAL} & \multicolumn{3}{|c|}{INPUT DATA} & \multicolumn{3}{|c|}{MATRIX OUTPUT DATA} & \multicolumn{3}{|l|}{NORMALIZER OUTPUT DATA} & \multicolumn{2}{|l|}{MODULATOR OUTPUT DATA} \\
\hline & R & G & B & (R-Y) & Y & (B-Y) & \(\mathrm{V}^{*}\) & Y & U & Y & \(\mathrm{C}^{\star *}\) \\
\hline white & 235 & 235 & 235 & 128 & 235 & 128 & 0 & 421 & 0 & 421 & 0 \\
\hline yellow & 235 & 235 & 16 & 146 & 210 & 16 & 29 & 387 & -132 & 387 & \(\pm 135\) \\
\hline cyan & 16 & 235 & 235 & 16 & 170 & 166 & -184 & 332 & 44 & 332 & \(\pm 189\) \\
\hline green & 16 & 235 & 16 & 34 & 145 & 54 & -155 & 297 & -87 & 297 & \(\pm 178\) \\
\hline magenta & 235 & 16 & 235 & 221 & 107 & 202 & 152 & 245 & 86 & 245 & \(\pm 175\) \\
\hline red & 235 & 16 & 16 & 240 & 82 & 90 & 183 & 211 & -45 & 211 & \(\pm 188\) \\
\hline blue & 16 & 16 & 235 & 110 & 41 & 240 & -30 & 154 & 131 & 154 & \(\pm 134\) \\
\hline black & 16 & 16 & 16 & 128 & 16 & 128 & 0 & 120 & 0 & 120 & 0 \\
\hline blanking & X & X & X & X & X & X & X & \(X\) & X & 120 & 0 \\
\hline burst & \(x\) & \(X\) & X & X & \(X\) & \(X\) & 45 & X & -45 & X & \(\pm 63\) \\
\hline top sync & X & X & X & X & X & X & X & X & X & 0 & X \\
\hline
\end{tabular}

Table 19(b) \(Y\) and C output levels in 60 Hz mode (NTSC) for RGB input levels (100/100 colour bar)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{SIGNAL} & \multicolumn{3}{|c|}{INPUT DATA} & \multicolumn{3}{|c|}{MATRIX OUTPUT DATA} & \multicolumn{3}{|l|}{NORMALIZER OUTPUT DATA} & \multicolumn{2}{|l|}{MODULATOR OUTPUT DATA} \\
\hline & R & G & B & (R-Y) & Y & (B-Y) & V & Y & U & Y & C** \\
\hline white & 235 & 235 & 235 & 128 & 235 & 128 & 0 & 416 & 0 & 416 & 0 \\
\hline yellow & 235 & 235 & 16 & 146 & 210 & 16 & 29 & 385 & -132 & 385 & \(\pm 135\) \\
\hline cyan & 16 & 235 & 235 & 16 & 170 & 166 & -184 & 335 & 44 & 335 & \(\pm 189\) \\
\hline green & 16 & 235 & 16 & 34 & 145 & 54 & -155 & 303 & -87 & 303 & \(\pm 178\) \\
\hline magenta & 235 & 16 & 235 & 221 & 107 & 202 & 152 & 256 & 86 & 256 & \(\pm 175\) \\
\hline red & 235 & 16 & 16 & 240 & 82 & 90 & 183 & 225 & -45 & 225 & \(\pm 188\) \\
\hline blue & 16 & 16 & 235 & 110 & 41 & 240 & -30 & 173 & 131 & 173 & \(\pm 134\) \\
\hline black & 16 & 16 & 16 & 128 & 16 & 128 & 0 & 142 & 0 & 142 & 0 \\
\hline blanking & \(x\) & X & \(x\) & \(X\) & \(X\) & \(X\) & X & \(x\) & X & 120 & 0 \\
\hline burst & \(X\) & \(X\) & \(x\) & \(X\) & \(X\) & \(X\) & 0 & X & -64 & X & \(\pm 64\) \\
\hline top sync & \(X\) & \(X\) & \(X\) & \(X\) & \(X\) & \(X\) & X & \(X\) & X & 0 & X \\
\hline
\end{tabular}
\(X=\) not defined; * the \(V\) component is inverted in the PAL line; ** the \(\pm\) figures are peak values of the subcarrier signal.

\section*{Digital video encoder, GENLOCK-capable}

\section*{Chrominance filtering in the encoder}
1. Decimation for \(4: 4: 4\) formats input data (Formats 4,5 and 7 ; Fig.4).
2. Interpolation for \(4: 1: 1\) input data into \(4: 2: 2\) data - also suitable to reduce the bandwidth of \(4: 2: 2\) data. This filter is controlled by SCBW-bit (SCWB = 1 means active).
3. Interpolation at 13.5 MHz for 4:2:2 input data into 4:4:4 data before modulating baseband signals onto the colour subcarrier. Figures 5, 6 and 7 show the overall transfer characteristics of chrominance in "standard bandwidth condition" (SCBW = 1). Figures 8 and 9 show the overall transfer characteristics of chrominance in "enhanced bandwidth condition" (SCBW = 0), which is not possible for 4:1:1 input data. The transfer curves are slightly different at 12.27 and 14.75 MHz .


Fig. 4 Transfer characteristics of 4:4:4 to 4:2:2 decimator.


Fig. 6 Overall transfer characteristics 4:2:2 input data (SCBW-bit = 1).


Fig. 5 Overall transfer characteristics 4:1:1 input data.


Fig. 7 Overall transfer characteristics 4:4:4 input data (SCBW-bit = 1).

\section*{Digital video encoder, GENLOCK-capable}


Fig. 8 Overall transfer characteristics 4:2:2 input data \((\) SCBW-bit \(=0)\).


Fig. 9 Overall transfer characteristics 4:4:4 input data (SCBW-bit \(=0\) ).

\section*{Accuracy of matrix}

Evaluation of quantization errors.
The RGB to YUV matrix is realized according to the following algorithm:
\[
\begin{aligned}
& Y=\operatorname{INT}((\text { NINT }(R \times 2 \times 0.299)+\text { NINT }(G \times 2 \times 0.587)+\text { NINT }(B \times 2 \times 0.114)) / 2) \\
& U=\text { NINT }((B-Y) \times 0.57722) \\
& V=\text { NINT }((R-Y) \times 0.72955)
\end{aligned}
\]

Errors can occur in the calculation of \(Y\), which in consequence influence the \(U\) and \(V\) outputs.
The greatest positive error occurs, if in all of the three for \(Y\) calculation used ROMs the values are rounded up to 0.5 LSB, and no truncation error of 0.5 LSB is generated after summation:
```

(3 }\times0,5\textrm{LSB})/2=+0.75 LSB
with truncation "error": (3\times0,5 LSB) / 2 - 0.5 LSB = +0.25 LSB.

```

The greatest negative error occurs at rounding off in all the three ROMs and by consecutive truncation:
\[
3 \times(-0,5 \mathrm{LSB}) / 2-0.5 \mathrm{LSB}=-1.25 \mathrm{LSB} .
\]

As a result, the matrix error can be \(\pm 1\) digit, which corresponds to approximately \(\pm 0.5 \%\) differential non-linearity.

\section*{Estimation of noise by quantization}

The sum of all sqared quantization errors is SS normalized to \(220^{3}\) input combinations (3-dimensional colour scale).
\[
S S=0.187545 L^{2} B^{2}
\]

Compared with noise energy for ideal quantization, \(S S I=1 / 12\) LSB \(^{2}\) results in a deterioration by the conversion matrix of \(D=10 \log (0.187545 \times 12)=3.5 \mathrm{~dB}\) (equals 0.5 bit).

If \(S S\) is the sum of all sqared quantization errors, normalized to 220 input combinations of a grey-scale \((R=G=B)\), then is \(S S=0.12273 L^{2} B^{2}\).

Compared with noise energy for ideal quantization, \(S S I=1 / 12 \mathrm{LSB}^{2}\) results in a deterioration by the conversion matrix of \(D=10 \log (0.12273 \times 12)=1.7 \mathrm{~dB}\) (equals 0.25 bit\().\)

\section*{Digital video encoder, GENLOCK-capable}

\section*{Normalizing amplifiers in luminance channel}

The absolute amplification error for 50 Hz non-set-up signals is \(0.375 \%\); differential non-linearity is \(-0.333 \%\) (equals -1 LSB).
The absolute amplification error for 60 Hz set-up signals is \(-1.5 \%\); differential non-linearity is \(-0.365 \%\) (equals -1 LSB).

Normalizing amplifiers in chrominance channel

The absolute amplification error is approximately \(\pm 0.5 \%\) with a truncation error of -0.5 LSB.

The subcarrier amplitude for standards with luminance set-up is the same as for the standards without luminance set-up.

\section*{Modulator}

The absolute amplification error is \(-0.39 \%\); there is no truncation error.

\section*{Functional timing}

GENLOCK mode:
The encoded signal can be generated earlier with respect to CVBS(7-0) bits (offset \(\mathrm{t}_{\text {ofs }}\) set by GDC-bits; index "05"). The HSN output signal can be generated early by PSO-bits (index "07") with respect
to CBN to compensate for pipelining delay \(t_{\text {Rint }}\) of the RAM interface (valid also in stand-aione mode).
The horizontal timing is independent of active video at data inputs \(\mathrm{PDn}(7-0)\). The line blanking period on the outputs is set to approximately \(12 \mu \mathrm{~s}\) in 50 Hz standards ( \(11 \mu \mathrm{~s}\) in 60 Hz standards).

Slave mode:
HSN pin is used as an input. The active edge of the input signal is assumed to fit to the incoming CBN signal. Deviations can be compensated in the range of the GCD-bits (index "05").


\section*{Digital video encoder, GENLOCK-capable}

The \(t_{\text {enc }}\) time is the total delay from data input to analog CVBS output; it is 55 pixel clock periods long (PIXCLK) plus the propagation delay of the LDV input register regardless of mode and colour standard.
The key input signal is delaycompensated with respect to PDn(7-0)data input.
The generated vertical field and burst blanking sequences are shown in Fig. 11 ( 50 Hz PAL ) and Fig. 12 ( 60 Hz NTSC).

\section*{Reset}

Prior to a reset all outputs are undefined. RESN = LOW sets the circuit into the slave mode:
MOD 1 bit \(=1 ;\) MODO-bit \(=0\). All
other control register bits are set to zero. The outputs CSYN/VSN, HSN, SLT, HSY and HCL are automatically set to high-impedance state. The \(I^{2} \mathrm{C}\)-bus interface is set to a slave receiver.
The \(D(7-0)\) pins of the MPU interface are inputs during RESN = LOW. As the circuit requires an external clock signal on pin CLKIN in slave mode, the clock select signal CLKSEL (pin 50) must be LOW during RESN = LOW (pin 54). The LOW time of RESN is preliminary at least 50 pixel clock periods long.

\section*{Disable chip}

All analog outputs are set to zero by DD-bit = 1 (index "08"); while the
outputs CSYN/VSN, HSN, HCL, HSY and SLT are set to high-impedance state. The internal clock is divided by 4 at DD-bit \(=1\).
The circuit can be disabled for any reason. It must be disabled when CLKIN exceeds 32 MHz . After setting DD-bit \(=1\), the CLKIN input signal can be set to a frequency of \(<60 \mathrm{MHz}\) (modification of control registers and RAM tables is not ensured).
To enable the circuit again, CLKIN must be set to a frequency \(<32 \mathrm{MHz}\), a reset (hardware) then is required to set DD-bit to zero.
(a). 1st field CVBS output signal

(a) 3rd field CVBS output signal

(b) 4th field CVBS output signal


Fig. 11 Vertical field and burst blanking sequence for PAL 50 Hz mode.

\section*{Digital video encoder, GENLOCK-capable}


Fig. 12 Vertical field and burst blanking sequence for NTSC 60 Hz mode.

\section*{Digital video encoder, GENLOCK-capable}

LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
\begin{tabular}{|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN. & MAX. & UNIT \\
\hline \(V_{\text {DDD1 }}\) & supply voltage (pin 2) & -0.3 & 7 & V \\
\hline \(V_{\text {DDD2 }}\) & supply voltage (pin 21) & -0.3 & 7 & V \\
\hline VDDD3 & supply voltage (pin 41) & -0.3 & 7 & V \\
\hline \(V_{\text {DDA1 }}\) & supply voltage (pin 66) & -0.3 & 7 & V \\
\hline \(V_{\text {DDA2 }}\) & supply voltage (pin 70) & -0.3 & 7 & V \\
\hline V DDA3 & supply voltage (pin 72) & -0.3 & 7 & V \\
\hline \(V_{\text {DDA4 }}\) & supply voltage (pin 64) & -0.3 & 7 & V \\
\hline \(V_{\text {diff }}\) GND & difference voltage between digital and analog ground pins
\[
\left(V_{D D D n}-V_{D D A n}\right)
\] & - & \(\pm 100\) & mV \\
\hline \(V_{n}\) & voltage on all pins, grounds excluded & 0 & \(V_{P}\) & \(V\) \\
\hline \(P_{\text {tot }}\) & total power dissipation & - & 1.1 & W \\
\hline \(\mathrm{T}_{\text {stg }}\) & storage temperature range & -65 & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature range & 0 & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(V_{\text {ESD }}\) & electrostatic handling* for all pins & \(\pm 2000\) & - & V \\
\hline
\end{tabular}
*Equivalent to discharging a 100 pF capacitor through an \(1.5 \mathrm{k} \Omega\) series resistor.

\section*{CHARACTERISTICS}
\(\mathrm{V}_{\mathrm{DDD}}=4.5\) to \(5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DDA}}=4.75\) to \(5.25 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=0\) to \(70^{\circ} \mathrm{C}\) unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(V_{\text {DDD }}\) & digital supply voitage range (pins 2, 21 and 42) & & 4.5 & 5 & 5.5 & V \\
\hline \(V_{\text {DDA }}\) & analog supply voltage range (pins 66, 70 and 72) & & 4.75 & 5 & 5.25 & V \\
\hline IODD & digital supply current \(\mathrm{I}_{\text {DDD }}\) to \(\mathrm{I}_{\mathrm{DDO}}\) & 40 pF output load & - & - & 140 & mA \\
\hline IDDA & analog supply current \(\mathrm{I}_{\text {DDA } 1}\) to \(\mathrm{I}_{\text {DDA }}\) & 40 pF output load & - & - & 60 & mA \\
\hline \multicolumn{7}{|l|}{Data and control inputs (pins 3 to 20, 23 to 40,43 to \(46,49,50,54\) to 56,59, 73 and 76 to 84)} \\
\hline \(V_{\text {IL }}\) & input voltage LOW & note 1 & 0 & - & 0.8 & V \\
\hline \[
\begin{aligned}
& V_{1 H} \\
& I_{L I}
\end{aligned}
\] & input voltage HIGH input leakage current & note 1 & 2.0 &  & \[
\begin{aligned}
& \mathrm{DDD}^{+} 0.5 \\
& \pm 1 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
V \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Digital video encoder, GENLOCK-capable}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & \multicolumn{1}{|c|}{ CONDITIONS } & MIN. & TYP. & MAX. & UNIT \\
\hline C \(_{1}\) & input capacitance & data inputs & - & - & 8 & pF \\
& & CLKIN, LLC, LDV & - & - & 10 & pF \\
& & 3-state I/O & - & - & 10 & pF \\
\hline
\end{tabular}

\section*{LFCO output (pin 61)}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{V}_{0}\) & output signal (peak-to-peak value) & & 1.4 & - & 2.6 & V \\
\hline \(\mathrm{~V}_{61}\) & output voltage range & & 0 & - & \(\mathrm{V}_{\mathrm{DDD}}\) & V \\
\hline
\end{tabular}

Data and other control outputs (pins 3,51,52,57,58, 60, 74 and 75)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{V}_{\mathrm{OL}}\) & output voltage LOW & note 2 & 0 & - & 0.6 & V \\
\hline \(\mathrm{~V}_{\mathrm{OH}}\) & output voltage HIGH & note 2 & 2.4 & - & \(\mathrm{V}_{\mathrm{DDD}}\) & V \\
\hline
\end{tabular}

C, Y and CVBS analog outputs (pins 65, 67 and 69)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathrm{V}_{0}\) & output signal (peak-to-peak value) & without load; \(\mathrm{V}_{\text {DDA }}=5 \mathrm{~V}\) & - & 2 & - & V \\
\hline \(\mathrm{V}_{65,67,69}\) & minimum output voltage maximum output voltage & \begin{tabular}{l}
without load; \(V_{D D A}=5 \mathrm{~V}\) \\
without load; \(\mathrm{V}_{\mathrm{DDA}}=5 \mathrm{~V}\)
\end{tabular} & & \[
\begin{aligned}
& 0.2 \\
& 2.2
\end{aligned}
\] & & \\
\hline \(\mathrm{R}_{65,67,69}\) & internal serial output resistance & not tested & 18 & 25 & 35 & \(\Omega\) \\
\hline \(\mathrm{R}_{\text {L 65,67,69 }}\) & output load resistance & recommendation & 90 & & - & \(\Omega\) \\
\hline B & output signal bandwidth & \(-3 \mathrm{~dB}\) & 10 & - & - & MHz \\
\hline ILE & LF integral linearity error & 9 -bit data & - & - & \(\pm 1.0\) & LṢB \\
\hline DLE & LF differential linearity error & 9-bit data & - & - & \(\pm 0.5\) & LSB \\
\hline \(\mathrm{I}_{\text {CUR }}\) & input current (pin 71) & Fig.1; \(\mathrm{R}_{70-71}=20 \mathrm{k} \Omega\) & - & 300 & - & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}
\(1^{2}\) C-bus SDA and SCL (pins 47 and 48)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(V_{\text {IL }}\) & input voltage LOW & & -0.5 & - & 1.5 & V \\
\hline \(V_{1 H}\) & input voltage HIGH & & 3.0 & & \(\mathrm{V}_{\text {DDD }}+0.5\) & \(V\) \\
\hline 1 & input current & \(\mathrm{V}_{1}=\) LOW or HIGH & - & - & \(\pm 10\) & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & SDA output voltage (pin 47) & \(\mathrm{I}_{47}=3 \mathrm{~mA}\) & - & - & 0.4 & V \\
\hline \({ }_{47}\) & output current & during acknowledge & 3 & - & - & mA \\
\hline \multicolumn{2}{|l|}{Crystal oscillator} & Fig. 14 & \multicolumn{4}{|l|}{} \\
\hline \(\mathrm{f}_{\mathrm{n}}\) & nominal frequency & 3rd harmonic; Table 1 3rd harmonic; Table 1 &  & \[
\begin{array}{|l|}
\hline 24.576 \\
26.8 \\
\hline
\end{array}
\] &  & \[
\begin{array}{|l|}
\hline \mathrm{MHz} \\
\mathrm{MHz} \\
\hline
\end{array}
\] \\
\hline \(\Delta f / f_{n}\) & permissible deviation \(f_{n}\) & & - & 50 & - & 10-6 \\
\hline \multirow[t]{5}{*}{X1} & \multirow[t]{5}{*}{\begin{tabular}{l}
crystal specification: \\
temperature range \(T_{\text {amb }}\) \\
load capacitance \(\mathrm{C}_{\mathrm{L}}\) \\
series resonance resistance \(\mathrm{R}_{\mathrm{S}}\) \\
motional capacitance \(\mathrm{C}_{1}\) \\
parallel capacitance \(\mathrm{C}_{0}\)
\end{tabular}} & & 0 & - & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline & & & 8 & - & - & pF \\
\hline & & & - & 40 & 80 & \(\Omega\) \\
\hline & & & - & 1.5+20\% & - & fF \\
\hline & & & - & 3.5さ20\% & - & pF \\
\hline
\end{tabular}

Digital video encoder, GENLOCK-capable
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{2}{|l|}{LLC and LDV timing (pins 55 and 20)} & \multicolumn{5}{|l|}{Fig. 16} \\
\hline tLLC & cycle time & note 3 & 31.5 & - & 44.5 & ns \\
\hline \({ }^{\text {t }} \mathrm{CH}\) & pulse width & & 40 & 50 & 60 & \% \\
\hline \(\mathrm{tr}_{\mathrm{r}}\) & rise time & & - & - & 5 & ns \\
\hline \(t_{f}\) & fall time & & - & - & 6 & ns \\
\hline LDDV & cycle time & & 63 & - & 89 & ns \\
\hline tSUL & LDV set-up time & & 4 & - & - & ns \\
\hline \(\mathrm{t}_{\mathrm{HDL}}\) & LDV hold time & & 10 & - & - & ns \\
\hline \multicolumn{7}{|l|}{PIXCLK and CLKO timing (pins 51 and 52) \(\quad\) Fig. 16} \\
\hline \(\mathrm{t}_{\text {DCK }}\) & PIXCLK and CLKO delay time & & - & - & 25 & ns \\
\hline \multicolumn{7}{|l|}{PD1(7-0), PD2(7-0), PD3(7-0), CBN, MPK, KEY and RTCl input timing (pins 4 to 19, 23 to 32, 57 and 73)} \\
\hline \(\mathrm{t}_{\text {SUD }}\) & input data set-up time & Fig. 16 & 4 & - & - & ns \\
\hline thDD & input data hold time & & 6 & - & - & ns \\
\hline \multicolumn{7}{|l|}{CVBS (7-0), VSN/CSYN and HSN timing (pins 76 to 83, 3 and 84)} \\
\hline \(t_{\text {SU }}\) & input data set-up time & Fig. 17 & 10 & - & - & ns \\
\hline \(t_{\text {HD }}\) & input data hold time & & 5 & - & - & ns \\
\hline \multicolumn{2}{|l|}{CREF timing (pin 56)} & \multicolumn{5}{|l|}{Fig. 17} \\
\hline tsuc & input set-up time & & 10 & - & - & ns \\
\hline \(t_{\text {HDC }}\) & input hold time & & 2 & - & - & ns \\
\hline \multicolumn{7}{|l|}{MPU timing A1, A0, R/WN, CSN, D(7-0) (pins 33 to 36, 37 to 40 and 43 to 46); Fig. 18} \\
\hline \(t_{\text {SA }}\) & A1 and A0 address set-up time (pins 33, 34) & & 4 & - & - & ns \\
\hline \(t_{\text {HA }}\) & A1 and A0 address hold time & & 25 & - & - & ns \\
\hline \(t_{\text {SR }}\) & RMN set-up time (pin 35) & & 4 & - & - & ns \\
\hline thr & R/WN hold time & & 25 & - & - & ns \\
\hline \({ }^{t_{\mathrm{CL}},{ }^{\text {t }} \mathrm{CH} \text { H }}\) & CSN pulse width LOW and HIGH & note 4 & 95 & - & - & ns \\
\hline tsw & data set-up time (D7 to D0) & write & 80 & - & - & ns \\
\hline \({ }^{\text {t HW }}\) & data hold time (D7 to D0) & write & 5 & - & - & ns \\
\hline \(t_{\text {HDR }}\) & data output hold time (D7 to D0) & read & 5 & - & - & ns \\
\hline \(\mathrm{t}_{\mathrm{ZR}}\) & delay to driven ports (D7 to D0) & read & 5 & - & - & ns \\
\hline \(t_{\text {DR }}\) & delay to ports valid (D7 to D0) & read; note 5 & - & - & 275 & ns \\
\hline \(t_{\text {RZ }}\) & port outputs disable time (D7 to D0) & read & - & - & 25 & ns \\
\hline \multicolumn{2}{|l|}{Output timing (pins 3, 74, 75 and 84)} & \multicolumn{5}{|l|}{Fig. 17} \\
\hline \({ }_{\text {tod }}\) & output delay time & minimum clock period; note 6 & - & 20 & 40 & ns \\
\hline
\end{tabular}

\section*{Digital video encoder, GENLOCK-capable}

\section*{Notes to the characteristics}
1. XTAL, XTALI and TP are not characterized with respect to levels; CLKO is characterized up to 32 MHz and PIXCLK up to 16 MHz
2. Levels are measured with load circuit. LFCO output with \(10 \mathrm{k} \Omega\) in parallel to 15 pF and other outputs with \(1.2 \mathrm{k} \Omega\) in paraliel to 40 pF at 3 V (TTL load).
3. tLLC has to be in the range 63 to 89 ns at CREF \(=\) HIGH (pin 56 ); \(\mathrm{tLC}=16.5 \mathrm{~ns}\) is allowed only if the multiplexer clock is active.
4. \(\mathrm{t}_{\mathrm{PIXCLK}(\min )}+5 \mathrm{~ns}\).
5. \(3 \times(\mathrm{t} \operatorname{PIXCLK}(\min )+5 \mathrm{~ns})\).
6. 40 ns at low supply voltage ( 4 V ) and high temperature \(\left(70^{\circ} \mathrm{C}\right)\).



Fig. 13 Characteristics of low-pass post-filters. Left: without compensation of DC hold characteristic. Right: with compensation of DC hold characteristic.

X1: 24.576 MHz (3rd harmonic), Philips: 432214305291 respectively
26.8 MHz (3rd harmonic), Philips: 992252030004


Fig. 14 Oscillator application (a) and optional external clock sync (b).


Fig. 15 Application details due to Fig.1. Proposals of analog low-pass post-filtering of output signals.

\section*{Digital video encoder, GENLOCK-capable}


Fig. 16 LDV input data timing.

Digital video encoder, GENLOCK-capable


Fig. 17 Clock and data timing.

Digital video encoder, GENLOCK-capable


Fig. 18 MPU-bus timing.

\section*{FEATURES}

\section*{General}
- Interfaces with analog and digital TV systems
- Multi-media compatible
- Directly interfaces up to 1 Mbit dynamic RAM
- Fully independent acquisition and display timing
- 3 display modes
- normal ( \(1 \mathrm{H} / 1 \mathrm{~V}\) )
- progressive scan \((2 \mathrm{H} / 1 \mathrm{~V})\)
- \(100 \mathrm{~Hz} / 120 \mathrm{~Hz}(2 \mathrm{H} / 2 \mathrm{~V})\)
- \(1^{2} \mathrm{C}\)-bus controlled
- Single 5 V power supply.

\section*{Acquisition}
- Simultaneous update of up to 8 pages
- Up to 100 page background memory capability
- Software selectable 625/525 line operation
- Full Level-One Features (FLOF) operation
- Table Of Pages (TOP) compatible
- VCR Programming via Teletext (VPT) and Program Delivery Control (PDC) compatible
- Vertical Blanking Interval (VBI) and full channel operation
- Extension packets 26/27/28/29 and 30 fully decoded.

\section*{Display}
- Stable display by slaving from scan-related timing signals
- Automatic selection of six different languages
- Versions for Western and Eastern Europe and Turkey
- Storage of 192 characters ( \(13 \times 10\) dot matrix)
- Software controlled RGB level removes the need for hardware adjustment
- Up to 27 display rows; 0 to 24 and up to 2 status rows.

\section*{GENERAL DESCRIPTION}

The SAA9042 is a CMOS integrated circuit designed for reception, decoding and display of 625 and 525 line World System Teletext (WST).
It is used in conjunction with a teletext video processor (SAA5191) for data regeneration, and a single-chip \(64 \mathrm{~K} \times 4\)-bit or \(256 \mathrm{~K} \times 4\)-bit dynamic RAM page memory.

The SAA9042 acquires teletext packets defined at levels 1, 2 and 3 in the WST specification and produces a level 1 display.

The device is microcontroller controlled via the standard \(I^{2} \mathrm{C}\)-bus and is compatible with analog, digital and features TV.

\section*{QUICK REFERENCE DATA}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & \multicolumn{1}{|c|}{ PARAMETER } & \multicolumn{1}{c|}{ CONDITIONS } & \multicolumn{1}{c|}{ MIN. } & \multicolumn{1}{c|}{ TYP. } & \multicolumn{1}{c|}{ MAX. } & \multicolumn{1}{c|}{ UNIT } \\
\hline \(\mathrm{V}_{\mathrm{DD}}\) & supply voltage & & 4.5 & 5.0 & 5.5 & V \\
\hline \(\mathrm{I}_{\mathrm{DD}}\) & supply current & & - & 100 & - & mA \\
\hline \(\mathrm{f}_{\mathrm{clk}}\) & clock frequency & 625 line & - & 6.9375 & - & MHz \\
\cline { 3 - 8 } & & 525 line & - & 5.7272 & - & MHz \\
\hline \(\mathrm{T}_{\mathrm{amb}}\) & operating ambient temperature & & -20 & - & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{ORDERING INFORMATION}
\begin{tabular}{|l|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
EXTENDED TYPE \\
NUMBER
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline SAA9042 & 40 & DIL & plastic & SOT129 \\
\hline
\end{tabular}

Multi-standard Teletext IC for standard and features TV

\section*{BLOCK DIAGRAM}


Fig. 1 Block diagram.

Multi-standard Teletext IC for standard and features TV

\section*{PINNING}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline DISP PL & 1 & Display PL: a programmable decode from the display-timing chain which can be used as a reference signal in an external PLL in scan-locked applications. \\
\hline SCL & 2 & Serial Clock: input signal which is the \(1^{2} \mathrm{C}\)-bus clock from the microcontroller. \\
\hline SDA & 3 & Serial Data: is the \(1^{2} \mathrm{C}\)-bus data line connected to the microcontroller. It is an input/output function with an open-drain output. \\
\hline VSA & 4 & Vertical Synchronization Acquisition: synchronization signal from the SAA5191 (VCS), derived from the incoming video. This input enables field timing to be established in the acquisition section. \\
\hline HSA & 5 & Horizontal Synchronization Acquisition: horizontal synchronization signal derived from the incoming video e.g. burst gate pulse. This active LOW input enables line timing to be established in the acquisition section. \\
\hline VSD & 6 & Vertical Synchronization Display: synchronization signal indicating the vertical position of the TV picture. This input allows field synchronization of the display section. \\
\hline HSD & 7 & Horizontal Synchronization Display: synchronization signal indicating the horizontal position of the TV picture. This input allows line synchronization of the TV picture. \\
\hline LL3A & 8 & Line-Locked system clock: 13.5 MHz system clock input for the acquisition section. \\
\hline VDS & 9 & Video/Data Switch: push-pull active HIGH 3-state output which controls the switching between text (HIGH) and normal TV (LOW) picture for both normal text and superimposed displays. \\
\hline R & 10 & Red: analog 3-state output which contains video character and background information for text display. The output level is adjustable over 16 steps and is controlled by \(\mathrm{V}_{\mathrm{ss} 0}\), \(V_{D D}\) and an internal register. \\
\hline G & 11 & Green: analog 3-state output which contains video character and background information for text display. The output level is adjustable over 16 steps and is controlled by \(\mathrm{V}_{\mathrm{SSO}}, \mathrm{V}_{\mathrm{DD}}\) and an internal register. \\
\hline B & 12 & Blue: analog 3-state output which contains video character and background information for text display. The output level is adjustable over 16 steps and is controlled by \(\mathrm{V}_{\mathrm{Ss} 0}\), \(V_{D D}\) and an internal register. \\
\hline \(\mathrm{C}_{\text {DAC }}\) & 13 & DAC output: DAC output level, requires an external decoupling capacitor \(>1 \mu \mathrm{~F}\). \\
\hline \(\mathrm{V}_{\text {Sso }}\) & 14 & Ground: ground connection 0 for video outputs. \\
\hline \(\mathrm{V}_{\mathrm{DD}}\) & 15 & Power Supply: +5 V (typ.). \\
\hline \(\mathrm{V}_{\text {SS2 }}\) & 16 & Ground: ground connection 2. \\
\hline LL3D/LL1.5D & 17 & Line-Locked system clock: 13.5 MHz or 27 MHz system clock input for the display, memory interface and control sections. \\
\hline A0/A9 to A8/A17 & 18 to 26 & Address: multiplexed address outputs for the external nibble-wide dynamic RAM (DRAM). With a 256 kbit ( \(64 \mathrm{~K} \times 4\) ) DRAM the address pin A8 is not used. \\
\hline \(\overline{\text { RAS }}\) & 27 & Row Address Strobe: active LOW output for the external DRAM. \\
\hline CAS & 28 & Column Address Strobe: active LOW output for the external DRAM. \\
\hline R/W & 29 & Read/Write: active LOW write enable signal for the external DRAM. \\
\hline D3/D7 to D0/D4 & 30 to 33 & Data: data inputs/outputs from the external nibble-wide DRAM. \\
\hline \(\mathrm{V}_{\text {SS } 1}\) & 34 & Ground: ground connection 1. \\
\hline \(\mathrm{V}_{\mathrm{SS} 3}\) & 35 & Ground: ground connection 3. \\
\hline
\end{tabular}

\section*{Multi-standard Teletext IC for standard and}
features TV
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & PIN & \multicolumn{1}{c|}{ DESCRIPTION } \\
\hline INT & 36 & \begin{tabular}{l} 
Interrupt: open-drain active LOW output which provides an interrupt signal for a \\
microcontroller indicating the arrival of a page or packet in any one of the acquisition \\
channels, change in newsflash/subtitle status or power-on reset.
\end{tabular} \\
\hline SAND & 37 & \begin{tabular}{l} 
Sandcastle: 3-level output for the SAA5191 representing the PL/CBB signal, derived \\
from the acquisition timing chain.
\end{tabular} \\
\hline TTC & 38 & Teletext Clock: input from the SAA5191 supplied via an external coupling capacitor. \\
\hline TTD & 39 & \begin{tabular}{l} 
Teletext Data: input from the SAA5191 supplied via an external coupling capacitor, \\
internally clamped to \(V_{\text {SS }}\) for 4 to \(8 \mu\) s of each line to maintain the correct DC level.
\end{tabular} \\
\hline FRAME & 40 & \begin{tabular}{l} 
Frame: output for de-interlacing circuits. The signal is LOW for even fields and HIGH for \\
odd fields when text but no picture is displayed. It is forced LOW when a TV picture is \\
present.
\end{tabular} \\
\hline
\end{tabular}

\section*{Multi-standard Teletext IC for standard and features TV}
\begin{tabular}{rl} 
DISPPL \\
SCL \\
SDA \\
\hline
\end{tabular}

Fig. 2 Pin configuration.

\section*{Multi-standard Teletext IC for standard and features TV}

LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134). All voltages are with respect to VSS1/2/3.
VSSO is considered as an output.
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & MAX. & UNT \\
\hline \(V_{\text {DD }}\) & DC supply voltage & & -0.5 & +6.5 & V \\
\hline \(\mathrm{I}_{\mathrm{DD}}\) & DC supply current & & tbf & tbf & mA \\
\hline \(V_{1}\) & DC input voltage & & -0.5 & \(\mathrm{V}_{\mathrm{DD}}+0.5\) & V \\
\hline \(I_{1}\) & DC input current & & -20 & +20 & mA \\
\hline Vo & DC output voltage & & -0.5 & \(\mathrm{V}_{\mathrm{DD}}+0.5\) & V \\
\hline Io & DC output current & & -20 & +20 & mA \\
\hline \(\mathrm{T}_{\text {stg }}\) & storage temperature & & -65 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature & & -20 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{V}_{\text {es }}\) & electrostatic handling & note 1 & -1000 & +1000 & V \\
\hline
\end{tabular}

\section*{Note}
1. Equivalent to discharging a 100 pF capacitor via a \(1.5 \mathrm{k} \Omega\) series resistor with a rise time of 15 ns .

\section*{HANDLING}
inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

\section*{CHARACTERISTICS}
\(\mathrm{V}_{\mathrm{DD}}=4.5\) to \(5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS} 1 / 2 / 3}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-20\) to \(+70^{\circ} \mathrm{C}\); unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Supply} \\
\hline \(\mathrm{V}_{\mathrm{DD}}\) & DC supply voltage & note 1 & 4.5 & 5.0 & 5.5 & V \\
\hline \(\mathrm{I}_{\mathrm{DD}}\) & DC supply current & & - & 100 & - & mA \\
\hline \multicolumn{7}{|l|}{Inputs; note 2} \\
\hline \multicolumn{7}{|l|}{TTD; NOTE 3} \\
\hline \(V_{1(p-p)}\) & input voltage (peak-to-peak value) & & 2.0 & - & 5.0 & V \\
\hline \(\mathrm{C}_{\text {ext }}\) & external coupling capacitor & & - & 22 & 50 & nF \\
\hline \(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\) & input rise and fall times & notes 4 and 26 & 10 & - & 80 & ns \\
\hline \(\mathrm{t}_{\text {SU;DAT }}\) & input data set-up time & note 5 & 40 & - & - & ns \\
\hline \(\mathrm{t}_{\text {HD; }{ }^{\text {DAT }} \text { ( }}\) & input data hold up time & note 5 & 40 & - & - & ns \\
\hline \(\mathrm{I}_{\mathrm{LI}}\) & input leakage current & \(\mathrm{V}_{1}=0\) to \(\mathrm{V}_{\mathrm{DD}}\) & -10 & - & +10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & note 26 & - & 7 & - & pF \\
\hline \(\mathrm{t}_{\text {CLon }}\) & clamp start time & note 6 & 3.5 & 4.0 & 4.5 & \(\mu \mathrm{s}\) \\
\hline \(\mathrm{t}_{\text {CLoff }}\) & clamp finish time & note 6 & 7.5 & 8.0 & 8.5 & \(\mu \mathrm{S}\) \\
\hline \(\mathrm{I}_{\mathrm{CL}}\) & clamp output current & note 7 & 1.0 & - & - & mA \\
\hline
\end{tabular}

Multi-standard Teletext IC for standard and features TV
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{TTC; NOTE 8} \\
\hline \(V_{1(p-p)}\) & input voltage (peak-to-peak value) & & 2.0 & - & 5.0 & V \\
\hline \(\mathrm{C}_{\text {ext }}\) & external coupling capacitor & & - & 10 & 10 & nF \\
\hline \(\mathrm{IIM}^{\text {m }}\) & peak input current & & -10 & - & +10 & mA \\
\hline \(\mathrm{V}_{\text {IM }}\) & input voltage (peak value) relative to 50\% duty factor & & \(\pm 0.2\) & - & \(\pm 3.5\) & V \\
\hline \(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\text {f }}\) & input rise and fall times & notes 4 and 26 & 10 & - & 80 & ns \\
\hline \(\mathrm{Cl}_{1}\) & input capacitance & note 26 & - & 7 & - & pF \\
\hline \(\mathrm{V}_{\mathrm{CL}}\) & input clamp voltage & & 1.2 & 1.4 & 1.6 & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{f}_{\mathrm{clk}}\)} & \multirow[t]{2}{*}{clock frequency} & 625 line & - & 6.9375 & - & MHz \\
\hline & & 525 line & - & 5.7272 & - & MHz \\
\hline
\end{tabular}
\(\overline{\text { HSA }}\); NOTE 9
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(V_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{1 \mathrm{H}}\) & HIGH level input voltage & & 2.0 & - & \(\mathrm{V}_{\mathrm{DD}}\) & V \\
\hline \(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\) & input rise and fall times & notes 4 and 26 & - & - & 500 & ns \\
\hline \(\mathrm{l}_{\mathrm{LI}}\) & input leakage current & \(V_{1}=0\) to \(V_{D D}\) & -10 & - & +10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & note 26 & - & - & 7 & pF \\
\hline \multicolumn{7}{|l|}{VSA} \\
\hline \(V_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & HIGH level input voltage & note 27 & 2.0 & - & \(V_{D D}\) & V \\
\hline \(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\) & input rise and fall times & notes 4 and 26 & - & - & 500 & ns \\
\hline \(\mathrm{ILI}^{\text {l }}\) & input leakage current & \(V_{1}=0\) to \(V_{D D}\) & -10 & - & +10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & note 26 & - & - & 7 & pF \\
\hline
\end{tabular}

LL3A; TTL MODE; FIG. 4
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{V}_{\mathrm{IL}}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{~V}_{\mathrm{IH}}\) & HIGH level input voltage & & 2.0 & - & \(\mathrm{V}_{\mathrm{DD}}\) & V \\
\hline \(\mathrm{t}_{\mathrm{CA}}\) & LL3A cycle time & note 10 & 69 & 74 & 80 & ns \\
\hline \(\mathrm{t}_{\mathrm{CAH}}\) & LL3A HIGH time & & 28 & - & - & ns \\
\hline \(\mathrm{t}_{\mathrm{CAL}}\) & LL3A LOW time & & 28 & - & - & ns \\
\hline \(\mathrm{I}_{\mathrm{LI}}\) & input leakage current & \(\mathrm{V}_{\mathrm{I}}=0\) to \(\mathrm{V}_{\mathrm{DD}}\) & -100 & - & +100 & \(\mu \mathrm{MA}\) \\
\hline \(\mathrm{C}_{\mathrm{I}}\) & input capacitance & note 26 & - & - & 10 & pF \\
\hline
\end{tabular}

Multi-standard Teletext IC for standard and features TV
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{LL3A; AC MODE; F = 13.5 MHz ; SEE FIG. 4} \\
\hline \(V_{\text {ACM }}\) & mean voltage level & notes 25 and 26 & -12 & - & +12 & V \\
\hline \(\mathrm{V}_{\text {AC }(\mathrm{p}-\mathrm{p})}\) & AC voltage (peak-to-peak value) & & 1.0 & - & 3.0 & V \\
\hline \(\mathrm{V}_{\text {Ach }}\) & voltage HIGH w.r.t. mean & & 0.3 & - & 2.0 & V \\
\hline \(\mathrm{V}_{\mathrm{ACL}}\) & voltage LOW w.r.t. mean & & -2.0 & - & -0.3 & V \\
\hline msr & input mark/space ratio w.r.t. mean \(t_{A C H} / t_{A C L}\) or \(t_{A C L} / t_{A C H}\) & note 28 & 30:70 & - & 70:30 & \\
\hline \(\mathrm{C}_{\text {s }}\) & series capacitance & & 47 & 100 & 220 & pF \\
\hline \(\mathrm{Z}_{\mathrm{i}}\) & input impedance & notes 24 and 26 & 10 & - & - & k \(\Omega\) \\
\hline \multicolumn{7}{|l|}{SCL; NOTE 31} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 1.5 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & HIGH level input voltage & & 3.0 & - & V \({ }_{\text {DD }}\) & V \\
\hline \(\mathrm{t}_{\mathrm{r}}\) & input rise time & notes 4 and 26 & - & - & 1 & \(\mu \mathrm{s}\) \\
\hline \(\mathrm{t}_{\mathrm{f}}\) & input fall time & notes 11 and 26 & - & - . & 300 & ns \\
\hline \(\mathrm{l}_{\mathrm{LI}}\) & input leakage current & note 12; \(\mathrm{V}_{1}=0\) to \(\mathrm{V}_{\mathrm{DD}}\) & -10 & - & +10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{Cl}_{1}\) & input capacitance & note 26 & - & - & 7 & pF \\
\hline \multicolumn{7}{|l|}{HSD} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & HIGH level input voltage & & 2.0 & - & \(\mathrm{V}_{\mathrm{DD}}\) & V \\
\hline \(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\text {f }}\) & input rise and fall times & notes 4 and 26 & - & 50 & 500 & ns \\
\hline \(\mathrm{l}_{\mathrm{LI}}\) & input leakage current & \(V_{1}=0\) to \(V_{D D}\) & -10 & - & +10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & note 26 & - & - & 7 & pF \\
\hline \multicolumn{7}{|l|}{VSD} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & HIGH level input voltage & & 2.0 & - & VDD & V \\
\hline \(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\text {t }}\) & input rise and fall times & notes 4 and 26 & - & - & 500 & ns \\
\hline \(\mathrm{lu}_{\mathrm{LI}}\) & input leakage current & \(V_{1}=0\) to \(V_{D D}\) & -10 & - & +10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & note 26 & - & - & 7 & pF \\
\hline
\end{tabular}

Multi-standard Teletext IC for standard and features TV

SAA9042
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{LL3D/LL1.5D; TTL MODE} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & HIGH level input voltage & & 2.0 & - & \(V_{D D}\) & V \\
\hline \(\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\) & input rise and fall times & notes 4 and 26 & - & - & 10 & ns \\
\hline \multirow[t]{2}{*}{\(\mathrm{t}_{\mathrm{CA}}\)} & \multirow[t]{2}{*}{LL3D/LL1.5D cycle time} & 13.5 MHz & 69 & 74 & 80 & ns \\
\hline & & 27.0 MHz & 35 & 37 & 40 & ns \\
\hline \multirow[t]{2}{*}{\(t_{\text {cah }}\)} & \multirow[t]{2}{*}{LL3D/LL1.5D HIGH time} & 13.5 MHz & 28 & - & - & ns \\
\hline & & 27.0 MHz & 14 & - & - & ns \\
\hline \multirow[t]{2}{*}{\(\mathrm{t}_{\text {cal }}\)} & \multirow[t]{2}{*}{LL3D/LL1.5D LOW time} & 13.5 MHz & 28 & - & - & ns \\
\hline & & 27.0 MHz & 14 & - & - & ns \\
\hline \(\mathrm{I}_{\mathrm{LI}}\) & input leakage current & \(V_{1}=0\) to \(V_{D D}\) & -100 & - & +100 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & note 26 & - & - & 10 & pF \\
\hline \multicolumn{7}{|l|}{LL3D/LL1.5D; AC MODE; \(\mathrm{f}=13.5 \mathrm{MHz} \mathrm{OR} 27 \mathrm{MHz}\); SEE FIG. 4} \\
\hline \(\mathrm{V}_{\text {ACM }}\) & mean voltage level & notes 25 and 26 & -12 & - & +12 & V \\
\hline \(V_{\text {AC(p-p) }}\) & AC voltage & & 1.0 & - & 3.0 & V \\
\hline \(\mathrm{V}_{\text {ACH }}\) & voltage HIGH w.r.t. mean & & 0.3 & - & 2.0 & V \\
\hline \(\mathrm{V}_{\mathrm{ACL}}\) & voltage LOW w.r.t. mean & & -2.0 & - & -0.3 & V \\
\hline msr & input mark/space ratio w.r.t. mean \(t_{\mathrm{ACH}} / \mathrm{t}_{\mathrm{ACL}}\) or \(\mathrm{t}_{\mathrm{ACL}} / \mathrm{t}_{\mathrm{ACH}}\) & note 28 & \(30: 70\) & - & 70:30 & \\
\hline \(\mathrm{C}_{\text {s }}\) & series capacitance & & 47 & 100 & 220 & pF \\
\hline \(\mathrm{Z}_{i}\) & input impedance & notes 24 and 26 & 10 & - & - & k \(\Omega\) \\
\hline \multicolumn{7}{|l|}{Inputs/outputs; note 13} \\
\hline \multicolumn{7}{|l|}{SDA; OPEN-DRAIN I/O; NOTE 31} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 1.5 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & HIGH level input voltage & & 3.0 & - & \(V_{D D}\) & V \\
\hline \(\mathrm{t}_{\mathrm{r}}\) & input rise time & notes 4 and 26 & - & - & 1 & \(\mu \mathrm{S}\) \\
\hline \(t_{f}\) & input fall time & notes 11 and 26 & - & - & 300 & ns \\
\hline \(\mathrm{ILI}^{\text {l }}\) & input leakage current & \[
\mathrm{V}_{\mathrm{I}}=0 \text { to } \mathrm{V}_{\mathrm{DD}} ; \text { note } 12 ;
\] with output off & -10 & - & +10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & note 26 & - & - & 7 & pF \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & LOW level output voltage & \(\mathrm{l}_{\mathrm{OL}}=3 \mathrm{~mA}\) & 0 & - & 0.4 & V \\
\hline \(\mathrm{t}_{\mathrm{f}}\) & output fall time & notes 11 and 26 & - & - & 300 & ns \\
\hline \(\mathrm{C}_{L}\) & load capacitance & & - & - & 400 & pF \\
\hline
\end{tabular}

\section*{Multi-standard Teletext IC for standard and features TV}

SAA9042
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{D0/D4 TO D3/D7} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & HIGH level input voltage & & 2.0 & - & \(\mathrm{V}_{\mathrm{DD}}\) & V \\
\hline \(\mathrm{I}_{1}\) & input leakage current & note 12; \(\mathrm{V}_{1}=0\) to \(\mathrm{V}_{\mathrm{DD}}\); with output off & -10 & - & +10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & note 26 & - & - & 7 & pF \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & LOW level output voltage & \(\mathrm{IOL}=1.6 \mathrm{~mA}\) & 0 & - & 0.4 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & HIGH level output voltage & \(\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}\) & 2.4 & - & \(\mathrm{V}_{\mathrm{DD}}\) & V \\
\hline \(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\) & output rise and fall times between 0.6 V and 1.8 V & note 26 & - & - & 10 & ns \\
\hline \(\mathrm{C}_{\mathrm{L}}\) & load capacitance & note 21 & - & - & 100 & pF \\
\hline
\end{tabular}

Outputs; note 13
SAND; NOTE 22
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathrm{V}_{\mathrm{OL}}\) & LOW level output voltage & \(\mathrm{IOL}=0.2 \mathrm{~mA}\) & 0 & - & 0.3 & V \\
\hline \(\mathrm{V}_{\text {OI }}\) & intermediate level output voltage & \(\mathrm{l}_{\mathrm{OL}}= \pm 30 \mu \mathrm{~A}\) & 1.3 & - & 2.7 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & HIGH level output voltage & \(\mathrm{I}_{\mathrm{OH}}=0\) to \(-10 \mu \mathrm{~A}\) & 4.0 & - & \(\mathrm{V}_{\mathrm{DD}}\) & V \\
\hline \(\mathrm{tr}_{\mathrm{r}}\) & output rise time \(\mathrm{V}_{\mathrm{OL}}\) to \(\mathrm{V}_{\mathrm{OI}}\) between 0.4 V and 1.1 V & note 26 & - & - & 400 & ns \\
\hline \(t_{r}\) & output rise time \(\mathrm{V}_{\mathrm{OL}}\) to \(\mathrm{V}_{\mathrm{OH}}\) between 2.9 V and 4.0 V & note 26 & - & - & 200 & ns \\
\hline \(\mathrm{t}_{\mathrm{f}}\) & output fall time \(\mathrm{V}_{\mathrm{OH}}\) to \(\mathrm{V}_{\mathrm{OL}}\) between 4.0 V and 0.4 V & note 26 & - & - & 50 & ns \\
\hline \(\mathrm{C}_{\mathrm{L}}\) & load capacitance & & - & - & 30 & pF \\
\hline \multicolumn{7}{|l|}{INT; OPEN-DRAIN OUTPUT} \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & LOW level output voltage & \(\mathrm{l}_{\mathrm{OL}}=1.6 \mathrm{~mA}\) & 0 & - & 0.4 & V \\
\hline lo & output leakage current & \[
\mathrm{V}_{\mathrm{PU}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} ;
\] with output off & -10 & - & +10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{t}_{\mathrm{f}}\) & output fall time & notes 15 and 26 & - & - & 50 & ns \\
\hline \(\mathrm{C}_{\mathrm{L}}\) & load capacitance & & - & - & 100 & pF \\
\hline
\end{tabular}

A0/A9 TO A8/A17
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{\mathrm{OL}}\) & LOW level output voltage & \(I_{\mathrm{OL}}=1.6 \mathrm{~mA}\) & 0 & - & 0.4 & V \\
\hline \(\mathrm{~V}_{\mathrm{OH}}\) & HIGH level output voltage & \(\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}\) & 2.4 & - & \(\mathrm{V}_{\mathrm{DD}}\) & V \\
\hline \(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\) & \begin{tabular}{l} 
output rise and fall times between \\
0.6 V and 1.8 V
\end{tabular} & note 26 & - & - & 10 & ns \\
\hline \(\mathrm{C}_{\mathrm{L}}\) & load capacitance & note 23 & - & - & 100 & pF \\
\hline
\end{tabular}

\section*{Multi-standard Teletext IC for standard and features TV}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{\(\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}\) AND R/W} \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & LOW level output voltage & \(\mathrm{l}_{\mathrm{OL}}=1.6 \mathrm{~mA}\) & 0 & - & 0.4 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & HIGH level output voltage & \(\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}\) & 2.4 & - & \(V_{D D}\) & V \\
\hline \(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\) & output rise and fall times between 0.6 V and 1.8 V & note 26 & - & - & 10 & ns \\
\hline \(\mathrm{C}_{\mathrm{L}}\) & load capacitance & note 23 & - & - & 100 & pF \\
\hline \multicolumn{7}{|l|}{DISP PL AND FRAME} \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & LOW level output voltage & \(\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}\) & 0 & - & 0.4 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & HIGH level output voltage & \(\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}\) & 2.4 & - & \(\mathrm{V}_{\mathrm{DD}}\) & V \\
\hline \(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\) & output rise and fall times & notes 16 and 26 & - & - & 200 & ns \\
\hline \(\mathrm{C}_{\mathrm{L}}\) & load capacitance & & - & - & 200 & pF \\
\hline \multicolumn{7}{|l|}{R, G, B; 3-state; NOTE 29} \\
\hline V OL & LOW level output voltage & \(\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}\); note 17 & \(\mathrm{V}_{\text {Sso }}\) & - & \(\mathrm{V}_{\mathrm{ss} 0}+0.2\) & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & HIGH level output voltage & \(\mathrm{I}_{\text {OH }}=-2 \mathrm{~mA}\); note 18 & - & note 30 & - & V \\
\hline \(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\) & output rise and fall times between 0.6 V and 1.8 V & notes 4, 17 and 26 & - & - & 10 & ns \\
\hline \(\mathrm{C}_{\mathrm{L}}\) & load capacitance & & - & - & 30 & pF \\
\hline \(\mathrm{C}_{\text {off }}\) & output capacitance & off state; note 26 & - & - & 10 & pF \\
\hline \(\mathrm{l}_{\text {off }}\) & output leakage current & off state; \(\mathrm{V}_{1}=0\) to \(V_{\text {DD }}\) & -10 & - & +10 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{VDS; 3-STATE; NOTE 29} \\
\hline Vol & LOW level output voltage & \(\mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}\) & 0 & - & 0.2 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & HIGH level output voltage & \(\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}\) & 1.1 & - & 2.8 & V \\
\hline \(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\) & output rise and fall times & note 26 & - & - & 10 & ns \\
\hline \(\mathrm{C}_{\mathrm{L}}\) & load capacitance & & - & - & 30 & pF \\
\hline \(\mathrm{l}_{\text {off }}\) & output leakage current & off state; \(\mathrm{V}_{1}=0\) to \(\mathrm{V}_{\mathrm{DD}}\) & -10 & - & +10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{t}_{\text {skew }}\) & skew delay between \(R, G, B\) and VDS outputs & note 19 & - & - & 10 & ns \\
\hline
\end{tabular}

Multi-standard Teletext IC for standard and features TV
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Timing} \\
\hline \multicolumn{7}{|l|}{\(\mathrm{I}^{2} \mathrm{C}\)-bus; note 20; Fig. 3} \\
\hline \(\mathrm{f}_{\text {SCL }}\) & SCL clock frequency & note 31 & 0 & - & 100 & kHz \\
\hline t Low & clock LOW period & & 4 & - & - & \(\mu \mathrm{s}\) \\
\hline \(\mathrm{t}_{\text {HIGH }}\) & clock HIGH period & & 4 & - & - & \(\mu \mathrm{s}\) \\
\hline \(t_{\text {SU; }}\) DAT & data set-up time & & 250 & - & - & ns \\
\hline \(\mathrm{t}_{\text {HD; DAT }}\) & data hold time & & 0 & - & - & ns \\
\hline \(\mathrm{t}_{\text {Su }}\); Sto & set-up time from clock HIGH to STOP & & 4 & - & - & \(\mu \mathrm{s}\) \\
\hline \(t_{\text {BUF }}\) & START set-up time following a STOP & & 4 & - & - & \(\mu \mathrm{S}\) \\
\hline \(t_{\text {HD }}\) STA & START hold time & & 4 & - & - & \(\mu \mathrm{s}\) \\
\hline \(\mathrm{t}_{\text {SU; STA }}\) & START set-up time following clock LOW-to-HIGH transition & & 4 & - & - & \(\mu s\) \\
\hline
\end{tabular}

Memory interface; Note 14; Figs 5 AND 6
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathrm{t}_{\mathrm{CY}}\) & cycle time & & - & 481 & - & ns \\
\hline \(\mathrm{t}_{\mathrm{T}}\) & transition time & & - & - & 10 & ns \\
\hline \(t_{\text {W; RAS }}\) & \(\overline{\text { RAS }}\) pulse width & & 120 & - & - & ns \\
\hline tpc;RAS & RAS precharge time & & 90 & - & - & ns \\
\hline \(\mathrm{t}_{\text {HD; }}\) CAS & \(\overline{\text { CAS }}\) hold time & & 120 & - & - & ns \\
\hline \(\mathrm{t}_{\text {cY; }}\) PM & page mode cycle time & & 120 & - & - & ns \\
\hline \(\mathrm{t}_{\mathrm{d}}\) & \(\overline{\text { RAS }}\) to \(\overline{\mathrm{CAS}}\) delay time & & 25 & - & - & ns \\
\hline \(\mathrm{t}_{\text {w; CAS }}\) & \(\overline{\mathrm{CAS}}\) pulse width & & 60 & - & - & ns \\
\hline \(t_{\text {PC; CAS }}\) & \(\overline{\mathrm{CAS}}\) precharge time & & 50 & - & - & ns \\
\hline \(\mathrm{t}_{\text {SU; ROW }}\) & row address set-up time & & 0 & - & - & ns \\
\hline \(t_{\text {HD: }}\) ROW & row address hold time & & 15 & - & - & ns \\
\hline tsu;col & column address set-up time & & 0 & - & - & ns \\
\hline \(\mathrm{t}_{\mathrm{HD} ; \mathrm{COL}}\) & column address hold time & & 20 & - & - & ns \\
\hline \(\mathrm{t}_{\text {Su; }}\) & read command set-up time & & 0 & - & - & ns \\
\hline \(\mathrm{t}_{\mathrm{HD} ; \mathrm{RDC}}\) & read command hold time referenced to \(\overline{\text { CAS }}\) & & 0 & - & - & ns \\
\hline \(\mathrm{t}_{\mathrm{HD} ; \mathrm{RDR}}\) & read command hold time referenced to \(\overline{\text { RAS }}\) & & 10 & - & - & ns \\
\hline \(\mathrm{t}_{\text {Acc; }}\) CAS & access time from \(\overline{\mathrm{CAS}}\) & & - & - & 60 & ns \\
\hline \(\mathrm{t}_{\text {W } ; \text { WR }}\) & write command pulse width & & 50 & - & - & ns \\
\hline \(t_{\text {HD }}\) WR & write command hold time & & 40 & - & - & ns \\
\hline \(t_{\text {su }}\) DATI & data input set-up time & & 0 & - & - & ns \\
\hline \(\mathrm{t}_{\text {HD; }}\) DATI & data input hold time & & 40 & - & - & ns \\
\hline
\end{tabular}

Multi-standard Teletext IC for standard and features TV
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX & UNIT \\
\hline \(t_{\text {ACC; }}\) RAS & access time from \(\overline{\mathrm{RAS}}\) & & - & - & 120 & ns \\
\hline \(\mathrm{t}_{\mathrm{HD} ; \mathrm{RC}}\) & \(\overline{\mathrm{RAS}}\) hold time after \(\overline{\mathrm{CAS}}\) & & 60 & - & - & ns \\
\hline \(\mathrm{t}_{\text {PC; }}\) CR & \(\overline{\text { CAS }}\) to \(\overline{\mathrm{RAS}}\) precharge time & & 20 & - & - & ns \\
\hline \(\mathrm{t}_{\mathrm{HD} ; \text { COLR }}\) & column address hold time referenced to RAS & & 80 & - & - & ns \\
\hline \(t_{\text {HD; DATIR }}\) & data input hold time referenced to \(\overline{R A S}\) & & 100 & - & - & ns \\
\hline
\end{tabular}

\section*{Notes}
1. The rise time of \(\mathrm{V}_{\mathrm{DD}}\) from 0 to 4.5 V must be \(>150 \mathrm{~ns}\) to ensure that the internal power-on reset triggers. For this circuit to reset the chip, \(\mathrm{V}_{\mathrm{DD}}\) must be initially \(<1.0 \mathrm{~V}\) or fall to \(<1.0 \mathrm{~V}\) for at least 100 ns . Spikes on \(\mathrm{V}_{D D}\) are tolerable provided that \(V_{D D}\) is not reduced to \(<2.5 \mathrm{~V}\).
2. All inputs are protected against static charge under normal handling.
3. The TTD input incorporates an internal clamping diode in addition to the active clamping transistor.
4. Rise and fall times are measured between \(10 \%\) and \(90 \%\) levels.
5. Teletext input data set-up and hold times are measured with respect to \(50 \%\) duty factor level of the rising edge of the teletext clock input (TTC). Data stable \(1 \geq 2.0 \mathrm{~V}\), data stable \(0 \leq 0.8 \mathrm{~V}\).
6. Clamp times measured from the line sync reference point, assuming acquisition timing is set correctly.
7. Clamping transistor on, \(\mathrm{V}_{T \mathrm{TD}}-\mathrm{V}_{\mathrm{SS} 1} \leq 0.1 \mathrm{~V}\).
8. The TTC input has an internal clamping diode.
9. \(\overline{\mathrm{HSA}}\) is falling edge triggered.
10. Minimum and maximum cycle times are \(\pm 7.1 \%\) of the typical value.
11. Fall time is measured between 3.0 V and 1.5 V .
12. Applies even when \(V_{D D}=0 \mathrm{~V}\).
13. All input/outputs and outputs are protected against static charge under normal handling.
14. For details of memory interface timings to and from external DRAM see Figs 5 and 6.
15. Output fall time measured between 4.0 V and 1.0 V levels with a \(3.3 \mathrm{k} \Omega\) load to 5.0 V .
16. Output rise and fall times measured between 0.8 V and 2.0 V levels.
17. Measured with \(\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{SSO}}=\mathrm{V}_{\mathrm{SS} 1 / 2 / 3}\) and output voltage \(\left(\mathrm{C}_{\mathrm{DAC}}\right)=1.5 \mathrm{~V}\).
18. Measured with \(\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{SSO}}=\mathrm{V}_{\mathrm{SS} 1 / 2 / 3}\) and output voltage \(\left(\mathrm{C}_{\mathrm{DAC}}\right)=0.5\) to 1.5 V .
19. Skew delay time measured at 0.7 V levels.
20. For details of \({ }^{2} \mathrm{C}\)-bus timings see Fig.3; timings are referenced to \(\mathrm{V}_{\mathrm{IH}}=3.0 \mathrm{~V}\) and \(\mathrm{V}_{\mathrm{IL}}=1.5 \mathrm{~V}\).
21. Load capacitance measured with two DRAM data inputs; 50 pF maximum.
22. A current of \(1 \mu \mathrm{~A}\) flows out of the SAA5191 while its SAND input is in the range of 1 V to 3.5 V .
23. Load capacitance measured with eight DRAM data inputs; 80 pF maximum.
24. Through a 200 pF capacitor with a 13.5 MHz sinewave.
25. To be applied via a series capacitor only.
26. This specification point is included because of its importance to the application environment; it is not however guaranteed.
27. When connected to the SAA5191, it is acceptable for the clock frequency to initially attain \(\leq 15 \mathrm{MHz}\) in order to achieve synchronization.

\section*{Multi-standard Teletext IC for standard and features TV}
28. When connected to the SAA5191, it is acceptable for the input voltage to attain \(V_{D D}+0.9 \mathrm{~V}\). The input current must be restricted as specified in the limiting values.
29. These outputs can be made 3 -state via the \(l^{2} \mathrm{C}\)-bus.
30. Typical values adjustable over 0.5 to 1.5 V via the \(\mathrm{I}^{2} \mathrm{C}\)-bus.
31. A standard ( 100 kHz ) \(\mathrm{I}^{2} \mathrm{C}\) interface is implemented. Fast mode ( 400 kHz ) is not supported.


Fig. \(31^{2} \mathrm{C}\)-bus timing.


Fig. 4 Line-locked system clock LL3A and LL3D/LL1.5D timing diagram.

\section*{Multi-standard Teletext IC for standard and features TV}
\(\qquad\)


Fig. 5 Memory interface timing for write cycle to external DRAM.

\section*{Multi-standard Teletext IC for standard and features TV}


Fig.6 Memory interface timing for read cycle from external DRAM.

\section*{CHARACTER SETTINGS}

The different character settings are explained in Tables 1 to 6.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\] & \(\longrightarrow\) & \({ }^{0}\) & \(\begin{array}{llll}0 & \\ 0 & \\ & 0 \\ & 1\end{array}\) & \(\bigcirc\) & 10 & \(\bigcirc\) & \({ }^{1}\) & \(\begin{array}{|ll|}0 & \\ & 1 \\ & 0 \\ & 0\end{array}\) & 0 & 0 & 0 & 0 & & 10. \(\begin{array}{ll}1 & \\ & 0 \\ & 0 \\ & 0\end{array}\) & \begin{tabular}{|ll|l}
1 & \\
0 & \\
& 0 \\
& \\
& 1
\end{tabular} & \(\begin{array}{llll}1 & \\ 0 & \\ & 1 \\ & 0\end{array}\) & \(\mathrm{r}_{1}^{1}\) & \(\begin{array}{ll}1 \\ 1 & \\ & 0 \\ & 0\end{array}\) & \(\left[\begin{array}{ll}1 & \\ 1 & \\ & 0 \\ & 1\end{array}\right.\) & \({ }^{1}\) & \({ }^{1} 1\) \\
\hline  & & & 1 & 2 & 2 & 3 & \(3 \times\) & 4 & 5 & 6 & Ga & 7 & \(7{ }^{\text {7a }}\) & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline 0000 & & alpha numerics black & \[
\begin{aligned}
& \text { graphics } \\
& \text { blacs }
\end{aligned}
\] & & &  & & \[
\begin{array}{|l|}
\hline \mathbf{N}_{1} \\
\mathbf{Q}_{1}
\end{array}
\] & \(\square\) & \[
\begin{aligned}
& \mathbf{W}_{1} \\
& \mathbf{a}_{1}
\end{aligned}
\] & & 3 & &  & \[
1
\] & &  &  &  &  & 9 \\
\hline 0001 & 1 & \begin{tabular}{l}
alpha - \\
numerics \\
red
\end{tabular} & \[
\begin{aligned}
& \text { graphics } \\
& \text { reds }
\end{aligned}
\] &  & & 1 & \(\square\) & B & 4 & 랄 &  & 단 & &  & 플 &  & \[
1
\] &  & \(\underline{3}\) & F & F \\
\hline 0010 & 2 & alpha numerics green & graphics green & 77 & & \(\underline{5}\) & - & E & P & \(\square\) & \(\square\) & 5 & & [4] & 늘 & 77 & B & E &  & 를 & E \\
\hline 0 0 011 & 3 & \begin{tabular}{l}
alpha. \\
numerics yeliow
\end{tabular} & \[
\begin{aligned}
& \text { graphics } \\
& \text { yellow }
\end{aligned}
\] & \[
\mathbf{M}
\] & &  &  & 4 &  & \(\square\) &  & 등 & & 4 &  & \(\square\) &  & \(F\) & \[
\underset{\sim}{2}
\] & P] & \(\pm\) \\
\hline 0100 & 4 & alpha numerics blue & \[
\begin{aligned}
& \text { graphics } \\
& \text { blue }
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \mathrm{M}_{2} \\
\mathrm{n}_{4} \\
\hline
\end{array}
\] & & \[
4
\] & & 5 &  & C & & + &  & \[
\operatorname{ta}
\] & 즌 & \[
1
\] & 4 &  & 들 & \(\square\) &  \\
\hline 0101 & 5 & alpha-
numerics
magenta & graphics magenta &  & & \(\square\) & & E & \[
\square
\] & 를 & & L & & \[
4
\] &  &  &  &  & \[
1
\] & P &  \\
\hline 0110 & 6 & alpha numerics cyan & graphics cyan &  &  &  &  & \(F\) &  & F & & 4 & & H & 1 & 98 & \(B\) & 4 & \(\square\) &  &  \\
\hline \(0 \quad 1 \quad 1\) & 7 & \[
\begin{array}{|c|c|}
\hline \begin{array}{c}
\text { alphat } \\
\text { numerics } \\
\text { white }
\end{array} \\
\hline
\end{array}
\] & graphics
white & 7 & & 7 & & \(\underline{\square}\) & | 4 & 들 & \(\square\) & 43 & \(\square\) & F &  & 7 & 7 & & [4] & &  \\
\hline 1000 & 8 & flash & concoal display & \[
5
\] & \(\square\) & E & \(\square\) & H1 & H2 & 7 & & 31 & & & ㄹ & F & B & \(\square\) & 5 & 를 & 28 \\
\hline 10001 & - & steady \(^{\text {(2) }}\) & ©ontiguous graphics & 3 &  &  &  & \[
\square
\] &  & 1 & & \[
3
\] & - & 4 & 咅] & 1 & \(\square\) & 들 & [-7 &  & 4 \\
\hline 1010 & 10 & \(\qquad\) & separated graphics & \[
54
\] &  & 1 & & - \(]\) & 7 & -7 & & \(\underline{\square}\) & & 1 & \(\square\) & \[
5
\] & 1 & [ & F1 & [ & ㅎ \\
\hline 101 & 11 & start box & ESC \({ }^{(1)}\) & \[
F
\] &  & \[
1
\] &  &  & \[
\begin{array}{|l|}
\hline \mathbf{N}_{\mathbf{1}} \\
\mathbf{a}_{\mathbf{1}} \\
\hline
\end{array}
\] & -4 & & \[
\begin{array}{|l|}
\hline \mathbf{N}, \\
\mathbf{D}_{2} \\
\hline
\end{array}
\] & &  &  & 4 & 1 & [ & 른 & 23 & 5 \\
\hline 1100 & 12 &  & \[
\begin{aligned}
& \text { black (2 } \\
& \text { back. } \\
& \text { ground }
\end{aligned}
\] & 7 & & 4 & & \(\square\) & \[
\begin{array}{|l|}
\hline \mathbf{N} . \\
\mathbf{a}_{\mathbf{r}} \\
\hline
\end{array}
\] & 1 &  & \[
\begin{aligned}
& \mathbf{N} \\
& \mathbf{N}_{1}
\end{aligned}
\] & & \(\cdots\) & F & 7 & 4 & 3 & \# & [ & F \\
\hline \(1 \quad 101\) & 13 & \[
\begin{aligned}
& \text { double } \\
& \text { height }
\end{aligned}
\] & new
back ground & \(\pm\) & \(\square\) & \(=\) &  &  & \[
\mathbf{M}
\]
\[
0
\] & \[
11
\] &  & \begin{tabular}{l}
\(\mathbf{N}\). \\
\(\mathbf{D}\) \\
\(\mathbf{D}\) \\
\hline
\end{tabular} & & 를 & 园 & & \(=\) & 파기 &  & 프 & 7 \\
\hline 1110 & 14 & double
with & \[
\begin{gathered}
\text { hold } \\
\text { graphics }
\end{gathered}
\] & 1 & & \[
\sqrt{2}
\] &  & \[
B
\] & \[
\begin{array}{|l|}
\hline \mathbf{N} . \\
\mathbf{1} \\
\hline
\end{array}
\] & \[
\Pi
\] & & \[
\begin{array}{|l|}
\hline \mathbf{N}_{1} \\
\mathbf{D}_{1} \\
\hline
\end{array}
\] & &  &  & \(\square\) &  & [10) &  & \(\square\) & \(\square\) \\
\hline 1 111 & 15 & \[
\begin{gathered}
\text { double } \\
\text { size }
\end{gathered}
\] & \[
\begin{gathered}
\text { release } \\
\text { graphics }
\end{gathered}
\] &  & &  & &  &  & \(\square\) & & & &  &  &  & \(\underline{2}\) & - &  & (4) & [7] \\
\hline
\end{tabular}

\section*{Multi-standard Teletext IC for standard and features TV}

\section*{Notes to Table 1}
1. These control characters are reserved for compatibility with other data codes.
2. These control characters are presumed before each rows begins.

Table 2 SAA9042A West European national option sets.


\section*{Notes}
1. Where PHCB are the Page Header Control Bits. Other combinations of PHCB default to English.
2. Basic character set is Italian: Selected when the force language bit (D5) in the display set-up register (R12) is set to logic 1.


\section*{Multi-standard Teletext IC for standard and features TV}

\section*{Notes to Table 3}
1. These control characters are reserved for compatibility with other data codes.
2. These control characters are presumed before each rows begins.

Table 4 SAA9042B Eastern European national option sets.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|r|}{PHCB \({ }^{(1)}\)} & \multicolumn{13}{|c|}{CHARACTER POSITION (COLUMN / ROW)} \\
\hline & C12 & C13 & C14 & \(2 / 3\) & 2/4 & 4/0 & 5/11 & 5/12 & 5/13 & 5/14 & \(5 / 15\) & \(6 / 0\) & 7/11 & 7/12 & 7/13 & 7/14 \\
\hline POLISH & 0 & 0 & 0 & 4 H & FI & 잔 & Y & \(\square\) & Fr & \(\square\) & \(\square\) & 판) & \% & 5 & F & + \\
\hline GERMAN & 0 & 0 & 1 & 4 & 4 & 룰 & F6] &  &  & 4 & & \(\square\) & E & \(\square\) & - 4 & \(\square\) \\
\hline SWEDISH & 0 & 1 & 0 & 7\% & H & 른 & [ - & \(\square\) & F1 &  & & 란 & E & \(\square\) & 学 & 4 \\
\hline SERBO-CROAT & 1 & 0 & 1 & 47 &  &  & 4 & 5 & 5 & \(\square\) & 픈 & 판 & \(\square\) & P & - & 돌 \\
\hline CZECHOSLOVAK & 1 & 1 & 0 & 4 &  &  &  & 5 & W & \(\pm\) & 5 & 픈 & 팔 & 랄 & [4] & 돈 \\
\hline ROMANIAN \({ }^{(2)}\) & 1 & 1 & 1 & 4 &  & 5 &  &  & \(\left[\begin{array}{c}{[ } \\ \hline\end{array}\right.\) & \[
5
\] & 1 & 4 & E & \(\square\) & \(\underline{\square}\) & 1 \\
\hline
\end{tabular}

\section*{Notes}
1. Other combinations of C12, C13 and C14 default to German.
2. Basic character set is Romanian. Selected when the force language bit (D5) in the display set-up register (R12) is set to logic 1.


\section*{Multi-standard Teletext IC for standard and features TV}

\section*{Notes to Table 5}
1. These control characters are reserved for compatibility with other data codes.
2. These control characters are presumed before each rows begins.

Table 6 SAA9042C Euro-Turkish national option sets.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{LANGUAGE} & \multicolumn{3}{|r|}{PHCB \({ }^{(1)}\)} & \multicolumn{13}{|c|}{CHARACTER POSITION (COLUMN / ROW)} \\
\hline & C12 & C13 & C14 & 2/3 & 2/4 & \(4 / 0\) & 5/11 & \(5 / 12\) & 5/13 & 5/14 & 5/15 & 6/0 & 7/11 & 7/12 & 7/13 & 7/14 \\
\hline ENGLISH & 0 & 0 & 0 & 5 & 분 &  &  & \[
12
\] &  & 4 & 48 & \(\square\) & 4 & \# & 5 & \(\pm\) \\
\hline GERMAN & 0 & 0 & 1 & H18 & 48 & 둘 &  &  &  & 54, & & \(\square\) & 를 & 몬 & 4 & 3 \\
\hline \[
\text { ITALIAN }^{(2)}
\] & 0 & 1 & 1 &  & 4 & 판 & * & 5 & 4 & 4 & 48 & \(\square\) & 틀 & \(\square\) & ㄹ & 1 \\
\hline FRENCH & 1 & 0 & 0 & 랄 & [10 & 를 & \(\square\) & 를 & 4 & 1 & H7 & 랄 &  & \(\square\) & \(\square\) & \(\underline{5}\) \\
\hline SPANISH & 1 & 0 & 1 &  &  & \(\pm\) & \(\pm\) & 를 & 1 & \(\square\) & 4 & E & 4 & 파T & 를 & 를 \\
\hline TURKISH & 1 & 1 & 0 &  &  &  & 단 &  &  &  & \(\square\) & 1 & 5 & \(\square\) & \(\square\) & 4 \\
\hline
\end{tabular}

\section*{Notes}
1. Other combinations of \(\mathrm{C} 12, \mathrm{C} 13\) and C 14 default to English.
2. Basic character set is Italian. Selected when the force language bit (D5) in the display set-up register (R12) is set to logic 1.

Multi-standard Teletext IC for standard and features TV

\section*{APPLICATION INFORMATION}



Fig. 8 SAA9042 solution for \(50 / 60 \mathrm{~Hz}\) analog TV (1H/1V) - scan sync mode.


Fig. 9 SAA9042 solution for features TV \((2 \mathrm{H} / 1 \mathrm{~V}\) or \(2 \mathrm{H} / 2 \mathrm{~V})\).

\section*{Zヤ06もVS}


Digital multistandard TV decoder

\section*{FEATURES}
- All operations based on a sampling frequency of 13.5 MHz , providing:
- full adaptability to all transmission standards
- capability for memory-based features
- Separate chrominance and luminance input (Y/C)
- CVBS input for standard applications
- CVBS throughput capability for SECAM application
- Luminance signal processing for all TV standards (PAL, NTSC, SECAM, B/W)
- Horizontal and vertical synchronization detection for all standards
- Chrominance signal processing for all quadrature amplitude modulated colour-carrier signals
- Requires only one crystal
- Controlled via the \(\mathrm{I}^{2} \mathrm{C}\)-bus
- User-programmable aperture correction (horizontal peaking)
- Compatible with memory-based features (line-locked clock)
- Cross-colour reduction by chrominance comb-filter (NTSC)
- Wide range hue control

\section*{GENERAL DESCRIPTION}

The SAA9051 digital multistandard decoder (S-DMSD) performs demodulation and decoding of all quadrature modulated colour TV standards, as well as performing
 luminance processing for all TV standards with CVBS or Y/C input signals.

\section*{ORDERING INFORMATION}
\begin{tabular}{|l|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
EXTENDED TYPE \\
NUMBER
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline SAA9051 & 68 & PLCC & plastic & SOT188AGA, CG \\
\hline
\end{tabular}


Fig. 1 Block diagram; continued in Fig. 2




Fig. 3 Pinning configuration.

\section*{PINNING}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline n.c. & 1 & not connected \\
\hline TEST & 2 & test input (active HIGH); when HIGH enables scan-test mode, always connected to ground \\
\hline \(\overline{R E S}\) & 3 & reset input (active LOW); results in the \(I^{2} \mathrm{C}\)-bus control registers 1 to 3 and internal stages being reset during the reset phase. The minimum LOW period of RES is 120 LL3 clock cycles \\
\hline LL. 3 & 4 & 13.5 MHz line-locked system clock \\
\hline n.c. & 5 & not connected \\
\hline \[
\begin{aligned}
& \begin{array}{l}
100(\text { LSB })-107 \\
\text { (MSB) }
\end{array} \\
& \hline
\end{aligned}
\] & 6-13 & bidirectional data path; chrominance input for separate luminance and chrominance input (Y/C) or CVBS output for SECAM decoder SAA9056. Two's complement format (IOO is only used internally for CVBS throughput) \\
\hline \[
\begin{aligned}
& \text { CVBS0 (LSB) - } \\
& \text { CVBS7 (MSB) }
\end{aligned}
\] & 14-17, 20-23 & digitalized composite video blanking and synchronization signals; containing luminance, chrominance and all synchronization information or luminance, blanking and synchronization signals in the event of separate luminance and chrominance (Y/C) input. Two's complement format (CVBS0 is only used internally for CVBS throughput) \\
\hline \(\mathrm{V}_{\mathrm{DD}}\) & 18 & positive supply voltage ( +5 V ) \\
\hline \(V_{S S}\) & 19 & ground (0 V) \\
\hline SS2-SS3 & 24-25 & source select output signals; \({ }^{2} \mathrm{C}\)-bus controlled, TTL compatible switches \\
\hline HC & 26 & programmable horizontal output pulse; when used in conjunction with input circuits (e.g. ADC) indicates the black-level position before analog-to-digital conversion. The start and stop times are programmable, between \(-9.4 \mu \mathrm{~s}\) and \(+9.5 \mu \mathrm{~s}\) in steps of 74 ns , via the \(\mathrm{I}^{2} \mathrm{C}\)-bus \\
\hline n.c. & 27-28 & not connected \\
\hline HSY & 29 & programmable horizontal output pulse; when used in conjunction with input circuits (e.g. an ADC). It indicates the synchronization pulse position before analog-to-digital conversion The start and stop times are programmable, between \(-14.2 \mu \mathrm{~s}\) and \(+4.7 \mu \mathrm{~s}\) in steps of 74 ns , via the \({ }^{12} \mathrm{C}\)-bus \\
\hline VS & 30 & vertical synchronization output; indicates the vertical position of the picture for \(50 / 60 \mathrm{~Hz}\) field frequency \\
\hline
\end{tabular}

\section*{PINNING (continued)}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline HS & 31 & horizontal synchronization pulse output (duration \(=64\) LL3 clock cycles). HS is programmable, between \(-32 \mu \mathrm{~s}\) and \(+32 \mu \mathrm{~s}\) in steps of 300 ns , via the \(1^{2} \mathrm{C}\)-bus \\
\hline XCL2 & 32 & clock output; half of the crystal clock frequency ( 12.288 MHz ). In phase with crystal (pin 33) \\
\hline XTAL & 33 & crystal oscillator input/inverting amplifier output; input to the internal clock generator from an external oscillator or output of the inverting amplifier to an external crystal ( 24.576 MHz ) \\
\hline XTALI & 34 & input to the inverting amplifier from an external crystal ( 24.576 MHz ); connect to ground if an external oscillator is used \\
\hline n.c. & 35 & not connected \\
\hline LFCO & 36 & line frequency control; analog output representing a multiple of the line frequency ( 6.75 MHz ) with 4 -bit resolution, the phase of which is compared to the system clock by the CGC (SAA9057A) \\
\hline n.c. & 37-39 & not connected \\
\hline SDA & 40 & \(1^{2} \mathrm{C}\)-bus serial data input/output \\
\hline SCL & 41 & \(1^{2} \mathrm{C}\)-bus serial clock input \\
\hline \(\overline{\mathrm{BL}}\) & 42 & blanking signal output (active LOW); indicates the active video and line blanking periods. \(\overline{B L}\) also synchronizes the data multiplexers/demultiplexers \\
\hline SA & 43 & \(1^{2} \mathrm{C}\)-bus select address; input for selection of the appropriate \(\mathrm{I}^{2} \mathrm{C}\)-bus slave address \\
\hline \[
\begin{array}{|l|}
\hline \text { D7 (MSB) } \\
\text { D1 (LSB) } \\
\hline
\end{array}
\] & 45-50,53 & luminance data output \\
\hline \(\mathrm{V}_{\text {SS }}\) & 51 & ground (0 V) \\
\hline \(V_{D D}\) & 52 & positive supply voltage ( +5 V ) \\
\hline n.c. & 54 & not connected \\
\hline UV3 - UV0 & 55-58 & multiplexed PAL or NTSC colour difference signal output or SECAM CS input signal from the SECAM decoder. Output data format is two's complement. The multiplexer is synchronized to the rising-edge of \(\overline{B L}\) \\
\hline n.c. & 59-63 & not connected \\
\hline FOE & 64 & fast output enable signal (active LOW); sets D1 - D7 and UV0 - UV3 outputs to the HIGH-impedance Z-state \\
\hline SS0-SS1 & 65-66 & source select output signais, set via the \(1^{2} \mathrm{C}\)-bus; used to control the input switch (e.g. TDA8708) \\
\hline n.c. & 67 & not connected \\
\hline AFCC & 68 & additional output for circuit control; activated via the \(1^{2} \mathrm{C}\)-bus \\
\hline
\end{tabular}

\section*{FUNCTIONAL DESCRIPTION (see}

\section*{Fig.1)}

The S-DMSD performs the demodulation and decoding for all quadrature modulated colour TV standards (PAL-B, G, H, I, M, N, NTSC 4.43 MHz and NTSC-M), as well as performing luminance, and parts of the synchronization, processing for TV standards (PAL, NTSC and SECAM). All of the controllable functions, user as well as factory adjustments, are accessed via \(\mathrm{I}^{2} \mathrm{C}\)-bus thereby enhancing the adaptability of the digital TV concept.

Operation is based on a line-locked sampling frequency of 13.5 MHz , thus making the system fully adaptable to all line frequencies. Only one crystal is required for all TV standards.

The S-DMSD is designed to operate in conjunction with the SAA9057A Clock Generating Circuit (CGC). If the CGC is not utilized the designer must ensure:
- a reset pulse is applied to the S-DMSD after a power failure

\section*{Y/C processing}

In the Y/C mode:
- The chrominance signal is input at the 10 port (100-107) and transmitted via the input switch/SECAM delay compensation circuit (multiplexer) to the chrominance bandpass filter, 'see section Chrominance path'.
- The other components, \(Y\) signal and synchronization pulse, are input via inputs CVBS0-CVBS7 and transmitted via the input switch/SECAM delay compensation circuit to the luminance prefilter.

\section*{CVBS processing}

In the CVBS mode:
- The CVBS signal is separated into its luminance (VBS) and chrominance (CG) parts by the chrominance trap and bandpass circuits. These circuits can be switched by the standard identification signals (CCFR0, CCFR1/YPN) according to the detected colour-carrier frequency, 3.58 MHz or 4.43 MHz.
- On reception of a SECAM signal the signal is transmitted to the SECAM decoder (SAA9056) via the IO port (IOO-IO7). Bit CT enables the 3-state buffer between both parts.

\section*{Luminance path}

After the chrominance trap stage (see Fig.1), the luminance path is separated into three Channels as follows:

\section*{Channel 1 signal}

The Channel 1 signal is transmitted to the programmable bandpass filter where the high luminance frequencies are removed (centre frequency is programmable via bits BP 1 and BP 2 ). The BC signal is transmitted to the coring (corner correction) stage where low amplitude noise is removed (amount of low amplitude noise removal is programmable via bits COR1 and COR2). The HF signal is transmitted to the weighting and adding stage, see section 'Combining Channel 1 and Channel 2 signals'.

\section*{Channel 2 signal}

The Channel 2 signal is transmitted to the fixed delay compensation stage where delay compensation and black-level adjustment occurs. The DCA signal is transmitted to the
weighting and adding stage, see section 'Combining Channel 1 and Channel 2 signals'.

Combining Channel 1 and Channel 2 SIGNALS

The Channel 1 HF signal is weighted and added to the Channel 2 DCA signal. The combined signals are matched to the specified amplitude and the word size is reduced to 7 bits. The AVD signal is transmitted to the variable delay compensation stage where compensation for IF group delays occurs, the amount of delay is programmable (from -4 to +3 LL3 clock cycles, see note) via bits YDL0 - YDL2. The Y signal is transmitted to the time multiplexed interface where the signal is output via D1 D7.

\section*{Channel 3 signal}

The Channel 3 VB signal is transmitted to the prefilter synchronization stage, see section 'Synchronization path'.

\section*{Note}

Differences in the delay compensation required for PAL and NTSC are catered for by identification signal YPN which switches the chrominance trap to the appropriate colour-carrier frequency 3.58 MHz or 4.43 MHz .

\section*{Chrominance path (see Fig.1)}

The chrominance CG signal is transmitted from the chrominance bandpass stage to the gain control circuit (see note 1). The gain control stage ensures that the chrominance signal has constant burst amplitude. The GQ signal is transmitted to the quadrature demodulator, where demodulation of the quadrature modulated chrominance GQ signal to colour difference signals occurs.

The QLU and QLV signals are transmitted to a low-pass filter. The LCU and LCV signals are transmitted to the limiter and comb-filter stage. The comb-filter stage (see note 2) separates the remaining vertically correlated luminance components for NTSC (for PAL, the signals are phase corrected). The CCU and CCV signals are transmitted to the colour-killer and PAL switch stage (see note 3). At this stage signals which do not comply with the selected standard are removed. In the PAL mode this stage restores the correct phase of the \(V\) signal. The signals are then transmitted to the time multiplexed interface and output via UVO - UV3.

\section*{Notes}
1. The gain control stage is controlled by the AG signal which is derived from the amplitude and colour-killer detector stage (ACKD). A non-standard burst-to-amplitude ratio results in the automatic colour-leveling stage functioning as an amplitude detector to ensure correct amplitude and avoid overflow/limiter defects.
2. The comb-filter can be altered from alternate to non-alternate mode by the ALT signal.
3. The colour-killer and PAL switching stages are controlled by the amplitude and colour-killer detection circuit using the \(A C 1\) and \(C D\) signals.

Colour-carrier frequency REGENERATION

The regeneration of the colour-carrier frequency is performed by the phase-locked-loop (PLL) which comprises a quadrature demodulator, low-pass filter, burst gate, loop filter 1 and divider/discrete time oscillator (DTO1). The DTO1. is controlled by the standard identification signals CCFR0 - CCFR1 and the Hue signal which influences the demodulation phase of the chrominance signal.

\section*{Synchronization path}

In the synchronization circuit, prefilter synchronization is implemented to normalize the synchronization pulse slopes. A synchronization-slicer provides the detected synchronization pulses (SP) to the horizontal and vertical processing and phase detector stages.

Horizontal and vertical processing
The horizontal and vertical processing comprises part of a PLL circuit for regeneration of the horizontal synchronization (HS) and an adaptive filter for detection of the vertical synchronization (VS). The horizontal and vertical processing also generates:
- coincidence signal (HLOCK) which controls the mute function
- standard identification signal (FD) which identifies nominal 525 or 625 lines per picture.

\section*{Phase detectors}

The phase detectors that receive the SP signal, also part of the PLL, control the generation of the line-locked clock (PL). Loop filter 2, which has a variable bandwidth, dependent on the time constant signal (VTR), generates two increment signals (INC1 and INC2) with different delays. \(\operatorname{NNC} 2\) is programmable via the increment delay signal (IDEL). INC1 corrects the regenerated subcarrier frequency at DTO1 and INC2 performs phase incrementing of DTO2. The crystal clock generator provides a stable 24.576 MHz clock input to DTO2 which in turn supplies the 4-bit DAC with a digital control signal of 432 or 429 times the line frequency. The analog output LFCO, from the DAC, is transmitted to the SAA9057A (CGC).

\section*{Output interface}

The signals OEY, OEC, \(\mathrm{CO}, \mathrm{Cl}\) and CD control the output interface (see Fig.6). All but one of these signals are received via the \(\mathrm{I}^{2} \mathrm{C}\)-bus, except the CD signal which is detected in the S-DMSD. A power-ON reset results in these signals being set to zero.

Table 1 Vertical Noise limiter
(VNL) signal
\begin{tabular}{|c|l|}
\hline VNL & \multicolumn{1}{|c|}{ OUTPUT } \\
\hline 0 & VNL bypassed \\
\hline 1 & VNL active \\
\hline
\end{tabular}

Table \(2 \mathrm{CO}, \mathrm{Cl}\) and CD signals
\begin{tabular}{|c|c|c|l|l|}
\hline CO & Cl & CD & \multicolumn{1}{|c|}{ OUTPUTS } & \multicolumn{1}{|c|}{ OUTPUT STATUS } \\
\hline 0 & X & X & UVO - UV3 & colour OFF (zero) \\
\hline 1 & 0 & 0 & UV0 - UV3 & colour OFF (controlled by CD) \\
\hline 1 & 0 & 1 & UV0 - UV3 & colour ON (controlled by CD) \\
\hline 1 & 1 & X & UV0 - UV3 & colour forced ON \\
\hline
\end{tabular}

\section*{Where:}
\(X=\) don't care .
Table 3 OEC, OEY, \(\overline{F O E}, \overline{B L}, D 1\) - D7 and UVO - UV3 signals
\begin{tabular}{|c|c|c|l|l|l|l|}
\hline OEC & OEY & \(\overline{\text { FOE }}\) & BL, VS, HS & \multicolumn{1}{|c|}{ D1 - D7 } & \multicolumn{1}{c|}{ UV0 - UV3 } & REMARKS \\
\hline 0 & 0 & X & HIZS & HIZS & HIZS & status after power-ON reset \\
\hline 1 & 1 & 1 & active & HIZS & HIZS & \\
\hline 1 & 1 & 0 & active & active & active & \\
\hline 0 & 1 & 1 & active & HIZS & HIZS & \\
\hline 0 & 1 & 0 & active & active & active & \\
\hline
\end{tabular}

\section*{Where:}
\(X=\) don't care
HIZS \(=\) HIGH-impedance Z-state.

\section*{Note to Table 3}

Combinations other than those shown in Table 3 are not allowed.

\section*{\(\overline{F O E}\) signal}

In PIPCO (picture-in-picture controller, SAA9068) applications, the PIPCO requires access to the digital YUV-bus on a pixel time-base. This requirement is catered for by PIPCO generated signal \(\overline{F O E}\), which forces all data output of the S-DMSD and DSD (SAA9056) into the HIGH-impedance Z-state. The \(\overline{\text { FOE }}\) signal does not affect the
synchronization data lines (HS and VS) or the blanking data line ( \(\overline{\mathrm{BL}}\) ), see Fig. 7.

\section*{CS signal}

The CS signal is transmitted from the digital SECAM decoder (DSD) during the horizontal-blanking period and is received via the UV2 input (see Fig.6). The CS bit is read by the S-DMSD once per line at LL3 clock cycle number 748 (see Fig.8).
\(1^{2} \mathrm{C}\) bus interface (see Tables 1 to 3)
The following control signals are received via the \(I^{2} C\) bus interface:
- standard identification signals (CCFRO, CCFR1, ALT, FS, YPN)
- video recorder/TV time constant (VTR)
- hue control (HUE)
- delay programming of the horizontal signals (HS, HC, HSY)
- increment-delay (IDEL)
- luminance aperture-correction control (BY, PF, BP1, BP2, COR2, COR1, AP2, AP1)
- luminance delay compensation (YDL0, YDL1, YDL2)
- fixed clock generation command (HPLL)
- internal colour ON/OFF (CO)
- internal colour forced ON, test purposes only (Cl)
- vertical noise limiter (VNL) active/bypassed
- luminance and sync output enable (OEY)
- chrominance output enable (OEC)
- switch signals (source select signals SS0, SS1, SS2, SS3)
- additional output for circuit control (AFCC)
- chrominance source select CVBS/chrominance input/output (CT/YC).
- SECAM chrominance delay compensation (SCDC0, SCDC1, SCDC2, SCDC3, SCDC4, SCDC5, SCDC6)
- horizontal sync (HSY) and clamp (HC) pulse disable (SYC).

Signals transmitted from the S-DMSD via the \(I^{2} \mathrm{C}\) bus are:
- standard identification signals (FD, CS)
- colour-killer status signal (CD)
- coincidence information (HLOCK)
- power-on-reset of S-DMSD (PONRES).

(a) CVBS1 to CVBS7 input range
(b) 101 to 107 input range
(c) Y output range
(d) U output range ( \(B-Y\) )
(e) \(V\) output range ( \(\mathrm{R}-\mathrm{Y}\) )

Fig. 4 Diagram showing input/output range of the S-DMSD; all levels in EBU colour bar, values in binary, \(100 \%\) luminance and \(75 \%\) chrominance amplitude.

subaddress OA
7228076.1
Fig. 5 Schematic diagram of the input switch.
L89- \(\varepsilon\) L661 KeW
slave receiver byte CONTROL 1
subaddress 08


7Z81094.4
Fig. 6 Schematic diagram of control signals at the output interface.

\footnotetext{
Digital multistandard TV decoder

LS06甘VS
}

Digital mutistandard
Fig. 7 Timing waveform of the output data and \(\overline{\text { FOE }}\) signals.

Fig. 8 Position of the CS signal read by the S-DMSD.
LG06 \(\forall\) VS

Table 4 Slave addresses
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{ SLAVE RECEIVER ADDRESS } & \multirow{2}{*}{ REMARKS } \\
\hline SA & A6 & A5 & A4 & A3 & A2 & A1 & A0 & \(*\) & \\
\hline 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & binary value (8A hex) \\
\hline 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & binary value (8E hex) \\
\hline
\end{tabular}

\section*{Where:}
\(*=\) logic 0 , receiver mode
\(*=\) logic 1, transmitter mode.

\section*{SLAVE RECEIVER}

\section*{ORGANIZATION}

\section*{Slave address and receiver format}

There are two slave addresses, programmable via input \(S A\), which determine the operating mode of the S-DMSD, see Table 4.

Table 5 Subaddress byte and data byte formats
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{REGISTER FUNCTION} & \multirow[t]{2}{*}{SUB ADDRESS} & \multicolumn{8}{|c|}{DATA BYTE} \\
\hline & & D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\hline Increment delay IDEL & 00 & A07 & A06 & A05 & A04 & A03 & A02 & A01 & A00 \\
\hline HSY start time & 01 & A17 & A16 & A15 & A14 & A13 & A12 & A11 & A10 \\
\hline HSY stop time & 02 & A27 & A26 & A25 & A24 & A23 & A22 & A21 & A20 \\
\hline HC start time & 03 & A37 & A36 & A35 & A34 & A33 & A32 & A31 & A30 \\
\hline HC stop time & 04 & A47 & A46 & A45 & A44 & A43 & A42 & A41 & A40 \\
\hline HS start time (atter PHI1) & 05 & A57 & A56 & A55 & A54 & A53 & A52 & A51 & A50 \\
\hline Horizontal peaking & 06 & BY & PF & BP2 & BP1 & COR2 & COR1 & AP2 & AP1 \\
\hline Hue control & 07 & A77. & A76 & A75 & A74 & A73 & A72 & A71 & A70 \\
\hline Control 1 & 08 & HPLL & FS & VTR & CO & ALT & YPN & CCFR1 & CCFR0 \\
\hline Control 2 & 09 & VNL & OEY & OEC & X & Cl & AFCC & SS1 & SSO \\
\hline Control 3 & OA & SYC & CT & YC & SS3 & SS2 & YDL2 & YDL1 & YDLO \\
\hline SECAM delay compensation & OB & X & SCDC6 & SCDC5 & SCDC4 & SCDC3 & SCDC2 & SCDC1 & SCDC0 \\
\hline Reserved & OC - OF & X & X & X & X & X & X & X & X \\
\hline
\end{tabular}

\section*{Where:}

X = don't care.

\section*{Digital multistandard TV decoder}

\section*{Notes to Table 5}
1. The subaddress is automatically incremented. This enables quick initialization, within one transmission, by the \(1^{2} \mathrm{C}\)-bus controller.
2. The subaddresses shown are acknowledged by the device. Subaddresses 10 to \(1 F\) (reserved for the SECAM decoder SAA9056) are not acknowledged. The subaddress counter wraps-around from 1 F to 00 . Subaddresses 20 to FF are not allowed.
3. After power-on-reset the control registers 1 to 3 (subaddresses 08,09 and \(0 A\) ) are, with the exception of bits YDLO - YDL2 of counter 3, set to logic 0 . All other registers are undefined.
4. Prior to a reset of the IC all outputs are undefined.
5. The least significant bit of an analog control or alignment register is defined as AXO.

SUbADDRESS 00
Table 6 Increment delay control IDEL (application dependent)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{DECIMAL MULTIPLIER} & \multirow[t]{2}{*}{\begin{tabular}{l}
DELAY TIME \\
(STEP SIZE \(=2 / 13.5 \mathrm{MHz}=148 \mathrm{~ns}\) )
\end{tabular}} & \multicolumn{8}{|c|}{CONTROL BITS*} \\
\hline & & A07 & A06 & A05 & A04 & A03 & A02 & A01 & A00 \\
\hline \[
\begin{aligned}
& -1 \\
& \text { to }
\end{aligned}
\] & \(-148 \mathrm{~ns} \mathrm{(min}. \mathrm{value)}\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline -110 & \(-16.3 \mu \mathrm{~s}\) (outside available range) & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline \[
\begin{aligned}
& -111 \\
& \text { to }
\end{aligned}
\] & \[
-16.44 \mu \mathrm{~s}
\] & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline -214 & \(-31.7 \mu \mathrm{~s}\) (max. value if FS = logic 1) & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\hline -215 & \(-31.85 \mu \mathrm{~s}\) (outside central counter range if FS = logic 1\()^{* *}\) & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
\hline -216 & \(-32 \mu \mathrm{~s}\) (max. value if FS = logic 0)** & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
\hline \[
\begin{aligned}
& -217 \\
& \text { to }
\end{aligned}
\] & \(-32.148 \mu \mathrm{~s}\) (outside central counter if \(\mathrm{FS}=\) logic 0\()^{* *}\) & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
\hline -256 & \(-37.9 \mu \mathrm{~s}\) (outside central counter)** & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Where:}
* A sign bit, designated A08 and internally set to HIGH , indicate values are always negative.
** The horizontal PLL does not operate in this condition. The system clock frequency is set to a value fixed by the last update and is within \(\pm 7.1 \%\) of the nominal frequency.

\section*{Subaddress 01}

Table 7 Horizontal synchronization HSY start time (application dependent)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{DECIMAL MULTIPLIER} & \multirow[t]{2}{*}{\begin{tabular}{l}
DELAY TIME \\
(STEP SIZE \(=1 / 13.5 \mathrm{MHz}=74 \mathrm{~ns}\) )
\end{tabular}} & \multicolumn{8}{|c|}{CONTROL BITS} \\
\hline & & A17 & A16 & A15 & A14 & A13 & A12 & A11 & A10 \\
\hline \[
\begin{aligned}
& +191 \\
& \text { to }
\end{aligned}
\] & \(-14.2 \mu \mathrm{~s}\) (max. negative value) & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline +1 & \(-0.074 \mu \mathrm{~s}\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 0 & \(0 \mu\) s reference point & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline -1
to & \(+0.074 \mu \mathrm{~s}\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline -64 & \(+4.7 \mu \mathrm{~s}\) (max. positive value) & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Subaddress 02}

Table 8 Horizontal synchronization HSY stop time (application dependent)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{DECIMAL MULTIPLIER} & \multirow[t]{2}{*}{\begin{tabular}{l}
DELAY TIME \\
(STEP SIZE \(=1 / 13.5 \mathrm{MHz}=74 \mathrm{~ns}\) )
\end{tabular}} & \multicolumn{8}{|c|}{CONTROL BITS} \\
\hline & & A27 & A26 & A25 & A24 & A23 & A22 & A21 & A20 \\
\hline \[
\begin{aligned}
& +191 \\
& \text { to }
\end{aligned}
\] & \(-14.2 \mu \mathrm{~s}\) (max. negative value) & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline +1 & \(-0.074 \mu \mathrm{~s}\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 0 & \(0 \mu\) s reference point & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline -1
to & \(+0.074 \mu \mathrm{~s}\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline -64 & \(+4.7 \mu \mathrm{~s}\) (max. positive value) & 1 & 1. & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{SUBADDRESS 03}

Table 9 Horizontal clamp HC start time (application dependent)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{DECIMAL MULTIPLIER} & \multirow[t]{2}{*}{\begin{tabular}{l}
DELAY TIME \\
(STEP SIZE \(=1 / 13.5 \mathrm{MHz}=74 \mathrm{~ns}\) )
\end{tabular}} & \multicolumn{8}{|c|}{CONTROL BITS} \\
\hline & & A37 & A36 & A35 & A34 & A33 & A32 & A31 & A30 \\
\hline \[
\begin{aligned}
& +127 \\
& \text { to }
\end{aligned}
\] & -9.4 \(\mu \mathrm{s}\) (max. negative value) & 0 & 1 & 1. & 1 & 1 & 1 & 1 & 1 \\
\hline +1 & \(-0.074 \mu \mathrm{~s}\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 0 & \(0 \mu \mathrm{~s}\) reference point & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline -1
to & \(+0.074 \mu \mathrm{~s}\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline -128 & \(+9.5 \mu \mathrm{~s}\) (max. positive value) & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Digital multistandard TV decoder}

\section*{Subaddress 04}

Table 10 Horizontal clamp HC stop time (application dependent)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{DECIMAL MULTIPLIER} & \multirow[t]{2}{*}{\begin{tabular}{l}
DELAY TIME \\
(STEP SIZE \(=\mathbf{1 / 1 3 . 5} \mathbf{~ M H z}=74 \mathrm{~ns}\) )
\end{tabular}} & \multicolumn{8}{|c|}{CONTROL BITS} \\
\hline & & A47 & A46 & A45 & A44 & A43 & A42 & A41 & A40 \\
\hline \[
\begin{aligned}
& +127 \\
& \text { to }
\end{aligned}
\] & \(-9.4 \mu \mathrm{~s}\) (max. negative value) & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline +1 & \(-0.074 \mu \mathrm{~s}\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 0 & \(0 \mu\) s reference point & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline -1
to & +0.074 \(\mu \mathrm{s}\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline -128 & \(+9.5 \mu \mathrm{~s}\) (max. positive value) & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Subaddress 05}

Table 11 Horizontal synchronization HS start time after PHI1 (application dependent); \(50 \mathrm{~Hz} ; 625\) lines (FS = 0)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{DECIMAL MULTIPLIER} & \multirow[t]{2}{*}{\begin{tabular}{l}
DELAY TIME \\
(STEP SIZE = 4/13.5 MHz = 296 ns )
\end{tabular}} & \multicolumn{8}{|c|}{CONTROL BITS} \\
\hline & & A57 & A56 & A55 & A54 & A53 & A52 & A51 & A50 \\
\hline \[
\begin{aligned}
& +127 \\
& \text { to }
\end{aligned}
\] & forbidden; outside available central counter range & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline +109 & forbidden; outside available central counter range & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
\hline \[
\begin{aligned}
& +108 \\
& \text { to }
\end{aligned}
\] & \(-32 \mu \mathrm{~s}\) (max. negative value) & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
\hline +1 & \(-0.296 \mu \mathrm{~s}\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1. \\
\hline 0 & \(0 \mu\) s reference point & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \[
\begin{aligned}
& -1 \\
& \text { to }
\end{aligned}
\] & \[
+0.296 \mu \mathrm{~s}
\] & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline -107 & \(+31.7 \mu \mathrm{~s}\) (max. positive value) & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline \[
\begin{array}{|l|}
-108 \\
\text { to }
\end{array}
\] & forbidden; outside available central counter range & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
\hline -128 & forbidden; outside available central counter range & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

Table 12 Horizontal synchronization start time after PHI1 (application dependent); \(60 \mathrm{~Hz} ; 525\) lines ( \(\mathrm{FS}=1\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{DECIMAL MULTIPLIER} & \multirow[t]{2}{*}{\begin{tabular}{l}
DELAY TIME \\
(STEP SIZE \(=4 / 13.5 \mathrm{MHz}=296 \mathrm{~ns}\) )
\end{tabular}} & \multicolumn{8}{|c|}{CONTROL BITS} \\
\hline & & A57 & A56 & A55 & A54 & A53 & A52 & A51 & A50 \\
\hline \[
\begin{aligned}
& +127 \\
& \text { to }
\end{aligned}
\] & forbidden; outside avaiiable central counter range & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline +107 & forbidden; outside available central counter range & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\
\hline \[
\begin{aligned}
& +106 \\
& \text { to }
\end{aligned}
\] & \(-31.8 \mu \mathrm{~s}\) (max. negative value) & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\
\hline +1 & -0.294 \(\mu \mathrm{s}\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 0 & \(0 \mu \mathrm{~s}\) reference point & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \[
\begin{aligned}
& -1 \\
& \text { to }
\end{aligned}
\] & \[
+0.294 \mu \mathrm{~s}
\] & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline -107 & \(+31.5 \mu \mathrm{~s}\) (max. positive value) & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline \[
\begin{aligned}
& -108 \\
& \text { to }
\end{aligned}
\] & forbidden; outside available central counter range & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
\hline -128 & forbidden; outside available central counter range & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Programming IDEL, HSY, HC and HS}

The variables IDEL, HSY, HC and HS are programmed using data words via the \(\mathrm{I}^{2} \mathrm{C}\)-bus. In the following examples a decrease in value corresponds to an increase in time.

IDEL (SEE FIG.9)
The IDEL data word compensates for the time delays in data processing between loop filter 2, quadrature demodulator and internal/external (system) signal paths. The internal delay ( \(\mathrm{t}_{\text {REF }}\) ) is the period required for INC1 to pass from loop filter 2, through the divider and DTO1. This delay corrects the relationship between the subcarrier frequency and the line frequency. The external path is a result of the following time delays (time delay is given in term of LL3 clock cycles):
- \(t_{D E L}\); programmable delay time
- \(t_{a}\); processing time of DTO2 and the DAC
- \(t_{b}\); chrominance bandpass and gain control stage delay times
- \(t_{\text {cGc }}\); clock generator circuit delay time
- \(t_{A D C}\) analog-to-digital converter delay time
- \(t_{\mathrm{INP}}\); input switch delay time.

As delay \(t_{a}\) and \(t_{b}\) are known constants, \(t_{\text {IDEL }}\) is programmed in the range of -115 to \(-214 / 216\) LL3 clock cycles, as follows:
- \(\mathrm{t}_{\mathrm{IDEL}}=-115-0.5\)
\(\left(^{*}-t_{C G C}-t_{A D C}-t_{\text {INP }}\right)\).
* Value to be fixed.

\section*{HSY}

Referring to Fig. 10 point (1) and periods a and b :
- HSY start time \(=t_{(1)}-a\) (LL3 clock cycles)
- HSY stop time \(=t_{(1)}-b\)
(LL3 clock cycles)
Programming range of HSY start/stop time: +191 to -64
(LL3 clock cycles).
HC
Referring to Fig. 10 point (1) and periods c and d :
- HC start time \(=\mathrm{t}_{(1)}-\mathrm{c}\) (LL3 clock cycles)
- HC stop time \(=t_{(1)}-d\) (LL3 clock cycles)
Programming range of HC start/stop time: +127 to -128 (LL3 clock cycles).

\section*{HS}

The HS reference positions in PAL and NTSC modes are shown in Fig. 10 at points (3) and (4) respectively. To move the HS pulse to the centre of blanking pulse \(\overline{B L}\) the following equation is used:

\section*{Digital multistandard TV decoder}
- HS (NTSC):
position of HS relative to the zero point (LL3 clock cycles) 4 LL3 clock cycles
- HS (PAL);
position of HS relative to the zero point (LL3 clock cycles)
4 LL3 clock cycles
The length of HS is 64 LL 3 clock cycles.

Programming of the luminance path of the S-DMSD

The VBS (without chrominance) or CVBS input signal enters the prefilter (a high-pass transfer function with maximum gain of 9.5 dB ). The control bit PF switches the filter into the bypass mode. The next stage is the chrominance trap
which can be programmed (zero point) to 4.43 MHz (PAL) or 3.58 MHz (NTSC) by the control bit YPN. Bit BY activates the bypass function for the Y/G mode of the S-DMSD. The chrominance trap output signal is then divided into three Channels as described in section 'Luminance path'.

Fig. 9 Compensation of delay times by incrementing delay control IDEL.

HSY and HC inputs are referenced to the analog input signal (1). \(\overline{B L}\) and \(H S\) outputs are referenced to the S-DMSD output (2). Waveform timing is indicated in numbers ( \(n\) ) of LL3 clock cycles ( \(n \times 1 / f_{L 3}\) ), where \(n=1\)
for HSY, HC, \(\overline{B L}\) and CVBS inputs to the S-DMSD and \(n=4\) for HS .
Data delay T 1 input to output at subaddress \(\mathrm{SA} 06=\mathrm{C} 0\)
SAOB \(=00: 63 \times 1 / f_{\text {LL3 }}\)
\(S A O B=3 C: 123 \times 1 / f_{\text {LL3 }}\)
Fig. 11 Luminance path of the S-DMSD.
LS06 \(\forall\) VS
Product specification



Digital multistandard TV decoder

\section*{Subaddress 06}

Table 13 Chrominance trap select (BY switches the chrominance trap to the bypass mode; YPN selects the notch-frequency)
\begin{tabular}{|l|c|c|}
\hline \multirow{2}{*}{ CHROMINANCE TRAP } & \multicolumn{2}{|c|}{ CONTROL BITS } \\
\cline { 2 - 3 } & BY (SA06, D7) & YPN (SA08, D2) \\
\hline PAL \((4.43 \mathrm{MHz})\) & 0 & 0 \\
\hline NTSC \((3.58 \mathrm{MHz})\) & 0 & 1 \\
\hline bypàss & 1 & X \\
\hline
\end{tabular}

Table 14 Disconnecting the luminance prefilter (user dependent)
\begin{tabular}{|l|c|}
\hline PREFILTER & CONTROL BIT PF (SA06, D6) \\
\hline ON & 0 \\
\hline OFF & 1 \\
\hline
\end{tabular}

Table 15 Bandpass control (BP1 and BP2 control the centre frequency of the bandpass filter, see Figs 13 to 16)
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ BANDPASS TYPE (CENTRE FREQUENCY) } & \multicolumn{2}{|c|}{ CONTROL BITS } \\
\cline { 2 - 3 } & BP2 (SA06, D5) & BP1 (SA06, D4) \\
\hline type \(1(4.1 \mathrm{MHz})\) & 0 & 0 \\
\hline type \(2(3.8 \mathrm{MHz})\) & 0 & 1 \\
\hline type \(3(2.6 \mathrm{MHz})\) & 1 & 0 \\
\hline type \(4(2.9 \mathrm{MHz})\) & 1 & 1 \\
\hline
\end{tabular}

Table 16 Coring threshold level (COR1 and COR2 control the suppression of low amplitude and high frequency signal components, see Fig.12)
\begin{tabular}{|l|c|c|c|}
\hline \multirow{2}{*}{ THRESHOLD } & \multirow{2}{*}{ Fig.12 } & \multicolumn{2}{|c|}{ CONTROL BITS } \\
\cline { 3 - 4 } & & COR2 (SA06, D3) & COR1 (SA06, D2) \\
\hline coring off & & 0 & 0 \\
\hline coring on (4 bits of 12 bits) & a & 0 & 1 \\
\hline coring on (5 bits of 12 bits) & b & 1 & 0 \\
\hline coring on (6 bits of 12 bits) & c & 1 & 1 \\
\hline
\end{tabular}

\section*{Note}

The thresholds are related the word width of the bandpass filter (12 bits).
Table 17 Aperture correction factor (AP1 and AP2 select the weighting factor \(K\) of the high frequency (HF) luminance components, see Fig.11)
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ WEIGHTING FACTOR K } & \multicolumn{2}{|c|}{ CONTROL BITS } \\
\cline { 2 - 3 } & AP2 (SA06, D1) & AP1 (SA06, D0) \\
\hline 0 & 0 & 0 \\
\hline 0.25 & 0 & 1 \\
\hline 0.5 & 1 & 0 \\
\hline 1 & 1 & 1 \\
\hline
\end{tabular}

\section*{Digital multistandard TV decoder}

(a) for COR2 \(=0\) and COR1 \(=1\)
(b) for \(\mathrm{COR} 2=1\) and \(\mathrm{COR} 1=0\)
(c) for \(\operatorname{COR} 2=1\) and COR1 \(=1\)

Fig. 12 Coring stage response.


Fig. 13 Magnitude of the frequency response of the unlimited summation signal (combining Channel 1 and Channel 2); PAL mode; prefilter OFF; Responses 1 to 5 show various comb-filter combinations programmable by bits BP 2 and BP 1 , via the \(\mathrm{I}^{2} \mathrm{C}\)-bus.


Fig. 14 Magnitude of the frequency response of the unlimited summation signal (combining Channel 1 and Channel 2); PAL mode; prefilter ON; Responses 1 to 5 show various comb-filter combinations programmable by bits BP 2 and BP 1 , via the \(\mathrm{I}^{2} \mathrm{C}\)-bus.


Fig. 15 Magnitude of the frequency response of the unlimited summation signal (combining Channel 1 and Channel 2); NTSC mode; prefilter OFF; Responses 1 to 5 show various comb-filter combinations programmable by bits BP 2 and BP 1 , via the \(\mathrm{I}^{2} \mathrm{C}\)-bus.


Fig. 16 Magnitude of the frequency response of the unlimited summation signal (combining Channel 1 and Channel 2); NTSC mode; prefilter ON; Responses 1 to 5 show various comb-filter combinations programmable by bits BP 2 and BP 1 , via the \(\mathrm{I}^{2} \mathrm{C}\)-bus.

\section*{Subaddress 07}

Table 18 Hue phase (user dependent, see notes 1 to 3)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\multicolumn{2}{|c|}{ HUE PHASE (deg) }} & \multicolumn{8}{|c|}{ CONTROL BITS } \\
\cline { 2 - 10 } & A77 & A76 & A75 & A74 & A73 & A72 & A71 & A70 \\
\hline+178.6 to 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 to -180 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Notes to Table 18}
1. Step size per least significant bit \((A 70)=1.4\) degree .
2. Reference point for positive colour difference signals \(=0\) degree.
3. The hue phase may be shifted \(\pm 180\) degrees from the reference point using bit A77, the colour difference signals are then switched from normally positive to negative polarity.

\section*{Digital multistandard TV decoder}

\section*{Subaddress 08}

Table 19 Horizontal clock PLL (application dependent)
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ FUNCTION } & HPLL CONTROL BIT (SA08, D7) \\
\hline horizontal clock PLL open, horizontal frequency fixed & 1 \\
\hline horizontal clock PLL closed & 0 \\
\hline
\end{tabular}

Table 20 Field frequency select (system mode dependent)
\begin{tabular}{|c|c|}
\hline FUNCTION & CONTROL BIT FS (SA08, D6) \\
\hline 60 Hz ; 525 -line mode & 1 \\
\hline 50 Hz ; 625-line mode & 0 \\
\hline
\end{tabular}

Table 21 VTR/TV mode select (system mode dependent)
\begin{tabular}{|l|c|}
\hline FUNCTION & CONTROL BIT VTR (SA08, D5) \\
\hline VTR mode & 1 \\
\hline TV mode & 0 \\
\hline
\end{tabular}

Table 22 Colour on control (system mode dependent)
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ FUNCTION } & CONTROL BIT CO (SA08, D4) \\
\hline colour ON & 1 \\
\hline colour OFF (all colour output samples zero) & 0 \\
\hline
\end{tabular}

Table 23 Alternate/non-alternate mode (system mode dependent)
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ FUNCTION } & CONTROL BIT ALT (SA08, D3) \\
\hline alternate mode (PAL) & 1 \\
\hline non-alternate mode (NTSC) & 0 \\
\hline
\end{tabular}

Table 24 Chrominance trap select and amplitude matching (system mode dependent)
\begin{tabular}{|l|c|}
\hline CHROMINANCE TRAP & CONTROL BIT YPN (SA08, D2) \\
\hline 3.58 MHz & 1 \\
\hline 4.43 MHz & 0 \\
\hline
\end{tabular}

Table 25 Colour carrier frequency control (system mode dependent)
\begin{tabular}{|l|c|c|}
\hline \multirow{2}{*}{ COLOUR CARRIER FREQUENCY } & \multicolumn{2}{c|}{ CONTROL BITS } \\
\cline { 3 - 4 } & CCFR1 (SA08, D1) & CCFR0 (SA08, D0) \\
\hline \(4433618.75 \mathrm{~Hz}(\) PAL-B, G, H, 1; NTSC 4.43) & 0 & 0 \\
\hline \(3575611.49 \mathrm{~Hz}(\) PAL-M \()\) & 0 & 1 \\
\hline \(3582056.25 \mathrm{~Hz}(\) PAL-N \()\) & 1 & 0 \\
\hline \(3579545 \mathrm{~Hz} \mathrm{(NTSC-M)}\) & 1 & 1 \\
\hline
\end{tabular}

\section*{Subaddress 09}

Table 26 Vertical noise limiter.
\begin{tabular}{|l|c|}
\hline FUNCTION & CONTROL BIT VNL (SA09, D7) \\
\hline VNL active & 1 \\
\hline VNL bypassed & 0 \\
\hline
\end{tabular}

Table 27 Y-output enable (system mode dependent)
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ FUNCTION } & CONTROL BIT OEY (SA09, D6) \\
\hline outputs D1 - D7 and \(\overline{\text { BL }}\) active & 1 \\
\hline outputs D1 - D7 and \(\overline{\text { BL }}\) HIGH-impedance Z-state & 0 \\
\hline
\end{tabular}

Table 28 Chrominance output enable (system mode dependent)
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ FUNCTION } & CONTROL BIT OEC (SA09, D5) \\
\hline \begin{tabular}{l} 
outputs UVO - UV3 active; if CD = logic 1, chrominance signal output; if \\
CD = logic 0, zero signal
\end{tabular} & 1 \\
\hline outputs UVO - UV3 HIGH-impedance Z-state & 0 \\
\hline
\end{tabular}

Table 29 Internal colour forced ON/OFF (test purposes only)
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ FUNCTION } & \begin{tabular}{c} 
CONTROL BIT CI \\
(SA09, D3)
\end{tabular} \\
\hline colour forced ON, if CO = logic \(1(\mathrm{CD}=\mathrm{X})\) or colour OFF, if \(\mathrm{CO}=\) logic \(0(\mathrm{CD}=\mathrm{X})\) & 1 \\
\hline colour OFF, if \(\mathrm{CO}=\) logic \(0(\mathrm{CD}=\mathrm{X})\) or colour controlled by CD , if \(\mathrm{CO}=\) logic 1 & 0 \\
\hline
\end{tabular}

\section*{Where:}
\(X=\) don't care.
Table 30 Additional output for circuit control
\begin{tabular}{|l|c|}
\hline FUNCTION & CONTROL BIT AFCC \\
\hline output AFCC \(=\) HIGH & 1 \\
\hline output AFCC \(=\) LOW & 0 \\
\hline
\end{tabular}

Table 31 Source-select (system mode dependent)
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ FUNCTION } & CONTROL BIT SSO - SS3 \\
\hline output SSO - SS3 \(=\) HIGH & 1 \\
\hline output SSO - SS3 \(=\) LOW & 0 \\
\hline
\end{tabular}

\section*{Digital multistandard TV decoder}

Table 32 Source select (pin and subaddress)
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ CONTROL BIT } & PIN & SUBADDRESS \\
\hline AFCC & 68 & 09, D2 \\
\hline SS3 & 25 & \(0 A\), D4 \\
\hline SS2 & 24 & 0 OA, D3 \\
\hline SS1 & 66 & 09, D1 \\
\hline SS0 & 65 & 09, D0 \\
\hline
\end{tabular}

Subaddress OA
Table 33 Disabling of HSY and HC pulses (system mode dependent)
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ FUNCTION } & CONTROL BIT SYC (SAOA, D7) \\
\hline HSY and HC output pulses disabled & 1 \\
\hline HSY and HC output pulses enabled & 0 \\
\hline
\end{tabular}

Table 34 Chrominance input/output 3-state control
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ FUNCTION } & CONTROL BIT CT (SAOA, D6) \\
\hline CVBS output active & 1 \\
\hline output HIGH-impedance Z-state & 0 \\
\hline
\end{tabular}

Table 35 Chrominance source select
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ FUNCTION } & CONTROL BIT YC (SA0A, D5) \\
\hline Y/C separate inputs & 1 \\
\hline CVBS input & 0 \\
\hline
\end{tabular}

Table 36 Variable delay compensation of the luminance path (YDLO - YDL2 control the luminance delay in order to compensate different chrominance delays throughout the system)
\begin{tabular}{|l|c|c|c|}
\hline \multirow{2}{*}{ DELAY (N =) } & \multicolumn{3}{|c|}{ CONTROL BITS (SAOA, D2 .. D0) } \\
\cline { 2 - 4 } & YDL2 & YDL1 & YDLO \\
\hline 0 & 0 & 0 & 0 \\
\hline+1 & 0 & 0 & 1 \\
\hline+2 & 0 & 1 & 0 \\
\hline+3 & 0 & 1 & 1 \\
\hline-4 & 1 & 0 & 0 \\
\hline-3 & 1 & 0 & 1 \\
\hline-2 & 1 & 1 & 0 \\
\hline-1 & 1 & 1 & 1 \\
\hline
\end{tabular}

\section*{Notes to Table 36}
1. The delay is given in terms of clock cycies:
2. \(\quad 13.5 \mathrm{MHz}=\mathrm{N} \times 74 \mathrm{~ns}\).

\section*{Digital multistandard TV decoder}

\section*{SUBADDRESS OB}

Table 37 SECAM chrominance delay compensation (system mode dependent)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PROGRAMMABLE & \multicolumn{7}{|c|}{CONTROL BITS} \\
\hline DELAY* & SCDC6 & SCDC5 & SCDC4 & SCDC3 & SCDC2 & SCDC1 & SCDCO \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 2 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline . & . & . & . & . & . & . & . \\
\hline 4 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline . & . & . & . & . & . & . & . \\
\hline 8 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline - & . & . & \(\cdots\) & . & . & . & . \\
\hline 16 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline . & . & . & . & \(\cdots\) & . & . & . \\
\hline 32 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\hline . & . & . & . & . & . & . & \(\cdot\) \\
\hline 63 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 64 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
\hline 65 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
\hline . & . & . & . & . & . & . & . \\
\hline 79 & 1 & 1 & 1 . & 1 & 1 & 1 & 1 \\
\hline \multicolumn{8}{|l|}{Maximum delay selected by single control bit} \\
\hline & 16 & 32 & 16 & 8 & 4 & 2 & 1 \\
\hline
\end{tabular}

\section*{Notes to Table 37}
1. * \(=\) Delay in number of LL3 clock cycles.
2. SAOB, D7 don't care.

\section*{SLAVE TRANSMITTER ORGANIZATION}

\section*{Slave transmitter format}


Fig. 17 Slave transmitter format (a general call address is not acknowledged).

The format of data byte 1 is:
Table 38
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\hline PONRES & HLOCK & 1 & FD & 0 & CD & CS & 0 \\
\hline
\end{tabular}

Data bits D0, D3 and D5 are fixed in slave transmitter byte.
Table 39 Description of data byte 1
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ BIT } & \multicolumn{1}{c|}{ DESCRIPTION } \\
\hline PONRES & \begin{tabular}{l} 
Status bit for power-on-reset ( \(\overline{\text { RES }}\) ) and after a power failure. logic 1 after the first power-on-reset \\
and after a power failure. Also set to logic 1 after a severe voltage dip that may have disturbed \\
slave receiver data in the PALNTSC decoder (SAA9051). PONRES sets all data bits of control \\
registers 1 and 2 to zero. logic 0 0 after a successful read of the PALNTSC decoder status byte
\end{tabular} \\
\hline HLOCK & \begin{tabular}{l} 
Status bit for horizontal frequency lock (transmitter identification, stop or mute bit): logic 1 if \\
horizontal frequency is not locked (no transmitter available); logic 0 if horizontal frequency is locked \\
(transmitter received)
\end{tabular} \\
\hline FD & \begin{tabular}{l} 
Detected field frequency status bit: logic 1 when received signal has 60 Hz synchronization pulses; \\
logic 0 when received signal has 50 Hz synchronization pulses
\end{tabular} \\
\hline CD & \begin{tabular}{l} 
PAL/NTSC colour-detected status bit: logic 1 when PALNTSC colour signal is detected; logic 0 \\
when no PAL/NTSC colour signal is detected
\end{tabular} \\
\hline CS & \begin{tabular}{l} 
SECAM colour-detected status bit: logic 1 when SECAM colour signal is detected; logic 0 when no \\
SECAM colour signal is detected.
\end{tabular} \\
\hline
\end{tabular}

\section*{Digital multistandard TV decoder}

\section*{Default coefficients set for the S-DMSD and SAA9056}

The default coefficients are set for operation with the TDA8703 or TDA8708, these devices are
analog-to-digital converters. The 3-state outputs of the chrominance ADC are controlled by the SS3 switch in this example (all numbers are hex values).

The slave addresses are as follows:
- S-DMSD; 8A or 8E
- SAA9056; 8A or 8E

Table 40 Slave address (SAA9051 part)
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ SUBADDRESS } & \multicolumn{1}{|c|}{ FUNCTION } & \multicolumn{1}{|c|}{ SHORT DELAY } & \multicolumn{1}{c|}{ LONG DELAY } \\
\hline 00 & inc. delay & 5 E & 7 E \\
\hline 01 & HSY start & 37 & 73 \\
\hline 02 & HSY stop & 07 & 43 \\
\hline 03 & HC start & F6 & 32 \\
\hline 04 & HC stop & C7 & 03 \\
\hline 05 & HS start & FF & FF \\
\hline 06 & H-peaking & \(02(62\) NTSC) & \(02(62\) NTSC) \\
\hline 07 & HUE control & 00 & 00 \\
\hline 08 & control 1 & \(38(77\) NTSC \()\) & 38 (77 NTSC) \\
\hline 09 & control 2 & E3 & E3 (D3 SECAM) \\
\hline \(0 A\) & control 3 & \(58(28\) Y/C mode) & 58 (28 Y/C mode) \\
\hline \(0 B\) & SECAM delay & 00 & \(3 C\) \\
\hline
\end{tabular}

\section*{Notes to Table 40}
1. Subaddress 05; application dependent.
2. Subaddress 08; HPLL is in the VTR mode. Hex value for TV mode is 18 ( 57 for NTSC).

Table 41 Slave address (SAA9056 part)
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ SUBADDRESS } & \multicolumn{1}{|c|}{ FUNCTION } & \multicolumn{1}{c|}{ VALUE } \\
\hline 10 & luminance delay & CO -FF \\
\hline 11 & \(\overline{B L}\) delay & 00 \\
\hline 12 & burst gate start & 42 \\
\hline 13 & burst gate stop & 56 \\
\hline 14 & sensitivity & 20 \\
\hline 15 & filter & 24 \\
\hline 16 & control & 04 (02 active) \\
\hline
\end{tabular}

Digital multistandard TV decoder

Table 42 Operating modes of the S-DMSD
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline INPUT & CT & YC & SS3 & CE & SCDC & IDEL & YPN & BY & FS & ALT & CCFR1 & CCFRO & REMARKS \\
\hline \multicolumn{14}{|l|}{PAL B, G, H, I} \\
\hline CVBS & 1 (0) & 0 & 1 (0) & 0 & B (A) & B (A) & 0 & 0 & 0 & 1 & 0 & 0 & \\
\hline Y/C & 0 & 1 & 0 & 0 & A & A & 0 (1) & 1 & 0 & 1 & 0 & 0 & \\
\hline \multicolumn{14}{|l|}{PAL M} \\
\hline CVBS & 1 (0) & 0 & 1 (0) & 0 & B (A) & B (A) & 1 & 0 & 1 & 1 & 0 & 1 & \\
\hline Y/C & 0 & 1 & 0 & 0 & A & A & 1 (0) & 1 & 1 & 1 & 0 & 1 & \\
\hline \multicolumn{14}{|l|}{PAL N} \\
\hline CVBS & 1 (0) & 0 & 1 (0) & 0 & B (A) & B (A) & 0 & 0 & 0 & 1 & 1 & 0 & \\
\hline Y/C & 0 & 1 & 0 & 0 & A & A & \(0(1)\) & 1 & 0 & 1 & 1 & 0 & \\
\hline \multicolumn{14}{|l|}{SECAM} \\
\hline CVBS & 1 & 0 (1) & 1 & 1 & B & B & 0 & 0 & 0 & \(0(1)\) & 0 (1) & 0 (1) & \\
\hline Y/C & 0 & \(1(0)\) & 0 & 1 & B & B & 0 (1) & 1 & 0 & \(0(1)\) & 0 (1) & 0 (1) & \\
\hline \multicolumn{14}{|l|}{NTSC 4.43 MHz} \\
\hline CVBS & 1 (0) & 0 & 1 (0) & 0 & B (A) & B (A) & 0 & 0 & 0 & 0 & 0 & 0 & \begin{tabular}{l}
use \(\mathrm{FS}=1\) \\
for 60 Hz \\
vertical frequency
\end{tabular} \\
\hline Y/C & 0 & 1 & 0 & 0 & A & A & 0 (1) & 1 & 1 & 0 & 0 & 0 & \begin{tabular}{l}
use FS = 1 \\
for 60 Hz \\
vertical \\
frequency
\end{tabular} \\
\hline \multicolumn{14}{|l|}{NTSC M} \\
\hline CVBS & \(1(0)\) & 0 & \(1(0)\) & 0 & B (A) & B (A) & 1 & 0 & 1 & 0 & 1 & 1 & \\
\hline Y/C & 0 & 1 & 0 & 0 & A & A & \(1(0)\) & 1 & 1 & 0 & 1 & 1 & \\
\hline
\end{tabular}

\section*{Notes to Table 42}
1. SS3 is assumed to control the 3 -state output of the chrominance ADC (active LOW).
2. To avoid data collision care must be taken with the programming of CT and SS3 (in this equal they are always equal).

\section*{Where:}
\(A=\) short time delay.
\(B=\) long time delay.

LSO6もVS
Fig. 18 SAA9051 signal flow when used in conjunction with SAA9056.

Fig. 19 Signal flow - PAL or NTSC with CVBS input signal.


Fig. 20 Signal flow - PAL or NTSC with Y/C input signal.




Fig. 22 Signal flow - SECAM with Y/C input signal.

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum Rating System (IEC 134)
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & \multicolumn{1}{|c|}{ PARAMETER } & CONDITIONS & \multicolumn{1}{c|}{ MIN. } & \multicolumn{1}{c|}{ MAX. } & \multicolumn{1}{c|}{ UNIT } \\
\hline\(V_{\text {DD }}\) & supply voltage range & & -0.5 & +7 & V \\
\hline \(\mathrm{~V}_{1}\) & input voltage range & & -0.5 & +7 & V \\
\hline \(\mathrm{~V}_{0}\) & output voltage range & I Omax \(=20 \mathrm{~mA}\) & -0.5 & +7 & V \\
\hline \(\mathrm{P}_{\text {tot }}\) & maximum power dissipation per package & & - & 2750 & mW \\
\hline \(\mathrm{~T}_{\text {amb }}\) & operating ambient temperature range & & 0 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {stg }}\) & storage temperature range & & -65 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{HANDLING}
inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is good practice to take normal precautions appropriate to handling MOS devices (see 'Handling MOS Devices').

Digital multistandard TV decoder

CHARACTERISTICS
\(\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}\) to \(5.5 \mathrm{~V} ; \mathrm{T}_{\text {amb }}=0\) to \(+70^{\circ} \mathrm{C}\); unless otherwise specified
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITION & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Supplies} \\
\hline \(\mathrm{V}_{\mathrm{DD}}\) & supply voltage & & 4.5 & 5 & 5.5 & V \\
\hline \(\mathrm{I}_{\mathrm{DD}}\) & supply current & note 1 & - & 370 & 500 & mA \\
\hline \multicolumn{7}{|l|}{Inputs} \\
\hline \multicolumn{7}{|l|}{Infut voltage LOW} \\
\hline \(\mathrm{V}_{\text {LL }}\) & pins 2-4,6-17, 20-23, 33, 43, 56 and 64 & & -0.5 & - & +0.8 & V \\
\hline \(\mathrm{V}_{\text {IL }}\) & pins 40 and 41 & & -0.5 & - & +1.5 & V \\
\hline \multicolumn{7}{|l|}{input voltage HIGH} \\
\hline \(\mathrm{V}_{\text {IH }}\) & pins 2-4, 6-17, 20-23, 43, 56 and 64 & & 2 & - & \(\mathrm{V}_{\text {DD }}\) & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & pins 33, 40 and 41 & & 3 & \(\cdot\) & \(V_{D D}\) & V \\
\hline \multicolumn{7}{|l|}{input leakage current} \\
\hline \(I_{1}\) & pins 2-4, 6-17, 20-23, 40-41, 43 and 64 & & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{input capacitance} \\
\hline \(\mathrm{C}_{1}\) & pin 4 & & 2 & - & 10 & pF \\
\hline \(\mathrm{C}_{1}\) & pins 2-3, 14-17, 20-23, 43 and 64 & & 2 & - & 7.5 & pF \\
\hline \(\mathrm{C}_{1}\) & pins 6-13 & HIGH-impedance Z-state & 2 & - & 7.5 & pF \\
\hline \multicolumn{7}{|l|}{Outputs} \\
\hline \multicolumn{7}{|l|}{Output voltage LOW} \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & pins 6-13, 24-26, 29-32, 42, 45-50,53, 55-58, 65-66 and 68 & \(\mathrm{l}_{\mathrm{a}}=2.0 \mathrm{~mA}\) & 0 & - & 0.6 & V \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & pins 40 and 41 & \(\mathrm{l}_{\mathrm{OL}}=5.0 \mathrm{~mA}\) & 0 & - & 0.45 & V \\
\hline \multicolumn{7}{|l|}{Output voltage HIGH} \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & \[
\begin{aligned}
& \text { pins } 6-13,24-26,29-32,42,45-50,53, \\
& 55-58,65-66 \text { and } 68
\end{aligned}
\] & \(\mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}\) & 2.2 & - & \(V_{\text {D }}\) & V \\
\hline \multicolumn{7}{|l|}{Output capacitance} \\
\hline \(\mathrm{C}_{0}\) & pins 45-50, 53 and 55-58 & & \(\cdot\) & - & 7.5 & pF \\
\hline \multicolumn{7}{|l|}{LFCO OUTPUT (NOTE 2)} \\
\hline \(V_{\text {ofp }}\) (p) & output voltage (peak-to-peak value) & \[
\begin{aligned}
& R_{L} \geq 10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}} \\
& <15 \mathrm{pF}
\end{aligned}
\] & 1.0 & - & - & V \\
\hline \(V_{o(p-p)}\) & output voltage (peak-to-peak value) & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}< \\
& 15 \mathrm{pF}
\end{aligned}
\] & 0.5 & - & - & V \\
\hline \multicolumn{7}{|l|}{Timing (see Fig.23)} \\
\hline \(\mathrm{t}_{\mathrm{C}_{3}}\) & LL3 cycle time & & 69 & - & 80 & ns \\
\hline \(\mathrm{t}_{\text {c3\% }} / \mathrm{t}_{\text {c3 }}\) & LL3 duty factor & & 43 & - & 57 & \% \\
\hline \(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\) & LL3 rise and fall times & note 3 & - & - & 6 & ns \\
\hline \(t_{\text {su: DAT }}\) & input data set-up time & & 12 & - . & - & ns \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITION & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Timing (see Fig.23)} \\
\hline thi dat & input data hold time & & 5 & - & - & ns \\
\hline tro & output data hold time & & 5 & - & - & ns \\
\hline \(t_{0}\) & output data delay time & except HSY and HC;
\[
\begin{aligned}
& \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF} ; \\
& \mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA} ; \\
& \mathrm{V}_{\mathrm{OH}}=2.2 \mathrm{~V}
\end{aligned}
\] & - & - & 50 & ns \\
\hline \(\mathrm{t}_{0}\) & HSY and HC output delay time & \[
\begin{aligned}
& \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF} ; \\
& \mathrm{l}_{\mathrm{O}}=2.0 \mathrm{~mA} ; \\
& \mathrm{V}_{\mathrm{OH}}=2.6 \mathrm{~V}
\end{aligned}
\] & - & - & 80 & ns \\
\hline \(\mathrm{C}_{\mathrm{L}}\) & output data load capacitance & & 7.5 & - & 25 & pF \\
\hline \multicolumn{7}{|l|}{Crystal oscillator (see Fig.20)} \\
\hline \(\mathrm{f}_{n}\) & nominal frequency & third harmonic & - & 24.576 & - & MHz \\
\hline \(\Delta f / f_{n}\) & permissible deviation of \(f_{n}\) & & - & \(\pm 50 \times 10^{-6}\) & - & \\
\hline \(\Delta T / f_{n}\) & temperature deviation from \(f_{n}\) & & - & \(\pm 20 \times 10^{-6}\) & - & \\
\hline \(\mathrm{T}_{\text {XTAL }}\) & temperature range & & 0 & - & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{C}_{\text {LXTAL }}\) & load capacitance & & 8 & - & - & pF \\
\hline \(\mathrm{R}_{\mathrm{r}}\) & maximum resonance resistance & & - & 40 & 80 & \(\Omega\) \\
\hline \(\mathrm{C}_{1}\) & motional capacitance & & - & \(1.5 \pm 20 \%\) & - & fF \\
\hline \(\mathrm{C}_{0}\) & parallel capacitance & & - & \(3.5 \pm 20 \%\) & - & pF \\
\hline
\end{tabular}

\section*{Notes to the characteristics}
1. Inputs LOW and outputs not connected, \(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}\).
2. 4-bit triangular waveform clocked at \(24.576 \mathrm{MHz}, \mathrm{AC}\) coupled at pin 36 .
3. Rising and falling edges of the clock signal are assumed to be smooth e.g. due to roll-off low-pass filtering.


Purchase of Philips' \(I^{2} \mathrm{C}\) components conveys a license under the Philips' \(I^{2} \mathrm{C}\) patent to use the components in the \(1^{2} \mathrm{C}\)-system provided the system conforms to the \({ }^{2} \mathrm{C}\) specifications defined by Philips.


Fig. 23 Timing diagram.


Fig. 24 Oscillator circuit requirements; (a) with quartz crystal; (b) with external clock.

\section*{FEATURES}
- Clock generation suitable for digital TV systems (line-locked)
- PLL frequency multiplier to generate 4 times of input frequency
- Dividers to generate clocks LL1.5, LL3 and LL3T (4th and 2nd multiples of input frequency)
- Reset control and power fail detection

\section*{GENERAL DESCRIPTION}

The SAA9057B generates all clock signals required for a digital TV system suitable for the SAA90xx family. Optional extras (feature box etc.) can be driven via external buffers, adventageous for a digital TV system based on display standard conversion concepts.

QUICK REFERENCE DATA
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN. & TYP. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\text {DDA }}\) & analog supply voltage (pin 5) & 4.5 & 5.0 & 5.5 & V \\
\hline \(\mathrm{V}_{\text {DDD }}\) & digital supply voltage (pins 8, 17) & 4.5 & 5.0 & 5.5 & \(V\) \\
\hline IDDA & analog supply current & 3 & - & 9 & mA \\
\hline IDDD & digital supply current & 10 & - & 40 & mA \\
\hline V \({ }_{\text {LFCO }}\) & LFCO input voltage (peak-to-peak value) & 1 & - & \(V_{\text {DDA }}\) & V \\
\hline \(\mathrm{f}_{\mathrm{i}}\) & input frequency range & 6.25 & - & 7.25 & MHz \\
\hline \(V_{1}\) & input voltage LOW input voltage HIGH & \[
\begin{array}{|l|}
\hline 0 \\
2.4
\end{array}
\] & - & \[
\begin{aligned}
& 0.8 \\
& \mathrm{~V}_{\mathrm{DDD}}
\end{aligned}
\] & \[
\begin{aligned}
& v \\
& v
\end{aligned}
\] \\
\hline \(\mathrm{V}_{\mathrm{O}}\) & output voltage LOW output voltage HIGH & \[
\left\lvert\, \begin{aligned}
& 0 \\
& 2.6
\end{aligned}\right.
\] &  & \begin{tabular}{l}
0.6 \\
\(V_{\text {DDD }}\)
\end{tabular} & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
\] \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature range & 0 & - & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
EXTENDED \\
TYPE NUMBER
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline SAA9057B & 20 & DIL & plastic & SOT146 \\
\hline SAA9057BT & 20 & mini-pack (SO20) & plastic & SOT163A \\
\hline
\end{tabular}

\section*{Clock signal generator circuit for digital TV systems (CGC)}


Fig. 1 Block diagram.

\section*{FUNCTION DESCRIPTION}

The SAA9057B generates all clock signals required for a digital TV system suitable for the SAA90xx family. Optional extras (feature box etc.) can be driven via external buffers, advantageous for a digital TV system based on display standard conversion concepts. The 6.75 MHz input signal LFCO, coming from SAA 9051, is multiplied to 27 MHz by the PLL (including phase detector, loop filter, VCO and frequency divider) and output on LL1.5 (pin7). 13.5 MHz frequency is also generated by 1:2 divider and output on LL3 and LL3T (pins 14
and 20).
The rectangular output signals have 50 \% duty factor.

\section*{Mode select MS}

The LFCO input signal is directly connected to the VCO at MS \(=\) HIGH. The circuit operates as an oscillator and frequency divider. MS function is not tested.

\section*{Chip enable CE}

The buffer outputs are enabled and power-on reset is set to HIGH by \(\mathrm{CE}=\mathrm{HIGH}\) (Fig.4).
\(C E=\) LOW sets the clock outputs HIGH and RESN output LOW.

\section*{Power-on reset}

Power-on reset is activated at power-on, when the supply voltage decreases below 3.5 V (Fig.4) or when chip enable is done. The indicator output RESN is LOW for a time determined by capacitor on pin 3. The RESN signal can be applied to reset other circuit of this digital TV system.
The LFCO input signal has to be applied before RESN becomes HIGH.

Clock signal generator circuit for digital TV systems (CGC)

\section*{PINNING}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline MS & 1 & mode select input (LOW = PLL mode) \\
\hline CE & 2 & chip enable /reset (HIGH = outputs enabled) \\
\hline PORD & 3 & power-on reset delay dependent on external capacitor \\
\hline \(V_{\text {SSA }}\) & 4 & analog ground (0 V) \\
\hline \(V_{\text {DDA }}\) & 5 & analog supply voltage ( +5 V ) \\
\hline n.c. & 6 & not connected \\
\hline LL1.5 & 7 & line-locked clock output signal (4 times \(\mathrm{f}_{\text {LFCO }}\) ) \\
\hline \(\mathrm{V}_{\text {DDD1 }}\) & 8 & digital supply voltage 1 (+5 V) \\
\hline n.c. & 9 & not connected \\
\hline \(V_{S S D 1}\) & 10 & digital ground \(1(0 \mathrm{~V}\) ) \\
\hline LFCO & 11 & line-locked input frequency \\
\hline RESN & 12 & reset output (active-LOW) \\
\hline n.c. & 13 & not connected \\
\hline LL3 & 14 & line-locked clock output signal (2 times \(\mathrm{f}_{\text {LFCO }}\) ) \\
\hline n.c. & 15 & not connected \\
\hline n.c. & 16 & not connected \\
\hline \(V_{\text {DDD2 }}\) & 17 & digital supply voltage \(2(+5 \mathrm{~V}\) ) \\
\hline \(\mathrm{V}_{\text {SSD2 }}\) & 18 & digital ground \(2(0 \mathrm{~V})\) \\
\hline n.c. & 19 & not connected \\
\hline LL3T & 20 & line-locked clock output signal (2 times f LFCO ) \\
\hline
\end{tabular}

\section*{LImiting Values}

In accordance with the Absolute Maximum Rating System (IEC 134).
\begin{tabular}{|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & MIN. & MAX. & UNIT \\
\hline\(V_{\text {DDA }}\) & analog supply voltage (pin 5) & -0.5 & 7.0 & V \\
\hline \(\mathrm{~V}_{\text {DDD }}\) & digital supply voltage (pins 8 and 17) & -0.5 & 7.0 & V \\
\hline \(\mathrm{~V}_{\text {diff }}\) GND & difference voltage \(\mathrm{V}_{\text {DDA }}-\mathrm{V}_{\text {DDD }}\) & - & \(\pm 100\) & mV \\
\hline \(\mathrm{V}_{\mathrm{O}}\) & output voltage ( \(\mathrm{l}_{\mathrm{OM}}=20 \mathrm{~mA}\) ) & -0.5 & \(\mathrm{~V}_{\mathrm{DDD}}\) & V \\
\hline \(\mathrm{P}_{\text {tot }}\) & total power dissipation & 0 & 1.1 & W \\
\hline \(\mathrm{~T}_{\text {stg }}\) & storage temperature range & -65 & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature range & 0 & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{V}_{\text {ESD }}\) & electrostatic handling* for all pins & - & tbf & V \\
\hline
\end{tabular}

\footnotetext{
* Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is recommended to take normal handling precautions appropriate to "Handling MOS devices ".
}

\section*{CHARACTERISTICS}
\(\mathrm{V}_{\mathrm{DDA}}=\mathrm{V}_{\mathrm{DDD}}=4.5\) to 5.5 V ; \(\mathrm{f} \mathrm{LFCO}=6.25\) to 7.25 MHz and \(\mathrm{T}_{\mathrm{amb}}=0\) to \(70^{\circ} \mathrm{C}\) unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(V_{\text {DDA }}\) & analog supply voltage (pin 5) & & 4.5 & 5.0 & 5.5 & V \\
\hline \(\mathrm{V}_{\text {DDD }}\) & digital supply voltage (pins 8 and 17) & & 4.5 & 5.0 & 5.5 & V \\
\hline IDDA & analog supply current (pin 5) & & 3 & - & 9 & mA \\
\hline IDDD & digital supply current ( \(\mathrm{I}_{8}+\mathrm{I}_{17}\) ) & note 1 & 10 & - & 40 & mA \\
\hline \(V_{\text {reset }}\) & power-on reset threshold voitage & Fig. 4 & - & 3.5 & - & V \\
\hline \multicolumn{7}{|l|}{Input LFCO (pin 11)} \\
\hline \(\mathrm{V}_{11}\) & DC input voltage & & 0 & - & \(\mathrm{V}_{\text {DDA }}\) & V \\
\hline \(V_{i}\) & input signal (peak-to-peak value) & & 1 & - & \(\mathrm{V}_{\text {DDA }}\) & V \\
\hline \(\mathrm{f}_{\mathrm{LFCO}}\) & input frequency range & & 6.25 & - & 7.25 & MHz \\
\hline \(\mathrm{C}_{11}\) & input capacitance & & - & - & 10 & pF \\
\hline
\end{tabular}

Inputs MS and CE (pins 1 and 2)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{I L}\) & input voltage LOW & & 0 & - & 0.8 & \(V\) \\
\hline\(V_{I H}\) & input voltage HIGH & & 2.0 & - & \(V_{D D D}\) & \(V\) \\
\hline \(\mathrm{I}_{\mathrm{II}}\) & input leakage current & & - & - & 10 & \(\mu \mathrm{~A}\) \\
\hline \(\mathrm{C}_{\mathrm{I}}\) & input capacitance & & - & - & 5 & pF \\
\hline
\end{tabular}

Output RESN (pin 12)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{V}_{\mathrm{OL}}\) & output voltage LOW & \(\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}\) & 0 & - & 0.4 & V \\
\hline \(\mathrm{~V}_{\mathrm{OH}}\) & output voltage HIGH & \(\mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}\) & 2.4 & - & \(\mathrm{V}_{\mathrm{DDD}}\) & V \\
\hline \(\mathrm{I}_{\mathrm{LI}}\) & output leakage current & & - & - & \(\pm 10\) & \(\mu \mathrm{~A}\) \\
\hline \(\mathrm{t}_{\mathrm{d}}\) & RESN delay time & \(\mathrm{C}_{3}=0.1 \mu \mathrm{~F} ;\) Fig. 4 & 20 & - & 200 & ms \\
\hline
\end{tabular}

Output signals LL1.5, LL3 and LL3T (pins 7, 14 and 20)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{V}_{\mathrm{OL}}\) & output voltage LOW & \(\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}\) & 0 & - & 0.6 & V \\
\hline \(\mathrm{~V}_{\mathrm{OH}}\) & output voltage HIGH & \(\mathrm{l}_{\mathrm{OH}}=-0.5 \mathrm{~mA}\) & 2.6 & - & \(\mathrm{V}_{\mathrm{DDD}}\) & V \\
\hline \(\mathrm{I}_{\mathrm{LI}}\) & output leakage current & high-impedance & - & - & \(\pm 10\) & \(\mu \mathrm{~A}\) \\
\hline \(\mathrm{t}_{\text {comp }}\) & composite rise time & note 1; note 2 & - & - & 9 & ns \\
\hline \(\mathrm{f}_{\mathrm{LL}}\) & output frequency LL1.5 & Figures 3 and 6 & - & \(4 \mathrm{f}_{\mathrm{LFCO}}\) & - & MHz \\
\hline & output frequency LL3 & & - & \(2 \mathrm{f}_{\mathrm{LFCO}}\) & - & MHz \\
\hline & output frequency LL3T & & - & \(2 \mathrm{f}_{\mathrm{LFCO}}\) & - & MHz \\
\hline \(\mathrm{t}_{\mathrm{LL}}\) & duty factor LL1.5 & note 1; Fig.3 & 40 & 50 & 60 & \(\%\) \\
\hline & duty factor LL3 and LL3T & note 1; Fig.3 & 43 & 50 & 57 & \(\%\) \\
\hline \(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\) & rise and fall times & note 1; Fig.3 & - & - & 6 & ns \\
\hline
\end{tabular}

Clock signal generator circuit for digital TV systems (CGC)

\section*{Notes to the characteristics}
1. f LFCO \(=7.0 \mathrm{MHz}\) and output load 40 pF . VSSA and VSSD short connected together.
2. \(t_{\text {comp }}\) is the rise time from LOW of all clocks to HIGH of all clocks (Fig.3) including rise time, skew and jitter components. Measurements taken between 0.6 V and 2.6 V .
3. MS function is not tested.


Fig. 3 Output timing.


Fig. 4 Reset procedure.

Clock signal generator circuit for digital TV systems (CGC)

(1) buffer circuit optionally

MEH449

Fig. 5 Application circuit.

\section*{Clock signal generator circuit} for digital TV systems (CGC)


Fig. 6 Internal circuit.

\section*{1. FEATURES}
- CMOS circuit to enhance video data and to convert luminance and colour-difference signals from digital-to-analog
- 16-bit parallel input for 4:1:1 and 4:2:2 YUV data
- Data clock input LLC (line-locked clock) for a data rate up to 30 MHz
-8-bit luminance and 8-bit multiplexed colour-difference formats (optional 7-bit formats)
-MC input to support various clock and pixel rates
-Formatter for YUV input data; 4:2:2 format, 4:1:1 format and filter characteristics selectable
- HREF input to determine the active line (number of pixels)
-Controllable peaking of luminance signal
- Coring stage with controllable threshold to eliminate noise in luminance signal
- Interpolation filter suitable for both formats to increase the data rate in chrominance path
- Polarity of colour-difference signals selectable
-Separate digital-to-analog converters (9-bit resolution for \(Y\); 8-bit for colour-difference signals)
\(-1 \mathrm{~V}(p-p) / 75 \Omega\) outputs realized by two resistors
- No external adjustments
- All functions controlled via \(1^{2} \mathrm{C}\)-bus

\section*{2. QUICK REFERENCE DATA}
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN. & TYP. & MAX. & UNIT \\
\hline \(V_{\text {DDD }}\) & supply voltage digital part & 4.5 & 5 & 5.5 & V \\
\hline \(V_{\text {DDA }}\) & supply voltage analog part & 4.75 & 5 & 5.25 & \(V\) \\
\hline ID & total supply current & - & tbf & - & mA \\
\hline \(V_{\text {IL }}\) & input voltage LOW on YUV-bus & -0.5 & - & 0.8 & \(V\) \\
\hline \(\mathrm{V}_{1} \mathrm{H}\) & input voltage HIGH on YUV-bus & 2 & - V & OD \({ }^{+0.5}\) & V \\
\hline \(\mathrm{f}_{\text {LLC }}\) & input data rate & - & - & 30 & MHz \\
\hline \(\mathrm{V}_{\mathrm{O}} \mathrm{Y}, \mathrm{CD}\) & output signal \(\mathrm{Y}, \pm(\mathrm{R}-\mathrm{Y})\) and \(\pm(B-Y)\) (peak-to-peak value) & - & 2 & - & V \\
\hline \(R_{L Y, C D}\) & output load resistance & 125 & - & - & \(\Omega\) \\
\hline ILE & DC integral linearity error in output signal (8-bit data) & - & - & 1 & LSB \\
\hline DLE & DC differential error in output signal (8-bit data) & - & - & 0.5 & LSB \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature range & 0 & - & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{3. ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ EXTENDED } & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } TYPE NUMBER & PINS & PIN POSITION & MATERIAL & CODE \\
\hline SAA9065 & 44 & PLCC & plastic & SOT187 \\
\hline
\end{tabular}


\section*{Video enhancement and D/A processor (VEDA)}

\section*{5. PINNING}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline REFL \({ }_{Y}\) & 1 & low reference of luminance DAC (connected to \(\mathrm{V}_{\text {SSA1 }}\) ) \\
\hline \(\mathrm{C}_{\mathrm{Y}}\) & 2 & capacitor for luminance DAC (high reference) \\
\hline SUB & 3 & substrate (connected to \(\mathrm{V}_{\text {SSA } 1}\) ) \\
\hline UVO & 4 & \\
\hline UV1 & 5 & \\
\hline UV2 & 6 & \\
\hline UV3 & 7 & \\
\hline UV4 & 8 & UV signal input bis UV7 to UVo (diglal colour-diference signal) \\
\hline UV5 & 9 & \\
\hline UV6 & 10 & \\
\hline UV7 & 11 & \\
\hline \(V_{\text {DDD } 1}\) & 12 & +5 V digital supply voltage 1 \\
\hline \(\mathrm{V}_{\text {SSD1 }}\) & 13 & digital ground 1 (0 V) \\
\hline Yo & 14 & \\
\hline Y1 & 15 & \\
\hline Y2 & 16 & \\
\hline Y3 & 17 & Y signal input bits Y7 to YO (digital luminance signal) \\
\hline Y4 & 18 & \\
\hline Y5 & 19 & \\
\hline Y6 & 20 & \\
\hline Y7 & 21 & \\
\hline MS2 & 22 & mode select 2 input for testing chip \\
\hline MS1 & 23 & mode select 1 input for testing chip \\
\hline MC & 24 & data clock CREF ( \(13.5 \mathrm{MHz} \mathrm{e}. \mathrm{g);} .\mathrm{at} \mathrm{MC} \mathrm{=} \mathrm{HIGH} \mathrm{the} \mathrm{LLC} \mathrm{divider-by-two} \mathrm{is} \mathrm{inactive}\) \\
\hline LLC & 25 & line-locked clock signal (LL27 = 27 MHz ) \\
\hline HREF & 26 & data clock for YUV data inputs (for active line 768 Y or 640Y long) \\
\hline RESN & 27 & reset input (active LOW) \\
\hline SCL & 28 & \({ }^{2} \mathrm{C}\)-bus clock line \\
\hline SDA & 29 & \({ }^{2} \mathrm{C}\)-bus data line \\
\hline \(\mathrm{V}_{\text {SSD2 }}\) & 30 & digital ground \(2(0 \mathrm{~V})\) \\
\hline \(V_{\text {DDD2 }}\) & 31 & +5 V digital supply voltage 2 \\
\hline \(\mathrm{V}_{\text {DDA1 }}\) & 32 & +5 V analog supply voltage for buffer of DAC 1 \\
\hline (R-Y) & 33 & \(\pm(\mathrm{R}-\mathrm{Y})\) output signal (analog signal) \\
\hline \(\mathrm{V}_{\text {SSA1 }}\) & 34 & analog ground \(1(0 \mathrm{~V})\) \\
\hline
\end{tabular}

\section*{Video enhancement and D/A processor (VEDA)}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline \(V_{\text {SSA2 }}\) & 35 & analog ground \(2(0 \mathrm{~V}\) ) \\
\hline (B-Y) & 36 & \(\pm(B-Y)\) output signal (analog colour-difference signal) \\
\hline \(V_{\text {DDA2 }}\) & 37 & +5 V analog supply voltage for buffer of DAC 2 \\
\hline \(V_{\text {SSA3 }}\) & 38 & analog ground \(3(0 \mathrm{~V}\) ) \\
\hline \(Y\) & 39 & Y output signal (analog luminance signal) \\
\hline \(V_{\text {DDA3 }}\) & 40 & +5 V analog supply voltage for buffer of DAC 3 \\
\hline CUR & 41 & current input for analog output buffers \\
\hline \(\mathrm{V}_{\text {DDA4 }}\) & 42 & supply and reference voltage for the three DACs \\
\hline \(\mathrm{CuV}^{\text {U }}\) & 43 & capacitor for chrominance DACs (high reference) \\
\hline REFLuv & 44 & low reference of chrominance DACs (connected to \(\mathrm{V}_{\text {SSA1 }}\) ) \\
\hline
\end{tabular}

\section*{PIN CONFIGURATION}


Fig. 2 Pin configuration.

Video enhancement and D/A processor (VEDA)

\author{
SAA9065
}

\section*{6. FUNCTIONAL DESCRIPTION}

The CMOS circuit SAA9065 processes digital YUV-bus data up to a data rate of 30 MHz . The data inputs Y 7 to YO and UV7 to UVO (Fig.1) are provided with 8-bit data. The data of digital colour-difference signals U and V are in a multiplexed state (serial in 4:2:2 or 4:1:1 format; Tables 2 and 3 ).

Data is read with the rising edge of LLC (line-locked clock) to achieve a data rate of LLC at MC \(=\) HIGH only. If MC is supplied with the frequency CREF (LLC/2 for example), data is read only at every second rising edge (Fig.3). The 7-bit YUV input data are also supported by means of the R78-bit (R78=0). Additionally, the luminance data format is converted for internal use into a two's complement format by inverting MSB. The \(Y\) input byte (bits \(Y 7\) to Y 0 ) represent luminance information; the UV input byte (bits UV7 to UV0) one of the two digital colour-difference signals in 4:2:2 format (Table 2).

The HREF input signal (HREF = HIGH) determines the start and the end of an active line (Fig.3) the number of pixels respectively. The analog output \(Y\) is blanked at HREF \(=\) LOW, the \((B-Y)\) and \((R-Y)\) outputs are in a colourless state. The blanking level can be set by the BLV-bit.
The SAA9065 is controllable via the \({ }^{2} \mathrm{C}\)-bus.

\section*{Y and UV formatters}

The input data formats are formatted into the internally used processing formats (separate for 4:2:2 and 4:1:1 formats). The IFF, IFC and IFL bits control the input data format and determine the right interpolation filter (Figures 10 to 13).

\section*{Peaking and coring}

Peaking is applied to the \(Y\) signal to compensate several bandwidth reductions of the external pre-processing. Y signals can be improved to obtain a better sharpness.
There are the two switchable bandpass filters BF1 and BF 2

Table 1 LLC and MC configuration modes in DMSD applications
\begin{tabular}{|l|l|l|}
\hline PIN & INPUT SIGNAL & COMMENT \\
\hline \begin{tabular}{ll} 
LLC \\
MC
\end{tabular} & \begin{tabular}{l} 
LLC (LL27) \\
CREF
\end{tabular} & \begin{tabular}{l} 
The data rate on YUV-bus is half the clock rate \\
on pin LLC, e. g. in SAA7151B, SAA7191 and \\
SAA7191B single scan operation.
\end{tabular} \\
\hline LLC & \begin{tabular}{l} 
LLC (LL27) \\
MC = HIGH
\end{tabular} & \begin{tabular}{l} 
The data rate on YUV-bus must be identical to \\
the clock rate on pin LLC, e. g. in double scan \\
applications.
\end{tabular} \\
\hline LLC & \begin{tabular}{l} 
LLC2/LL3 \\
MC = HIGH
\end{tabular} & \begin{tabular}{l} 
The data rate on YUV-bus must be identical to \\
the clock rate on pin LLC, e. g. SAA9051 single \\
scan operation.
\end{tabular} \\
\hline Note: YUV data are only latched with the rising edge of LLC at MC = HIGH.
\end{tabular}
controlled via the \(\mathrm{I}^{2} \mathrm{C}\)-bus by the bits BP1, BPO and BFB. Thus, a frequency response is achieved in combination with the peaking factor K (Figures 5 to 9 ; K is determined by the bits BFB, WG1 and WGO).

The coring stage with controllable threshold ( 4 states controlled by CO1 and COO bits) reduces noise disturbances (generated by the bandpass gain) by suppressing the amplitude of small high-frequent signal components. The remaining high-frequent peaking component is available for a weighted addition after coring.

Table 2 Data format 4 : \(2: 2\). (Fig.3)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline INPUT & \multicolumn{6}{|l|}{PIXEL BYTE SEQUENCE} \\
\hline Yo (LSB) & YO & Y0 & YO & Yo & Yo & Y \\
\hline Y1 & Y1 & Y1 & Y1 & Y1 & Y1 & Y \\
\hline Y2 & Y2 & Y2 & Y2 & Y2 & Y2 & Y2 \\
\hline Y3 & Y3 & Y3 & Y3 & Y3 & Y3 & Y3 \\
\hline Y4 & Y4 & Y4 & Y4 & Y4 & Y4 & Y \\
\hline Y5 & Y5 & Y5 & Y5 & Y5 & Y5 & Y5 \\
\hline Y6 & Y6 & Y6 & Y6 & Y6 & Y6 & Y6 \\
\hline Y7 (MSB) & Y7 & Y7 & Y7 & Y7 & Y7 & Y7 \\
\hline UVo (LSB) & Uo & vo & U0 & vo & U & V0 \\
\hline UV1 : & U1 & V1 & U1 & V1 & U1 & V1 \\
\hline 2 & U2 & V2 & U2 & V2 & U2 & V2 \\
\hline UV3 & U3 & V3 & U3 & V3 & U3 & V \\
\hline UV4 & U4 & V4 & U4 & V4 & U4 & V 4 \\
\hline UV5 & U5 & V5 & U5 & V5 & U5 & V5 \\
\hline UV6 & U6 & V6 & \(\cup 6\) & V6 & U6 & V6 \\
\hline UV7(MSB) & U7 & V7 & U7 & V7 & U7 & V7 \\
\hline Y frame & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline UV frame & 0 & & 2 & & 4 & \\
\hline
\end{tabular}

Video enhancement and D/A processor (VEDA)

\section*{Interpolation}

The chrominance interpolation filter consists of various filter stages, multiplexers and de-multiplexers to increase the data rate of the colour-difference signals by a factor of 2 or 4 . The switching of the filters by the bits IFF, IFC and IFL is described previously. Additional signal samples with significant amplitudes between two consecutive signal samples of the low data rate are generated. The time-multiplexed U and V samples are stored in parallel for converting.

\section*{Data switch}

The digital signals are adapted to the conversation range. U and V data have 8 -bit formats again; Y can have 9 bits dependent on peaking. Blanking and switching to colourless level is applied here. Bits can be inverted by INV-bit to change the polarity of colour-difference output signals.

\section*{Digital-to-analog converters}

Conversion is separate for \(\mathrm{Y}, \mathrm{U}\) and V . The converters use resistor chains with low-impedance output buffers. The minimum output voltage is 200 mV to reduce integral
non-linearity errors. The analog signal, without load on output pin, is between 0.2 and 2.2 V floating. An application for \(1 \mathrm{~V} / 75 \Omega\) on outputs is shown in Fig.1.

Each digital-to-analog converter has its own supply and ground pins suitable for decoupling. The reference voltage, supplying the resistor chain of all three DACs, is the supply voltage \(\mathrm{V}_{\mathrm{DDA} 4}\). The current into pin 41 is 0.3 mA ; a larger current improves the bandwidth but increases the integral non-linearity.

Table 3 Data format \(4: 1: 1\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INPUT & \multicolumn{8}{|l|}{PIXEL BYTE SEQUENCE} \\
\hline Yo & Yo \\
\hline Y1 & Y1 \\
\hline Y2 & Y2 \\
\hline Y3 & Y3 \\
\hline Y4 & Y4 \\
\hline Y5 & Y5 \\
\hline Y6 & Y6 \\
\hline Y7 & Y7 \\
\hline uvo & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline UV1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline UV2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline UV3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline UV4 & V6 & V4 & V2 & Vo & V6 & V4 & V2 & Vo \\
\hline UV5 & V7 & V5 & V3 & V1 & V7 & V5 & V3 & V1 \\
\hline UV6 & U6 & U4 & U2 & Uo & U6 & U4 & U2 & Uo \\
\hline UV7 & U7 & U5 & U3 & U1 & U7 & U5 & U3 & U1 \\
\hline Y frame & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline UV frame & \multicolumn{4}{|l|}{0} & \multicolumn{4}{|l|}{4} \\
\hline
\end{tabular}

\section*{Video enhancement and D/A processor (VEDA)}


MEH268


MEH269
Fig. 3 Line control by HREF for \(4: 2: 2\) format, \(C R E F=13.5 \mathrm{MHz} ; H R E F=720\) pixel; 50 Hz and 60 Hz field.

Video enhancement and D/A processor (VEDA)
7. LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).
\begin{tabular}{|l|l|l|l|l|}
\hline SYMBOL & PARAMETER & MIN. & MAX. & UNIT \\
\hline\(V_{\text {DDD1 }}\) & supply voltage range (pin 12) & -0.3 & 7 & V \\
\hline \(\mathrm{~V}_{\text {DDD }}\) & supply voltage range (pin 31) & -0.3 & 7 & V \\
\hline \(\mathrm{~V}_{\text {DDA1 }}\) & supply voltage range (pin 32) & -0.3 & 7 & V \\
\hline \(\mathrm{~V}_{\text {DDA2 }}\) & supply voltage range (pin 37) & -0.3 & 7 & V \\
\hline \(\mathrm{~V}_{\text {DDA3 }}\) & supply voltage range (pin 40) & -0.3 & 7 & V \\
\hline \(\mathrm{~V}_{\text {DDA4 }}\) & supply voltage range (pin 42) & -0.3 & 7 & V \\
\hline \(\mathrm{~V}_{\text {diff }}\) GND & difference voltage \(\mathrm{V}_{\text {SSD }}-\mathrm{V}_{\text {SSA }}\) & - & \(\pm 100\) & mV \\
\hline \(\mathrm{V}_{\mathrm{n}}\) & \begin{tabular}{l} 
voltage on all input pins 4 to 11, \\
14 \\
to 27 and 41
\end{tabular} & -0.3 & \(\mathrm{~V}_{\text {DDD }}\) & V \\
\hline \(\mathrm{V}_{\mathrm{n}}\) & \begin{tabular}{l} 
voltage on analog output pins 33, \\
36 \\
3nd 39
\end{tabular} & -0.3 & \(\mathrm{~V}_{\text {DDD }}\) & V \\
\hline \(\mathrm{P}_{\text {tot }}\) & total power dissipation & 0 & tbf & mW \\
\hline \(\mathrm{T}_{\text {stg }}\) & storage temperature range & -55 & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature range & 0 & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{V}_{\text {ESD }}\) & electrostatic handling* for all pins & \(\pm 2000\) & - & V \\
\hline
\end{tabular}
* Equivalent to discharging a 100 pF capacitor through a \(1.5 \mathrm{k} \Omega\) series resistor.
8. THERMAL RESISTANCE
\begin{tabular}{|l|c|c|}
\hline SYMBOL & PARAMETER & THERMAL RESISTANCE \\
\hline \(\mathrm{R}_{\text {th } j \text {-a }}\) & from junction-to-ambient in free air & 46 KW \\
\hline
\end{tabular}

\section*{Video enhancement and D/A processor (VEDA)}

\section*{9. CHARACTERISTICS}
\(\mathrm{V}_{\mathrm{DDD}}=4.5\) to \(5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DDA}}=4.75\) to \(5.25 \mathrm{~V} ; \mathrm{LLC}=\mathrm{LL} 27 ; \mathrm{MC}=\mathrm{CREF}=13.5 \mathrm{MHz} ; \mathrm{T}_{\mathrm{amb}}=0\) to \(70^{\circ} \mathrm{C}\); measurements taken in Fig. 1 unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline V \({ }_{\text {DDD1 }}\) & supply voltage range (pin 12) & for digital part & 4.5 & 5 & 5.5 & V \\
\hline V \({ }_{\text {DDD2 }}\) & supply voltage range (pin 31) & for digital part & 4.5 & 5 & 5.5 & V \\
\hline \(V_{\text {DDA1 }}\) & supply voltage range (pin 32) & for buffer of DAC 1 & 4.75 & 5 & 5.25 & V \\
\hline \(V_{\text {DDA2 }}\) & supply voltage range (pin 37) & for buffer of DAC 2 & 4.75 & 5 & 5.25 & V \\
\hline \(V_{\text {DDA3 }}\) & supply voltage range (pin 40) & for buffer of DAC 3 & 4.75 & 5 & 5.25 & V \\
\hline \(V_{\text {DDA4 }}\) & supply voltage range (pin 42) & DAC reference voltage & 4.75 & 5 & 5.25 & V \\
\hline IDDD & supply current (lodit \({ }^{\text {l }}\) DDD2 ) & for digital part & - & tbf & tbf & mA \\
\hline IDDA & supply current (lDDA1 to \(\mathrm{l}_{\text {DDA4 }}\) ) & for DACs and buffers & - & tbf & tbf & mA \\
\hline
\end{tabular}

YUV-bus inputs (pins 4 to 11 and 14 to 21)
Figures 3 and 4
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(V_{\text {IL }}\) & input voltage LOW & & -0.5 & - & 0.8 & V \\
\hline \(V_{1 H}\) & input voltage HIGH & & 2.0 & - & \(\mathrm{V}_{\mathrm{DDD}}+0.5\) & V \\
\hline \(\mathrm{C}_{1}\) & input capacitance & \(\mathrm{V}_{1}=\mathrm{HIGH}\) & - & - & 10 & pF \\
\hline \(\mathrm{I}_{\text {LI }}\) & input leakage current & & - & - & 4.5 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

Inputs MS1, MS2, MC, LLC, HREF and RESN (pins 22 to 27)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(V_{\text {IL }}\) & input voltage LOW & & -0.5 & - & 0.8 & V \\
\hline \(\mathrm{V}_{1} \mathrm{H}\) & input voltage HIGH & & 2.0 & - & \(\mathrm{V}_{\text {DDD }}+0.5\) & V \\
\hline \(\mathrm{C}_{1}\) & input capacitance & \(\mathrm{V}_{1}=\mathrm{HIGH}\) & - & - & 10 & pF \\
\hline \({ }_{1}\) LI & input leakage current & & - & - & 4.5 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{24}\) & MC input voltage for LL27 CREF signal on MC input & \begin{tabular}{l}
27 MHz data rate \\
CREF data rate; note 1
\end{tabular} & \[
2.0
\] & - & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{DDD}}+0.5 \\
&
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
\] \\
\hline
\end{tabular}

I2C-bus SCL and SDA (pins 28 and 29)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{I L}\) & input voltage LOW & & -0.5 & - & 1.5 & V \\
\hline \(\mathrm{~V}_{\text {IH }}\) & input voltage HIGH & & 3.0 & - & \(\mathrm{V}_{\mathrm{DDD}^{+0.5}}\) & V \\
\hline \(\mathrm{I}_{1}\) & input current & \(\mathrm{V}_{1}=\mathrm{LOW}\) or HIGH & - & - & \(\pm 10\) & \(\mu \mathrm{~A}\) \\
\hline \(\mathrm{~V}_{\mathrm{OL}}\) & SDA output voltage LOW (pin 29) & \(\mathrm{I}_{29}=3 \mathrm{~mA}\) & - & - & 0.4 & V \\
\hline \(\mathrm{I}_{29}\) & output current & during acknowledge & 3 & - & - & mA \\
\hline
\end{tabular}

Digital-to-analog converters (pins 1, 2, 41, 42, 43 and 44)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{\text {DAC }}\) & \begin{tabular}{l} 
input reference voltage for internal \\
resistor chains (pin 42)
\end{tabular} & & 4.75 & 5 & 5.25 & V \\
\hline I CUR & input current (pin 41) & \(\mathrm{R}_{41-42}=15 \mathrm{k} \Omega\) & - & 300 & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{1,44}\) & reference voltage LOW & pin connected to \(\mathrm{V}_{\mathrm{SSA}}\) & - & 0 & - & V \\
\hline \(\mathrm{C}_{\mathrm{L}}\) & \begin{tabular}{l} 
external blocking capacitor to \(\mathrm{V}_{\text {SSA1 }}\) \\
for reference voltage HIGH (pins 2 and 43)
\end{tabular} & & - & 0.1 & - & \(\mu \mathrm{F}\) \\
\hline
\end{tabular}

Video enhancement and D/A processor (VEDA)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline fllc & data conversation rate (clock) & Fig. 3 & - & - & 30 & MHz \\
\hline Res & resolution & luminance DAC chrominance DACs & & \[
9
\] &  & bit bit \\
\hline ILE & DC integral linearity error & 8-bit data & - & - & 1.0 & LSB \\
\hline DLE & DC differential error & 8-bit data & - & - & 0.5 & LSB \\
\hline \multicolumn{7}{|l|}{\(\mathbf{Y}, \pm(\mathbf{R}-\mathbf{Y})\) and \(\pm\) ( \(\mathbf{B}-\mathbf{Y}\) ) analog outputs (pins 39, 33 and 36)} \\
\hline \(V_{0}\) & output signal voltage (peak-to-peak value) & without load & - & 2 & - & V \\
\hline \(V_{33,36,39}\) & output voltage range & without load; note 2 & 0.2 & - & 2.2 & V \\
\hline \(\mathrm{V}_{39}\) & output blanking level & Y output; note 3 & - & 16 & - & LSB \\
\hline \(\mathrm{V}_{33,36}\) & output no-colour level & \(\pm(\mathrm{R}-\mathrm{Y}), \pm(\mathrm{B}-\mathrm{Y})\); note 4 & - & 128 & - & LSB \\
\hline \(\mathrm{R}_{33,36,39}\) & internal serial output resistance & & - & 25 & - & \(\Omega\) \\
\hline \(\mathrm{R}_{\text {L } 33,36,39}\) & output load resistance & external load & 125 & - & - & \(\Omega\) \\
\hline B & output signal bandwidth & \(-3 \mathrm{~dB}\) & 20 & - & - & MHz \\
\hline \(\mathrm{t}_{\text {d }}\) & signal delay from input to \(Y\) output & & - & tbf & - & ns \\
\hline \multicolumn{2}{|l|}{LLC timing (pins 25)} & \multicolumn{5}{|l|}{LLC; Fig. 3} \\
\hline tLLC & cycle time & & 33 & 37 & 41 & ns \\
\hline \(\mathrm{t}_{\mathrm{p}} \mathrm{H}\) & pulse width & & 40 & 50 & 60 & \% \\
\hline \(\mathrm{tr}_{\mathrm{r}}\) & rise time & & - & - & 5 & ns \\
\hline \(\mathrm{t}_{\mathrm{f}}\) & fall time & & - & - & 6 & ns \\
\hline \multicolumn{2}{|l|}{YUV-bus timing (pins 4 to 11 and 14 to 21)} & \multicolumn{5}{|l|}{Fig. 5} \\
\hline tsu & input data set-up time & & 11 & - & - & ns \\
\hline \(\mathrm{t}_{\mathrm{HD}}\) & input data hold time & & 3 & - & - & ns \\
\hline \multicolumn{2}{|l|}{MC timing (pin24)} & \multicolumn{5}{|l|}{Fig. 5} \\
\hline \({ }^{\text {t Su }}\) & input data set-up time & & 11 & - & - & ns \\
\hline \({ }^{\text {thD }}\) & input data hold time & & 3 & - & - & ns \\
\hline \multicolumn{7}{|l|}{RESN timing (pin 27)} \\
\hline tsu & set-up time after power-on or failure & active LOW; note 5 & \(4 \times{ }_{\text {LLLC }}\) & - & - & ns \\
\hline
\end{tabular}

\section*{Notes to the characteristics}
1. YUV-bus data is read at MC = HIGH (pin 24) clocked with LLC (Fig.5) . Data is read only with every second rising edge of LLC when CREF \(=L L C / 2\) on MC-pin 24.
2. 0.2 to 2.2 V ouput voltage range at 8 -bit DAC input data. The data word can increase to 9 -bit dependent on peaking factor.
3. The luminance signal is set to the digital black level: 16 LSB for BLV-bit \(=0 ; 0\) LSB for BLV-bit \(=1\).
4. The chrominance amplitudes are set to the digital colourless level of 128 LSB.
5. The circuit is prepared for a new data initialization.

\section*{Video enhancement and D/A processor (VEDA)}


Fig. 4 YUV-bus data and CREF timing.
\begin{tabular}{|l|l|l|}
\hline PROCESSING DELAY & LLC CYCLES & REMARKS \\
\hline YUV digital input \\
\begin{tabular}{l} 
to
\end{tabular} & 44 & at MC \(=\) "1" \\
YUV analog output & 88 & at MC \(=\) LLC/2 \\
\hline
\end{tabular}

Video enhancement and D/A processor (VEDA)

\section*{10. \(\mathrm{I}^{2} \mathrm{C}\)-BUS FORMAT}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|l|}
\hline S & SLAVE ADDRESS & A & SUBADDRESS & A & DATAO & A & ------ & DATAn & A & P \\
\hline
\end{tabular}
\begin{tabular}{lll} 
S & \(=\) & start condition \\
SLAVE ADDRESS & \(=\) & 1011111 X \\
A & \(=\) & acknowledge, generated by the slave \\
SUBADDRESS* & \(=\) & subadress byte (Table 4) \\
DATA & \(=\) & data byte (Table 4) \\
P & \(=\) & stop condition \\
\(X\) & \(=\) & read/write control bit \\
\(X\) & & \(X=0\), order to write (the circuit is slave receiver) \\
& & \(X=1\), order to read (the circuit is slave transmitter)
\end{tabular}
* If more than 1 byte DATA are transmitted, then auto-increment of the subaddress is performed.

Table \(4{ }^{2} \mathrm{C}\)-bus transmission
\begin{tabular}{|l|l|l|llllllll|}
\hline FUNCTION & \multicolumn{2}{|c|}{ SUBADDRESS } & D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\hline Peaking and coring & 01 & 0 & CO1 & CO0 & BP1 & BP0 & BFB & WG1 & WG0 \\
Input formats; interpolation & 02 & IFF & IFC & IFL & 0 & 0 & 0 & 0 & 0 \\
Input/output setting & 03 & 0 & 0 & 0 & 0 & DRP & BLV & R78 & INV \\
\hline
\end{tabular}

Bit functions in data bytes:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{CO1 to COO} & \multirow[t]{5}{*}{Control of coring threshold:} & CO 1 & \multicolumn{2}{|l|}{COO} & \\
\hline & & 0 & \multicolumn{2}{|l|}{0} & coring off \\
\hline & & 0 & \multicolumn{2}{|l|}{1} & small noise reduction \\
\hline & & 1 & 0 & & \multirow[t]{2}{*}{medium noise reduction} \\
\hline & & 1 & 1 & & \\
\hline \multirow[t]{7}{*}{BP1, BP0 and BFB} & \multirow[t]{7}{*}{Bandpass filter selection:} & BP1 & BP0 & BF & \\
\hline & & 0 & & 0 & characteristic Fig. 5 \\
\hline & & & & 0 & characteristic Fig. 6 \\
\hline & & & & 0 & characteristic Fig. 7 \\
\hline & & & & 0 & characteristic Fig. 8 \\
\hline & & 0 & & 1 & BF1 filter bypassed Fig. 9 \\
\hline & & X & & 1 & not recommended \\
\hline
\end{tabular}

Video enhancement and D/A processor (VEDA)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{BFB, WG1 and WG0} & \multirow[t]{2}{*}{Peaking factor K:} & BFB & WG1 & WGO & \\
\hline & & & 0
0
1
1
0
0
1
1 & \[
\begin{aligned}
& 0 \\
& 0 \\
& 1 \\
& 0 \\
& 1 \\
& 0 \\
& 1 \\
& 0 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{K}=1 / 8 ; \text { minimum peaking } \\
& \mathrm{K}=1 / 4 \\
& \mathrm{~K}=1 / 2 \\
& \mathrm{~K}=1 ; \text { maximum peaking } \\
& \mathrm{K}=0 ; \text { peaking off } \\
& \mathrm{K}=1 / 4 ; \text { minimum peaking } \\
& \mathrm{K}=1 / 2 \\
& \mathrm{~K}=1 \text {; maximum peaking }
\end{aligned}
\] \\
\hline \multirow[t]{7}{*}{IFF, IFC, IFL} & \multirow[t]{7}{*}{Input format and filter control at 13.5 MHz data rate:} & & IFC & IFL & \\
\hline & & & & 0 & 4:1:1 format; -3 dB attenuation at 1.6 MHz video frequency; Fig. 10 \\
\hline & & & & 1 & 4:1:1 format; -3 dB attenuation at 600 kHz video frequency; Fig. 11 \\
\hline & & & 1 & 0 & 4:1:1 format; -3 dB attenuation at 1.2 MHz video frequency; Fig. 12 \\
\hline & & & & & 4:2:2 format; -3 dB attenuation at 1.6 MHz video frequency; Fig. 10 \\
\hline & & & & & \(4: 2: 2\) format; -3 dB attenuation at 600 kHz video frequency; Fig. 11 \\
\hline & & & 1 & X & \(4: 2: 2\) format; -3 dB attenuation at 2.5 MHz video frequency; Fig. 13 \\
\hline DRP & UV input data code: & \multicolumn{4}{|l|}{\(0=\) two's complement; 1 = offset binary} \\
\hline BLV & Blanking level on Y output: & \multicolumn{4}{|l|}{\(0=16\) LSB; \(1=0\) LSB} \\
\hline R78 & YUV input data solution: & \multicolumn{4}{|l|}{\(0=7\)-bit data; \(1=8\)-bit data} \\
\hline INV & Polarity of colour-difference output signals: & \multicolumn{4}{|l|}{\begin{tabular}{l}
\(0=\) normal polarity equal to input signal \\
\(1=\) inverted polarity
\end{tabular}} \\
\hline
\end{tabular}


Purchase of Philips \(\left.{ }^{2}\right|^{2} \mathrm{C}\) components conveys a license under the Philips \({ }^{12} \mathrm{C}\) patent to use the components in the \(\mathrm{I}^{2} \mathrm{C}\)-system provided the system conforms to the \({ }^{2} \mathrm{C}\) specifications defined by Philips.

Video enhancement and D/A processor (VEDA)


Fig. 5 Peaking frequency response with \(\mathrm{I}^{2} \mathrm{C}\)-bus control bits \(\mathrm{BP} 1=0 ; \mathrm{BPO}=0\) and \(\mathrm{BFB}=0\) : (1) \(K=1\); (2) \(K=1 / 2\); (3) \(K=1 / 4\) and (4) \(K=1 / 8\).


Fig. 6 Peaking frequency response with \(\mathrm{I}^{2} \mathrm{C}\)-bus control bits \(\mathrm{BP} 1=0 ; \mathrm{BPO}=1\) and \(\mathrm{BFB}=0\) : (1) \(K=1\); (2) \(K=1 / 2\); (3) \(K=1 / 4\) and (4) \(K=1 / 8\).

Video enhancement and D/A processor (VEDA)


Fig. 7 Peaking frequency response with \(\mathrm{I}^{2} \mathrm{C}\)-bus control bits \(\mathrm{BP} 1=1 ; \mathrm{BPO}=0\) and \(\mathrm{BFB}=0\) : (1) \(K=1\); (2) \(K=1 / 2\); (3) \(K=1 / 4\) and (4) \(K=1 / 8\).


Fig. 8 Peaking frequency response with \(I^{2} C\)-bus control bits \(B P 1=1 ; B P O=1\) and \(B F B=0\) : (1) \(K=1\); (2) \(K=1 / 2\); (3) \(K=1 / 4\) and (4) \(K=1 / 8\).

\section*{Video enhancement and D/A processor (VEDA)}


Fig. 9 Peaking frequency response with \(\mathrm{I}^{2} \mathrm{C}\)-bus control bits \(\mathrm{BP} 1=0 ; \mathrm{BPO}=0\) and \(\mathrm{BFB}=1\); bandpass filter BF1 bypassed and peaking off; (1) \(K=1\); (2) \(K=1 / 2\); (3) \(K=1 / 4\).

\section*{Video enhancement and D/A processor (VEDA)}


Fig. 10 Interpolation filter with \(I^{2} \mathrm{C}\)-bus control bits IFF \(=0\); \(\mathrm{IFC}=0\) and \(\mathrm{IFL}=0\) in 4:1:1 format, and control bits IFF \(=1\); IFC \(=0\) and IFL \(=0\) in 4:2:2 format; 13.5 MHz data rate.


Fig. 11 Interpolation filter with \({ }^{2}\) C \(C\)-bus control bits IFF \(=0\); IFC \(=0\) and IFL \(=1\) in 4:1:1 format, and control bits IFF \(=1\); IFC \(=0\) and IFL \(=1\) in 4:2:2 format; 13.5 MHz data rate.


Fig. 12 Interpolation filter with \(\left.\right|^{2}\) C-bus control bits IFF \(=0 ;\) IFC \(=1\) and IFL \(=0\) in 4:1:1 format; 13.5 MHz data rate.


Fig. 13 Interpolation filter with \({ }^{2}\) C-bus control bits \(\operatorname{IFF}=1\); \(\mathrm{IFC}=1\) and \(\mathrm{FL}=\mathrm{X}\) in 4:2:2 format; 13.5 MHz data rate.

\section*{GENERAL DESCRIPTION}

The TDA2595 is a monolithic integrated circuit intended for use in colour television receivers.

\section*{FEATURES}
- Positive video input; capacitively coupled (source impedance < 200 2 )
- Adaptive sync separator; slicing level at \(50 \%\) of sync amplitude
- Internal vertical pulse separator with double slope integrator
- Output stage for vertical sync pulse or composite sync depending on the load; both are switched off at muting
- \(\varphi_{1}\) phase control between horizontal sync and oscillator
- Coincidence detector \(\varphi_{3}\) for automatic time-constant switching; overruled by the VCR switch
- Time-constant switch between two external time-constants or loop-gain; both controlled by the coincidence detector \(\varphi_{3}\)
- \(\varphi_{1}\) gating pulse controlled by coincidence detector \(\varphi_{3}\)
- Mute circuit depending on TV transmitter identification
- \(\varphi_{2}\) phase control between line fiyback and oscillator; the slicing levels for \(\varphi_{2}\) control and horizontal blanking can be set separately
- Burst keying and horizontal blanking pulse generation, in combination with clamping of the vertical blanking pulse (three-level sandcastle)
- Horizontal drive output with constant duty cycle inhibited by the protection circuit or the supply voltage sensor
- Detector for too low supply voltage
- Protection circuit for switching off the horizontal drive output continuously if the input voltage is below 4 V or higher than 8 V
- Line flyback control causing the horizontal blanking level at the sandcastle output continuously in case of a missing flyback pulse
- Spot-suppressor controlled by the line flyback control

QUICK REFERENCE DATA
\begin{tabular}{|l|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & \multicolumn{1}{|c|}{ PARAMETER } & MIN. & TYP. & MAX. \\
\hline\(V_{15-5}=V_{P}\) & Supply voltage (Pin 15) & & UNIT \\
\hline\(V_{i(p-p)}\) & Sync pulse amplitude (positive video) & 50 & & \\
\hline \(\mathrm{I}_{4}\) & Horizontal output current & 50 & & \\
\hline
\end{tabular}

\section*{PACKAGE OUTLINE}

18-lead DIL; plastic (SOT102).


\footnotetext{
G6SZ甘O1
}

\section*{RATINGS}

Limiting values in accordance with the Absolute Maximum System (IEC 134)
\begin{tabular}{|c|c|c|c|c|}
\hline Supply voltage (Pin 15) & \(\mathrm{V}_{15-5}=\mathrm{V}_{\mathrm{P}}\) & MAX. & 13.2 & V \\
\hline \multicolumn{5}{|l|}{Voltages at:} \\
\hline Pins 1, 4 and 7 & \(V_{1 ; 4 ; 7-5}\) & MAX. & 18 & v \\
\hline Pins 8, 13 and 18 & \(V_{8 ; 13 ; 18-5}\) & MAX. & \(\mathrm{V}_{\mathrm{P}}\) & v \\
\hline Pin 11 (range) & \(\mathrm{V}_{11-5}\) & -0.5 to +6 & & V \\
\hline \multicolumn{5}{|l|}{Currents at:} \\
\hline Pin 1 & \(\mathrm{I}_{1}\) & MAX. & 10 & mA \\
\hline Pin 2 (peak value) & \(\pm \mathrm{l}_{2 \mathrm{M}}\) & MAX. & 10 & mA \\
\hline Pin 4 & \(1_{4}\) & MAX. & 100 & mA \\
\hline Pin 6 (peak value) & \(\pm \mathrm{I}_{6 \mathrm{M}}\) & MAX. & 6 & mA \\
\hline Pin 7 & \(1_{7}\) & MAX. & 10 & mA \\
\hline Pin 8 (range) & \(\mathrm{I}_{8}\) & -5 to +1 & & mA \\
\hline Pin 9 (range) & \(\mathrm{l}_{9}\) & -10 to +3 & & mA \\
\hline Pin 18 & \(\pm 1_{18}\) & MAX. & 10 & mA \\
\hline Total power dissipation & \(\mathrm{P}_{\text {tot }}\) & MAX. & 800 & mW \\
\hline Storage temperature range & \(\mathrm{T}_{\text {stg }}\) & -25 to +125 & & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating ambient temperature range & \(\mathrm{T}_{\text {amb }}\) & 0 to +70 & & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{FUNCTIONAL DESCRIPTION}

The TDA3566A is a further development of the TDA3562A. It has the same pinning and nearly the same application. The differences between the TDA3562A and the TDA3566A are as follows:
- The NTSC-application has largely been simplified. In the event of NTSC the chrominance signal is now internally coupled to the demodulators, automatic chrominance control (ACC) and phase detectors. The chrominance output signal (pin 28) is thus suppressed. It follows that the external switches and filters which are required for the TDA3562A are not required for the TDA3566A. There is no difference between the amplitudes of the colour output signals in the PAL or NTSC mode.
- The clamp capacitor at pins 10,20 and 21 in the black-level stabilization loop can be reduced to 100 nF provided the stability of the loop is maintained. Loop stability depends on complete application. The clamp capacitors receive a pre-bias voltage to avoid coloured background during switch-on.
- The crystal oscillator circuit has been changed to prevent parasitic oscillations on the third overtone of the crystal. Consequently the optimum tuning capacitance must be reduced to 10 pF .
- The hue control has been improved (linear).

\section*{Luminance amplifier}

The luminance amplifier is voltage driven and requires an input signal of 450 mV peak-to-peak (positive video). The luminance delay line must be connected between the IF amplifier and the decoder.

The input signal is AC coupled to the input (pin 8). After amplification, the black level at the output of the
preamplifier is clamped to a fixed DC level by the black level clamping circuit. During three line periods after vertical blanking, the luminance signal is blanked out and the black level reference voltage is inserted by a switching circuit.

This black level reference voltage is controlled via pin11 (brightness). At the same time the RGB signals are clamped. Noise and residual signals have no influence during clamping thus simple internal clamping circuitry is used.

\section*{Chrominance amplifiers}

The chrominance amplifier has an asymmetrical input. The input signal must be AC coupled (pin 4) and have a minimum amplitude of 40 mV peak-to-peak.
The gain control stage has a control range in excess of 30 dB , the maximum input signal must not exceed 1.1 V peak-to-peak, otherwise clipping of the input signal will occur.

From the gain control stage the chrominance signal is fed to the saturation control stage. Saturation is linearly controlled via pin 5 . The control voltage range is 2 to 4 V , the input impedance is high and the saturation control range is in excess of 50 dB .

The burst signal is not affected by saturation control. The signal is then fed to a gated amplifier which has a 12 dB higher gain during the chrominance signal. As a result the signal at the output (pin 28) has a burst-to-chrominance ratio which is 6 dB lower than that of the input signal when the saturation control is set at -6 dB .

The chrominance output signal is fed to the delay line and, after matrixing, is applied to the demodulator input pins (pins 22 and 23). These signals
are fed to the burst phase detector. In the event of NTSC the chrominance signal is internally coupled to the demodulators, ACC and phase detectors.

\section*{Oscillator and identification circuit}

The burst phase detector is gated with the narrow part of the sandcastle pulse (pin 7). In the detector the ( \(R-Y\) ) and ( \(B-Y\) ) signals are added to provide the composite burst signal again.

This composite signal is compared with the oscillator signal divided-by-2 ( \(R-Y\) ) reference signal. The control voltage is available at pins 24 and 25 , and is also applied to the 8.8 MHz oscillator. The 4.4 MHz signal is obtained via the divide-by-2 circuit, which generates both the \((B-Y)\) and \((R-Y)\) reference signals and provides a \(90^{\circ}\) phase shift between them.

The flip-flop is driven by pulses obtained from the sandcastle detector. For the identification of the phase at PAL mode, the ( \(\mathrm{R}-\mathrm{Y}\) ) reference signal coming from the PAL switch, is compared to the vertical signal (R-Y) of the PAL delay line. This is carried out in the \(\mathrm{H} / 2\) detector, which is gated during burst.

When the phase is incorrect, the flip-flop gets a reset from the identification circuit. When the phase is correct, the output voltage of the \(\mathrm{H} / 2\) detector is directly related to the burst amplitude so that this voltage can be used for the ACC.

To avoid 'blooming-up' of the picture under weak input signal conditions the ACC voltage is generated by peak detection of the \(\mathrm{H} / 2\) detector output signal. The killer and identification circuits receive their information from a gated output signal of \(\mathrm{H} / 2\) detector. Killing is obtained via the saturation control stage and the demodulators to obtain good suppression.

PAL/NTSC decoder

\section*{PINNING}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline \(V_{P}\) & 1 & supply voltage \\
\hline IDDET & 2 & identification detection level \\
\hline ACCDET & 3 & Automatic Chrominance Control detection level \\
\hline \(\mathrm{CHR}_{\text {IN }}\) & 4 & chrominance control input \\
\hline SAT & 5 & saturation control input \\
\hline CON & 6 & contrast control input \\
\hline SC & 7 & sandcastle input \\
\hline LUM & 8 & luminance control input \\
\hline DBL & 9 & data blanking input \\
\hline \(\mathrm{BCL}_{\text {R }}\) & 10 & black clamp level for RED output \\
\hline BRI & 11 & brightness input \\
\hline \(\mathrm{R}_{\mathrm{IN}}\) & 12 & RED input \\
\hline Rout & 13 & RED output \\
\hline \(\mathrm{G}_{\text {IN }}\) & 14 & GREEN input \\
\hline Gout & 15 & GREEN output \\
\hline \(\mathrm{B}_{\text {IN }}\) & 16 & BLUE input \\
\hline \(\mathrm{B}_{\text {OUT }}\) & 17 & BLUE output \\
\hline BLA & 18 & black current input \\
\hline BCL & 19 & black clamp level; referenced to black level \\
\hline \(\mathrm{BCL}_{\text {B }}\) & 20 & black clamp level for BLUE output \\
\hline \(B C L_{G}\) & 21 & black clamp level for GREEN output \\
\hline B-Y & 22 & demodulator input (BLUE) \\
\hline R-Y & 23 & demodulator input (RED) \\
\hline RCEXT & 24 & gated burst detector load network \\
\hline RCEXT & 25 & gated burst detector load network \\
\hline OSC & 26 & oscillator frequency input \\
\hline GND & 27 & ground \\
\hline CHR \({ }_{\text {OUT }}\) & 28 & chrominance signal output \\
\hline
\end{tabular}


Fig. 2 Pin configuration.

ィəроэəр ОS」N／Tヲd

\section*{FEATURES}
- A black-current stabilizer which controls the black-currents of the three electron-guns to a level low enough to omit the black-level adjustment
- Contrast control of inserted RGB signals
- No black-level disturbance when non-synchronized external RGB signals are available on the inputs
- NTSC capability with hue control.

\section*{APPLICATIONS}
- Teletext/broadcast antiope
- Channel number display.

\section*{GENERAL DESCRIPTION}

The TDA3566A is a decoder for the PAL and/or NTSC colour television standards. It combines all functions required for the identification and demodulation of PAL/NTSC signals.

Furthermore it contains a luminance amplifier, an RGB-matrix and amplifier. These amplifiers supply output signals up to 4 V peak-to-peak (picture information) enabling direct drive of the discrete output stages. The circuit also contains separate inputs for data insertion, analog and digital, which can be used for text display systems.

\section*{QUICK REFERENCE DATA}

All voltages referenced to ground.
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{6}{|l|}{Supply} \\
\hline \(V_{P}\) & supply voltage (pin 1) & - & 12 & - & V \\
\hline \(\mathrm{I}_{\mathrm{P}}\) & supply current (pin 1) & - & 90 & - & mA \\
\hline \multicolumn{6}{|l|}{Luminance amplifler (pin 8)} \\
\hline \(V_{8(p-p)}\) & input voltage (peak-to-peak value) & - & 450 & - & mV \\
\hline CON & contrast control & - & 16.5 & - & dB \\
\hline \multicolumn{6}{|l|}{Chrominance amplifler (pin 4)} \\
\hline \(V_{4(p-p)}\) & input voltage (peak-to-peak value) & 40 & - & 1100 & mV \\
\hline SAT & saturation control & - & 50 & - & dB \\
\hline \multicolumn{6}{|l|}{RGB matrix and ampliflers} \\
\hline \(V_{13,15,17(p-p)}\) & output voltage at nominal luminance and contrast (peak-to-peak value) & - & 3.8 & - & V \\
\hline \multicolumn{6}{|l|}{Data insertion} \\
\hline \(V_{12,14,16(p-p)}\) & input signals (peak-to-peak value) & - & 1 & - & V \\
\hline \multicolumn{6}{|l|}{Data blanking (pin 9)} \\
\hline \(\mathrm{V}_{9}\) & input voltage for data insertion & 0.9 & - & - & V \\
\hline \multicolumn{6}{|l|}{Sandcastle input (pin 7)} \\
\hline \(\mathrm{V}_{7}\) & blanking input voltage & - & 1.5 & - & V \\
\hline \(V_{7}\) & burst gating and clamping input voltage & - & 7 & - & V \\
\hline
\end{tabular}

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
EXTENDED TYPE \\
NUMBER
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline TDA3566A & 28 & DIL & plastic & SOT117 \\
\hline
\end{tabular}

CHARACTERISTICS (Continued)
\(\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}\); measured in Figure 1; unless otherwise specified
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{6}{|l|}{Mute output (pin 7)} \\
\hline \(\mathrm{V}_{7-5}\) & Output voltage at \(\mathrm{I}_{7}=3 \mathrm{~mA}\); no TV transmitter & - & - & 0.5 & V \\
\hline \(\mathrm{R}_{7-5}\) & Output resistance at \(\mathrm{I}_{7}=3 \mathrm{~mA}\); no TV transmitter & - & - & 100 & \(\Omega\) \\
\hline \(\mathrm{I}_{7}\) & Output leakage current at \(\mathrm{V}_{12-5}>3 \mathrm{~V}\); TV transmitter identified & - & - & 5 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{6}{|l|}{Protection circuit (beam-current/EHT voltage protection) (pin 8)} \\
\hline \(V_{8-5}\) & No-load voltage for \(\mathrm{I}_{8}=0\) (operative condition) & - & 6 & - & V \\
\hline \(\mathrm{V}_{8-5}\) & Threshold at positive-going voltage & - & \(8 \pm 0.8\) & - & V \\
\hline \(V_{8-5}\) & Threshold at negative-going voltage & - & \(4 \pm 0.4\) & - & \(\checkmark\) \\
\hline \(\pm 1_{8}\) & Current limiting for \(\mathrm{V}_{8-5}=1\) to 8.5 V & - & 60 & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{R}_{8-5}\) & Input resistance for \(\mathrm{V}_{8-5}>8.5 \mathrm{~V}\) & - & 3 & - & \(k \Omega\) \\
\hline \(t_{\text {d }}\) & Internal response delay of threshold switch & - & 10 & - & \(\mu \mathrm{s}\) \\
\hline \multicolumn{6}{|l|}{Control output of line flyback puise control (pin 1)} \\
\hline \(V_{1-5 \text { sat }}\) & Saturation voltage at standard operation; \(I_{1}=3 \mathrm{~mA}\) & - & - & 0.5 & V \\
\hline \(1_{1}\) & Output leakage current in case of disturbance of line flyback pulse & - & - & 5 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{NOTES TO THE CHARACTERISTICS:}
1. Phase comparison between horizontal oscillator and the line flyback pulse. Generation of a phase modulated ( \(\varphi_{2}\) ) horizontal output pulse with constant duration.
2. \(t_{f p}\) is the line flyback pulse duration.
3. Three-level sandcastle pulse.
4. If pin 12 is connected to \(V_{P}\) the vertical output is active independent of synchronization state.

\section*{Horizontal combination}

\section*{CHARACTERISTICS (Continued)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{6}{|l|}{Phase comparison \(\varphi_{2}\) (pins 2 and 3) - SEE NOTE 1} \\
\hline \multicolumn{6}{|l|}{Input for line flyback pulse (pin 2)} \\
\hline \(V_{2-5}\) & Switching level for \(\varphi_{2}\) comparison and flyback control & - & 3 & - & V \\
\hline \(\mathrm{V}_{2-5}\) & Switching level for horizontal blanking & - & 0.3 & - & V \\
\hline \multirow[t]{2}{*}{\(V_{2-5}\)} & \multirow[t]{2}{*}{Input voltage limiting or:} & - & -0.7 & - & V \\
\hline & & - & +4.5 & - & V \\
\hline \[
\begin{aligned}
& \mathrm{I}_{2} \\
& \mathrm{I}_{2}
\end{aligned}
\] & Switching current at horizontal flyback at horizontal scan & \[
0.01
\] & \[
\begin{gathered}
1 \\
-
\end{gathered}
\] & \[
-
\] & \[
\begin{aligned}
& \mathrm{mA} \\
& \mu \mathrm{~A}
\end{aligned}
\] \\
\hline \(-l_{2}\) & Maximum negative input current & - & - & 500 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{6}{|l|}{Phase detector output (pin 3)} \\
\hline \(\pm{ }_{3}\) & Control current for \(\varphi_{2}\) & - & 1 & - & mA \\
\hline \(\Delta t \varphi_{2}\) & Control range & - & 19 & - & \(\mu \mathrm{s}\) \\
\hline \(\Delta \mathrm{t} / \Delta \mathrm{t}_{\mathrm{d}}\) & Static control error & - & - & 0.2 & \% \\
\hline \(\mathrm{l}_{3}\) & Leakage current. & - & - & 5 & \(\mu \mathrm{A}\) \\
\hline \(\Delta t\) & Phase relation between middle of the horizontal sync pulse and the middle of the line flyback pulse at \(t_{\text {fp }}=12 \mu \mathrm{~s}\) (NOTE 2) & - & \(2.6 \pm 0.7\) & - & \(\mu \mathrm{s}\) \\
\hline \(\Delta \mathrm{l} / \Delta \mathrm{t}\) & If additional adjustment is required, it can be arranged by applying a current at pin 3 & - & 30 & - & \(\mu \mathrm{A} / \mu \mathrm{s}\) \\
\hline \multicolumn{6}{|l|}{Burst gating pulse (pin 6) (NOTE 3)} \\
\hline \(V_{6-5}\) & Output voltage & 10 & 11 & - & V \\
\hline \(t_{p}\) & Pulse duration & 3.7 & 4 & 4.3 & \(\mu \mathrm{s}\) \\
\hline \({ }^{+} \varphi_{6}\) & Phase relation between middle of sync pulse at the input and the leading edge of the burst gating pulse at \(\mathrm{V}_{6-5}=7 \mathrm{~V}\) & 2.15 & 2.65 & 3.15 & \(\mu \mathrm{s}\) \\
\hline \(\mathrm{I}_{6}\) & Output trailing edge current & - & 2 & - & mA \\
\hline \multicolumn{6}{|l|}{Horizontal blanking pulse (pin 6) (NOTE 3)} \\
\hline \(\mathrm{V}_{6-5}\) & Output voltage & 4.1 & 4.5 & 4.9 & V \\
\hline \(\mathrm{I}_{6}\) & Output trailing edge current & - & 2 & - & mA \\
\hline \(V_{6-5 \text { sat }}\) & Saturation voltage at horizontal scan & - & - & 0.5 & V \\
\hline \multicolumn{6}{|l|}{Clamping circuit for vertical blanking pulse (pin 6) (NOTE 3)} \\
\hline \(V_{6-5}\) & Output voltage at \(\mathrm{I}_{6}=2.8 \mathrm{~mA}\) & 2.15 & 2.5 & 3 & V \\
\hline \(\mathrm{I}_{6 \text { min }}\) & Minimum output current at \(\mathrm{V}_{6-5}>2.15 \mathrm{~V}\) & - & 2.3 & - & mA \\
\hline \(I_{6 \text { max }}\) & Maximum output current at \(\mathrm{V}_{6-5}<3 \mathrm{~V}\) & - & 3.3 & - & mA \\
\hline \multicolumn{6}{|l|}{TV-transmitter identification (pin 12) (NOTE 4)} \\
\hline \[
\begin{aligned}
& V_{12-5} \\
& V_{12-5}
\end{aligned}
\] & \begin{tabular}{l}
Output voltage \\
no TV transmitter \\
TV transmitter identified
\end{tabular} & - & - & 1
- & \(V\)
\(V\) \\
\hline
\end{tabular}

CHARACTERISTICS (Continued)
\(V_{P}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}\); measured in Figure 1 ; unless otherwise specified
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{6}{|l|}{Horizontal output pulse (pin 4)} \\
\hline \(V_{4-5}\) & Output voltage LOW at \(\mathrm{I}_{4}=50 \mathrm{~mA}\) & - & - & 0.5 & V \\
\hline \(\mathrm{t}_{\mathrm{p}}\) & Pulse duration (HIGH) & - & \(29 \pm 15\) & - & \(\mu \mathrm{s}\) \\
\hline \(V_{P}\) & Supply voltage for switching off the output pulse (pin 15) & - & 4 & - & V \\
\hline \(\Delta V_{P}\) & Hysteresis for switching on the output pulse & - & 250 & - & mV \\
\hline
\end{tabular}

Phase comparison \(\varphi_{1}\) (pin 17)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(V_{17-5}\) & Control voltage range & 3.55 & - & 8.3 & V \\
\hline \(1{ }_{17}\) & Leakage current at \(\mathrm{V}_{17-5}=3.55\) to 8.3 V & - & - & 1 & \(\mu \mathrm{A}\) \\
\hline \(\pm 17\) & Control current for external time-constant switch & 1.8 & 2 & 2.2 & mA \\
\hline \(\pm 11\) & Control current at \(\mathrm{V}_{18-5}=\mathrm{V}_{15-5}\) and \(\mathrm{V}_{13-5}<2\) or \(\mathrm{V}_{13-5}>9.5 \mathrm{~V}\) & - & 8 & - & mA \\
\hline \(\pm{ }_{17}\) & Control current at \(\mathrm{V}_{18-5}=\mathrm{V}_{15-5}\) and \(\mathrm{V}_{13-5}=2\) to 9.5 V & 1.8 & 2 & 2.2 & mA \\
\hline \begin{tabular}{l}
\(\mathrm{S} \varphi\) \\
\(\pm \triangle\) fosc \\
\(\pm \triangle \mathrm{f}\) Osc
\end{tabular} & Horizontal oscillator control control sensitivity catching and holding range spread of catching and holding range & \[
\begin{gathered}
6 \\
-
\end{gathered}
\] & -
680
10 & - & \begin{tabular}{l}
\(\mathrm{kHz} / \mu \mathrm{s}\) \\
Hz \\
\%
\end{tabular} \\
\hline \(\mathrm{t}_{\mathrm{p}}\) & Internal keying pulse at \(\mathrm{V}_{13-5}=2.9\) to 9.5 V & - & 7.5 & - & \(\mu \mathrm{s}\) \\
\hline & Time-constant switch & & & & \\
\hline \(V_{13-5}\) & slow time-constant at & 9.5 & - & 2 & V \\
\hline \(V_{13-5}\) & fast time-constant at & 2 & - & 9.5 & V \\
\hline \(\pm V_{17-18}\) & Impedance converter offset voltage (slow time-constant) & - & - & 3 & mV \\
\hline \[
\begin{aligned}
& R_{18-5} \\
& R_{18-5}
\end{aligned}
\] & \begin{tabular}{l}
Output resistance \\
slow time-constant fast time-constant
\end{tabular} & & - & 10 & \(\Omega\) \\
\hline \(\mathrm{l}_{18}\) & Leakage current & - & - & 1 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

Coincidence detector \(\varphi_{3}\) (pin 13)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Output voltage & & & & \\
\hline \(V_{13-5}\) & without coincidence with composite video signal & - & - & 1 & V \\
\hline \(V_{13-5}\) & without coincidence without composite video signal (noise) & - & - & 2 & V \\
\hline \(V_{13-5}\) & with coincidence with composite video signal & - & 6 & - & V \\
\hline & Output current & & & & \\
\hline \(\mathrm{l}_{13}\) & without coincidence with composite video signal & - & 50 & - & \(\mu \mathrm{A}\) \\
\hline \(-l_{13}\) & with coincidence with composite video signal & - & 300 & - & \(\mu \mathrm{A}\) \\
\hline & Switching current & & & & \\
\hline \(l_{13}\) & at \(V_{13-5}=V_{P}-0.5 \mathrm{~V}\) & - & - & 100 & \(\mu \mathrm{A}\) \\
\hline \(1_{13 \text { (av) }}\) & at \(\mathrm{V}_{13-5}=0.5 \mathrm{~V}\) (average value) & - & - & 100 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{Horizontal combination}

\section*{CHARACTERISTICS}
\(V_{P}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}\); measured in Figure 1; unless otherwise specified
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN. & TYP. & MAX & UNIT \\
\hline \multicolumn{6}{|l|}{Composite video input and sync separator (pin 11)} \\
\hline \(V_{11-5(p-p)}\) & Input signal (positive video; standard signal; peak-to-peak value) & 0.2 & 1. & 3 & V \\
\hline \(V_{11-5(p-p)}\) & Sync pulse amplitude (independent of video content) & 50 & - & - & mV \\
\hline \(\mathrm{R}_{\mathrm{G}}\) & Generator resistance & - & - & 200 & \(\Omega\) \\
\hline \[
\begin{aligned}
& l_{11} \\
& -I_{11} \\
& -I_{11}
\end{aligned}
\] & \begin{tabular}{l}
Input current during: \\
video \\
sync pulse \\
black level
\end{tabular} &  & \[
\begin{gathered}
5 \\
40 \\
25
\end{gathered}
\] & \[
\begin{aligned}
& - \\
& - \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline \multicolumn{6}{|l|}{Composite sync generation (pin10) horizontal slicing level at \(50 \%\) of the sync pulse amplitude for \(\mathrm{V}_{11-5(\mathrm{p}-\mathrm{p} \text { ) }}<1.5 \mathrm{~V}\)} \\
\hline \[
\begin{aligned}
& I_{10} \\
& -I_{10}
\end{aligned}
\] & \begin{tabular}{l}
Capacitor current during: \\
video sync pulse
\end{tabular} & - & \[
\begin{gathered}
16 \\
170
\end{gathered}
\] & - & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline \multicolumn{6}{|l|}{Vertical sync pulse generation slicing level at 30\% (60\% between black level and horizontal slicing level); pin 9} \\
\hline \(\mathrm{V}_{9-5}\) & Output voltage & 10 & - & - & V \\
\hline \(t_{p}\) & Pulse duration & - & 190 & - & \(\mu \mathrm{s}\) \\
\hline \(\mathrm{t}_{\mathrm{d}}\) & Delay with respect to the vertical sync pulse (leading edge) & - & 45 & - & \(\mu \mathrm{s}\) \\
\hline & \begin{tabular}{l}
Pulse-mode control \\
output current for vertical sync pulse (dual integrated) \\
output current for horizontal and vertical sync pulse (non-integrated separated signal)
\end{tabular} & & \begin{tabular}{l}
current \\
ent appl \\
f \(15 \mathrm{k} \Omega\)
\end{tabular} & \begin{tabular}{l}
ed at pin \\
a a resi \(V_{p}\) to pin
\end{tabular} & \\
\hline \multicolumn{6}{|l|}{Horizontal oscillator (pins 14 and 16)} \\
\hline fosc & Frequency; free running & - & 15625 & - & Hz \\
\hline \(\mathrm{V}_{14-5}\) & Reference voltage for fosc & - & 6 & - & V \\
\hline \(\Delta \mathrm{f}_{\text {Osc }} / \Delta \mathrm{l}_{14}\) & Frequency control sensitivity & - & 31 & - & \(\mathrm{Hz} / \mu \mathrm{A}\) \\
\hline \(\Delta \mathrm{f}_{\mathrm{OSC}}\) & Adjustment range of circuit Figure 1 & - & \(\pm 10\) & - & \% \\
\hline \(\Delta \mathrm{fosc}\) & Spread of frequency & - & - & 5 & \% \\
\hline \[
\begin{aligned}
& \frac{\Delta \mathrm{f}_{\mathrm{OSC}} / \mathrm{f}_{\mathrm{OSC}}}{\Delta \mathrm{~V}_{15-5} / \mathrm{V}_{15-}} \\
& \Delta \mathrm{f}_{\mathrm{OSC}} \\
& \mathrm{TC}
\end{aligned}
\] & \begin{tabular}{l}
Frequency dependency (excluding tolerance of external components) \\
with supply voltage ( \(\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V}\) ) \\
with supply voltage drop of 5 V \\
with temperature
\end{tabular} &  & \[
\pm 0.05
\] & \[
\begin{gathered}
10 \\
\pm 10^{-4}
\end{gathered}
\] & \[
\begin{gathered}
\% \\
K^{-1}
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& +l_{16} \\
& -l_{16}
\end{aligned}
\] & \begin{tabular}{l}
Capacitor current during: \\
discharging \\
charging
\end{tabular} & - & \[
\begin{gathered}
1024 \\
313
\end{gathered}
\] & - & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline \[
\begin{aligned}
& t_{r} \\
& t_{f}
\end{aligned}
\] & \begin{tabular}{l}
Sawtooth voltage timing (pin 14) \\
rise time \\
fall time
\end{tabular} & - & 49
15 & - & \(\mu \mathrm{s}\)
\(\mu \mathrm{s}\) \\
\hline
\end{tabular}

\section*{PAL/NTSC decoder}

The time constant of the saturation control (pin 5) provides a delayed switch-on after killing. Adjustment of the oscillator is achieved by variation of the burst phase detector load resistance between pins 24 and 25 (see Fig.8).

With this application the trimmer capacitor in series with the 8.8 MHz crystal (pin 26) can be replaced by a fixed value capacitor to compensate for unbalance of the phase detector.

\section*{Demodulator}

The ( \(R-Y\) ) and ( \(B-Y\) ) demodulators are driven by the colour difference signals from the delay-line matrix circuit and the reference signals from the 8.8 MHz divider circuit. The ( \(\mathrm{R}-\mathrm{Y}\) ) reference signal is fed via the PAL-switch. The output signals are fed to the \(R\) and \(B\) matrix circuits and to the (G-Y) matrix to provide the (G-Y) signal which is applied to the G-matrix. The demodulation circuits are killed and blanked by by-passing the input signals.

\section*{NTSC mode}

The NTSC mode is switched on when the voltage at the burst phase detector outputs (pins 24 and 25) is adjusted below 9 V .

To ensure reliable application the phase detector load resistors are external. When the TDA3566A is used only for PAL these two \(33 \mathrm{k} \Omega\) resistors must be connected to +12 V (see Fig.8).

For PAL/NTSC application the value of each resistor must be reduced to \(20 \mathrm{k} \Omega\) (with a tolerance of \(1 \%\) ) and connected to the slider of a potentiometer (see Fig.9). The switching transistor brings the voltage at pins 24 and 25 below 9 V which switches the circuit tot the NTSC mode.

The position of the PAL flip-flop ensures that the correct phase of the (R-Y) reference signal is supplied to the ( \(\mathrm{R}-\mathrm{Y}\) ) demodulator.

The drive to the \(H / 2\) detector is now provided by the \((B-Y)\) reference signal. In the PAL mode it is driven by the (R-Y) reference signal. Hue control is realized by changing the phase of the reference drive to the burst phase detector.

This is achieved by varying the voltage at pins 24 and 25 between 7.0 V and 8.5 V , nominal position 7.65 V . The hue control characteristic is shown in Fig. 6.

\section*{RGB matrix and amplifiers}

The three matrix and amplifier circuits are identical and only one circuit will be described.

The luminance and the colour difference signals are added in the matrix circuit to obtain the colour signal, which is then fed to the contrast control stage.

The contrast control voltage is supplied to pin 6 (high-input impedance). The control range is +5 dB to -11.5 dB nominal. The relationship between the control voltage and the gain is linear (see Fig.3).

During the 3 -line period after blanking a pulse is inserted at the output of the contrast control stage. The amplitude of this pulse is varied by a control voltage at pin 11. This applies a variable offset to the normal black level, thus providing brightness control.

The brightness control range is 1 V to 3.6 V . While this offset level is present, the black-current input impedance (pin 18) is high and the internal clamp circuit is activated. The clamp circuit then compares the
reference voltage at pin 19 with the voltage developed across the external resistor network \(R_{A}\) and \(R_{B}\) (pin 18) which is provided by picture túbe beam current.

The output of the comparator is stored in capacitors connected from pins 10,20 and 21 to ground which controls the black level at the output.

The reference voltage is composed by the resistor divider network and the leakage current of the picture tube into this bleeder. During vertical blanking, this voltage is stored in the capacitor connected to pin 19 , which ensures that the leakage current of the CRT does not influence the black current measurement.

The RGB output signals can never exceed a level of 10.6 V . When the signal tends to exceed this level the output signal is clipped. The black level at the outputs (pins 13, 15 and 17) will be approximately 3 V . This level depends on the spread of the guns of the picture tube. If a beam current stabilizer is not used it is possible to stabilize the black levels at the outputs, which in this application must be connected to the black current measuring input (pin 18) via a resistor network.

\section*{Data insertion}

Each colour amplifier has a separate input for data insertion.
A 1 V peak-to-peak input signal provides a 3.8 V peak-to-peak output signal.
To avoid the black-level of the inserted signal differing from the black level of the normal video signal, the data is clamped to the black level of the luminance signal. Therefore AC coupling is required for the data inputs.
To avoid a disturbance of the blanking level due to the clamping circuit, the source impedance of the driver circuit must not exceed \(150 \Omega\). The data insertion circuit is activated by the data blanking input (pin 9). When the
voltage at this pin exceeds a level of 0.9 V , the RGB matrix circuits are switched off and the data amplifiers are switched on.

To avoid coloured edges, the data blanking switching time is short. The amplitude of the data output signals is controlled by the contrast control at pin 6. The black level is equal to the video black level and can be varied between 2 and 4 V (nominal condition) by the brightness control voltage at pin 11.
Non-synchronized data signals do not disturb the black level of the internal signals.

\section*{Blanking of RGB and data signals}

Both the RGB and data signals can be blanked via the sandcastle input (pin 7). A slicing level of 1.5 V is used for this blanking function, so that the wide part of the sandcastle pulse is separated from the remainder of the pulse. During blanking a level of +1 V is available at the output. To prevent parasitic oscillations on the third overtone of the crystal the optimum tuning capacitance should be 10 pF .

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum Rating System (IEC 134).
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & \multicolumn{1}{|c|}{ PARAMETER } & \multicolumn{1}{|c|}{ MIN. } & \multicolumn{1}{|c|}{ MAX. } & \multicolumn{1}{c|}{ UNIT } \\
\hline \(\mathrm{V}_{\mathrm{P}}\) & supply voltage (pin 1) & - & 13.2 & V \\
\hline \(\mathrm{P}_{\text {tot }}\) & total power dissipation & - & 1700 & mW \\
\hline \(\mathrm{~T}_{\text {amb }}\) & operating ambient temperature & -25 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {stg }}\) & storage temperature & -25 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{THERMAL RESISTANCE}
\begin{tabular}{|c|l|c|}
\hline SYMBOL & PARAMETER & THERMAL RESISTANCE \\
\hline\(R_{\text {th } j-a}\) & from junction to ambient in free air & \(40 \mathrm{~K} / \mathrm{W}\) \\
\hline
\end{tabular}

PAL/NTSC decoder

\section*{CHARACTERISTICS}
\(\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\); all voltages are referenced to pin 27; unless otherwise specified.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & \multicolumn{1}{|c|}{ PARAMETER } & CONDITIONS & MIN. & \multicolumn{1}{|c|}{ TYP. } & MAX. & UNIT \\
\hline Supply \\
\hline\(V_{P}\) & supply voltage & & 10.8 & 12.0 & 13.2 & \(V\) \\
\hline\(I_{P}\) & supply current & & - & 90 & 120 & mA \\
\hline\(P_{\text {tot }}\) & total power dissipation & & - & 1.1 & 1.6 & W \\
\hline
\end{tabular}

Luminance input (pin 8)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{8(p-p)}\) & input voltage (peak-to-peak value) & note 1 & - & 0.45 & 0.63 & V \\
\hline \(\mathrm{~V}_{8}\) & \begin{tabular}{l} 
input voltage level before clipping \\
occurs in the input stage
\end{tabular} & & - & - & 1.4 & V \\
\hline \(\mathrm{I}_{8}\) & input current & & - & 0.1 & 1 & \(\mu \mathrm{~A}\) \\
\hline & contrast control range & see Fig.3 & -11.5 & - & +5 & dB \\
\hline \(\mathrm{I}_{6}\) & input current contrast control & & - & - & 15 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

Chrominance amplifier
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathrm{V}_{4(\mathrm{p}-\mathrm{p})}\) & input signal amplitude (peak-to-peak value) & note 2 & 40 & 390 & 1100 & mV \\
\hline \(\left|Z_{4}\right|\) & input impedance & & - & 10 & - & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{C}_{4}\) & input capacitance & & - & - & 6.5 & pF \\
\hline & ACC control range & & 30 & - & - & dB \\
\hline \(\Delta \mathrm{V}\) & change of the burst signal at the output control range & \[
\begin{aligned}
& 100 \mathrm{mV} \text { to } \\
& 1 \mathrm{~V}(\mathrm{p}-\mathrm{p})
\end{aligned}
\] & - & - & 1 & dB \\
\hline G & amplification at nominal saturation (pin 4 to pin 28) & note 3 & 34 & - & - & dB \\
\hline & chrominance to burst ratio at nominal saturation & & - & 7 & - & dB \\
\hline \(V_{28(p-p)}\) & maximum output voltage range (peak-to-peak value) & \(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\) & 4 & 5 & - & V \\
\hline d & distortion of chrominance amplifier at 2 V (p-p) output signal up to an input signal of \(1 \mathrm{~V}(\mathrm{p}-\mathrm{p})\) & & - & - & 5 & \% \\
\hline \(\alpha_{28-4}\) & frequency response between 0 and 5 MHz & & - & - & -2 & dB \\
\hline & saturation control range & see Fig. 4 & 50 & - & - & dB \\
\hline \(\mathrm{I}_{5}\) & input current saturation control & & - & - & 20 & \(\mu \mathrm{A}\) \\
\hline & cross-coupling between luminance and chrominance amplifier & note 4 & - & - & -46 & dB \\
\hline S/N & signal-to-noise ratio at nominal input signal & note 5 & 56 & - & - & dB \\
\hline \(\Delta \varphi\) & phase shift burst with respect to chrominance at nominal saturation & & - & - & \(\pm 5\) & deg \\
\hline \(\left|Z_{28}\right|\) & output impedance of chrominance amplifier & & - & 10 & - & \(\Omega\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(\mathrm{I}_{28}\) & output current & & - & - & 15 & mA \\
\hline \multicolumn{7}{|l|}{Reference part} \\
\hline \(\Delta \mathrm{f}\) & phase-locked loop catching range & note 6 & 500 & - & - & Hz \\
\hline \(\Delta \varphi\) & phase shift for 400 Hz deviation of the oscillator frequency & note 6 & - & - & 5 & deg \\
\hline TC \({ }_{\text {osc }}\) & oscillator temperature coefficient with respect to oscillator frequency & note 6 & - & -2 & -3 & \(\mathrm{Hz} / \mathrm{K}\) \\
\hline \(\Delta \mathrm{f}_{\text {osc }}\) & frequency deviation when supply voltage increases from 10 to 13.2 V & note 6 & - & 40 & 100 & Hz \\
\hline \(\mathrm{R}_{26}\) & input resistance & & 280 & 400 & 520 & \(\Omega\) \\
\hline \(\mathrm{C}_{26}\) & input capacitance & & - & - & 10 & pF \\
\hline
\end{tabular}

ACC generation (pin 2; note ) 7
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{V}_{2}\) & control voltage at nominal input signal & & - & 4.5 & - & V \\
\hline \(\mathrm{V}_{2}\) & \begin{tabular}{l} 
control voltage without chrominance \\
input
\end{tabular} & & - & 2 & - & V \\
\hline\(\Delta \mathrm{V}_{2}\) & colour-on/off voltage & & 175 & 300 & 425 & mV \\
\hline \(\mathrm{V}_{2}\) & colour-on voltage & 3.1 & 3.5 & 3.9 & V \\
\hline\(\Delta \mathrm{~V}_{2}\) & colour-on identification voltage & & 1.2 & 1.5 & 1.8 & V \\
\hline & \begin{tabular}{l} 
change in burst amplitude with \\
temperature
\end{tabular} & & - & 0.1 & 0.25 & \(\% / \mathrm{K}\) \\
\hline \(\mathrm{V}_{3}\) & voltage at pin 3 at nominal input signal & & - & 4.7 & - & V \\
\hline
\end{tabular}

\section*{Demodulator part}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{23(p-p)}\) & \begin{tabular}{l} 
amplitude of burst signal (peak-to-peak \\
value) between pins 23 and 27
\end{tabular} & note 8 & 45 & 63 & \(\therefore\) & 81 \\
\hline\(\left|Z_{22,23}\right|\) & \begin{tabular}{l} 
input impedance between pins 22 or 23 \\
and 27
\end{tabular} & & 0.7 & 1.0 & 1.3 & \(\mathrm{kV} \Omega\) \\
\hline
\end{tabular}

RATIO OF DEMODULATED SIGNALS FOR EQUIVALENT INPUT SIGNALS AT PINS 22 AND 23
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\frac{V_{17}}{V_{13}}
\] & (B-Y)/(R-Y) & & - & \(1.78 \pm 10 \%\) & - & \\
\hline \(\frac{V_{15}}{V_{13}}\) & (G-Y)/(R-Y) & no (B-Y) signal & - & \(-0.51 \pm 10 \%\) & - & \\
\hline \[
\frac{V_{15}}{V_{17}}
\] & (G-Y)/(B-Y) & no (R-Y) signa! & - & \(-0.19 \pm 25 \%\) & - & \\
\hline \(\alpha_{17}\) & frequency response between 0 and 1 MHz & & - & - & -3 & dB \\
\hline \(\alpha_{\text {cr }}\) & cross-talk between colour difference signals & & 40 & - & - & dB \\
\hline \(\Delta \varphi\) & phase difference between ( \(\mathrm{R}-\mathrm{Y}\) ) and (B-Y) reference signals & & 85 & 90 & 95 & deg \\
\hline
\end{tabular}

PAL/NTSC decoder
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(\Delta \varphi_{\text {tot }}\) & total phase difference between chrominance input signals and demodulator output signals & & - & - & 8 & deg \\
\hline \multicolumn{7}{|l|}{RGB matrix and ampliflers} \\
\hline \(\mathrm{V}_{13,15,17(p-p)}\) & \begin{tabular}{l}
output voltage (peak-to-peak value) at nominal luminance/contrast \\
(black-to-white)
\end{tabular} & note 3 & 3.3 & 3.8 & 4.3 & V \\
\hline \(V_{13(p-p)}\) & output signal amplitude of the 'RED' channel (peak-to-peak value) at nominal contrast/saturation and no luminance signal to the input ( \(\mathrm{R}-\mathrm{Y}\) signal) & & - & 3.7 & - & V \\
\hline \(\mathrm{V}_{13,15,17(\mathrm{~m})}\) & maximum peak-white level & & 9.4 & 10.0 & 10.6 & V \\
\hline \(\mathrm{I}_{13,15,17}\) & available output current & & 10 & - & - & mA \\
\hline \(\Delta V_{13,15,17}\) & difference between black level and measuring level at the output for a brightness control voltage of 2 V & note 9 & - & 0 & - & V \\
\hline \(\Delta \mathrm{V}\) & difference in black level between the three channels for equal drive conditions for the three gains & note 10 & - & - & 100 & mV \\
\hline & control range of black-current stabilization at \(\mathrm{V}_{\text {black }}=3 \mathrm{~V} ; \mathrm{V}_{11}=2 \mathrm{~V}\) & & - & - & \(\pm 2\) & V \\
\hline \(\Delta \mathrm{V}\) & black level shift with picture content & & - & - & 40 & mV \\
\hline & brightness control voltage range & see Fig. 5 & - & - & - & V \\
\hline \(l_{11}\) & brightness control input current & & - & - & 5 & \(\mu \mathrm{A}\) \\
\hline & slope of brightness control curve & & - & 1.3 & - & V/N \\
\hline & tracking of contrast control between the three channels over a control range at 10 dB & & - & - & 0.5 & dB \\
\hline Vo & output voltage during test pulse after switch-on & & 6.5 & 7.3 & - & V \\
\hline \[
\frac{\Delta V}{\Delta T}
\] & variation of black level with temperature & & - & 0 & - & \(\mathrm{mV} / \mathrm{K}\) \\
\hline \(\Delta \mathrm{V}\) & variation of black level with contrast ( +5 to -10 dB ) & note 11 & - & - & 100 & mV \\
\hline & relative spread between the three output signals & & - & - & 10 & \% \\
\hline \(\Delta \mathrm{V}\) & relative black level variation between the three channels during variation of contrast, brightness and supply voltage & note 11 & - & \(0 \pm 10 \%\) & 20 \(\pm 10 \%\) & mV \\
\hline \(V_{\text {blk }}\) & blanking level at the RGB outputs & & - & 0.85 & 1.1 & V \\
\hline \(\Delta \mathrm{V}_{\mathrm{blk}}\) & difference in blanking level of the three channels & & - & 0 & 10 & mV \\
\hline \(\mathrm{dV}_{\text {blk }}\) & differential drift of the blanking levels & \(\Delta \mathrm{T}=40^{\circ} \mathrm{C}\) & - & 0 & 10 & mV \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \[
\frac{\Delta V_{b l}}{V_{b l}} \times \frac{V_{P l}}{\Delta V_{P l}}
\] & tracking of output black level with supply voltage & & 0.9 & 1.0 & 1.1 & \\
\hline S/N & signal-to-noise ratio of output signals & note 5 & 62 & - & - & dB \\
\hline \(V_{R(p-p)}\) & residual 4.4 MHz signal at RGB outputs (peak-to-peak value) & & - & - & 100 & mV \\
\hline \(V_{R(p-p)}\) & residual 8.8 MHz signal and higher harmonics at the RGB outputs (peak-to-peak value) & & - & - & 150 & mV \\
\hline \(\left|Z_{0}\right|\) & output impedance (pins 13, 15 and 17) & & - & 100 & - & \(\Omega\) \\
\hline \(\alpha_{\text {tot }}\) & frequency response of total luminance and RGB amplifier circuits for \(f=0 \mathrm{MHz}\) and 5 MHz & & - & -1 & -3 & dB \\
\hline \(\mathrm{I}_{0}\) & current source of output stage & & 2 & 3 & - & mA \\
\hline \(\Delta \mathrm{V}\) & difference of black level at the three outputs at nominal brightness & note 11 & - & - & 10 & mV \\
\hline & tracking of brightness control & & - & - & 2 & \% \\
\hline \multicolumn{7}{|l|}{Data insertion} \\
\hline \(\mathrm{V}_{12,14,16(p-p)}\) & input signals (peak-to-peak value) for an RGB output voltage of 3.8 V (peak-to-peak) at nominal contrast & note 4 & 0.9 & 1.0 & 1.1 & V \\
\hline \(\Delta \mathrm{V}\) & difference between the black level of the RGB signals and the black level of the inserted signals at the outputs at nominal contrast & note 12 & - & - & 170 & mV \\
\hline \(\mathrm{t}_{\mathrm{r}}\) & output rise time & & - & 50 & 80 & ns \\
\hline \(\mathrm{t}_{\mathrm{d}}\) & difference delay for the three channels & , & - & 0 & 40 & ns \\
\hline \(\mathrm{l}_{12,14,16}\) & input current & & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{Data blanking} \\
\hline \(\mathrm{V}_{9}\) & input voltage for no data insertion & & - & - & 0.3 & V \\
\hline \(V_{9}\) & input voltage for data insertion & & 0.9 & - & - & V \\
\hline \(\mathrm{V}_{9}\) & maximum input pulse voltage & & - & - & 3 & V \\
\hline \(\mathrm{t}_{\mathrm{d}}\) & delay of data blanking & & - & - & 20 & ns \\
\hline \(\mathrm{R}_{9}\) & input resistance & & 7 & 10 & 13 & k \(\Omega\) \\
\hline & suppression of the internal RGB signals when \(\mathrm{V}_{9}>0.9 \mathrm{~V}\) & & 46 & - & - & dB \\
\hline & suppression of external RGB signals when \(\mathrm{V}_{9}<0.3 \mathrm{~V}\) & & 46 & - & - & dB \\
\hline \multicolumn{7}{|l|}{Sandcastle input (note 13)} \\
\hline \(\mathrm{V}_{7}\) & level at which the RGB blanking is activated & & 1.0 & 1.5 & 2.0 & V \\
\hline \(V_{7}\) & level at which the horizontal pulses are separated & & 3.0 & 3.5 & 4.0 & V \\
\hline
\end{tabular}

PAL/NTSC decoder
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(\mathrm{V}_{7}\) & level at which the burst gate and clamping pulse are separated & & 6.5 & 7.0 & 7.5 & V \\
\hline \(\mathrm{t}_{\mathrm{d}}\) & delay between black level clamping and burst gating pulse & & - & 0.6 & - & \(\mu \mathrm{s}\) \\
\hline \multirow[t]{3}{*}{\(I_{i}\)} & \multirow[t]{3}{*}{input current} & \(\mathrm{V}_{\mathrm{i}}=0\) to 1 V & - & - & -1 & mA \\
\hline & & \(\mathrm{V}_{\mathrm{i}}=1\) to 8 V & - & - & 50 & \(\mu \mathrm{A}\) \\
\hline & & \(\mathrm{V}_{\mathrm{i}}=8\) to 12 V & - & - & 2 & mA \\
\hline \multicolumn{7}{|l|}{Black current stabilization} \\
\hline \(V_{18}\) & DC bias voltage & & 3.5 & 5.0 & 7.0 & V \\
\hline \(\Delta \mathrm{V}\) & difference between input voltage for black current and leakage current & & 0.35 & 0.5 & 0.65 & V \\
\hline \(\mathrm{I}_{18}\) & input current during black current & & - & - & 1 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{18}\) & input current during scan & & - & - & 10 & mA \\
\hline \(\mathrm{V}_{18}\) & internal limiting at pin 18 & & 8.5 & 9.0 & 9.5 & V \\
\hline \(V_{18}\) & switching threshold for black current control on & & 7.6 & 8.0 & 8.4 & V \\
\hline \(\mathrm{R}_{18}\) & input resistance during scan & & 1.0 & 1.5 & 2.0 & k \(\Omega\) \\
\hline \multirow[t]{3}{*}{\(\mathrm{I}_{10,20,21}\)} & DC input current during scan at pins 10, 20 and 21 & & - & - & 30 & nA \\
\hline & maximum charge or discharge current during measuring time (pins 10, 20 and 21) & & - & 1 & - & mA \\
\hline & difference in drift of the blank level & \[
\begin{aligned}
& \text { note } 11 ; \\
& \Delta T=40^{\circ} \mathrm{C}
\end{aligned}
\] & & 0 & 20 & mV \\
\hline \multicolumn{7}{|l|}{NTSC} \\
\hline \(\mathrm{V}_{24-25}\) & level at which the PAL/NTSC switch is activated (pins 24 and 25) & & - & 8.8 & 9.2 & V \\
\hline \(\mathrm{I}_{24+25 \text { (AV) }}\) & average output current (pin 24 plus pin 25) & note 14 & 62 & 82.5 & 103 & \(\mu \mathrm{A}\) \\
\hline HUE & hue control & see Fig. 6 & - & - & - & \\
\hline
\end{tabular}

\section*{Notes to the characteristics}
1. Signal with the negative-going sync; amplitude includes sync pulse amplitude.
2. Indicated is a signal with \(75 \%\) colour bar, so the chrominance-to-burst ratio is \(2.2: 1\).
3. Nominal contrast is specified as the maximum contrast -5 dB and nominal saturation as maximum -6 dB . This figure is valid in the PAL-condition. In the NTSC-condition no output signal is available at pin 28.
4. Cross coupling is measured under the following condition: input signal nominal, contrast and saturation such that nominal output signals are obtained. The signals at the output at which no signal should be available must be compared with the nominal output signal at that output.
5. The signal-to-noise ratio is defined as peak-to-peak signal with respect to RMS noise.
6. All frequency variations are referenced to the 4.4 MHz carrier frequency. All oscillator specifications have been measured with the Philips crystal 4322143 ... or 4322144 ... series.
7. The change in burst with \(\mathrm{V}_{\mathrm{P}}\) is proportional.

\section*{PAL/NTSC decoder}
8. These signal amplitudes are determined by the \(A C C\) circuit of the reference part.
9. This value depends on the gain setting of the RGB output amplifiers and the drift of the picture tube guns. Higher black level values are possible (up to 5 V ) however, in that condition the amplitude of the available output signal is reduced.
10. The variation of the black-level during brightness control in the three different channels is directly dependent on the gain of each channel. Discolouration during adjustments of contrast and brightness does not occur because amplitude and the black-level change with brightness control are directly related.
11. With respect to the measuring pulse.
12. This difference occurs when the source impedance of the data signals is \(150 \Omega\) and the black level clamp pulse width is \(4 \mu \mathrm{~s}\) (sandcastle pulse). For a lower impedance the difference will be lower.
13. For correct operating of the black level stabilization loop, the leading and trailing edges of the sandcastle pulse (measured between 1.5 V and 3.5 V ) must be within 200 ns and 600 ns respectively.
14. The voltage at pins 24 and 25 can be changed by connecting the load resistors ( \(20 \mathrm{k} \Omega, 1 \%\), in this condition) to the slider bar of the hue control potentiometer (see Fig.6). When the transistor is switched on, the voltage at pins 24 and 25 is reduced below 9 V , and the circuit is switched to NTSC mode. The width of the burst gate is assumed to be \(4 \mu\) s typical.


Fig. 3 Contrast control voltage range.


Fig. 5 Difference between black level and measuring level at the RGB outputs \((\Delta V)\) as a function of the brightness control input voltage \(\left(V_{11}\right)\).


Fig. 4 Saturation control voltage range.


Fig. 6 Hue control voltage range.


Fig. 7 Timing diagram for black-current stabilization.

APPLICATION INFORMATION

\(\forall 999 \varepsilon \forall \square 1\)

Fig． 9 Application diagram showing the TDA3566A for a PAL／NTSC decoder．
\(\forall 9998 \forall\) 」 」əроэəр ОSLN／7もd


Fig. 10 Internal pin circuitry (first part).


Fig. 11 Internal pin circuitry (second part).

\section*{FEATURES}
- Two comb filters, using the switched-capacitor technique, for one line delay time ( \(64 \mu \mathrm{~s}\) )
- Adjustment-free application
- No crosstalk between SECAM colour carriers (diaphoty)
- Handles negative or positive colour-difference input signals
- Clamping of \(A C\)-coupled input signais ( \(\pm(R-Y)\) and \(\pm(B-Y)\) )
- VCO without external components
- 3 MHz internal clock signal derived from a 6 MHz CCO , line-locked by the sandcastle pulse ( \(64 \mu\) s line)
- Sample-and-hoid circuits and low-pass filters to suppress the 3 MHz clock signal
- Addition of delayed and non-delayed output signals
- Output buffer amplifiers
- Comb filtering functions for NTSC colour-difference signals to suppress cross-colour.

\section*{GENERAL DESCRIPTION}

The TDA4665 is an integrated baseband delay tine circuit with one line delay. It is suitable for decoders with colour-difference signal outputs \(\pm(R-Y)\) and \(\pm(B-Y)\).

\section*{QUICK REFERENCE DATA}
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN. & TYP. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\mathrm{P} 1}\) & analog supply voitage (pin 9) & 4.5 & 5 & 6 & V \\
\hline \(\mathrm{V}_{\mathrm{P} 2}\) & digital supply voltage (pin 1) & 4.5 & 5 & 6 & \(V\) \\
\hline \(1 \mathrm{P}_{\text {tot }}\) & total supply current & - & 5.9 & 7.0 & mA \\
\hline \multirow[t]{4}{*}{\(V_{i}\)} & \(\pm(\mathrm{R}-\mathrm{Y})\) input signal PAL/NTSC (peak-to-peak value, pin 16) & - & 525 & - & mV \\
\hline & \(\pm(B-Y)\) input signal PAL/NTSC (peak-to-peak value, pin 14) & - & 665 & - & mV \\
\hline & \(\pm(R-Y)\) input signal SECAM (peak-to-peak value, pin 16) & - & 1.05 & - & V \\
\hline & \(\pm(B-Y)\) input signal SECAM (peak-to-peak value, pin 14) & - & 1.33 & - & V \\
\hline \multirow[t]{5}{*}{Gv} & \multicolumn{5}{|l|}{gain \(\mathrm{V}_{0} / \mathrm{V}_{\mathrm{i}}\) of colour-difference output signals} \\
\hline & \(V_{11} / V_{16}\) for PAL and NTSC & 5.3 & 5.8 & 6.3 & dB \\
\hline & \(V_{12} / V_{14}\) for PAL and NTSC & 5.3 & 5.8 & 6.3 & dB \\
\hline & \(V_{11} / V_{16}\) for SECAM & -0.6 & -0.1 & +0.4 & dB \\
\hline & \(\mathrm{V}_{12} / \mathrm{V}_{14}\) for SECAM & -0.6 & -0.1 & +0.4 & dB \\
\hline
\end{tabular}

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline EXTENDED & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } \begin{tabular}{c} 
TYPE NUMBER
\end{tabular} & PINS & \begin{tabular}{c} 
PIN \\
POSITION
\end{tabular} & MATERIAL & CODE \\
\hline TDA4665 & 16 & DIL & plastic & SOT38-4 \\
\hline TDA4665T & 16 & mini-pack & plastic & SOT109A \\
\hline
\end{tabular}

Fig． 1 Block diagram．
c99ャヤロ1 әu！！Кеןəp pueqəseg

PINNING
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline \(\mathrm{V}_{\mathrm{P} 2}\) & 1 & +5 V supply voltage for digital part \\
\hline n.c. & 2 & not connected \\
\hline GND2 & 3 & ground for digital part (0 V) \\
\hline i.c. & 4 & internally connected \\
\hline SAND & 5 & sandcastle pulse input \\
\hline n.c. & 6 & not connected \\
\hline i.c. & 7 & internally connected \\
\hline i.c. & 8 & internally connected \\
\hline \(\mathrm{V}_{\mathrm{P}_{1}}\) & 9 & +5 V supply voltage for analog part \\
\hline GND1 & 10 & ground for analog part (0 V ) \\
\hline \(V_{0}(\mathrm{R}-\mathrm{Y})\) & 11 & \(\pm(\mathrm{R}-\mathrm{Y})\) output signal \\
\hline  & 12 & \(\pm(\) B-Y) output signal \\
\hline n.c. & 13 & not connected \\
\hline \(\mathrm{V}_{\mathrm{i}(\mathrm{B}-\mathrm{Y})}\) & 14 & \(\pm(\mathrm{B}-\mathrm{Y})\) input signal \\
\hline n.c. & 15 & not connected \\
\hline \(\mathrm{V}_{\mathrm{i}(\mathrm{R}-\mathrm{Y})}\) & 16 & \(\pm(\mathrm{R}-\mathrm{Y})\) input signal \\
\hline
\end{tabular}

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum Rating System (IEC 134).
Ground pins 3 and 10 connected together.
\begin{tabular}{|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & MIN. & \multicolumn{1}{|c|}{ MAX. } & UNIT \\
\hline\(V_{P 1}\) & supply voltage (pin 9) & -0.5 & +7 & V \\
\hline \(\mathrm{~V}_{\mathrm{P} 2}\) & supply voltage (pin 1) & -0.5 & +7 & V \\
\hline \(\mathrm{~V}_{5}\) & voltage on pin 5 & -0.5 & \(\mathrm{~V}_{\mathrm{P}}+1.0\) & V \\
\hline \(\mathrm{~V}_{\mathrm{n}}\) & Voltage on pins 11, 12, 14 and 16 & -0.5 & \(\mathrm{~V}_{\mathrm{P}}\) & V \\
\hline \(\mathrm{T}_{\text {stg }}\) & storage temperature & -25 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature & 0 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{V}_{\text {ESD }}\) & electrostatic handling for all pins (note 1) & - & \(\pm 500\) & V \\
\hline
\end{tabular}

Note to the Limiting Values
1. Equivalent to discharging a 200 pF capacitor through a \(0 \Omega\) series resistor.

THERMAL RESISTANCE
\begin{tabular}{|l|l|c|}
\hline SYMBOL & PARAMETER & THERMAL RESISTANCE \\
\hline Rth j-a & from junction to ambient in free air & \\
& SOT38-4 & 75 KW \\
& SOT109A & 220 KW \\
\hline
\end{tabular}

\section*{CHARACTERISTICS}
\(V_{P}=5.0 \mathrm{~V}\); input signals as specified in characteristics with \(75 \%\) colour bars; super-sandcastle frequency of 15.625 kHz ; Tamb \(=+25^{\circ} \mathrm{C}\), measurements taken in Fig. 3 unless otherwise specified.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline\(V_{P_{1}}\) & supply voltage (analog part, pin 9 ) & & 4.5 & 5 & 6 & V \\
\hline \(\mathrm{~V}_{2}\) & supply voltage (digital part, pin \()\) & & 4.5 & 5 & 6 & V \\
\hline \(\mathrm{I}_{1}\) & supply current & & - & 5.2 & 6.0 & mA \\
\hline \(\mathrm{I}_{2}\) & supply current & & - & 0.7 & 1.0 & mA \\
\hline
\end{tabular}

\section*{Colour-difference input signals}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{\(\mathrm{V}_{i}\)} & \multicolumn{6}{|l|}{input signal (peak-to-peak value; note 1)} \\
\hline & \(\pm\) (R-Y) PAL and NTSC (pin 16) & & - & 525 & - & mV \\
\hline & \(\pm(\mathrm{B}-\mathrm{Y}) \mathrm{PAL}\) and NTSC (pin 14) & & - & 665 & - & mV \\
\hline & \(\pm(\mathrm{R}-\mathrm{Y})\) SECAM (pin 16) & & - & 1.05 & - & V \\
\hline & \(\pm(\mathrm{B}-\mathrm{Y})\) SECAM (pin 14) & & - & 1.33 & - & V \\
\hline \multirow[t]{3}{*}{\(V_{\text {imax }}\)} & \multicolumn{6}{|l|}{maximum symmetrical input signal (peak-to-peak value)} \\
\hline & \(\pm(\mathrm{R}-\mathrm{Y})\) or \(\pm(\mathrm{B}-\mathrm{Y})\) for PAL and NTSC & before clipping & 1 & - & - & V \\
\hline & \(\pm(\mathrm{R}-\mathrm{Y})\) or \(\pm(\mathrm{B}-\mathrm{Y})\) for SECAM & before clipping & 2 & - & - & V \\
\hline \(\mathrm{R}_{14,16}\) & input resistance & & - & - & 40 & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{C}_{14,16}\) & input capacitance & & - & - & 10 & pF \\
\hline \(V_{14,16}\) & input clamping voltage & proportional to \(\mathrm{V}_{\mathrm{p}}\) & 1.3 & 1.5 & 1.7 & V \\
\hline
\end{tabular}

Colour-difference output signals
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Vo} & \multicolumn{6}{|l|}{output signal (peak-to-peak value)} \\
\hline & \(\pm(\mathrm{R}-\mathrm{Y})\) on pin 11 & all standards & - & 1.05 & - & V \\
\hline & \(\pm(\mathrm{B}-\mathrm{Y})\) on pin 12 & all standards & - & 1.33 & - & V \\
\hline \(V_{11} N_{12}\) & ratio of output amplitudes at equal input signals & \(V_{\text {i } 14,16}=1.33 \mathrm{~V}(\mathrm{p}-\mathrm{p})\) & -0.4 & 0 & +0.4 & dB \\
\hline \(\mathrm{V}_{11,12}\) & DC output voltage & proportional to \(\mathrm{V}_{\mathrm{p}}\) & 2.90 & 3.10 & 3.30 & V \\
\hline \(\mathrm{R}_{11,12}\) & output resistance & & - & 330 & 400 & \(\Omega\) \\
\hline \multirow[t]{2}{*}{\(\mathrm{G}_{\mathrm{v}}\)} & gain for PAL and NTSC & ratio \(\mathrm{V}_{0} \mathrm{~V}_{i}\) & 5.3 & 5.8 & 6.3 & dB \\
\hline & gain for SECAM & ratio \(\mathrm{V}_{0} / \mathrm{V}_{i}\) & -0.6 & -0.1 & \(+0.4\) & dB \\
\hline \(V_{n} / V_{n+1}\) & ratio of output signals on pins 11 and 12 for adjacent time samples at constant input signals & \(V_{\text {i14, } 16}=1.33 \vee(p-p)\); SECAM signals & -0.1 & 0 & +0.1 & dB \\
\hline \(V_{n}\) & noise voltage (RMS value, pins 11 and 12) & \(V_{\text {i } 14,16}=0 \mathrm{~V}\); note 2 & - & - & 1.2 & mV \\
\hline \(\mathrm{S} / \mathrm{N}(\mathrm{W})\) & weighted signal-to-noise ratio & \(V_{0}=1 \mathrm{~V}(\mathrm{p}-\mathrm{p}) ; \mathrm{f}=\mathrm{tbn}\) & - & 54 & - & dB \\
\hline \multirow[t]{2}{*}{tod} & delay of delayed signals & & 63.94 & 64.0 & 64.06 & \(\mu s\) \\
\hline & delay of non-delayed signals & & 40 & 60 & 80 & ns \\
\hline \multirow[t]{2}{*}{trr} & transient time of delayed signal on pins 11 respectively 12 & 300 ns transient of SECAM signal & - & 350 & - & ns \\
\hline & transient time of non-delayed signal on pins 11 respectively 12 & 300 ns transient of SECAM signal & - & 320 & - & ns \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Sandcastle pulse input (pin 5)} \\
\hline \(f_{B K}\) & burst-key frequency / sandcastle frequency & & 14.2 & 15.625 & 17.0 & kHz \\
\hline \(V_{5}\) & top pulse voltage & note 3 & 4.0 & - & \(V p+1.0\) & V \\
\hline \(\mathrm{V}_{\text {slice }}\) & internal slicing level & & \(V_{5}-1.0\) & - & \(V_{5}-0.5\) & \(V\) \\
\hline \(\mathrm{I}_{5}\) & input current & & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{C}_{5}\) & input capacitance & & - & - & 10 & pF \\
\hline
\end{tabular}

\section*{Notes to the characteristics}
1. For SECAM the signal must be blanked line-sequentially. The blanking level must be equal to the non-colour signal. For SECAM, PAL and NTSC the input signal must be equal to the non-colour signal during the internal clamping of TDA4665 ( \(3 \mu \mathrm{~s}\) to \(1 \mu \mathrm{~s}\) before the leading edge of the top puise of \(\mathrm{V}_{5}\).
2. Noise voltage at \(f=10 \mathrm{kHz}\) to \(1 \mathrm{MHz} ; V_{i 14,16}=0\left(\mathrm{R}_{S}<300 \Omega\right)\).
3. The leading edge of the burst-key pulse or top pulse is used for timing.

Baseband delay line
G997*


\section*{FEATURES}
- Luminance signal delay from 20 ns up to 1100 ns (minimum step 45 ns )
- Luminance signal peaking with symmetrical overshoots selectable
- 2.6 or 5 MHz peaking centre frequency and degree of peaking selectable ( \(-3,0,+3\) and +6 dB )
- Noise reduction by coring selectable
- Handles negative as well as positive colour-difference signals
- Colour transient improvement (CTI) selectable to decrease the colour-difference signal transient times to those of the high frequency luminance signals
- 5 or 12 V sandcastle input voltage selectable
- All controls selected via the \(\mathrm{I}^{2} \mathrm{C}\)-bus
- Timing pulse generation for clamping and delay time control synchronized by sandcastle pulse
- Automatic luminance signal delay correction using a control loop
- Luminance and colour-difference input signal clamping with coupling-capacitor
- +4.5 to 8.8 V supply voltage range
- Minimum of external components

\section*{GENERAL DESCRIPTION}

The TDA4670 delays the luminance signal and improves colour-difference signal transients. Additional, the luminance signal can be improved by peaking and noise reduction (coring).

QUICK REFERENCE DATA
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN. & TYP. & MAX. & UNIT \\
\hline \(V_{P}\) & supply voltage (pins 1 and 5) & 4.5 & 5 & 8.8 & V \\
\hline Ip & total supply current & 31 & 41 & 52 & mA \\
\hline \(t_{d} Y\) & \(Y\) signal delay time & 20 & - & 1130 & ns \\
\hline \(V_{\text {i VBS }}\) & composite Y input signal (peak-to-peak value, pin 16) & - & 450 & 640 & mV \\
\hline \(V_{i C D}\) & \begin{tabular}{l}
colour-difference input signal (peak-to-peak value) \\
\(\pm(R-Y)\) on pin 3 \\
\(\pm(B-Y)\) on pin 7
\end{tabular} & - & \[
\begin{array}{|l}
1.05 \\
1.33
\end{array}
\] & \[
\begin{aligned}
& 1.48 \\
& 1.88
\end{aligned}
\] & \[
\begin{aligned}
& V \\
& v
\end{aligned}
\] \\
\hline \(G_{Y}\) & gain of \(Y\) channel & - & -1 & - & dB \\
\hline \(\mathrm{G}_{C D}\) & gain of colour-difference channel & - & 0 & - & dB \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature range & 0 & - & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
EXTENDED \\
TYPE NUMBER
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline TDA4670 & 18 & DIL & plastic & SOT102 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline 029b*O1 & (ISd) łиәшәлолdu! ןeu6!!s əૂnłэ!c \\
\hline
\end{tabular}

\section*{Picture signal improvement (PSI) circuit}

\section*{PINNING}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline \(V_{P 1}\) & 1 & positive supply voltage 1 \\
\hline \(C_{D L}\) & 2 & capacitor of delay time control \\
\hline \(V_{i(R-Y)}\) & 3 & \(\pm(R-Y)\) colour-difference input signal \\
\hline \(V_{0(R-Y)}\) & 4 & \(\pm(\mathrm{R}-\mathrm{Y})\) colour-difference output signal \\
\hline \(\mathrm{V}_{\mathrm{P} 2}\) & 5 & positive supply voltage 2 \\
\hline \(V_{0(B-Y)}\) & 6 & \(\pm(\mathrm{B}-\mathrm{Y})\) colour-difference output signal \\
\hline \(V_{i(B-Y)}\) & 7 & \(\pm(\mathrm{B}-\mathrm{Y})\) colour-difference input signal \\
\hline GND2 & 8 & ground 2 ( O ) \\
\hline SDA & 9 & \(1^{2} \mathrm{C}\)-bus data line \\
\hline SCL & 10 & \(\mathrm{I}^{2} \mathrm{C}\)-bus clock line \\
\hline \(\mathrm{C}_{\text {COR }}\) & 11 & coring capacitor \\
\hline \(\mathrm{V}_{\mathrm{O}} \mathrm{Y}\) & 12 & delayed luminance output signal \\
\hline \(\mathrm{C}_{\text {CLP1 }}\) & 13 & black level clamping capacitor 1 \\
\hline \(\mathrm{C}_{\text {CLP2 }}\) & 14 & black level clamping capacitor 2 \\
\hline \(\mathrm{C}_{\text {ref }}\) & 15 & capacitor of reference voltage \\
\hline \(V_{i Y} \mathrm{Y}\) & 16 & luminance input signal \\
\hline SAND & 1.7 & sandcastle pulse input \\
\hline GND1 & 18 & ground 1 (0 V) \\
\hline
\end{tabular}

\section*{FUNCTIONAL DESCRIPTION}

The TDA4670 contains luminance signal processing and colour-difference signal processing. The luminance signal section comprises a variable, integrated luminance delay line with luminance signal peaking and a noise reduction by coring.
The colour-difference section consists of a transient improvement circuit to decreases the rise and fall times of the colour-difference signal transients. All functions and parameters are controlled via the \(1^{2} \mathrm{C}\)-bus.

\section*{Y-signal path}

The video and blanking signal is AC-coupled to the input pin 16. Its
black porch is clamped to a DC reference voltage to ensure fitting to the operating range of the luminance delay stage.
The luminance delay line consists of all-pass filter sections with delay times of \(45,90,100,180\) and 450 ns (Fig.1). The luminance signal delay is controlled via the \(\mathrm{I}^{2} \mathrm{C}\)-bus in steps of 45 ns in the range of 20 to 1100 ns , this ensures that the maximum delay difference between the luminance and colour-difference signals is \(\pm 22.5\) ns.
An automatic luminance delay time adjustment in an internal control loop (with the horizontal frequency as a reference) is used to correct changes in the delay time, due to component tolerances. The control loop is

\section*{PIN CONFIGURATION}


Fig. 2 Pin configuration.
automatically enabled between the burst-key pulses of lines 16 (330) and 17 (331) during the vertical blanking interval. The control voltage is stored in the capacitor \(C_{D L}\) at pin 2.
The peaking section is using a transversal filter circuit with selectable centre frequencies of 2.6 and 5.0 MHz .
It provides selectable degrees of peaking of \(-3,0,+3\) and +6 dB and a noise reduction by coring, which attenuates the high-frequency noise introduced by peaking.
The output buffer stage ensures a low-ohmic VBS output signal on pin \(12(<160 \Omega)\). The gain of the luminance signal path from pin 16 to pin 12 is unity.

\section*{Picture signal improvement (PSI) circuit}

An oscillation signal of the delay time control loop is present on output pin 12 instead of the VBS signal during the vertical blanking interval in lines 16 (330) to 18 (332). Therefore, this output signal should not be applied for synchronization.

Colour-difference signal paths
The colour-difference input signals (on pins 3 and 7) are clamped to a reference voltage.

Each colour-difference signal is fed to a transient detector and to an analog signal switch with an attached voltage storage stage.
The transient detectors consist of differentiators and full-wave rectifiers. The output voltages of both transient detectors are added and then compared in a comparator. This comparator controls both following analog signal switches simultaneously. The analog signal switches are in open position at a certain value of transient time; then the held value
(held by storage capacitors) is applied to the outputs. The switches close to accept rapidly the actual signal levels at the end of these transients. The improved transient time is approximately 100 ns long independent of the input signal transient time.

Colour-difference paths are independent of the input signal polarity and have a gain of unity.
The CTI functions are switched on and off via the \(\mathrm{I}^{2} \mathrm{C}\)-bus.

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum System (IEC 134). \(V_{P_{1}}\) and \(V_{P 2}\)
as well as GND1 and GND 2 connected together.
\begin{tabular}{|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & MIN. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\mathrm{P} 1}\) & supply voltage (pin 1) & 0 & 8.8 & V \\
\hline \(\mathrm{~V}_{\mathrm{P} 2}\) & supply voltage (pin 5) & 0 & 8.8 & V \\
\hline \(\mathrm{P}_{\text {tot }}\) & total power dissipation & 0 & 0.97 & W \\
\hline \(\mathrm{~T}_{\text {stg }}\) & storage temperature range & -25 & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{amb}}\) & operating ambient temperature range & 0 & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{V}_{\mathrm{ESD}}\) & electrostatic handling* for pins 9 and 10 & - & +300 & V \\
& \multirow{3}{*}{\begin{tabular}{l} 
for other pins
\end{tabular}} & - & -500 & V \\
& & - & \(\pm 500\) & V \\
\hline
\end{tabular}

\section*{THERMAL RESISTANCE}
\begin{tabular}{|l|c|c|c|c|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & MIN. & MAX. & UNIT \\
\hline\(R_{\text {th } \mathrm{j}-\mathrm{a}}\) & from junction-to-ambient in free air & - & 82 & KW \\
\hline
\end{tabular}

\footnotetext{
* Equivalent to discharging a 200 pF capacitor through a \(0 \Omega\) series resistor.
}

\section*{Picture signal improvement (PSI) circuit}

\section*{CHARACTERISTICS}
\(\mathrm{V}_{\mathrm{P} 1}=\mathrm{V}_{\mathrm{P} 2}=5 \mathrm{~V}\); nominal video amplitude \(\mathrm{V}_{\mathrm{VB}}=315 \mathrm{mV} ; \mathrm{t}_{\mathrm{H}}=64 \mu \mathrm{~s}\); \(\mathrm{t}_{\mathrm{BK}}=4 \mu \mathrm{~s}\) (burst key); \(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\) and measurements taken in Fig. 3 unless otherwise specified.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline\(V_{P 1}\) & supply voltage range (pin 1) & & 4.5 & 5 & 8.8 & \(V\) \\
\hline\(V_{P 2}\) & supply voltage range (pin 5) & & 4.5 & 5 & 8.8 & \(V\) \\
\hline\(I_{P}\) & total supply current & & 31 & 41 & 52 & mA \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(V_{i} Y\) & VBS input signal on pin 16 (peak-to-peak value) & & - & 450 & 640 & mV \\
\hline \(\mathrm{V}_{16}\) & black level clamping voltage & & - & 3.1 & - & V \\
\hline \(\mathrm{I}_{16}\) & input current & during clamping outside clamping & \[
\pm 95
\] & & \[
\begin{aligned}
& \pm 190 \\
& \pm 0.1
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline \(\mathrm{R}_{16}\) & input resistance & outside clamping & 5 & - & - & \(\mathrm{M} \Omega\) \\
\hline \(\mathrm{C}_{16}\) & input capacitance & & - & 3 & 10 & pF \\
\hline \(t_{d} Y\) & maximum \(Y\) delay time minimum \(Y\) delay time & set via \({ }^{12} \mathrm{C}\)-bus & \[
1070
\] & \[
\begin{aligned}
& 1100 \\
& 20
\end{aligned}
\] & \[
1130
\] & \[
\begin{array}{|l}
\hline \text { ns } \\
\text { ns }
\end{array}
\] \\
\hline \(\Delta t_{d} \mathrm{Y}\) & \begin{tabular}{l}
minimum delay step \\
group delay time difference \\
delay time difference between \(Y\) and colour-difference signals
\end{tabular} & \begin{tabular}{l}
set via \(1^{2} \mathrm{C}\)-bus \(\mathrm{f}=0.5\) to 5 MHz maximum delay \\
Y delay; CTI and peaking off
\end{tabular} & \begin{tabular}{l}
40 \\
70
\end{tabular} & \begin{tabular}{l}
45 \\
0
\[
100
\]
\end{tabular} & \begin{tabular}{l}
50 \\
\(\pm 25\)
\[
130
\]
\end{tabular} & ns ns ns \\
\hline \(t_{\text {d peak }}\) & minimum delay time for peaking & & 185 & 215 & 245 & ns \\
\hline \(\mathrm{G}_{\mathrm{Y}}\) & VBS signal gain measured on output pin 12 (composite signal, peak-to-peak value) & \[
\begin{aligned}
& V_{0} N_{i} ; \\
& f=500 \mathrm{kHz} ;
\end{aligned}
\]
maximum delay & -2 & -1 & 0 & dB \\
\hline \(\mathrm{I}_{12}\) & output current (emitter-follower with constant current source) & \begin{tabular}{l}
source current \\
sink current
\end{tabular} & \[
\begin{aligned}
& -1 \\
& 0.4
\end{aligned}
\] & & & \[
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline \(\mathrm{R}_{12}\) & output resistance & & - & - & 160 & \(\Omega\) \\
\hline f & frequency response for
\[
\begin{aligned}
& f=0.5 \text { to } 3 \mathrm{MHz} \\
& f=0.5 \text { to } 5 \mathrm{MHz}
\end{aligned}
\] & maximum delay & \[
\begin{aligned}
& -2 \\
& -4
\end{aligned}
\] & \[
\begin{aligned}
& -1 \\
& -3
\end{aligned}
\] & \[
\begin{gathered}
0 \\
-1
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{dB} \\
& \mathrm{~dB}
\end{aligned}
\] \\
\hline LIN & ```
signal linearity for
    video contents of 315 mV (p-p)
    video contents of 450 mV (p-p)
``` & \[
\begin{aligned}
& a_{\min } / a_{\max } \\
& V_{V B S}=450 \mathrm{mV}(p-p) \\
& V_{V B S}=640 \mathrm{mV}(p-p)
\end{aligned}
\] & \[
\begin{aligned}
& 0.85 \\
& 0.60
\end{aligned}
\] & - & & \\
\hline
\end{tabular}

Picture signal improvement (PSI) circuit

TDA4670
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Luminance peaking, selected via \(\mathrm{I}^{2} \mathrm{C}\)-bus} \\
\hline \({ }_{\text {feeak }}\) & peaking frequency & \[
\begin{aligned}
& \mathrm{f}_{\mathrm{C} 1} ; \text { LCF-bit }=0 \\
& \mathrm{f}_{\mathrm{C} 2} ; \text { LCF-bit }=1
\end{aligned}
\] & \[
\begin{aligned}
& 4.5 \\
& 2.3
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 5 \\
2.6 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 5.5 \\
& 2.9
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{MHz} \\
& \mathrm{MHz}
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\text {peak }}\)} & peaking amplitude for grade of peaking (fc amplitude over 0.5 MHz amplitude) selectable values & & & \[
\begin{aligned}
& -3 \\
& 0 \\
& +3 \\
& +6
\end{aligned}
\] & & \[
\begin{aligned}
& \mathrm{dB} \\
& \mathrm{~dB} \\
& \mathrm{~dB} \\
& \mathrm{~dB}
\end{aligned}
\] \\
\hline & limitation of peaking (positive amplitude of correction signal referred to 315 mV) & & - & 20 & - & \% \\
\hline \(v_{n}\) & noise voltage on pin 12 (RMS value) & without peaking
\[
\mathrm{f}=0 \text { to } 5 \mathrm{MHz}
\] & - & - & 1 & mV \\
\hline COR & coring of peaking (coring part referred to 315 mV) & COR-bit \(=1\) & - & 20 & - & \% \\
\hline \multicolumn{7}{|l|}{Colour-difference paths measured with transient times \(t_{r}=t_{f}=1 \mu s ; t_{p H} \geq 1 \mu s ; V_{i}=1.33 V(p-p)\) on pins 3 and 7 and with burst key pulse \(t_{B K}=4 \mu \mathrm{~s}\).} \\
\hline \multirow[t]{3}{*}{\(V_{i C D}\)} & \(\pm(R-Y)\) input signal (peak-to-peak values, pin 3) & 75\% colour bar; & - & 1.05 & 1.48 & V \\
\hline & \(\pm(\mathrm{B}-\mathrm{Y})\) input signal (peak-to-peak values, pin 7) & 75\% colour bar & - & 1.33 & 1.88 & V \\
\hline & input transient sensitivity & \(\mathrm{V}_{3,7} / \mathrm{dt}\) & 0.15 & - & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline \(V_{3,7}\) & internal clamping voltage level & & - & 2.45 & - & V \\
\hline \(\mathrm{I}_{3,7}\) & input current & outside clamping during clamping & \(\pm 100\) & & \[
\begin{aligned}
& \pm 1 \\
& \pm 190
\end{aligned}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A}
\end{aligned}
\] \\
\hline \(\mathrm{C}_{3,7}\) & input capacitance & & - & 6 & 12 & pF \\
\hline \(\mathrm{V}_{4,6}\) & DC output voltage & & - & 2 & - & V \\
\hline \(\Delta V_{4,6}\) & output offset voltage & \[
\mathrm{R}_{\mathrm{S}} \leq 300 \Omega ; \text { note } 1
\] during and after storage time & & & \begin{tabular}{l}
\(\pm 5\) \\
\(\pm 18\)
\end{tabular} & \[
\begin{aligned}
& \hline \mathrm{mV} \\
& \mathrm{mV}
\end{aligned}
\] \\
\hline \(\mathrm{V}_{\text {spike }}\) & spurious spike signals on pins 4 and 6 & \(\mathrm{R}_{\text {S }} \leq 300 \Omega\); note 1 & - & - & \(\pm 30\) & mV \\
\hline 14,6 & output current (emitter-follower with constant current source) & source current sink current & \[
\begin{aligned}
& -1 \\
& 0.4
\end{aligned}
\] & & & \[
\underset{\mathrm{mA}}{\mathrm{~mA}}
\] \\
\hline \(\mathrm{R}_{4,6}\) & output resistance & & - & - & 100 & \(\Omega\) \\
\hline \(\mathrm{G}_{\mathrm{v}}\) & signal gain in each path & \(\mathrm{V}_{0} / \mathrm{V}_{\mathrm{i}}\) & -1 & 0 & +1 & dB \\
\hline \(\Delta \mathrm{G}_{\mathrm{v}}\) & gain difference -(\(\mathrm{R}-\mathrm{Y}\)) /-(B-Y) & & - & 0 & \(\pm 0.3\) & dB \\
\hline
\end{tabular}

\section*{Picture signal improvement (PSI) circuit}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline LIN & signal linearity for nominal signal for +3 dB signal & \[
\begin{aligned}
& a_{\min } / a_{\max } \\
& V_{i}=1.33 \vee(p-p) \\
& V_{i}=1.88 \vee(p-p)
\end{aligned}
\] & \[
\begin{aligned}
& 0.90 \\
& 0.65
\end{aligned}
\] & & & \\
\hline \(\Delta V_{0}\) & signal reduction at higher frequency (output signal ratio \(\mathrm{V}_{\mathrm{i}} / \mathrm{V}_{0}\)) & \begin{tabular}{l}
signal with \\
\(\mathrm{t}_{\mathrm{p}} \mathrm{H}=50 \mathrm{~ns}\); \\
\(t_{r}=t_{f}=1 \mu s\)
\end{tabular} & -1.5 & \(\bullet\) & - & dB \\
\hline
\end{tabular}

Sandcastle pulse, input voltage selectable via \({ }^{2}\) C C -bus
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{17}\)} & input voltage threshold for H and V sync input voltage threshold for burst & \[
\begin{aligned}
& \text { SC5-bit }=0(12 \mathrm{~V}) \\
& \text { SC5-bit }=0(12 \mathrm{~V})
\end{aligned}
\] & \[
\begin{aligned}
& 1.1 \\
& 5.5
\end{aligned}
\] & \[
\begin{aligned}
& 1.5 \\
& 6.5
\end{aligned}
\] & \[
\begin{aligned}
& 1.9 \\
& 7.5
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
\] \\
\hline & input voltage threshold for H and V sync input voltage threshold for burst & \[
\begin{aligned}
& \text { SC5-bit }=1(5 \mathrm{~V}) \\
& \text { SC5-bit }=1(5 \mathrm{~V})
\end{aligned}
\] & \[
\begin{aligned}
& 1.1 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 1.5 \\
& 3.5
\end{aligned}
\] & \[
\begin{aligned}
& 1.9 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
\] \\
\hline \(\mathrm{R}_{17}\) & input resistance & \begin{tabular}{l}
12 V input level \\
5 V input level
\end{tabular} & \[
\begin{aligned}
& 30 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 40 \\
& 20
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{k} \Omega \\
& \mathrm{k} \Omega
\end{aligned}
\] \\
\hline \(\mathrm{C}_{17}\) & input capacitance & & - & 4 & 8 & pF \\
\hline \({ }^{\text {t }}\) BK & burst-key pulse width & & 3.0 & 4.0 & 4.6 & \(\mu \mathrm{s}\) \\
\hline \(t_{d}\) & leading edge delay for clamping pulse & referred to \(\mathrm{t}_{\mathrm{BK}}\) & - & 1 & - & \(\mu \mathrm{s}\) \\
\hline \(\mathrm{n}_{\mathrm{p}}\) & number of required burst-key pulses vertical blanking interval & note 2 & 4 & - & 31 & \\
\hline \multicolumn{7}{|l|}{\(1^{2}\) C-bus control, SDA and SCL} \\
\hline \(\mathrm{V}_{1} \mathrm{H}\) & input voltage HIGH on pins 9 and 10 & & 3 & - & 5 & V \\
\hline \(V_{\text {IL }}\) & input voltage LOW & & 0 & - & 1.5 & V \\
\hline \(\mathrm{I}_{9,10}\) & input current & & - & - & \(\pm 10\) & \(\mu \mathrm{A}\) \\
\hline \[
\begin{array}{|l|}
\hline V_{9} \\
I_{\text {ACK }}
\end{array}
\] & output voltage at acknowledge on pin 9 output current at acknowledge on pin 9 & \begin{tabular}{l}
\[
l_{9}=3 \mathrm{~mA}
\] \\
sink current
\end{tabular} & - & - & \[
0.4
\] & \[
\begin{array}{|l|}
\hline \mathrm{V} \\
\mathrm{~mA}
\end{array}
\] \\
\hline
\end{tabular}

\section*{Notes to the characteristics}
1. Crosstalk on output, measured in the unused channel when the other channel is provided with a nominal input signal (CTI active).
2. A number of more than 31 burst-key pulses repeats the counter cycle of delay time control.

Picture signal improvement (PSI) circuit

Fig. 3 Test and application circuit.
\(1^{2}\) C-BUS FORMAT
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(S\) & SLAVE ADDRESS & A & SUBADDRESS & A & DATA & P \\
\hline
\end{tabular}
\begin{tabular}{lll}
S & \(=\quad\) start condition \\
SLAVE ADDRESS & \(=\) & 1000100 X \\
A & \(=\) & acknowledge, generated by the slave \\
SUBADDRESS & \(=\) & subadress byte, Table 1
\end{tabular}

If more than 1 byte DATA are transmitted, then auto-increment of the subaddress is performed.

\section*{Picture signal improvement (PSI) circuit}

Table \(11^{2} \mathrm{C}\)-bus transmission
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{function} & \multirow[t]{2}{*}{subaddress byte} & \multicolumn{8}{|c|}{data byte} \\
\hline & & D7 & D6 & D5 & D4 & D3 & D2 & D1 & Do \\
\hline Y delay / CTI / SC peaking and coring & \[
\begin{array}{llllllll}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}
\] & \[
\begin{aligned}
& 0 \\
& \mathrm{COR}
\end{aligned}
\] & \[
\begin{aligned}
& \text { SC5 } \\
& \text { PEAK }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CTI } \\
& \text { LCF }
\end{aligned}
\] & \[
\begin{aligned}
& \text { DL4 } \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \text { DL3 } \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \text { DL2 } \\
& 0
\end{aligned}
\] & & DLO PCONO \\
\hline
\end{tabular}

Function of the bits:
\begin{tabular}{|c|c|c|c|c|}
\hline DLO & set delay in luminance channel: & \multicolumn{2}{|l|}{} & \\
\hline DL1 & & \[
1=90 \mathrm{n}
\] & & \[
0=0 \mathrm{~ns}
\] \\
\hline DL2 & & \multicolumn{2}{|l|}{\(1=180 \mathrm{~ns}\)} & \(0=0 \mathrm{~ns}\) \\
\hline DL3 & & \multicolumn{2}{|l|}{\(1=180 \mathrm{~ns}\);} & \(0=0 \mathrm{~ns}\) \\
\hline \multicolumn{2}{|l|}{DL4} & \multicolumn{2}{|l|}{\(1=450 \mathrm{~ns} ;\)} & \(0=0 \mathrm{~ns}\) \\
\hline CTI & set colour transient improvement: & 1 = active & & \(0=\) inactive \\
\hline SC5 & select sandcastle pulse voltage: & \(1=5 \mathrm{~V}\) & & \(0=12 \mathrm{~V}\) \\
\hline LCF & set peaking frequency response: & \(1=2.6 \mathrm{~N}\) & & \(0=5.0 \mathrm{MHz}\) \\
\hline PEAK & set peaking delay: & 1 = active & & \(0=\) inactive \\
\hline COR & set coring control: & \multicolumn{2}{|l|}{1 = active} & \(0=\) inactive \\
\hline \multirow[t]{5}{*}{PCON} & \multirow[t]{5}{*}{set peaking amplification:} & PCON1 & PCONO & grade of peaking \\
\hline & & 0 & 0 & \(-3 \mathrm{~dB}\) \\
\hline & & 0 & 1 & 0 dB \\
\hline & & 1 & 0 & +3 dB \\
\hline & & 1 & 1 & +6 dB \\
\hline
\end{tabular}

\section*{Remarks to the subaddress bytes}

Hex subaddresses 00 to 0 F are reserved for colour decoders and RGB processors.
Subaddresses 10 and 11 only are acknowledged.
General call address is not acknowledged.
Power-on reset: D7 to D1 bits of data bytes are set to 0, D0 bit is set to 1 .

Purchase of Philips' \(\left.\right|^{2} \mathrm{C}\) components conveys a license under the Philips \({ }^{1}{ }^{2} \mathrm{C}\) patent to use the components in the \(\mathrm{I}^{2} \mathrm{C}\)-system provided the system conforms to the \(\mathrm{I}^{2} \mathrm{C}\) specifications defined by Philips.

\section*{FEATURES}
- Operates from an 8 V DC supply
- Black level clamping of the colour difference, luminance and RGB input signals with coupling-capacitor DC level storage
- Two fully-controlled, analog RGB inputs, selected either by fast switch signals or via \(1^{2} \mathrm{C}\)-bus
- Saturation, contrast and brightness adjustment via \(I^{2} C\)-bus
- Same RGB output black levels for Y/CD and RGB input signals
- Timing pulse generation from either a 2- or 3-level sandcastle pulse for clamping, horizontal and vertical synchronization, cut-off and white level timing pulses
- Automatic cut-off control with picture tube leakage current compensation
- Software-based automatic white level control or fixed white levels via \(1^{2} C\)-bus
- Cut-off and white level measurement pulses in the last 4 lines of the vertical blanking interval (\(1^{2} \mathrm{C}\)-bus selection for PAL, SECAM, or NTSC, PAL-M)
- Increased RGB signal bandwidths for progressive scan and 100 Hz operation (selected via \(1^{2} \mathrm{C}\)-bus)
- Two switch-on delays to prevent discolouration before steady-state operation
- Average beam current and peak drive limiting
- PALSECAM or NTSC matrix selection via \(I^{2} \mathrm{C}\)-bus
- Three adjustable reference voltage levels (via \(\mathrm{I}^{2} \mathrm{C}\)-bus) for automatic cut-off and white level control
- Emitter-follower RGB output stages to drive the video output stages
- Hue control output for the TDA4555, TDA4650/T, TDA4655/T or TDA4657.

There is a very similar IC TDA4681 available. The only differences are in the NTSC matrix.

\section*{GENERAL DESCRIPTION}

The TDA4680 is a monolithic integrated circuit with a colour difference interface for video processing in TV receivers. Its primary function is to process the luminance and colour difference signals from multistandard colour decoders, TDA4555, TDA4650/T, TDA4655/T or TDA4657, Colour Transient Improvement (CTI) IC, TDA4565, Picture Signal Improvement (PSI) IC, TDA4670, or from a Feature Module.
The required input signals are:
- luminance and negative colour difference signals
-2- or 3-level sandcastle pulse for internal timing pulse generation
\(-I^{2} C\)-bus data and clock signals for microprocessor control.
Two sets of

analog RGB colour signals can also be inserted, e.g. one from a peritelevision connector and the other from an on-screen display generator; both inputs are fully-controlled internally. The TDA4680 includes full \(1^{2} C\)-bus control of all parameters and functions with automatic cut-off and white level control of the picture tube cathode currents. It provides RGB output signals for the video output stages.

\section*{QUICK REFERENCE DATA}
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN. & TYP. & MAX. & UNIT \\
\hline \(V_{P}\) & supply voltage (pin 5) & 7.2 & 8.0 & 8.8 & \(V\) \\
\hline Ip & supply current (pin 5) & - & 85 & - & mA \\
\hline \(V_{8(p-p)}\) & luminance input (peak-to-peak value) & - & 0.45 & - & V \\
\hline \(\mathrm{V}_{6}(\mathrm{p}-\mathrm{p})\) & -(B-Y) input (peak-to-peak value) & - & 1.33 & - & V \\
\hline \(V_{7(p-p)}\) & -(\(R-Y\)) input (peak-to-peak value) & - & 1.05 & - & V \\
\hline \multirow[t]{2}{*}{\(V_{14}\)} & \begin{tabular}{l}
three-level sandcastle pulse
\[
\mathrm{H}+\mathrm{V}
\] \\
H \\
BK
\end{tabular} & & \[
\begin{aligned}
& 2.5 \\
& 4.5 \\
& 8.0
\end{aligned}
\] & & \[
\begin{aligned}
& v \\
& v \\
& v
\end{aligned}
\] \\
\hline & two-level sandcastle pulse
\[
\begin{aligned}
& \mathrm{H}+\mathrm{V} \\
& \mathrm{BK}
\end{aligned}
\] & - & \[
\begin{aligned}
& 2.5 \\
& 4.5
\end{aligned}
\] & - & \[
\begin{aligned}
& V \\
& V
\end{aligned}
\] \\
\hline Vi & RGB input signals at pins \(2,3,4,10\), 11 and 12 (black-to-white value) & - & 0.7 & - & V \\
\hline \(V_{0}(p-p)\) & RGB outputs at pins 24, 22 and 20 (peak-to-peak value) & - & 2.0 & - & V \\
\hline Tamb & operating ambient temperature & 0 & - & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
EXTENDED \\
TYPE NUMBER
\end{tabular}} & \multicolumn{3}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & \begin{tabular}{c}
PIN \\
POSITION
\end{tabular} & MATERIAL & CODE \\
\hline TDA4680 & 28 & DIL & plastic & SOT117 \\
\hline TDA4680WP & 28 & PLCC & plastic & SOT261CG \\
\hline
\end{tabular}

\begin{tabular}{l}
-1 \\
\(\square\) \\
7 \\
\(\stackrel{\rightharpoonup}{1}\) \\
\(\infty\) \\
0 \\
\hline 0
\end{tabular}

PINNING
\begin{tabular}{|l|c|l|}
\hline SYMBOL & PIN & \multicolumn{1}{|c|}{ DESCRIPTION } \\
\hline FSW \(_{2}\) & 1 & fast switch 2 input \\
\hline\(R_{2}\) & 2 & red input 2 \\
\hline\(G_{2}\) & 3 & green input 2 \\
\hline\(B_{2}\) & 4 & blue input 2 \\
\hline\(V_{p}\) & 5 & supply voltage \\
\hline\(-(B-Y)\) & 6 & colour difference input -(B-Y) \\
\hline\(-(R-Y)\) & 7 & colour difference input -(R-Y) \\
\hline\(Y\) & 8 & luminance input \\
\hline\(G_{N D}\) & 9 & ground \\
\hline\(R_{1}\) & 10 & red input 1 \\
\hline\(G_{1}\) & 11 & green input 1 \\
\hline\(B_{1}\) & 12 & blue input 1 \\
\hline FSW \(_{1}\) & 13 & fast switch 1 input \\
\hline SC & 14 & sandcastle pulse input \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline BCL & 15 & average beam current limiting input. \\
\hline CPDL & 16 & storage capacitor for peak drive limiting \\
\hline CL & 17 & storage capacitor for leakage current \\
\hline WI & 18 & white level measurement input \\
\hline Cl & 19 & cut-off measurement input \\
\hline Bo & 20 & blue output \\
\hline \(\mathrm{CB}_{B}\) & 21 & blue cut-off storage capacitor \\
\hline Go & 22 & green output \\
\hline \(\mathrm{Ca}_{\mathrm{G}}\) & 23 & green cut-off storage capacitor \\
\hline Ro & 24 & red output \\
\hline \(\mathrm{C}_{\mathrm{R}}\) & 25 & red cut-off storage capacitor \\
\hline HUE & 26 & hue control output \\
\hline SDA & 27 & \(1^{2} \mathrm{C}\)-bus serial data input/output \\
\hline SCL & 28 & \(1{ }^{2} \mathrm{C}\)-bus serial clock input \\
\hline
\end{tabular}

Fig. 2 Pin configuration for DIL package.

Fig. 3 Pin configuration for PLCC package.

\section*{\(1^{2}\) C-BUS CONTROL}

The \(I^{2} \mathrm{C}\)-bus transmitter/receiver provides the data bytes to select and adjust the following functions and parameters:
-brightness adjust
- saturation adjust
- contrast adjust
- hue control voltage
- RGB gain adjust
- RGB reference voltage levels
- peak drive limiting
- selection of the vertical blanking interval and measurement lines for cut-off and white level control according to transmission standard
- selects either 3 -level or 2-level (5 V) sandcastle pulse
- enables/disables input clamping pulse delay
- enables/disables white level control
- enables cut-off control / enables output clamping
- enables/disables full screen white level
-enables/disables full screen black level
- selects either PALSECAM or NTSC matrix
- enables saturation adjust / enables nominal saturation
- enables/disables synchronization of the execution of \(1^{2} \mathrm{C}\)-bus commands with the vertical blanking interval
- reads the result of the comparison of the nominal and actual RGB signal levels for automatic white level control.

\section*{\(I^{2} \mathrm{C}\)-BUS TRANSMITTER /} RECEIVER AND DATA TRANSFER
\(1^{2} \mathrm{C}\)-bus specification
The \(\left.\right|^{2} \mathrm{C}\)-bus is a bi-directional, two-wire, serial data bus for intercommunication between ICs in an equipment. The microcontroller transmits/receives data from the \(1^{2} \mathrm{C}\)-bus transceiver in the TDA4680 over the serial data line SDA (pin 27) synchronized by the serial clock line SCL (pin 28). Both lines are normally connected to a positive voltage supply through pull-up resistors. Data is transferred when the SCL line is LOW. When SCL is HIGH the serial data line SDA must be stable. A HIGH-to-LOW transition of the SDA line when SCL is HIGH is defined as a start bit. A LOW-to-HIGH transition of the SDA line when SCL is HIGH is defined as a stop bit. Each transmission must start with a start bit and end with a stop bit. The bus is busy after a start bit and is only free again after a stop bit has been transmitted.

\section*{\(\mathrm{I}^{2} \mathrm{C}\)-bus recelver}
(microcontroller write mode) Each transmission to/from the \(1^{2} \mathrm{C}\)-bus transceiver consists of at least three bytes following the start bit. Each byte is acknowledged by an acknowledge bit immediately following each byte. The first byte is the Module ADdress (MAD) byte, also called slave address byte. This consists of the module address, \(1000100_{2}\) for the TDA4680, plus the R \(\bar{W}\) bit (see Fig.4). When the TDA4680 is a slave receiver (\(\mathrm{R} \bar{W}=0\)) the module address byte is \(10001000_{2}(88 \mathrm{Hex})\). When the TDA4680 is a slave transmitter (\(\mathrm{R} \overline{\mathrm{W}}=1\)) the module address byte is \(10001001_{2}\) (89 Hex).
The length of a data transmission is unrestricted, but the module address and the correct sub-address must be transmitted before the data byte(s). The order of data transmission is shown in Fig. 5 and Fig.6. Without auto-increment (BREN \(=0\) or 1) the module address (MAD) byte is followed by a Sub-ADdress (SAD) byte and one data byte only (Fig.5).

Fig. 4 The module address byte.

Fig. 5 Data transmission without auto-increment (BREN \(=0\) or 1).

Fig. 6 Data transmission with auto-increment (BREN \(=0\)).

\section*{Auto-increment}

The auto-increment format enables quick slave receiver initialization by one transmission, when the \(I^{2} \mathrm{C}\)-bus control bit BREN = 0 (see control register bits of Table 1). If BREN =1 auto-increment is not possible. If the auto-increment format is selected, the MAD byte is followed by an SAD byte and by the data bytes of consecutive sub-addresses (Fig.6).
All sub-addresses from 00 to 0 F are automatically incremented, the sub-address counter wraps round from OF to 00. Reserved sub-addresses OB, OE and OF are treated as legal but have no effect. Sub-addresses outside the range 00 and \(O F\) are not acknowledged by the device and neither auto-increment nor any other internal operation takes place (For versions V1 to V5 sub-addresses outside the range 00 and OF are acknowledged but neither auto-increment nor any other internal operation takes place).
Sub-addresses are stored in the
TDA4680 to address the following parameters and functions, see Table 1:
- brightness adjust
- saturation adjust
- contrast adjust
- hue control voltage
- RGB gain adjust
-RGB reference voltage levels
- peak drive limiting adjust
- control register functions.

The data bytes (D7-D0 of Table 1) provide the data of the parameters and functions for video processing.

\section*{Control register 1}

VBWx (Vertical Blanking Window):
\(X=0,1\) or 2 . VBW \(x\) selects the vertical blanking interval and positions the measurement lines for cut-off and white level control. The actual lines in the vertical blanking interval after the start of the \(\checkmark\) pulses selected as measurement
lines for cut-off and white level control are shown in Table 2.
The standards marked with (*) are for progressive line scan at double line frequency (\(2 F_{L}\)), i.e. approximately 31 kHz .
NMEN (NTSC - Matrix ENable):
\(0=\mathrm{PAL} / \mathrm{SECAM}\) matrix 1 = NTSC matrix.
WPEN (White Pulse ENable):
\(0=\) white measuring pulse disabled
1 = white measuring pulse enabled.
BREN (Buffer Register ENable):
\(0=\) new data is executed as soon
as it is received
1 = data is stored in buffer
registers and is transferred to the data registers during the next vertical blanking interval. The \(I^{2} C\)-bus transceiver does not accept any new data until this data is transferred into the data registers.
DELOF (DELay OFf) delays the
leading edge of clamping pulses:
0 = delay enabled
1 = delay disabled.
SC5 (SandCastle 5 V):
\(0=3\)-level sandcastie pulse \(1=2\)-level (5 V) sandcastie puise.

\section*{Control register 2}

FSON2 - Fast Switch 2 ON
FSDIS2 - Fast Switch 2 DISable
FSON1 - Fast Switch 1 ON
FSDIS1 - Fast Switch 1 DISable
The RGB input signals are selected by FSON2 and FSON1 or FSW 2 and FSW 1 :
- FSON2 has priority over FSON1;
-FSW 2 has priority over FSW 1 ;
- FSDIS1 and FSDIS2 disable FSW 1 and FSW (see Table 3).
BCOF - Black level Control OFf:
\(0=\) automatic cut-off control enabled
\(1=\) automatic cut-off control disabled; RGB outputs are clamped to fixed DC levels.

FSBL - Full Screen Black Level:
\(0=\) normal mode
\(1=\) full screen black level (cut-off measurement level during full field).
FSWL - Full Screen White Level:
\(0=\) normal mode
1 = full screen white level (white measurement level during full field).
SATOF - SATuration control OFf: \(0=\) saturation control enabled
1 = saturation control disabled, nominal saturation enabled.

\section*{\(1^{2} \mathbf{C}\)-bus transmitter}
(microcontroller read mode)
As an \(I^{2} C\)-bus transmitter, \(R \bar{W}=1\), the TDA4680 sends a data byte from the status register to the microcontroller. The data byte consists of following bits:
PONRES, CB1, CB0, CG1, CG0, CR1, CRO and 0 , where PONRES is the most significant bit.
PONRES (Power ON RESet) monitors the state of TDA4680's supply voltage:

0 = normal operation
1 = supply voltage has dropped
below approximately 6.0 V
(usually occurs when the TV
receiver is switched on or the
supply voltage was interrupted).
When PONRES changes state from a logic LOW to a logic HIGH all data and function bits are set to logic LOW.

\section*{2-bit white level error signal}
(see Table 4).
\(C B 1, C B 0=2\)-bit white level of the blue channel.
CG1, CG0 = 2-bit white level of the green channel.
CR1, \(C R 0=2\)-bit white level of the red channel.

\section*{Video processor with automatic cut-off and white level control}

Table 1 Sub-address (SAD) and data bytes.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{FUNCTION} & SAD & \multicolumn{3}{|l|}{MSB} & \multicolumn{3}{|l|}{DATA BYTE} & \multicolumn{2}{|r|}{LSB} \\
\hline & (HEX) & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline Brightness & 00 & 0 & 0 & A05 & A04 & A03 & A02 & A01 & A00 \\
\hline Saturation & 01 & 0 & 0 & A15 & A14 & A13 & A12 & A11 & A10 \\
\hline Contrast & 02 & 0 & 0 & A25 & A24 & A23 & A122 & A21 & A20 \\
\hline Hue control voltage & 03 & 0 & 0 & A35 & A34 & A33 & A32 & A31 & A30 \\
\hline Red gain & 04 & 0 & 0 & A45 & A44 & A43 & A42 & A41 & A40 \\
\hline Green gain & 05 & 0 & 0 & A55 & A54 & A53 & A52 & A51 & A50 \\
\hline Blue gain & 06 & 0 & 0 & A65 & A64 & A63 & A62 & A61 & A60 \\
\hline Red level reference & 07 & 0 & 0 & A75 & A74 & A73 & A72 & A71 & A70 \\
\hline Green level reference & 08 & 0 & 0 & A85 & A84 & A83 & A82 & A81 & A80 \\
\hline Blue level reference & 09 & 0 & 0 & A95 & A94 & A93 & A92 & A91 & A90 \\
\hline Peak drive limit & OA & 0 & 0 & AA5 & AA4 & AA3 & AA2 & AA1 & AAO \\
\hline Reserved & OB & X & x & x & x & x & x & x & x \\
\hline Control register 1 & OC & SC5 & DELOF & BREN & WPEN & NMEN & VBW2 & VBW1 & VBWO \\
\hline Control register 2 & OD & SATOF & FSWL & FSBL & BCOF & FSDIS2 & FSON2 & FSDIS1 & FSON1 \\
\hline Reserved & OE & x & X & X & X & X & x & x & \(x\) \\
\hline Reserved & OF & X & X & X & X & X & X & X & X \\
\hline
\end{tabular}

Table 2 Cut-off and white level measurement lines.
\begin{tabular}{|c|c|c|c|c|c|c|l|}
\hline VBW2 & VBW1 & VBWO & R & G & B & WHITE & \multicolumn{1}{|c|}{ STANDARD } \\
\hline 0 & 0 & 0 & 19 & 20 & 21 & 22 & PAL/SECAM \\
0 & 0 & 1 & 16 & 17 & 18 & 19 & NTSC/PAL M \\
0 & 1 & 0 & 22 & 23 & 24 & 25 & PAL/SECAM (EB) \(^{2}\) \\
\hline 1 & 0 & 0 & 38,39 & 40,41 & 42,43 & 44,45 & PAL*/SECAM \(^{*}\) \\
1 & 0 & 1 & 32,33 & 34,35 & 36,37 & 38,39 & NTSC*/PAL \(^{*}\) \\
1 & 1 & 0 & 44,45 & 46,47 & 48,49 & 50,51 & PAL*/SECAM \(^{*}(E B)\) \\
\hline
\end{tabular}

Notes to Table 2
1. The line numbers given are those of the horizontal pulse counts after the start of the vertical component of the sandcastle pulse.
2. * line frequency of approximately 31 kHz .
3. (EB) is extended blanking.

Video processor with automatic cut-off and white level control

Table 3 Signal input selection by the fast source switches.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\(1^{2} \mathrm{C}\)-BUS CONTROL BITS} & \multicolumn{2}{|l|}{ANALOG SWITCH SIGNALS} & \multicolumn{3}{|c|}{INPUT SELECTED} \\
\hline FSON2 & FSDIS2 & FSON1 & FSDIS1 & \(\mathrm{FSW}_{2}\)
(pin 1) & FSW 1 (pin 13) & RGB2 & RGB1 & Y/CD \\
\hline L & L & L & L & \[
\begin{aligned}
& L \\
& L \\
& H
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& H \\
& X \\
& \hline
\end{aligned}
\] & ON & ON & ON \\
\hline L & L & L & H & \[
\begin{aligned}
& 1 \\
& \hline \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& x \\
& x \\
& \underline{x} \\
& \hline
\end{aligned}
\] & ON & & ON \\
\hline L & L & H & X & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \hline x \\
& x \\
& \hline
\end{aligned}
\] & ON & ON & \\
\hline L & H & L & L & \[
\begin{aligned}
& \hline x \\
& x \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H} \\
& \hline
\end{aligned}
\] & & ON & ON \\
\hline L & H & L & H & X & X & & & ON \\
\hline L & H & H & X & X & X & & ON & \\
\hline H & X & X & X & X & X & ON & & \\
\hline
\end{tabular}

Note to Table 3
Where L is a logic LOW (<0.4 V), H is a logic \(\mathrm{HIGH}(>0.9 \mathrm{~V}\)), X is 'don't care', and ON is the selected input signal.
Table 4 2-bit white level error signals, CX1 and CXO.
\begin{tabular}{|c|c|l|}
\hline CX1 & CXO & \multicolumn{1}{|c|}{ INTERPRETATION } \\
\hline 0 & 0 & \begin{tabular}{l}
RAR (Reset-After-Read): \\
no new measurements since last read
\end{tabular} \\
\hline 1 & 0 & \begin{tabular}{l}
actual (measured) white level less than \\
the tolerance range
\end{tabular} \\
\hline 1 & 1 & \begin{tabular}{l}
actual (measured) white level within \\
the tolerance range
\end{tabular} \\
\hline 0 & 1 & \begin{tabular}{l}
actual (measured) white level greater than \\
the tolerance range
\end{tabular} \\
\hline
\end{tabular}

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum Rating System (IEC134).
\begin{tabular}{|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & MIN. & \multicolumn{1}{|c|}{ MAX. } & UNIT \\
\hline \(\mathrm{V}_{\mathrm{P}}\) & supply voltage (pin 5) & - & 8.8 & V \\
\hline \(\mathrm{~V}_{\mathrm{I}}\) & \begin{tabular}{l}
input voltage (pins 1 to 8, 10 to 13, 16, \\
21, 23 and 25)
\end{tabular} & -0.1 & \(\mathrm{~V}_{\mathrm{P}}\) & V \\
\cline { 2 - 5 } & input voltage (pins 14, 15, 18 and 19) & -0.7 & \(\mathrm{~V}_{\mathrm{P}}+0.7\) & V \\
\hline & input voltage (pins 27 and 28) & -0.1 & 8.8 & V \\
\hline \(\mathrm{I}_{\text {AV }}\) & average current (pins 20, 22 and 24) & 4 & -10 & mA \\
\hline \(\mathrm{I}_{\mathrm{M}}\) & peak current (pins 20, 22 and 24) & 4 & -20 & mA \\
\hline \(\mathrm{I}_{18}\) & input current & 0 & 2 & mA \\
\hline \(\mathrm{I}_{26}\) & output current & 0.5 & -8 & mA \\
\hline \(\mathrm{~T}_{\text {stg }}\) & storage temperature & -20 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature & 0 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{P}_{\text {tot }}\) & total power dissipation \\
SOT117 \\
& SOT261CG & - & 1.2 & W \\
\hline
\end{tabular}

\section*{CHARACTERISTICS}

All voltages are measured in test circuit of Fig. 8 with respect to GND (pin 9); \(\mathrm{V}_{\mathrm{P}}=8.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}\) :
- at nominal signal amplitudes (black-to-white) at output pins 24, 22 and 20,
- at nominal settings of brightness, contrast, saturation and white level control,
- without beam current or peak drive limiting; unless otherwise specified.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline\(V_{P}\) & supply voltage (pin 5) & & 7.2 & 8.0 & 8.8 & V \\
\hline IP & supply current (pin 5) & & - & 85 & 110 & mA \\
\hline
\end{tabular}

Colour difference inputs
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{6(p-p)}\) & \(-(B-Y)\) input (peak-to-peak value) & notes 1 and 2 & - & 1.33 & - & \(V\) \\
\hline\(V_{7(p-p)}\) & \(-(R-Y)\) input (peak-to-peak value) & notes 1 and 2 & - & 1.05 & - & \(V\) \\
\hline\(V_{6,7}\) & internal DC bias voltage & at black level clamping & - & 3.1 & - & \(V\) \\
\hline\(I_{6,7}\) & input current & during line scan & - & - & \(\pm 0.1\) & \(\mu \mathrm{~A}\) \\
\hline & & at black level clamping & \(\pm 100\) & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{R}_{6,7}\) & input resistance & & 10 & - & - & \(\mathrm{M} \Omega\) \\
\hline
\end{tabular}

Luminance/sync (VBS)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathrm{V}_{\mathrm{i} \text { (p-p) }}\) & luminance input at pin 8 (peak-to-peak value) & note 2 & - & 0.45 & - & V \\
\hline \(\mathrm{V}_{8}\) & internal DC bias voltage & at black level clamping & - & 3.1 & - & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{8}\)} & \multirow[t]{2}{*}{input current} & during line scan & - & - & \(\pm 0.1\) & \(\mu \mathrm{A}\) \\
\hline & & at black level clamping & \(\pm 100\) & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{R}_{8}\) & input resistance & & 10 & - & - & \(\mathrm{M} \Omega\) \\
\hline \multicolumn{7}{|l|}{\(\mathbf{R}_{1}, G_{1}\) and \(B_{1}\) inputs} \\
\hline \(\mathrm{V}_{\mathrm{i}(\mathrm{p}-\mathrm{p})}\) & black-to-white input signals at pins 10, 11 and 12 (peak-to-peak value) & note 2 & - & 0.7 & - & V \\
\hline \(\mathrm{V}_{10 / 11 / 12}\) & internal DC bias voltage & at black level clamping & - & 5.3 & - & V \\
\hline \multirow[t]{2}{*}{10/11/12} & \multirow[t]{2}{*}{input current} & during line scan & - & - & \(\pm 0.1\) & \(\mu \mathrm{A}\) \\
\hline & & at black level clamping & \(\pm 100\) & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{R}_{10 / 11 / 12}\) & input resistance & & 10 & - & - & \(\mathrm{M} \Omega\) \\
\hline
\end{tabular}
\(\mathbf{R}_{\mathbf{2}}, \mathbf{G}_{2}\) and \(\mathrm{B}_{2}\) inputs
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathrm{V}_{\mathrm{i}(\mathrm{p}-\mathrm{p})}\) & black-to-white input signals at pins 2, 3 and 4 (peak-to-peak value) & note 2 & - & 0.7 & - & V \\
\hline \(\mathrm{V}_{2 / 3 / 4}\) & internal DC bias voltage & at black level clamping & - & 5.3 & - & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{2 / 3 / 4}\)} & \multirow[t]{2}{*}{input current} & during line scan & - & - & \(\pm 0.1\) & \(\mu \mathrm{A}\) \\
\hline & & at black level clamping & \(\pm 100\) & - & - & \(\mu \mathrm{A}\) \\
\hline R2/3/4 & input resistance & & 10 & - & - & \(\mathrm{M} \Omega\) \\
\hline \multicolumn{7}{|l|}{PAL/SECAM and NTSC matrix (notes 3 and 4)} \\
\hline & PALSECAM matrix & control bit NMEN \(=0\) & & & & \\
\hline & NTSC matrix & control bit NMEN = 1 & & & & \\
\hline
\end{tabular}

Fast signal switch FSW \({ }_{1}\) to select \(Y, C D\) or \(R_{1}, G_{1}, B_{1}\) inputs
(control bits: see Table 3)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{13}\) & voltage to select \(Y\) and \(C D\) & & - & - & 0.4 & \(V\) \\
\hline & voltage range to select \(R_{1}, G_{1}, B_{1}\) & & 0.9 & - & 5.0 & V \\
\hline\(R_{13}\) & internal resistance to ground & & - & 4.0 & - & \(\mathrm{k} \Omega\) \\
\hline\(\Delta \mathrm{t}\) & \begin{tabular}{l}
difference between transit times for \\
signal switching and signal insertion
\end{tabular} & & - & - & 10 & ns \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Fast signal switch FSW 2 to select \(Y, C D / R_{1}, G_{1}, B_{1}\) or \(R_{2}, G_{2}, B_{2}\) inputs (control bits: see Table 3)} \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{1}\)} & voltage to select \(Y, C D / R_{1}, G_{1}, B_{1}\) & & - & - & 0.4 & V \\
\hline & voltage range to select \(\mathrm{R}_{2}, \mathrm{G}_{2}, \mathrm{~B}_{2}\) & & 0.9 & - & 5.0 & V \\
\hline \(\mathrm{R}_{1}\) & internal resistance to ground & & - & 4.0 & - & \(\mathrm{k} \Omega\) \\
\hline \(\Delta t\) & difference between transit times for signal switching and signal insertion & & - & - & 10 & ns \\
\hline
\end{tabular}

\section*{Saturation adjust}
acts on internal RGB signals under \(I^{2} \mathrm{C}\)-bus control, sub-address 01 Hex (bit resolution \(1.5 \%\) of maximum saturation);
data byte 3FHex for maximum saturation data byte \(\mathbf{2 3}_{\text {Hex }}\) for nominal saturation data byte \(00_{\mathrm{Hex}}\) for minimum saturation
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(d_{s}\) & saturation below maximum & at \(23_{\mathrm{Hex}}\) & - & 5 & - & dB \\
\cline { 3 - 7 } & & at \(00 \mathrm{Hex}_{\mathrm{Hex}} \mathrm{f}=100 \mathrm{kHz}\) & - & 50 & - & dB \\
\hline
\end{tabular}

Contrast adjust
acts on internal RGB signals under \(1^{2} C\)-bus control, sub-address 02 Hex (bit resolution \(1.5 \%\) of maximum contrast); data byte 3F Hex for maximum contrast data byte 2CHex for nominal contrast data byte \(\mathbf{0 0 H e x}_{\text {Her minimum contrast }}\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{d}_{\mathrm{c}}\) & contrast below maximum & at 2CHex & - & 3 & - & \(d \mathrm{H}\) \\
\cline { 3 - 7 } & at 00 Hex & - & 22 & - & dB \\
\hline
\end{tabular}

Brightness adjust
acts on internal RGB signals under \(1^{2} \mathrm{C}\)-bus control, sub-address \(\mathbf{0 0 H e x ~}_{\text {(bit resolution }} 1.5 \%\) of brightness range); data byte 3FHex for maximum brightness data byte 27 Hex for nominal brightness data byte \(\mathrm{OOHex}^{\mathrm{H}}\) for minimum brightness
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline dbr & \begin{tabular}{l}
black level shift of nominal signal \\
amplitude referred to cut-off \\
measurement level
\end{tabular} & at 3FHex & - & 30 & - & \(\%\) \\
\cline { 2 - 6 } & at OOHex & - & -50 & - & \(\%\) \\
\hline
\end{tabular}

White potentiometers, under \({ }^{2} \mathrm{C}\)-bus control,
sub-addresses 04Hex (red), 05 thex (green) and 06Hex (blue); see note 5. data byte 3FHex for maximum gain data byte 22Hex for nominal gain data byte \(00_{\text {Hex }}\) for minimum gain
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(\Delta \mathrm{G}_{v}\) & \begin{tabular}{l}
relative to nominal gain: \\
increase of gain \\
decrease of gain
\end{tabular} & at 3FHex & - & 60 & - & \(\%\) \\
\cline { 2 - 6 } & at 00Hex & - & 60 & - & \(\%\) \\
\hline
\end{tabular}

\section*{Video processor with automatic cut-off and white level control}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
RGB outputs pins 24, 22 and 20 \\
(positive going output signals and no peak drive limitation; sub-address \(0 A_{H e x}=3 F_{\text {Hex }}\)); see note 6.
\end{tabular}} \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{0 \text { (b-w) }}\)} & nominal output signals (black-to-white value) & & - & 2 & - & V \\
\hline & maximum output signals (black-to-white value) & & 3.2 & - & - & V \\
\hline \(\Delta \mathrm{V}_{0}\) & spread between RGB output signals & & - & - & 10 & \% \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{0}\)} & minimum output voltages & & - & - & 0.8 & V \\
\hline & maximum output voltages & & 6.8 & - & - & \(V\) \\
\hline V24,22,20 & voltage of cut-off measurement line & output clamping
\[
(B C O F=1)
\] & 2.3 & 2.5 & 2.7 & V \\
\hline lint & internal current sources & & - & 5.0 & - & mA \\
\hline Ro & output resistance & & - & 65 & 110 & \(\Omega\) \\
\hline \multicolumn{7}{|l|}{Frequency response} \\
\hline \multirow[t]{4}{*}{d} & frequency response of \(Y\) path (from pin 8 to pins 24, 22, 20) & \(\mathrm{f}=10 \mathrm{MHz}\) & - & - & 3 & dB \\
\hline & frequency response of CD path (from pins 7 to 24 and 6 to 20) & \(\mathrm{f}=8 \mathrm{MHz}\) & - & - & 3 & dB \\
\hline & frequency response of RGB 1 path (from pins 10 to 24,11 to 22 and 12 to 20) & \(\mathrm{f}=10 \mathrm{MHz}\) & - & - & 3 & dB \\
\hline & frequency response of \(\mathrm{RGB}_{2}\) path (from pins 2 to 24, 3 to 22 and 4 to 20) & \(\mathrm{f}=10 \mathrm{MHz}\) & - & - & 3 & dB \\
\hline \multicolumn{7}{|l|}{Sandcastle pulse detector (control bit SC5 =0) three level; notes 7 and 8} \\
\hline \multirow[t]{3}{*}{\(\mathrm{V}_{14}\)} & \multirow[t]{3}{*}{required voltage range. for H and V blanking pulses for H pulses (line count) for burst key pulses} & & 2.0 & 2.5 & 3.0 & V \\
\hline & & & 4.0 & 4.5 & 5.0 & V \\
\hline & & & 6.3 & - & \(V p+0.7\) & V \\
\hline \multicolumn{7}{|l|}{Sandcastie puise detector (control bit SC5 = 1) two level; note 7} \\
\hline \multirow[t]{2}{*}{\(V_{14}\)} & \multirow[t]{2}{*}{required voltage range for H and V blanking pulses for burst key pulses} & & 2.0 & 2.5 & 3.0 & V \\
\hline & & & 4.0 & 4.5 & \(V_{P}+0.7\) & V \\
\hline \multicolumn{7}{|l|}{Sandcastle pulse detector} \\
\hline 114 & input current & \(V_{14}=0 \mathrm{~V}\) & - & - & 100 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{td} & \multirow[t]{2}{*}{leading edge delay of the clamping pulse} & control bit DELOF \(=0\) & - & 1.5 & - & \(\mu \mathrm{s}\) \\
\hline & & control bit DELOF \(=1\) & - & 0 & - & \(\mu \mathrm{s}\) \\
\hline \multirow[t]{2}{*}{tBk} & \multirow[t]{2}{*}{required burst key pulse time} & control bit DELOF \(=0\); normally used with fL & 3 & - & - & \(\mu \mathrm{s}\) \\
\hline & & control bit DELOF = 1; normally used with 2 it & 1.5 & - & - & \(\mu \mathrm{s}\) \\
\hline \multirow[t]{2}{*}{npulse} & \multirow[t]{2}{*}{required horizontal or burst key pulses during vertical blanking interval} & e.g. at interlace scan (VBW2 = 0) & 4 & - & 29 & \\
\hline & & e.g. at progressive line scan (VBW2 = 1) & 8 & - & 57 & \\
\hline
\end{tabular}

Video processor with automatic cut-off and white level control
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Average beam current limiting (note 9)} \\
\hline \(\mathrm{V}_{\text {c(15) }}\) & contrast reduction starting voltage & & - & 4.0 & - & \(V\) \\
\hline \(\Delta V_{c}(15)\) & voltage difference for full contrast reduction & & - & -2.0 & - & V \\
\hline \(\mathrm{V}_{\mathrm{br} \text { (15) }}\) & brightness reduction starting voltage & & - & 2.5 & - & V \\
\hline \(\Delta \mathrm{V}_{\mathrm{br}(15)}\) & voltage difference for full brightness reduction & & - & -1.6 & - & V \\
\hline \multicolumn{7}{|l|}{Peak drive limiting voltage (note 10) internal peak drive limiting level (\(\mathrm{V}_{\text {pdI }}\)) acts on RGB outputs under \(1^{2} \mathrm{C}\)-bus control, sub-address OAHex} \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{20 / 22 / 24}\)} & level for minimum RGB outputs & at byte 00 Hex & - & - & 3.0 & \(V\) \\
\hline & level for maximum RGB outputs & at byte 3FHex & 6.5 & - & - & \(V\) \\
\hline \multirow[t]{2}{*}{\(l_{16}\)} & charge current & & - & -1 & - & \(\mu \mathrm{A}\) \\
\hline & discharge current & during peak white & - & 5 & - & mA \\
\hline \(V_{16}\) & internal voltage limitation & & 4.5 & - & - & V \\
\hline \(\mathrm{V}_{\mathrm{c}}(16)\) & contrast reduction starting voltage & & - & 4.0 & - & V \\
\hline \(\Delta \mathrm{V}_{\mathrm{c}(16)}\) & voltage difference for full contrast reduction & & - & -2.0 & - & V \\
\hline V br(16) & brightness reduction starting voltage & & - & 2.5 & - & V \\
\hline \(\Delta \mathrm{V}_{\mathrm{br}(16)}\) & voltage difference for full brightness reduction & & - & -1.6 & - & V \\
\hline \multicolumn{7}{|l|}{Automatic cut-off and white level control (notes 11, 12 and 13) see Fig. 10} \\
\hline \(\mathrm{V}_{19}\) & permissible voltage (also during scanning period) & & - & - & \(V_{P}-1.4\) & V \\
\hline \multirow[t]{3}{*}{\(\mathrm{l}_{19}\)} & output current & & - & - & -140 & \(\mu \mathrm{A}\) \\
\hline & input current & & 150 & - & - & \(\mu \mathrm{A}\) \\
\hline & additional input current & during monitor pulse & - & 0.5 & - & mA \\
\hline \(\mathrm{V}_{24,22,20}\) & monitor pulse amplitude (under \(1^{2}\) C-bus control, sub-address OAHex) & switch-on delay 1 & - & \(\mathrm{V}_{\text {pdl }}-0.7\) & - & V \\
\hline \multirow[t]{2}{*}{V19} & voltage threshold for picture tube cathode warm-up & switch-on delay 1 & - & 5.0 & - & V \\
\hline & internally controlled voltage (Vref) & during leakage measurement period & - & 3.0 & - & V \\
\hline \multicolumn{7}{|l|}{data byte 07Hex for red reference level data byte 08Hex for green reference level data byte 09Hex for blue reference level} \\
\hline \multirow[t]{3}{*}{\(\Delta \mathrm{V}_{19}\)} & \multirow[t]{3}{*}{difference between VMEAS (cut-off or white level measurement voltage) and Vaef} & 3FHex (maximum Vmeas) & 1.5 & - & - & V \\
\hline & & 20Hex (nominal Vmeas) & - & 1.0 & - & V \\
\hline & & \(00_{\text {Hex (}}\) (minimum VmEAS) & - & - & 0.5 & V \\
\hline \(\mathrm{l}_{18}\) & input current & white level measurement & - & - & 800 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{R}_{18}\) & internal resistance & to VREF; \(1_{18} \leq 800 \mu \mathrm{~A}\) & - & 100 & - & \(\Omega\) \\
\hline \(\Delta \mathrm{V}_{19}\) & white level register (measured value within tolerance range) & white level measurement & - & 250 & \(-\) & mV \\
\hline
\end{tabular}

\section*{Video processor with automatic cut-off}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Cut-off storage} \\
\hline \multirow[t]{2}{*}{121/23/25} & charge and discharge currents & during cut-off measurement lines & - & \(\pm 0.3\) & - & mA \\
\hline & current & outside measurement & - & - & \(\pm 0.1\) & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{Leakage storage} \\
\hline \multirow[t]{2}{*}{177} & charge and discharge currents & during leakage measurement period & - & \(\pm 0.4\) & - & mA \\
\hline & current & outside measurement & - & - & \(\pm 0.1\) & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{17}\) & voltage for reset to switch-on below & & - & <3.0 & - & V \\
\hline
\end{tabular}

Hue control (note 14)
under \(\mathrm{I}^{2} \mathrm{C}\)-bus control, sub-address \(03_{\text {Hex }}\)
data byte 3FHex for maximum voltage
data byte \(\mathbf{2 0 H e x}^{20}\) for nominal voltage
data byte \(00_{\text {Hex }}\) for minimum voltage
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\(\mathrm{V}_{26}\)} & \multirow[t]{3}{*}{output voltage} & at byte 3FHex & 4.8 & - & - & V \\
\hline & & at byte 20\% \({ }^{\text {20x }}\) & - & 3.0 & - & V \\
\hline & & at byte \(0^{00} \mathrm{Hex}\) & - & - & 1.0 & V \\
\hline lint & current of the internal current source at pin 26 & & 500 & - & - & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{\(1^{2}\) C-bus transcelver clock SCL (pin 28)} \\
\hline fSCL & input frequency range & & 0 & - & 100 & kHz \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & - & - & 1.5 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & HIGH level input voitage & & 3.0 & - & 6 & \(V\) \\
\hline IIL & LOW level input current & & - & - & -10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{IH}_{\mathrm{H}}\) & HIGH level input current & & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{td} & pulse delay time LOW & & 4.7 & - & - & \(\mu \mathrm{s}\) \\
\hline & pulse delay time HIGH & & 4.0 & - & - & \(\mu \mathrm{s}\) \\
\hline trs & rise time & & - & - & 1.0 & \(\mu \mathrm{s}\) \\
\hline \({ }_{4}{ }_{1}\) & fall time & & - & - & 0.3 & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}
\(1^{2} \mathrm{C}\)-bus transceiver data input/output SDA (pin 27)
\begin{tabular}{|c|c|c|c|c|c|}
\hline VIL & LOW level input voltage & - & - & 1.5 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & HIGH level input voltage & 3.0 & - & 6 & V \\
\hline IIL & LOW level input current & - & - & -10 & \(\mu \mathrm{A}\) \\
\hline IIH & HIGH level input current & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline loL & LOW level output current & 3.0 & - & - & mA \\
\hline \(\mathrm{tr}_{\mathbf{r}}\) & rise time & - & - & 1.0 & \(\mu \mathrm{s}\) \\
\hline tf & fall time & - & - & 0.3 & \(\mu \mathrm{s}\) \\
\hline tsu; & data set-up time & 0.25 & - & - & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

\section*{Notes to the characteristics}
1. The values of the - \((B-Y)\) and \(-(R-Y)\) colour difference input signals are for a \(75 \%\) colour-bar signal.
2. The pins are capacitively coupled to a low ohmic source, with a recommended maximum output impedance of \(600 \Omega\).
3. PALSECAM signals are matrixed by the equation: \(V_{G-Y}=-0.51 \mathrm{~V}_{\mathrm{R}-\mathrm{Y}}-0.19 \mathrm{~V}_{\mathrm{B}}-\mathrm{Y}\)

NTSC signals are matrixed by the equations (hue phase shift of -5 degrees):
\(V_{R-Y^{*}}=1.57 V_{R-Y}-0.41 V_{B-Y ;} V_{G-Y}=-0.43 V_{R-Y}-0.11 V_{B-Y ;} V_{B-Y}=V_{B-Y}\)
In the matrix equations: \(V_{R-Y}\) and \(V_{B-Y}\) are conventional PAL demodulation axes and amplitudes at the output of the NTSC demodulator. \(V_{G-Y^{*},} V_{R-Y^{*}}\) and \(V_{B-}-Y^{*}\) are the NTSC-modified colour difference signals; this is equivalent to the following demodulator axes and amplification factors:
\begin{tabular}{l|l|l}
& NTSC & PAL \\
\hline\((\mathrm{B}-\mathrm{Y})^{*}\) demodulator axis & \(0^{\circ}\) & \(0^{\circ}\) \\
\hline\((\mathrm{R}-\mathrm{Y})^{*}\) demodulator axis & \(115^{\circ}\) & \(90^{\circ}\) \\
\hline\((\mathrm{R}-\mathrm{Y})^{*}\) amplification factor & 1.97 & 1.14 \\
\hline\((\mathrm{~B}-\mathrm{Y})^{*}\) amplification factor & 2.03 & 2.03
\end{tabular}
\(V_{G-Y^{*}}=-0.27 V_{R-Y^{*}}-0.22 V_{B-Y^{*}}\).
4. The vertical blanking interval is selected via the \(I^{2} \mathrm{C}\)-bus (see Table 2 and Fig.10). Vertical blanking is determined by the vertical component of the sandcastle pulse; this vertical component has priority when it is longer than the vertical blanking interval of the transmission standard.
5. The white potentiometers affect the amplitudes of the RGB output signals including the white measurement pulses.
6. The RGB outputs at pins 24, 22 and 20 are emitter followers with current sources.
7. Sandcastle pulses are compared with internal threshold voltages independent of \(V_{p}\). The threshold voltages separate the components of the sandcastle pulse. The particular component is generated when the voltage on pin 14 exceeds the defined internal threshold voltage. The internal threshold voltages (control bit SC5 = 0) are:
1.5 V for horizontal and vertical blanking pulses (H and V blanking pulses),
3.5 V for horizontal pulses,
6.0 V for the burst key pulse.

The internal threshold voltages, control bit SC5 \(=1\), are:
1.5 V for horizontal and vertical blanking pulses,
3.5 V for the burst key pulse.
8. A sandcastle pulse with a maximum voltage equal to \((\mathrm{Vp}+0.7 \mathrm{~V})\) is obtained by limiting a 12 V sandcastle pulse.
9. Average beam current limiting reduces the contrast, at minimum contrast it reduces the brightness.
10. Peak drive limiting reduces the RGB outputs by reducing the contrast, at minimum contrast it reduces the brightness. The maximum RGB outputs are determined via the \(I^{2} C\)-bus under sub-address \(O A_{\text {Hex. }}\). When an RGB output exceeds the maximum voltage, peak drive limiting is delayed by one horizontal line.
11. The vertical blanking interval is defined by a \(V\) pulse which contains 4 (8) or more \(H\) pulses; it begins with the start of the \(V\) pulse and ends with the end of the white measuring line. If the \(V\) pulse is longer than the selected vertical blanking window the blanking period ends with the end of the complete line after the end of the V pulse. The counter. cycle time is 31 (63) H pulses. If the V pulse contains more than 29 (57) H pulses, the black level storage capacitors will be discharged while all signals are blanked. During leakage current measurement, the RGB channels are blanked to ultra-black level. During cut-off measurement one channel is set to the measurement pulse level, the other channels are blanked to ultra-black. Since the brightness adjust shifts the colour signal relative to the black level, the brightness adjust is disabled during the vertical blanking interval (see Figs 9 and 10).
12. During picture cathode warm-up (first switch-on delay) the RGB outputs (pins 24, 22 and 20) are blanked to the ultra-black level during line scan. During the vertical blanking interval a white-level monitor pulse is fed out on the RGB outputs and the cathode currents are measured. When the voltage threshold on pin 19 is greater than 5.0 V , the monitor pulse is switched off and cut-off and white level control are activated (second switch-on delay). As soon as cut-off control stabilize, RGB output blanking is removed.
13. Range of cut-off measurement level at the RGB outputs is 1 to 5 V . The recommended value is 3 V .
14. The hue control output at pin 26 is an emitter follower with current source.

\section*{Video processor with automatic cut-off} and white level control

Fig. 8 Test and application circuit.

Fig. 9 Cut-off and white level measurement oulses.

\section*{Video processor with automatic cut-off and white level control}

\section*{}

Fig. 10 Leakage current, cut-off and white level current measurement timing diagram.

\section*{FEATURES}
- Intended for double line frequency application (\(100 / 120 \mathrm{~Hz}\))
- Operates from an 8 V DC supply
- Black level clamping of the colour difference, luminance and RGB input signals with coupling-capacitor DC level storage
- Two analog RGB inputs, selected either by fast switch signals or the \(\mathrm{I}^{2} \mathrm{C}\)-bus; brightness and contrast control of these RGB inputs
- Saturation, contrast, brightness and white adjustment via \(I^{2} \mathrm{C}\)-bus
- Same RGB output black levels for Y/CD and RGB input signals
- Timing pulse generation from either a 2- or 3-level sandcastle pulse for clamping, vertical synchronization and cut-off timing pulses
- Automatic cut-off control or clamped output selectable via \(1^{2} \mathrm{C}\)-bus
- Automatic cut-off control with picture tube leakage current compensation
- Cut-off measurement pulses after end of the vertical blanking pulse or end of an extra vertical flyback pulse
- Increased RGB signal bandwidths
- Two switch-on delays to prevent discolouration before steady-state operation
- Average beam current and peak drive limiting
- PAL/SECAM or NTSC matrix selection via \(1^{2} \mathrm{C}\)-bus
- Emitter-follower RGB output stages to drive the video output stages
- \(1^{2}\) C-bus controiled DC output e.g. for hue-adjust of NTSC (multistandard) decoders
- No delay of clamping pulse
- Large luminance, colour difference and RGB bandwidth

\section*{GENERAL DESCRIPTION}

The TDA4686 is a monolithic, integrated circuit with a luminance and a colour difference interface for video processing in TV receivers.
(continued)

QUICK REFERENCE DATA
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN. & TYP. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\mathrm{P}}\) & supply voltage (pin 5) & 7.2 & 8.0 & 8.8 & V \\
\hline IP & supply current (pin 5) & - & 60 & - & mA \\
\hline \(V_{8(p-p)}\) & luminance input (peak-to-peak value) & - & 0.45 & - & V \\
\hline \(\mathrm{V}_{6(p-p)}\) & -(B-Y) input (peak-to-peak value) & - & 1.33 & - & V \\
\hline \(V_{7(p-p)}\) & -(R-Y) input (peak-to-peak value) & - & 1.05 & - & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{14}\)} & \begin{tabular}{l}
three-level sandcastle pulse \(\mathrm{H}+\mathrm{V}\) \\
H \\
BK
\end{tabular} & \[
-
\] & \[
\begin{array}{|l|}
\hline 2.5 \\
4.5 \\
8.0
\end{array}
\] & \[
-
\] & \[
\begin{aligned}
& V \\
& V \\
& V
\end{aligned}
\] \\
\hline & two-level sandcastie pulse
\[
\mathrm{H}+\mathrm{V}
\]
BK & - & \[
\begin{aligned}
& 2.5 \\
& 4.5
\end{aligned}
\] & \[
1-
\] & \[
\begin{aligned}
& V \\
& V
\end{aligned}
\] \\
\hline Vi & RGB input signals at pins \(2,3,4,10\), 11 and 12 (black-to-white value) & - & 0.7 & - & V \\
\hline \(V_{o(p-p)}\) & RGB outputs at pins 24, 22 and 20 (peak-to-peak value) & - & 2.0 & - & V \\
\hline Tamb & operating ambient temperature & 0 & - & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{EXTENDED
TYPE NUMBER} & \multicolumn{4}{|c|}{PACKAGE} \\
\hline & PINS & PIN POSITION & MATERIAL & CODE \\
\hline TDA4686 & 28 & DIL & plastic & SOT117 \\
\hline TDA4686WP & 28 & PLCC & plastic & SOT261CG \\
\hline
\end{tabular}

Video processor with automatic cut-off control

PINNING
\begin{tabular}{|l|c|l|}
\hline SYMBOL & PIN & \multicolumn{1}{|c|}{ DESCRIPTION } \\
\hline FSW \(_{2}\) & 1 & fast switch 2 input \\
\hline\(R_{2}\) & 2 & red input 2 \\
\hline\(G_{2}\) & 3 & green input 2 \\
\hline\(B_{2}\) & 4 & blue input 2 \\
\hline\(V_{p}\) & 5 & supply voltage \\
\hline\(-(B-Y)\) & 6 & colour difference input -(B-Y) \\
\hline\(-(R-Y)\) & 7 & colour difference input -(R-Y) \\
\hline\(Y\) & 8 & luminance input \\
\hline\(G_{N D}\) & 9 & ground \\
\hline\(R_{1}\) & 10 & red input 1 \\
\hline\(G_{1}\) & 11 & green input 1 \\
\hline\(B_{1}\) & 12 & blue input 1 \\
\hline FSW & 13 & fast switch 1 input \\
\hline SC & 14 & sandcastle pulse input \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline BCL & 15 & average beam current limiting input \\
\hline CPDL & 16 & storage capacitor for peak drive limiting \\
\hline \(\mathrm{C}_{\mathrm{L}}\) & 17 & storage capacitor for leakage current \\
\hline \(V_{\text {FB }}\) & 18 & vertical flyback pulse input \\
\hline Cl & 19 & cut-off measurement input \\
\hline Bo & 20 & blue output \\
\hline \(\mathrm{C}_{\mathrm{B}}\) & 21 & blue cut-off storage capacitor \\
\hline Go & 22 & green output \\
\hline \(\mathrm{C}_{\mathrm{G}}\) & 23 & green cut-off storage capacitor \\
\hline Ro & 24 & red output \\
\hline \(\mathrm{C}_{\text {R }}\) & 25 & red cut-off storage capacitor \\
\hline HUE & 26 & hue control output \\
\hline SDA & 27 & \(1^{2} \mathrm{C}\)-bus serial data input / acknowledge output \\
\hline SCL & 28 & \(\mathrm{I}^{2} \mathrm{C}\)-bus serial clock input \\
\hline
\end{tabular}

\section*{GENERAL DESCRIPTION}
(continued)
Its primary function is to process the luminance and colour difference signals from a colour decoder which is equipped e. g. with the multistandard decoder TDA4655 or TDA9160 plus delayline tda4661 and the Picture Signal Improvement (PSI) IC TDA467X or from a Feature Module. The required input signals are:
- luminance and negative colour difference signals
-2- or 3-level sandcastle pulse for internal timing pulse generation
\(-1^{2} \mathrm{C}\)-bus data and clock signals for microprocessor control.
Two sets of analog RGB colour signals can also be inserted, e.g. one from a peritelevision connector and the other from an on-screen display generator. The TDA4686 has \(1^{2} \mathrm{C}\)-bus control of all parameters and functions with automatic cut-off control of the picture tube cathode currents. It provides RGB output signals for the video output stages.
The TDA4686 is a simplified, pin compatible (except pin 18) version of the TDA4680. The module address via the \(I^{2} \mathrm{C}\)-bus can be used for both ICs; where a function is not included in the TDA4686 then the \(1^{2} \mathrm{C}\)-bus command is not executed. The differences with the TDA4680 are:
- no automatic white level control; the white levels are determined directly by the \(\mathrm{I}^{2} \mathrm{C}\)-bus data
-RGB reference levels for automatic cut-off control are not adjustable via \(I^{2} \mathrm{C}\)-bus
- no clamping delay
- only contrast and brightness adjust for the RGB input signals
- the measurement lines are triggered either by the trailing edge of the vertical component of the sandcastle pulse or by the trailing edge of an optional external
vertical flyback pulse (on pin 18), according to which occurs first.
The TDA4685 is like TDA4686 but intended for normal line frequency application.

\section*{\(1^{2} \mathrm{C}\)-BUS CONTROL}

The \(I^{2} \mathrm{C}\)-bus transmitter provides the data bytes to select and adjust the following functions and parameters:
- brightness adjust
- saturation adjust
- contrast adjust
-DC output e. g. for hue control
- RGB gain adjust
- peak drive limiting level adjust
- selects either 3 -level or 2 -level
(5 V) sandcastle pulse
- enables cut-off control / enables output clamping
- selects either PAL/SECAM or NTSC matrix
- enables/disables synchronization of the execution of \(1^{2} C\)-bus commands with the vertical blanking interval
- enables Y-CD, RGB1 or RGB2 input.

\section*{\(I^{2} \mathrm{C}\)-BUS TRANSMITTER ANDDATA TRANSFER}

\section*{\(1^{2} \mathrm{C}\)-bus specification}

The \(I^{2} \mathrm{C}\)-bus is a bi-directional, two-wire, serial data bus for intercommunication between ICs in an equipment. The microcontroller transmits data to the \(I^{2} \mathrm{C}\)-bus receiver in the TDA4686 over the serial data line SDA (pin 27) synchronized by the serial clock line SCL (pin 28). Both lines are normally connected to a positive voltage supply through pull-up resistors. Data is transferred when the SCL line is LOW. When SCL is HIGH the serial data line SDA must be stable. A HIGH-to-LOW transition of the SDA line when SCL is HIGH is defined as a start bit.
A LOW-to-HIGH transition of the SDA line when SCL is HIGH is defined as a stop bit. Each transmission must start with a start bit and end with a stop bit. The bus is busy after a start bit and is only free again after a stop bit has been transmitted.

Fig. 4 The module address byte.

Fig. 5 Data transmission without auto-increment (BREN \(=0\) or 1).

Fig. 6 Data transmission with auto-increment (BREN \(=0\)).

\section*{\(\mathrm{I}^{2} \mathrm{C}\)-bus receiver}
(microcontroller write mode) Each transmission to the \(1^{2} \mathrm{C}\)-bus receiver consists of at least three bytes following the start bit. Each byte is acknowledged by an acknowledge bit immediately following each byte. The first byte is the Module ADdress (MAD) byte, also called slave address byte. This includes the module address, 10001002 for the TDA4686. The TDA4686 is a slave receiver (\(\mathrm{R} \overline{\mathrm{W}}=0\)), therefore the module address byte is \(10001000_{2}\) (88 Hex), see Fig. 4.
The length of a data transmission is unrestricted, but the module address and the correct sub-address must be transmitted before the data byte(s). The order of data transmission is shown in Fig. 5 and
Fig.6. Without auto-increment
(BREN = 0 or 1) the Module ADdress (MAD) byte is followed by a Sub-ADdress (SAD) byte and one data byte only (Fig.5).

\section*{Auto-increment}

The auto-increment format enables quick slave receiver initialization by one transmission, when the \(I^{2} C\)-bus control bit BREN = 0 (see control register bits of Table 1). If \(\mathrm{BREN}=1\) auto-increment is not possible. If the auto-increment format is selected, the MAD byte is followed by an SAD byte and by the data bytes of consecutive sub-addresses (Fig.6).
All sub-addresses from 00 to OF are automatically incremented, the sub-address counter wraps round from OF to 00 . Reserved sub-addresses 07, 08, 09, OB, OE and OF are treated as legal but have no effect. Sub-addresses outside the range 00 and \(0 F\) are not acknowledged by the device.
The sub-addresses are stored in the TDA4686 to address the following parameters and functions, see Table 1:
- brightness adjust
- saturation adjust
- contrast adjust
- hue control voltage
-RGB gain adjust
- peak drive limiting adjust
- control register functions.

The data bytes (D7-D0 of Table 1) provide the data of the parameters and functions for video processing.

\section*{Control register 1}

NMEN (NTSC-Matrix ENable):
\(0=\) PALSECAM matrix
1 = NTSC matrix.
BREN (Buffer Register ENable):
\(0=\) new data is executed as soon as it is received 1 = data is stored in buffer registers and is transferred to the data registers during the next vertical blanking interval. The \(\mathrm{I}^{2} \mathrm{C}\)-bus receiver does not accept any new data until this data is transferred into the data registers.
SC5 (SandCastle 5 V):
\(0=3\)-level sandcastle pulse \(1=2\)-level (5 V) sandcastle pulse.

\section*{Control register 2}

FSON2 - Fast Switch 2 ON
FSDIS2 - Fast Switch 2 DISable
FSON1 - Fast Switch 1 ON
FSDIS1 - Fast Switch 1 DISable
The RGB input signals are selected by FSON2 and FSON1 or FSW 2 and \(\mathrm{FSW}_{1}\) :
- FSON2 has priority over FSON1;
- FSW 2 has priority over \(\mathrm{FSW}_{1}\);
- FSDIS1 and FSDIS2 disable FSW 1 and FSW \(_{2}\) (see Table 2).
BCOF - Black level Control OFf:
\(0=\) automatic cut-off control enabled 1 = automatic cut-off control disabled; RGB outputs are clamped to fixed DC levels.

When the supply voltage has dropped below approximately 6.0 V (usually occurs when the TV receiver is switched on or the supply voltage is interrupted) all data and function bits are set to 01 Hex.

\section*{Video processor with automatic cut-off control}

Table 1 Sub-address (SAD) and data bytes.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{FUNCTION} & SAD & \multicolumn{3}{|l|}{MSB} & \multicolumn{3}{|l|}{DATA BYTE} & \multicolumn{2}{|r|}{LSB} \\
\hline & (HEX) & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline Brightness & 00 & 0 & 0 & A05 & A04 & A03 & A02 & A01 & A00 \\
\hline Saturation & 01 & 0 & 0 & A15 & A14 & A13 & A12 & A11 & A10 \\
\hline Contrast & 02 & 0 & 0 & A25 & A24 & A23 & A22 & A21 & A20 \\
\hline Hue control voltage & 03 & 0 & 0 & A35 & A34 & A33 & A32 & A31 & A30 \\
\hline Red gain & 04 & 0 & 0 & A45 & A44 & A43 & A42 & A41 & A40 \\
\hline Green gain & 05 & 0 & 0 & A55 & A54 & A53 & A52 & A51 & A50 \\
\hline Blue gain & 06 & 0 & 0 & A65 & A64 & A63 & A62 & A61 & A60 \\
\hline Reserved & 07 & 0 & 0 & x & \(x\) & x & \(x\) & \(x\) & x \\
\hline Reserved & 08 & 0 & 0 & x & x & x & x & x & x \\
\hline Reserved & 09 & 0 & 0 & \(\times\) & x & x & x & x & x \\
\hline Peak drive limit & OA & 0 & 0 & AA5 & AA4 & AA3 & AA2 & AA1 & AAO \\
\hline Reserved & OB & x & \(\times\) & x & X & x & x & x & x \\
\hline Control register 1 & 0 C & SC5 & x & BREN & x & NMEN & x & x & x \\
\hline Control register 2 & OD & x & x & x & BCOF & FSDIS2 & FSON2 & FSDIS1 & FSON1 \\
\hline Reserved & OE & x & x & \(x\) & x & x & x & X & x \\
\hline Reserved & OF & x & x & x & x & x & x & x & x \\
\hline
\end{tabular}

Note to Table 1
\(X\) is 'don't care', but for software compatibility with other or future video ICs it is recommended to set all ' \(X\) ' to ' \(O\) '.

Table 2 Signal input selection by the fast source switches.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\(\mathrm{I}^{2} \mathrm{C}\)-BUS CONTROL BITS} & \multicolumn{2}{|l|}{ANALOG SWITCH SIGNALS} & \multicolumn{3}{|c|}{INPUT SELECTED} \\
\hline FSON2 & FSDIS2 & FSON1 & FSDIS1 & \begin{tabular}{l}
\(\mathrm{FSW}_{2}\) \\
(pin 1)
\end{tabular} & \begin{tabular}{l}
FSW 1 \\
(pin 13)
\end{tabular} & \(\mathrm{RGB}_{2}\) & \(\mathrm{RGB}_{1}\) & Y/CD \\
\hline L & L & L & L & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& H \\
& X \\
& X
\end{aligned}
\] & ON & ON & ON \\
\hline L & L & L & H & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& x \\
& x \\
& x \\
& \hline
\end{aligned}
\] & ON & & ON \\
\hline L & L & H & X & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \hline x \\
& x \\
& \hline
\end{aligned}
\] & ON & ON & \\
\hline L & H & L & L & \[
\begin{aligned}
& \hline x \\
& \mathrm{x} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & & ON & ON \\
\hline L & H & L & H & X & X & & & ON \\
\hline L & H & H & X & X & X & & ON & \\
\hline H & X & X & X & X & X & ON & & \\
\hline
\end{tabular}

Note to Table 2
Where L is a logic LOW (\(<0.4 \mathrm{~V}\)), H is a logic \(\mathrm{HIGH}(>0.9 \mathrm{~V}\)), X is 'don't care', and ON is the selected input signal.

Video processor with automatic cut-off control

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum Rating System (IEC134).
\begin{tabular}{|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN. & MAX. & UNIT \\
\hline VP & supply voltage (pin 5) & - & 8.8 & V \\
\hline \multirow[t]{3}{*}{\(V_{1}\)} & input voltage (pins 1 to 8,10 to 13,16 , 21, 23 and 25) & -0.1 & \(\mathrm{V}_{\mathrm{P}}\) & V \\
\hline & input voltage (pins 15, 18 and 19) & -0.7 & \(\mathrm{V} P+0.7\) & V \\
\hline & input voltage (pins 27 and 28) & -0.1 & 8.8 & \(V\) \\
\hline \(\mathrm{V}_{14}\) & sandcastle pulse voltage & -0.7 & \(V p+5.8\) & V \\
\hline lav & average current (pins 20, 22 and 24) & -10 & 4 & mA \\
\hline IM & peak current (pins 20, 22 and 24) & -20 & 4 & mA \\
\hline 126 & output current & -8 & 0.6 & mA \\
\hline \(\mathrm{T}_{\text {stg }}\) & storage temperature & -20 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Tamb & operating ambient temperature & 0 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{P}_{\text {tot }}\) & total power dissipation SOT117 SOT261CG & - & \[
\begin{aligned}
& 1.2 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& w \\
& w
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Video processor with automatic cut-off control}

\section*{CHARACTERISTICS}

All voltages are measured in test circuit of Fig. 8 with respect to GND (pin 9); \(\mathrm{V}_{\mathrm{P}}=8.0 \mathrm{~V}\); \(\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}\) :
- at nominal signal amplitudes (black-to-white) at output pins 24, 22 and 20,
- at nominal settings of brightness, contrast, saturation and white level control,
- without beam current or peak drive limiting; unless otherwise specified.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\mathrm{P}}\) & supply voltage (pin 5) & & 7.2 & 8.0 & 8.8 & V \\
\hline IP & supply current \((\operatorname{pin} 5)\) & & - & 60 & - & mA \\
\hline
\end{tabular}

\section*{Colour difference inputs}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{V}_{6(p-p)}\) & \(-(\mathrm{B}-\mathrm{Y})\) input (peak-to-peak value) & notes 1 and 2 & - & 1.33 & - & V \\
\hline \(\mathrm{V}_{7(p-p)}\) & \(-(\mathrm{R}-\mathrm{Y})\) input (peak-to-peak value) & notes 1 and 2 & - & 1.05 & - & V \\
\hline \(\mathrm{V}_{6,7}\) & internal DC bias voltage & at black level clamping & - & 4.1 & - & V \\
\hline \multirow{7}{*}{} & input current & during line scan & - & - & \(\pm 0.1\) & \(\mu \mathrm{~A}\) \\
\cline { 3 - 6 } & & at black level clamping & \(\pm 100\) & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{R}_{6.7}\) & input resistance & & 10 & - & - & \(\mathrm{M} \Omega\) \\
\hline
\end{tabular}

Luminance/sync (VBS)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathrm{V}_{\text {i(p-p }}\) & luminance input at pin 8 (peak-to-peak value) & note 2 & - & 0.45 & - & V \\
\hline \(\mathrm{V}_{8}\) & internal DC bias voltage & at black level clamping & - & 4.1 & - & V \\
\hline \multirow[t]{2}{*}{18} & \multirow[t]{2}{*}{input current} & during line scan & - & - & \(\pm 0.1\) & \(\mu \mathrm{A}\) \\
\hline & & at black level clamping & \(\pm 100\) & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{R}_{8}\) & input resistance & & 10 & - & - & \(\mathrm{M} \Omega\) \\
\hline \multicolumn{7}{|l|}{\(\mathbf{R}_{1}, \mathbf{G}_{1}\) and \(B_{1}\) inputs} \\
\hline \(V_{i(p-p)}\) & black-to-white input signals at pins 10, 11 and 12 (peak-to-peak value) & note 2 & - & 0.7 & - & V \\
\hline \(\mathrm{V}_{10 / 11 / 12}\) & internal DC bias voltage & at black level clamping & - & 5.7 & - & V \\
\hline \multirow[t]{2}{*}{10/11/12} & \multirow[t]{2}{*}{input current} & during line scan & - & - & \(\pm 0.1\) & \(\mu \mathrm{A}\) \\
\hline & & at black level clamping & \(\pm 100\) & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{R}_{10 / 11 / 12}\) & input resistance & & 10 & - & - & \(\mathrm{M} \Omega\) \\
\hline
\end{tabular}

\section*{\(R_{2}, G_{2}\) and \(B_{2}\) inputs}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{V}_{\text {I }(p-\mathrm{p})}\) & \begin{tabular}{l}
black-to-white input signals at pins 2, 3 \\
and 4 (peak-to-peak value)
\end{tabular} & note 2 & - & 0.7 & - & V \\
\hline \(\mathrm{V}_{2 / 3 / 4}\) & internal DC bias voltage & at black level clamping & - & 5.7 & - & V \\
\hline \multirow{2}{*}{\(2 / 3 / 4\)} \\
& input current & during line scan & - & - & \(\pm 0.1\) & \(\mu \mathrm{~A}\) \\
\hline & & at black level clamping & \(\pm 100\) & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{R}_{23 / 4}\) & input resistance & & 10 & - & - & \(\mathrm{M} \Omega\) \\
\hline
\end{tabular}

PALSECAM and NTSC matrix (note 3)
\begin{tabular}{|l|l|l|l|l|l|}
\hline PALSSECAM matrix & control bit NMEN \(=0\) & & & & \\
\hline NTSC matrix & control bit NMEN \(=1\) & & & & \\
\hline
\end{tabular}

Fast signal switch FSW 1 to select \(\mathbf{Y}, \mathbf{C D}\) or \(\mathbf{R}_{1}, \mathrm{G}_{1}, \mathrm{~B}_{1}\) inputs
control bits FSDIS1, FSON1 (see Table 2)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{13}\) & voltage to select \(Y\) and \(C D\) & & - & - & 0.4 & \(V\) \\
\hline & voltage range to select \(R_{1}, G_{1}, B_{1}\) & & 0.9 & - & 5.0 & V \\
\hline\(R_{13}\) & internal resistance to ground & & - & 4.0 & - & \(\mathrm{k} \Omega\) \\
\hline\(\Delta t\) & \begin{tabular}{l}
difference between transit times for \\
signal switching and signal insertion
\end{tabular} & & - & - & 10 & ns \\
\hline
\end{tabular}

Video processor with automatic cut-off control
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Fast signal switch FSW \({ }_{2}\) to select \(Y, C D / R_{1}, G_{1}, B_{1}\) or \(R_{2}, G_{2}, B_{2}\) inputs control bits FSDIS2, FSON2 (see Table 2)} \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{1}\)} & voltage to select \(\mathrm{Y}, \mathrm{CD} / \mathrm{R}_{1}, \mathrm{G}_{1}, \mathrm{~B}_{1}\) & & - & - & 0.4 & V \\
\hline & voltage range to select \(R_{2}, G_{2}, B_{2}\) & & 0.9 & - & 5.0 & V \\
\hline R1 & internal resistance to ground & & - & 4.0 & - & \(\mathrm{k} \Omega\) \\
\hline \(\Delta t\) & difference between transit times for signal switching and signal insertion & & - & - & 10 & ns \\
\hline
\end{tabular}

\section*{Saturation adjust}
acts on \(-(R-Y)\) and \(-(B-Y)\) signals under \(\mathrm{I}^{2} \mathrm{C}\)-bus control; sub-address 01 Hex (bit resolution \(1.5 \%\) of maximum saturation); data byte 3FHex for maximum saturation data byte 23 Hex for nominal saturation data byte \(\mathbf{0 0 H e x}^{\mathrm{H}}\) for minimum saturation
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(d_{s}\) & saturation below maximum & at 23 Hex & - & 5 & - & \(d B\) \\
\cline { 3 - 7 } & & at \(00 \mathrm{Hex} ; \mathrm{f}=100 \mathrm{kHz}\) & - & 50 & - & dB \\
\hline
\end{tabular}

\section*{Contrast adjust}
acts on internal RGB signals under \(1^{2} \mathrm{C}\)-bus control, sub-address 02Hex (bit resolution 1.5\% of maximum contrast); data byte \(3 F_{\text {Hex }}\) for maximum contrast data byte 22Hex for nominal contrast data byte \(00_{\text {Hex }}\) for minimum contrast
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{d}_{\mathrm{c}}\) & contrast below maximum & at 22Hex & - & 5 & - & dB \\
\cline { 3 - 7 } & & at 00Hex & - & 22 & - & dB \\
\hline
\end{tabular}

\section*{Brightness adjust}
acts on internal RGB signals under \(1^{2} \mathrm{C}\)-bus control,
sub-address 00 Hex (bit resolution \(1.5 \%\) of maximum brightness);
data byte 3FHex for maximum brightness
data byte 26Hex for nominal brightness
data byte \(00_{\text {Hex }}\) for minimum brightness
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{dbr} & \multirow[t]{2}{*}{black level shift of nominal signal amplitude referred to cut-off measurement level} & at 3FHex & - & 30 & - & \% \\
\hline & & at 00 Hex & - & -50 & - & \% \\
\hline \multicolumn{7}{|l|}{White potentiometers, under \(\mathrm{I}^{2} \mathrm{C}\)-bus control, sub-addresses 04Hex (red), 05Hex (green) and 06Hex (blue); note 4. data byte 3FHex for maximum gain data byte \(19_{\text {Hex }}\) for nominal gain data byte \(00_{\text {Hex }}\) for minimum gain} \\
\hline \multirow[t]{2}{*}{\(\Delta \mathrm{G}_{v}\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
\begin{tabular}{l}
relative to nominal gain: \\
increase of gain \\
decrease of gain
\end{tabular} \\
\\
\cline { 2 - 3 }
\end{tabular}}} & - & 50 & - & \% \\
\hline & & & - & 50 & - & \% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline
\end{tabular}

RGB outputs pins 24,22 and 20
(positive going output signals; peak drive limiter set \(=3 F_{\text {Hex }}\)); note 5 .
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{0 \text { (b-w) }}\)} & nominal output signal amplitudes (black-to-white value) & & - & 2 & - & V \\
\hline & maximum output signal amplitudes (black-to-white value) & & 3.0 & - & - & V \\
\hline \(\Delta V_{0}\) & spread between RGB output signals & & - & - & 10 & \% \\
\hline \multirow[t]{2}{*}{\(V_{0}\)} & minimum output voltages & & - & - & 0.8 & V \\
\hline & maximum output voltages & & 6.8 & - & - & V \\
\hline \(\mathrm{V}_{24,22,20}\) & voltage of cut-off measurement line & \[
\begin{aligned}
& \text { BCOF }=1 \\
& \text { (output clamping) }
\end{aligned}
\] & 2.3 & 2.5 & 2.7 & V \\
\hline lint & internal current sources & & - & 5.0 & - & mA \\
\hline \(\mathrm{R}_{0}\) & output resistance & & - & 20 & - & \(\Omega\) \\
\hline \multicolumn{7}{|l|}{Frequency response (measured with \(10 \mathrm{M} \Omega, 30 \mathrm{pF}\) external load)} \\
\hline \multirow[t]{4}{*}{d} & frequency response of \(Y\) path (from pin 8 to pins 24, 22, 20) & \(f=14 \mathrm{MHz}\) & - & - & 3 & dB \\
\hline & frequency response of CD path (from pins 7 to 24 and 6 to 20) & \(\mathrm{f}=12 \mathrm{MHz}\) & - & - & 3 & dB \\
\hline & frequency response of RGB 1 path (from pins 10 to 24,11 to 22 and 12 to 20) & \(\mathrm{f}=22 \mathrm{MHz}\) & - & - & 3 & dB \\
\hline & frequency response of \(\mathrm{RGB}_{2}\) path (from pins 2 to 24, 3 to 22 and 4 to 20) & \(\mathrm{f}=22 \mathrm{MHz}\) & - & - & 3 & dB \\
\hline \multicolumn{7}{|l|}{Sandcastle pulse detector (control bit SC5 = 0) three level; notes 6 and 7} \\
\hline \multirow[t]{3}{*}{\(\mathrm{V}_{14}\)} & required voltage range for H and V blanking pulses & & 2.0 & 2.5 & 3.0 & V \\
\hline & for H pulses (line count) & & 4.0 & 4.5 & 5.0 & V \\
\hline & & & 7.6 & - & \(\mathrm{V} P+5.8\) & V \\
\hline
\end{tabular}

Sandcastle pulse detector (control bit SC5 = 1)
two level; notes 6 and 7
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{14}\) & \begin{tabular}{l}
required voltage range \\
for H and V blanking pulses \\
for burst key pulses
\end{tabular} & & 2.0 & 2.5 & 3.0 & V \\
\hline
\end{tabular}

\section*{Sandcastie pulse detector}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 114 & Output current & \(\mathrm{V}_{14}=0 \mathrm{~V}\) & - & - & -100 & \(\mu \mathrm{A}\) \\
\hline \(t_{d}\) & leading edge delay of the clamping pulse & & - & 0 & - & \(\mu \mathrm{s}\) \\
\hline \multicolumn{7}{|l|}{VFB (note 7)} \\
\hline \multirow[t]{3}{*}{\(V_{18}\)} & \multirow[t]{2}{*}{vertical flyback pulse} & for LOW & - & - & 2.5 & V \\
\hline & & for HIGH & 4.5 & - & - & V \\
\hline & internal voltage & pin 18 open-circuit; note 8 & - & 5.0 & - & V \\
\hline \({ }_{18}\) & input current & & - & - & 5 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

Video processor with automatic cut-off control
TDA4686
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Average beam current limiting (note 9)} \\
\hline \(V_{G(15)}\) & contrast reduction starting voltage & & - & 4.0 & - & V \\
\hline \(\Delta \mathrm{V}_{\mathrm{c}(15)}\) & voltage difference for full contrast reduction & & - & -2.0 & - & V \\
\hline \(\mathrm{V}_{\mathrm{br}}(15)\) & brightness reduction starting voltage & & - & 2.5 & - & V \\
\hline \(\Delta \mathrm{V}_{\text {br }}(15)\) & voltage difference for full brightness reduction & & - & -1.6 & - & V \\
\hline
\end{tabular}

Peak drive limiting voltage (note 10)
internal peak drive limiting level (\(\mathrm{V}_{\text {pdil }}\)) acts on RGB outputs
\(I^{2} \mathrm{C}\)-bus control, sub-address \(0 A_{H e x}\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multirow{2}{*}{\(\mathrm{V}_{20 / 2224}\)} & level for minimum RGB outputs & at byte 00Hex & - & - & 3.0 & V \\
\cline { 2 - 7 } & level for maximum RGB outputs & at byte 3FHex & 7.0 & - & - & V \\
\hline \multirow{2}{*}{\(\mathrm{I}_{16}\)} & charge current & & - & -1 & - & \(\mu \mathrm{A}\) \\
\hline & discharge current & during peak white & - & 5 & - & mA \\
\hline \(\mathrm{V}_{16}\) & internal voltage limitation & & 4.5 & - & - & V \\
\hline \(\mathrm{V}_{\mathrm{G} 16)}\) & contrast reduction starting voltage & & - & 4.0 & - & V \\
\hline\(\Delta \mathrm{V}_{\mathrm{c}(16)}\) & \begin{tabular}{l}
voltage difference for full contrast \\
reduction
\end{tabular} & & - & -2.0 & - & V \\
\hline \(\mathrm{V}_{\mathrm{br}(16)}\) & brightness reduction starting voltage & & - & 2.5 & - & V \\
\hline\(\Delta \mathrm{V}_{\mathrm{br}(16)}\) & \begin{tabular}{l}
voltage difference for full brightness \\
reduction
\end{tabular} & & - & -1.6 & - & V \\
\hline
\end{tabular}

Automatic cut-off control (notes 7, 11, 12 and 13)
see Fig. 10
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathrm{V}_{19}\) & external voltage & & - & - & V P-1.4 & V \\
\hline \multirow[t]{3}{*}{\(\mathrm{l}_{19}\)} & output current & & - & - & -60 & \(\mu \mathrm{A}\) \\
\hline & input current & & 150 & - & - & \(\mu \mathrm{A}\) \\
\hline & additional input current & switch-on delay 1 & - & 0.5 & - & mA \\
\hline \(\mathrm{V}_{24,22,20}\) & monitor pulse amplitude (under \(I^{2} \mathrm{C}\)-bus control, sub-address \(0 \mathrm{~A}_{\text {Hex }}\)) & switch-on delay 1 ; note 12 & - & \(\mathrm{V}_{\text {pdI }}-1.0\) & - & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{19}\)} & voltage threshold for picture tube cathode warm-up & switch-on delay 1 & - & 4.5 & - & V \\
\hline & internally controlied voltage (VREF) & during leakage measurement period & - & 2.7 & - & V \\
\hline \(\Delta \mathrm{V}_{19}\) & voltage difference between \(\mathrm{V}_{\text {MEAS }}\) (cut-off measurement voltage) and VREF & & - & 1.0 & - & V \\
\hline
\end{tabular}

Video processor with automatic cut-off control
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Cut-off storage} \\
\hline \multirow[t]{2}{*}{I21/23/25} & charge and discharge currents & during cut-off measurement lines & - & \(\pm 0.3\) & - & mA \\
\hline & current & outside measurement & - & - & \(\pm 0.1\) & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{Leakage storage} \\
\hline \multirow[t]{2}{*}{\(\mathrm{l}_{17}\)} & charge and discharge currents & during leakage measurement period & - & \(\pm 0.4\) & - & mA \\
\hline & current & outside measurement & - & - & \(\pm 0.1\) & \(\mu \mathrm{A}\) \\
\hline \(V_{17}\) & threshold voltage for reset to switch-on state & & - & 2.5 & - & V \\
\hline
\end{tabular}

\section*{Hue control (note 14)}
under \(\mathrm{I}^{2} \mathrm{C}\)-bus control, sub-address \(03^{\text {Hex }}\)
data byte \(3 \mathrm{~F}_{\text {Hex }}\) for maximum voltage
data byte 20 Hex for nominal voltage data byte \(00^{H}\) Hex for minimum voltage
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multirow{3}{*}{\(\mathrm{V}_{26}\)} & output voltage & at byte 3FHex & 4.8 & - & - & V \\
\cline { 3 - 6 } & & at byte 20Hex & - & 3.0 & - & V \\
\cline { 3 - 6 } & & at byte 00Hex & - & - & 1.2 & V \\
\hline \multirow{2}{*}{ lint } & \begin{tabular}{l}
Ourrent of the internal current source at \\
pin 26
\end{tabular} & & 500 & - & - & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}
\(1^{2} \mathrm{C}\)-bus receiver clock SCL (pin 28)
\begin{tabular}{|c|c|c|c|c|c|}
\hline fscl & input frequency range & 0 & - & 100 & kHz \\
\hline VIL & LOW level input voltage & - & - & 1.5 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & HIGH level input voltage & 3.0 & - & 6.0 & V \\
\hline ILI & LOW level input current & - & - & -10 & \(\mu \mathrm{A}\) \\
\hline IIH & HIGH level input current & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{\(t_{d}\)} & pulse delay time LOW & 4.7 & - & - & \(\mu s\) \\
\hline & pulse delay time HIGH & 4.0 & - & - & \(\mu \mathrm{s}\) \\
\hline \(\mathrm{tr}_{r}\) & rise time & - & - & 1.0 & \(\mu \mathrm{s}\) \\
\hline tf & fall time & - & - & 0.3 & \(\mu \mathrm{s}\) \\
\hline \multicolumn{6}{|l|}{\(1^{2}\) C-bus receiver data input/output SDA (pin 27)} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & - & - & 1.5 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & HIGH level input voltage & 3.0 & - & 6.0 & V \\
\hline IIL & LOW level input current & - & - & -10 & \(\mu \mathrm{A}\) \\
\hline liH & HIGH level input current & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline lol & LOW level output current & 3.0 & - & - & mA \\
\hline \(\mathrm{tr}_{\text {r }}\) & rise time & - & - & 1.0 & \(\mu \mathrm{s}\) \\
\hline \({ }_{\text {t }}\) & fall time & - & - & 0.3 & \(\mu \mathrm{s}\) \\
\hline tsu;DAT & data set-up time & 0.25 & - & - & \(\mu s\) \\
\hline
\end{tabular}

\section*{Notes to the characteristics}
1. The values of the \(-(B-Y)\) and \(-(R-Y)\) colour difference input signals are for a \(75 \%\) colour-bar signal.
2. The pins are capacitively coupled to a low ohmic source, with a recommended maximum output impedance of \(600 \Omega\).
3. PAL/SECAM signals are matrixed by the equation: \(\mathrm{V}_{\mathrm{G}-\mathrm{Y}}=-0.51 \mathrm{~V}_{\mathrm{R}-\mathrm{Y}}-0.19 \mathrm{~V}_{\mathrm{B}-\mathrm{Y}}\) NTSC signals are matrixed by the equations (hue phase shift of -5 degrees):
\(V_{R-Y^{*}}=1.57 \mathrm{~V}_{\mathrm{R}-\mathrm{Y}}-0.41 \mathrm{~V}_{\mathrm{B}-\mathrm{Y}} ; \mathrm{V}_{\mathrm{G}-\mathrm{Y}^{*}}=-0.43 \mathrm{~V}_{\mathrm{R}-\mathrm{Y}}-0.11 \mathrm{~V}_{\mathrm{B}-\mathrm{Y}} ; \mathrm{V}_{\mathrm{B}-\mathrm{Y}^{*}}=\mathrm{V}_{\mathrm{B}}-\mathrm{Y}\)
In the matrix equations: \(V_{R-Y}\) and \(V_{B-Y}\) are conventional PAL demodulation axes and amplitudes at the output of the NTSC demodulator. \(V_{G-}-Y^{*}, V_{R-} Y^{*}\) and \(V_{B-}-Y^{*}\) are the NTSC-modified colour difference signals; this is equivaient to the following demodulator axes and amplification factors:
\begin{tabular}{l|l|l}
& NTSC & PAL \\
\hline\((\mathrm{B}-\mathrm{Y})^{*}\) demodulator axis & \(0^{\circ}\) & \(0^{\circ}\) \\
\hline\((\mathrm{R}-\mathrm{Y})^{*}\) demodulator axis & \(115^{\circ}\) & \(90^{\circ}\) \\
\hline\((\mathrm{R}-\mathrm{Y})^{*}\) amplification factor & 1.97 & 1.14 \\
\hline\((\mathrm{~B}-\mathrm{Y})^{*}\) amplification factor & 2.03 & 2.03
\end{tabular}
\(V_{G-Y^{*}}=-0.27 V_{R-Y^{*}}-0.22 V_{B-Y^{*}}\).
4. The white potentiometers affect the amplitudes of the RGB output signals.
5. The RGB outputs at pins 24,22 and 20 are emitter followers with current sources.
6. Sandcastle pulses are compared with internal threshold voltages independent of \(V_{p}\). The threshold voltages separate the components of the sandcastle pulse. The particular component is generated when the voltage on pin 14 exceeds the defined internal threshold voltage. The internal threshold voltages (control bit \(\mathrm{SC5}=0\)) are:
1.5 V for horizontal and vertical blanking pulses (H and V blanking pulses),
3.5 V for horizontal pulses,
6.5 V for the burst key pulse.

The internal threshold voltages, control bit SC5 = 1 , are:
1.5 V for horizontal and vertical blanking pulses,
3.5 V for the burst key pulse.
7. Vertical signal blanking is determined by the vertical component of the sandcastle pulse. The leakage and the RGB cut-off measurement lines are positioned in the first four complete lines after the end of the vertical component. In this case, the RGB output signals are blanked until the end of the last measurement line; see Fig.10(a). If an extra vertical flyback pulse VFB is applied to pin 18, the four measurement lines start in the first complete line after the end of the VFB puise; see Fig. 10 (b). In this case, the output signals are blanked either until the end of the last measurement line or until the end of the vertical component of the sandcastle pulse, according to which occurs last.
8. If no VFB pulse is applied, pin 18 should be connected to V . If pin 18 is always LOW neither automatic cut-off control nor output clamping can happen.
9. Average beam current limiting reduces the contrast, at minimum contrast it reduces the brightness.
10. Peak drive limiting reduces the RGB outputs by reducing the contrast, at minimum contrast it reduces the brightness. The maximum RGB outputs are determined via the \(I^{2} C\)-bus under sub-address \(O A_{\text {Hex. When an }}\) RGB output exceeds the maximum voltage, peak drive timiting is delayed by one horizontal line.
11. During leakage current measurement, the RGB channels are blanked to ultra-black level. During cut-off measurement one channel is set to the measurement pulse level, the other channels are blanked to ultra-black. Since the brightness adjust shifts the colour signal relative to the black level, the brightness adjust is disabled during the vertical blanking interval (see Fig. 9 and Fig.10).
12. During picture cathode warm-up (first switch-on delay) the RGB outputs (pins 24,22 and 20) are blanked to the ultra-black level during line scan. During the vertical blanking interval a white-level monitor pulse is fed out on the RGB outputs and the cathode currents are measured. When the voltage threshold on pin 19 is greater than 4.5 V , the monitor pulse is switched off and cut-off control is activated (second switch-on delay). As soon as cut-off control stabilizes, RGB output blanking is removed.
13. The cut-off measurement level range at the RGB outputs is 1 to 5 V . The recommended value is 3 V .
14. The hue control output at pin 26 is an emitter follower with current source.

Video processor with automatic cut-off control

Fig. 8 Test and application circuit.

Fig. 9 Cut-off measurement pulse.

Video processor with automatic cut-off control

\section*{FEATURES}
- Fully integrated, few external components
- Positive video input signal, capacitively coupled
- Operates with non-standard video input signals
- Black level clamping
- Generation of composite sync slicing level at \(50 \%\) of peak sync voltage
- Vertical sync separator with double slope integrator
- Delay time of the vertical output pulse is determined by an external resistor
- Vertical sync generation with a slicing level at \(40 \%\) of peak sync voltage
- Output stage for composite sync
- Output stage for vertical sync

\section*{GENERAL DESCRIPIION}

The TDA4820T is a monolithic integrated circuit including a horizontal and a vertical sync separator, offering composite sync and vertical sync extracted from the video signal.

QUICK REFERENCE DATA
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\mathbf{P}}\) & supply voltage range (pin 1) & , & 10.8 & 12 & 13.2 & V \\
\hline \(I_{p}\) & supply current (pin 1) & & - & 8 & 12 & mA \\
\hline \(V_{2(p-p)}\) & input voltage amplitude (peak-to-peak value) & & 0.2 & 1 & 3 & V \\
\hline \(V_{\text {sync }}(\mathrm{P}-\mathrm{P})\) & sync pulse input voltage amplitude (pin 2) (peak-to-peak value) & & 50 & 300 & 500 & mV \\
\hline Vo & maximum vertical sync output voltage (pin 6) & \(\mathrm{l}_{6}=-1 \mathrm{~mA}\) & 10.0 & - & - & V \\
\hline \(V_{0}\) & maximum composite sync output voltage (pin 7) & \(I_{7}=-3 \mathrm{~mA}\) & 10.0 & - & - & V \\
\hline Vo & minimum output voltage (pins 6 and 7) & \(\mathrm{I}_{6,7}=1 \mathrm{~mA}\) & - & - & 0.6 & V \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature range & & 0 & - & \(+70\) & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{ORDERING AND PACKAGE INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
EXTENDED
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 6 } TYPE NUMBER & PINS & PIN POSITION & MATERIAL & CODE \\
\hline TDA4820T & 8 & mini-pack & plastic & SO8; SOT96A \\
\hline
\end{tabular}

Fig. 1 Block diagram and application circuit.
\begin{tabular}{l}
PINNING \\
\begin{tabular}{|l|c|l|}
\hline SYMBOL & PIN & \multicolumn{1}{|c|}{ DESCRIPTION } \\
\hline\(V_{P}\) & 1 & supply voltage \\
\hline V \(_{\text {CVBS }}\) & 2 & video input signal \\
\hline SLEV & 3 & slicing level \\
\hline VDEL & 4 & vertical integration delay time \\
\hline n.c. & 5 & not connected \\
\hline VSYN & 6 & vertical sync output signal \\
\hline CSYN & 7 & composite sync output signal \\
\hline GND & 8 & ground \\
\hline
\end{tabular} \\
\hline
\end{tabular}

PIN CONFIGURATION

Fig. 2 Pin configuration.

\section*{FUNCTIONAL DESCRIPTION}

The complete circuit consists of the following functional blocks as shown in Fig.1:
- Video amplifier and black level clamping
- \(50 \%\) peak sync voltage
- Composite sync slicing
- Vertical slicing and double slope integrator
- Vertical sync output
- Composite sync output

\section*{Video amplifler and black level clamping (pin 2)}

The sync separation circuit TDA4820T is designed for positive video input signals.
The video signal (supplied via capacitor C 2 at pin 2) is amplified by approximately 15 in the input amplifier. The black level clamping voltage (approximately 2 V) is stored by capacitor C2.

50\% peak sync voltage (pin 3) From the black level and the peak sync voltage, the \(50 \%\) value of the peak sync voltage is generated and stored by capacitor C3 at pin 3 . A slicing level control circuit ensures a constant \(50 \%\) value, as long as the sync pulse amplitude at pin 2 is between 50 mV and 500 mV , independent of the amplitude of the picture content.

\section*{Composite sync slicing}

A comparator in the composite sync slicing stage compares the amplified video signal with the DC voltage derived from 50\% peak sync voltage. This generates the composite sync output signal.

\section*{Vertical slling and double siope} Integrator
Vertical slicing compares the composite sync signal with a DC level equal to \(40 \%\) of the peak sync
voltage, similar to the composite sync slicing.
With signal interference (reflections or noise) the reduced vertical slicing level ensures more energy for the vertical pulse integration. The slope is double-integrated to eliminate the influence of signal interference.
The vertical integration delay time tdv can be set from typically \(45 \mu \mathrm{~s}\) (pin 4 open) to typically \(18 \mu s\) (pin 4 grounded). Between these maximum
and minimum values, \(t_{d V}\) can be set by a resistor R1 from pin 4 to ground. For optimum sync behaviour with input line sync pulses only, R1 has to be \(\geq 3.3 \mathrm{k} \Omega\). In this case \(\mathrm{t}_{\mathrm{dV}}\) is typically \(\geq 23 \mu \mathrm{~s}\).

\section*{Vertical sync output} Composite sync output Both output stages are emitter followers with bias currents of 2 mA .

Fig. 3 Internal circuits.

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum System (IEC 134)
\begin{tabular}{|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & MIN. & MAX. & \multicolumn{1}{|c|}{ UNIT } \\
\hline\(V_{P}\) & supply voltage (pin 1) & 0 & 13.2 & V \\
\hline\(V_{i}\) & input voltage (pin 2) & -0.5 & 6 & V \\
\hline\(I_{0}\) & output current (pin 6 and pin 7) & 3 & -10 & mA \\
\hline \(\mathrm{~T}_{\text {stg }}\) & storage temperature range & -25 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature range & 0 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{j}}\) & maximum junction temperature & - & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{P}_{\text {tot }}\) & total power dissipation & - & 500 & mW \\
\hline
\end{tabular}

\section*{CHARACTERISTICS}

All voltages measured to \(\mathrm{GND}(\operatorname{pin} 8) ; \mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\); unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(V_{p}\) & supply voltage range (pin 1) & & 10.8 & 12.0 & 13.2 & \(V\) \\
\hline Ip & supply current (pin 1) & & 4 & 8 & 12 & mA \\
\hline \multicolumn{7}{|l|}{Video ampllfier} \\
\hline \(V_{2(p-p)}\) & input amplitude (peak-to-peak value) & positive video signal AC coupled & 0.2 & 1 & 3 & V \\
\hline \(V_{\text {sync (}}\) (p-p) & sync pulse amplitude (pin 2) (peak-to-peak value) & composite sync slicing level \(50 \%\) for
\[
0.2 \mathrm{~V} \leq \mathrm{V}_{2(\mathrm{p}-\mathrm{p})} \leq 1.5 \mathrm{~V}
\] & 50 & 300 & 500 & mV \\
\hline \(\mathrm{Z}_{\mathrm{s}}\) & source impedance & & - & - & 200 & \(\Omega\) \\
\hline \multicolumn{7}{|l|}{Black level clamping} \\
\hline \multirow[t]{4}{*}{\(\mathrm{I}_{2}\)} & discharge current of C2 & during video content & - & 5 & - & \(\mu \mathrm{A}\) \\
\hline & \multirow[t]{3}{*}{charge currents of C2} & sync below slicing leve! & - & -40 & - & \(\mu \mathrm{A}\) \\
\hline & & sync above slicing level & - & -25 & - & \(\mu \mathrm{A}\) \\
\hline & & during black level & - & -20 & - & \(\mu A\) \\
\hline \multicolumn{7}{|l|}{50\% peak sync voltage} \\
\hline \multirow[t]{4}{*}{\(\mathrm{I}_{3}\)} & discharge current of C3 & during video content & - & 16 & - & \(\mu \mathrm{A}\) \\
\hline & maximum charge current of C3 & & - & -345 & - & \(\mu \mathrm{A}\) \\
\hline & reduced charge current of C3 & during vertical sync & - & -255 & - & \(\mu \mathrm{A}\) \\
\hline & charge current of C3 & during sync pulse & - & -160 & - & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{Composite sync slicing (see Fig.4)} \\
\hline & composite sync slicing level & \(0.2 \mathrm{~V} \leq \mathrm{V}_{2(p-p)} \leq 1.5 \mathrm{~V}\) & - & 50 & - & \% \\
\hline \(\mathrm{t}_{\mathrm{dH}}\) & horizontal delay time (pin 7) & maximum load at pin 7: \(C_{L} \leq 5 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}} \geq 100 \mathrm{k} \Omega\) & - & 250 & 500 & ns \\
\hline \multicolumn{7}{|l|}{Vertical sync separation (see Fig.5)} \\
\hline & slicing level for vertical sync & \(0.2 \mathrm{~V} \leq \mathrm{V}_{2(p-p)} \leq 1.5 \mathrm{~V}\) & - & 40 & - & \% \\
\hline \multirow[t]{2}{*}{\(t d V\)} & \multirow[t]{2}{*}{vertical leading edge delay times (pin 6)} & pin 4 open & 30 & 45 & 60 & \(\mu s\) \\
\hline & & pin 4 grounded & 11 & 18 & 25 & \(\mu \mathrm{s}\) \\
\hline \multicolumn{7}{|l|}{Vertical and composite sync outputs} \\
\hline Vo & maximum vertical sync output voltage (pin 6) & \(I_{6}=-1 \mathrm{~mA}\) & 10.0 & 10.5 & 11.5 & V \\
\hline Vo & maximum composite sync output voltage (pin 7) & \(1_{7}=-3 \mathrm{~mA}\) & 10.0 & 10.5 & 11.5 & V \\
\hline Vo & minimum output voltages (pins 6 and 7) & \(\mathrm{I}_{6,7}=1 \mathrm{~mA}\) & 0.1 & 0.3 & 0.6 & V \\
\hline tw & vertical sync pulse width & pin 4 open; standard signal of 625 lines & - & 180 & - & \(\mu s\) \\
\hline
\end{tabular}

Fig. 4 Typical horizontal sync signal.

(1) due to 625 line standard

Fig. 5 Typical vertical sync signal.

\section*{GENERAL DESCRIPTION}

The TDA8444/AT/T comprises eight digital-to-analog converters (DSCs), each controlled via the two-wire \(\mathrm{I}^{2} \mathrm{C}\)-bus. The DACs are individually programmed using a 6 -bit word to select an output from one of 64 voltage steps. The maximum output voltage
of all DACs is set by the input \(V_{\text {max }}\) and the resolution is approximately \(\mathrm{V}_{\text {max }} / 64\). At power-on all DAC outputs are set to their lowest value. The \(\mathrm{I}^{2} \mathrm{C}\)-bus slave receiver has a 7 -bit address of which 3 bits are programmable via pins A0, A1 and A2.

\section*{FEATURES}
- Eight discrete DACs
- \(1^{2} \mathrm{C}\)-bus slave receiver
- 16-pin DIL package 16-pin SO package 20 -pin SO package

QUICK REFERENCE DATA
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & \multicolumn{1}{|c|}{ CONDITIONS } & \multicolumn{1}{c|}{ MIN. } & \multicolumn{1}{|c|}{ TYP. } & \multicolumn{1}{c|}{ MAX. } & \multicolumn{1}{c|}{ UNIT } \\
\hline\(V_{P}\) & Supply voltage & & 4.5 & 12.0 & 13.2 & V \\
\hline \(\mathrm{I}_{\mathrm{CC}}\) & Supply current & no loads; \(\mathrm{V}_{\max }=\mathrm{V}_{\mathrm{P}}\); all data \(=00\) & 0 & 12 & 15 & mA \\
\hline \(\mathrm{P}_{\text {tot }}\) & Total power dissipation & no loads; \(\mathrm{V}_{\max }=\mathrm{V}_{\mathrm{P}} ;\) all data \(=00\) & - & 150 & - & mW \\
\hline \(\mathrm{V}_{\max }\) & Effective range of \(\mathrm{V}_{\max }\) input & \(\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V}\) & 1 & - & 10.5 & V \\
\hline \(\mathrm{~V}_{\mathrm{O}}\) & DAC output voltage range & & 0.1 & - & \(V_{P}-0.5\) & V \\
\hline \(\mathrm{~V}_{\text {LSB }}\) & Step value of 1 LSB & & 70 & 160 & 250 & mV \\
\hline
\end{tabular}

\section*{PACKAGE OUTLINES}

TDA8444 16-lead DIL; plastic (SOT38)
TDA8444T 16-lead SO; plastic (SOT-162)
TDA8444AT 20 -lead SO; (SOT-163)

Fig. 1 Block diagram.

\section*{PINNING}

Fig. 2 Pinning diagram.
\begin{tabular}{|c|c|c|}
\hline 1 & \(V_{P}\) & positive supply voltage \\
\hline 2 & \(V_{\text {max }}\) & control input for DAC maximum output voltage \\
\hline 3 & SDA & \(1^{2} \mathrm{C}\)-bus serial data input/output \\
\hline 4 & SCL & \(1^{2} \mathrm{C}\)-bus serial data clock \\
\hline & A0 & programmable address bits for \\
\hline & A1 & \(1^{2} \mathrm{C}\)-bus slave receiver \\
\hline & A2 & \\
\hline 8 & GND & ground \\
\hline 9-16 & DAC0-7 & analogue voltage outputs \\
\hline
\end{tabular}

\section*{BLOCK DIAGRAM - TDA8444AT (SO-20)}

PIN CONFIGURATION AND DESCRIPTION - TDA8444AT (SO-20, SOT-163)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(v_{p} 1\) & 20 & dac7 & 1 & \(\mathrm{V}_{\mathrm{p}}\) & Positive supply voltage \\
\hline \(V_{\text {max }}{ }^{2}\) & 19 & NC & 2 & \(V_{\text {max }}\) & Control input for DAC maximum output voltage \\
\hline SDA 3 & 18 & DAC6 & 3 & SDA & \({ }^{12} \mathrm{C}\) bus serial data input/output \\
\hline SCL 4 & 17 & dacs & 4 & SCL & \(1^{2} \mathrm{C}\) bus serial data clock \\
\hline NC 5 & 16 & DAC4 & 7 & AO & Programmable address bits for \(\mathrm{I}^{2} \mathrm{C}\) bus slave receiver \\
\hline Nc 6 & 15 & dac3 & & & Programmable address bits for \({ }^{2} \mathrm{C}\) bus slave receiver \\
\hline A0 7 & 14 & DAC2 & 8 & A1 & Programmable address bits for \(1^{2} \mathrm{C}\) bus slave receiver \\
\hline A1 8 & 13 & DAC1 & 9 & A2 & Programmable address bits for \(\mathrm{I}^{2} \mathrm{C}\) bus slave receiver \\
\hline A2 9 & 12 & nc & 10 & GND & Ground \\
\hline GND 10 & 11 & daco & 11, 13-18, 20 & DAC0-7 & Analog voltage outputs \\
\hline
\end{tabular}

\section*{BLOCK DIAGRAM - TDA8444T (SO-16)}

PIN CONFIGURATION AND DESCRIPTION - TDA8444T (SO-16, SOT-162)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(v_{p} 1\) & 16 & DAC7 & 1 & \(V_{p}\) & Positive supply voitage \\
\hline \(v_{\text {max }} 2\) & 15 & dac6 & 2 & \(V_{\text {max }}\) & Control input for DAC maximum output voltage \\
\hline SDA 3 & 14 & dacs & 3 & SDA & \(\mathrm{R}^{2} \mathrm{C}\) bus serial data input/output \\
\hline SCL 4 & 13 & dac4 & 4 & SCL & \(1^{2} \mathrm{C}\) bus serial data clock \\
\hline NC 5 & 12 & dac3 & 6 & AO & Programmable address bits for \(1^{2} \mathrm{C}\) bus slave receiver \\
\hline A0 6 & 11 & DAC2 & 7 & A1 & Programmable address bits for \(\mathrm{I}^{2} \mathrm{C}\) bus slave receiver \\
\hline A1 7 & 10 & & 8 & GND & Ground \\
\hline GND 8 & 9 & & 9-16 & DAC0-7 & Analog voltage outputs \\
\hline
\end{tabular}

\section*{FUNCTIONAL DESCRIPTION}

\section*{\(1^{2} \mathrm{C}\)-bus}

The TDA8444 \(1^{2} \mathrm{C}\)-bus interface is a receive-only slave. Data is accepted from the \(1^{2} \mathrm{C}\)-bus in the following format:

Where:
S = start condition
\(\mathrm{A} 2, \mathrm{~A} 1, \mathrm{AO} \quad=\) programmable address bits
P = stop condition
13, 12, 11, 10
= instruction bits
\(\mathrm{A}=\) acknowledge
SD, SC, SB, SA
= subaddress bits
X = don't care
D5, D4, D3, D2, D1, D0 = data bits

Fig. 3 Data format.

\section*{Address byte}

Valid addresses are \(40,42,44,46,48,4 A, 4 C, 4 E\) (hexadec), depending on the programming of bits A2, A1 and A0. With these addresses, up to eight TDA8444 ICs can be operated independently from one \(I^{2} \mathrm{C}\)-bus. No other addresses are acknowledged by the TDA8444.

\section*{Instruction and data bytes}

Valid instructions are 00 to OF and FO to FF (hexadec) ; the TDA8444 will not respond to other instruction values.

Instructions 00 to \(0 F\) cause auto-incrementing of the subaddress (bits SD to SA) when more than one data byte is sent within one transmission. With auto-incrementing, the first data byte is written into the DAC addressed by bits SD to SA and then the subaddress is automatically incremented by one position for the next data byte in the series.

Auto-incrementation does not occur with instructions FO to FF. Other than auto-incrementation there is no difference between instructions 00 to OF and FO to FF. When only one data byte per transmission is present, the DAC addressed by the subaddress will always receive the data.
Valid subaddresses (bits SD to SA) are 0 to 7 (hexadec) relating numerically to DACO to DAC7. When the auto-incrementing function is used, the subaddress will sequence through all possible values (0 to \(F, 0\) to \(F\), etc.).

\section*{\(1^{2} \mathrm{C}\)-bus}

Input SCL (pin 3) and input/output SDA (pin 4) conform to \({ }^{2} \mathrm{C}\)-bus specifications. * Pins 3 and 4 are protected against positive voltage pulses by internal zener diodes connected to the ground plane and therefore the normal bus line voltage should not exceed 5.5 V .
The address inputs \(A 0, A 1, A 2\) are programmed by a connection to \(G N D\) for \(A n=0\) or to \(V P\) for \(A n=1\). If the inputs are left floating, \(A n=1\) will result.

\section*{FUNCTIONAL DESCRIPTION (continued)}

\section*{Input \(V_{\text {max }}\)}

Input \(\mathrm{V}_{\text {max }}\) (pin 2) provides a means of compressing the output voltage swing of the DACs. The maximum DAC output voltage is restricted to approximately \(V_{\max }\) while the 6 -bit resolution is maintained, so giving a finer voltage resolution of smaller output swings.

\section*{Digital-to-analogue converters}

Each DAC comprises a 6 -bit data latch, current switches and an output driver. Current sources with values weighted by \(2^{0}\) up to \(2^{5}\) are switched according to the data input so that the sum of the selected currents gives the required analogue voltage from the output driver. The range of the output voltage is approximately 0.5 to 10.5 V when \(\mathrm{V}_{\max }=\mathrm{V}_{\mathrm{p}}\).
The DAC outputs are protected against short-circuits to \(V_{P}\) and GND.
To avoid the possibility of oscillations, capacitive loading at the DAC outputs should not exceed 2 nF .

\section*{RATINGS}

Limiting values in accordance with the Absolute Maximum System (IEC 134)
\begin{tabular}{|c|c|c|c|c|c|}
\hline parameter & conditions & symbol & min . & max. & unit \\
\hline Supply voltage & & \(V_{P}=V_{1}\) & -0.5 & 18 & V \\
\hline Supply current (source) & & \[
I_{p}=I_{1}
\] & - & -10
40 & \\
\hline \(1{ }^{2} \mathrm{C}\)-bus line voltage & & \(\mathrm{V}_{3,4}\) & -0.5 & 5.9 & V \\
\hline Input voltage & & \(\mathrm{V}_{1}\) & -0.5 & \(V p+0.5\) & V \\
\hline Output voltage & & \(\mathrm{V}_{\mathrm{O}}\) & -0.5 & \(V_{p}+0.5\) & V \\
\hline Maximum current on any pin (except pins 1 and 8) & & \(\pm 1_{\text {max }}\) & - & 10 & mA \\
\hline Total power dissipation & & \(P_{\text {tot }}\) & - & 500 & mW \\
\hline Operating ambient temperature range & & Tamb & -20 & + 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage temperature range & & \(\mathrm{T}_{\text {stg }}\) & -65 & + 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{THERMAL RESISTANCE}

From junction to ambient
\(R_{\text {th } \mathrm{j}-\mathrm{a}}\)
75 K/W

Bus
Purchase of Philips \(\left.\right|^{2} \mathrm{C}\) components conveys a license under the Philips \(\left.\left.\right|^{\prime}\right|^{2}\) patent to use the components in the \(\left.\right|^{2} \mathrm{C}\)-system provided the system conforms to the \(I^{2} \mathrm{C}\) specifications defined by Philips.

\section*{CHARACTERISTICS}

All voltages are with respect to GND; \(T_{a m b}=25^{\circ} \mathrm{C} ; \mathrm{Vp}=12 \mathrm{~V}\) unless otherwise specified
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline parameter & conditions & symbol & min. & typ. & max. & unit \\
\hline Supply voltage & & \(V_{P}\) & 4.5 & 12.0 & 13.2 & V \\
\hline Voltage level for power-on reset & & \(v_{1}\) & 1 & -- & 4.8 & V \\
\hline Supply current & \[
\begin{aligned}
& \text { no loads; } V_{\max }=V_{p} ; \\
& \text { all data }=00
\end{aligned}
\] & \(1 p=l_{1}\) & 8 & 12 & 15 & mA \\
\hline Total power dissipation & \[
\begin{aligned}
& \text { no loads; } V_{\max }=V_{p} ; \\
& \text { all data }=00
\end{aligned}
\] & \(P_{\text {tot }}\) & - & 150 & - & mW \\
\hline Effective range of \(V_{\text {max }}\) input (pin 2) & \(\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V}\) & \(V_{\text {max }}=V_{2}\) & 1.0 & - & 10.5 & \(V\) \\
\hline Pin 2 current & \[
v_{2}=1 \mathrm{~V}
\] & \(\mathrm{I}_{2}\) & - & - & \[
\mid-10
\] & \[
\mu \mathrm{A}
\] \\
\hline & \[
v_{2}=v_{p}
\] & \({ }^{\prime}\) & - & - & \[
10
\] & \[
\mu \mathrm{A}
\] \\
\hline SDA, SCL inputs (pins 3 and 4) & & & & & & \\
\hline Input voltage range & & \(V_{1}\) & 0 & - & 5.5 & V \\
\hline input voltage LOW & & \(V_{\text {IL }}\) & - & - & 1.5 & V \\
\hline Input voitage HIGH & & \(\mathrm{V}_{\text {IH }}\) & 3.0 & - & - & V \\
\hline Input current LOW & \(V_{3 ; 4}=0.3 \mathrm{~V}\) & IIL & - & - & -10 & \(\mu \mathrm{A}\) \\
\hline Input current HIGH & \(V_{3 ; 4}=6 \mathrm{~V}\) & \(1 / \mathrm{H}\) & - & - & \(\pm 10\) & \(\mu \mathrm{A}\) \\
\hline SDA output (pin 3) & & & & & & \\
\hline Output voltage LOW & \(\mathrm{I}_{3}=3 \mathrm{~mA}\) & \(\mathrm{V}_{\text {OL }}\) & - & - & 0.4 & \\
\hline Sink current & & \({ }^{1} \mathrm{O}\) & 3 & 8 & - & mA \\
\hline Address inputs (pins 5 to 7) & & & & & & \\
\hline Input voltage range & & \(V_{1}\) & 0 & - & \(V_{p}\) & V \\
\hline Input voltage LOW & & \(V_{\text {IL }}\) & - & - & 1 & V \\
\hline Input voltage HIGH & & \(V_{\text {IH }}\) & 2.1 & - & - & V \\
\hline Input current LOW & & IIL & - & -7 & -12 & \(\mu \mathrm{A}\) \\
\hline Input current HIGH & & 1 H & - & - & 1 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{Octuple 6-bit DAC with \(\mathrm{I}^{2} \mathrm{C}\)-bus}

\section*{CHARACTERISTICS (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline parameter & conditions & symbol & min. & typ. & max. & unit \\
\hline DAC outputs (pins 9 to 16) & \multirow{6}{*}{\[
\begin{aligned}
& \text { data }=00 ; \\
& 1 \mathrm{O}=-2 \mathrm{~mA} \\
& \text { data }=3 \mathrm{~F} ; \\
& \mathrm{I}=-2 \mathrm{~mA}
\end{aligned}
\]} & & & & & \\
\hline Output voltage range & & \(\mathrm{V}_{0}\) & 0.1 & - & \(V_{p}-0.5\) & \(v\) \\
\hline Minimum output voltage & & \(V_{\text {Omin }}\) & 0.1 & 0.4 & 0.8 & V \\
\hline Maximum output voltage & & & & & & \\
\hline at \(V_{\text {max }}=V_{P}\) & & \(V_{\text {Omax }}\) & 10 & 10.5 & 11.5 & V \\
\hline at \(1<\mathrm{V}_{\text {max }}<10.5 \mathrm{~V}\) & & \(V_{\text {Omax }}\) & \multicolumn{3}{|c|}{see note} & \(\checkmark\) \\
\hline Output sink current & \[
\begin{aligned}
& V=V_{P} ; \\
& \text { data }=1 F
\end{aligned}
\] & 10 & 2 & 8 & 15 & mA \\
\hline Output source current & \[
\begin{aligned}
& V=0 V ; \\
& \text { data }=1 F
\end{aligned}
\] & 10 & -2 & - & -6 & mA \\
\hline Output impedance & \[
\begin{aligned}
& \text { data }=1 \mathrm{~F} ; \\
& -2<\mathrm{I}_{\mathrm{O}}<+2 \mathrm{~mA}
\end{aligned}
\] & \(\mathrm{Z}_{0}\) & - & 4 & 50 & \(\Omega\) \\
\hline Step value of 1 LSB & \[
\begin{aligned}
& V_{\max }=V_{P} \\
& I_{0}=-2 \mathrm{~mA}
\end{aligned}
\] & \(V_{\text {LSB }}\) & 70 & 160 & 250 & mV \\
\hline Deviation from linearity & \(\mathrm{I}_{\mathrm{O}}=-2 \mathrm{~mA} ; \mathrm{N} \neq 32\) & & 0 & - & 50 & mV \\
\hline Deviation from linearity & \(\mathrm{I}_{\mathrm{O}}=-2 \mathrm{~mA} ; \mathrm{N}=32\) & & 0 & - & 70 & mV \\
\hline
\end{tabular}

Note to the characteristics
\(V_{O}=0.95 V_{\text {max }}+V_{\text {Omin }}\).

\section*{APPLICATION INFORMATION}

Fig. 4 Graph showing output voltage as a function of the input data value for \(V_{\text {max }}\) values of \(1,6,10\) and \(12 V_{;} V_{P}=12 \mathrm{~V}\).

\section*{Fast RGB/YC switch for digital decoding}

\section*{FEATURES}
- R, G, B clamped inputs
- Luminance and chrominance difference matrix
- Y-clamped inputs
- Fast switching between internal and external \(Y\)
- Chrominance input
- Amplifier with selectable gain
- 3-state switch for chrominance output

\section*{APPLICATIONS}
- Digital TV systems
- Desktop video architecture

\section*{DESCRIPTION}

The TDA8446 is a video switch which is designed for use in the DMSD digital video system (DMSD = Digital Multistandard System Decoder). The device is intended for matrixing incoming RGB signals and for switching between luminance signals. It generates SYNC signal and TTL clamping pulses from any video signal with sync pulses.

QUICK REFERENCE DATA
\begin{tabular}{|l|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & \multicolumn{1}{|c|}{ MIN. } & \multicolumn{1}{|c|}{ TYP. } & \multicolumn{1}{|c|}{ MAX. } & UNIT \\
\hline\(V_{\text {CC }}\) & positive supply voltage range & 10.8 & - & 13.2 & V \\
\hline\(T_{\text {amb }}\) & \begin{tabular}{l}
operating ambient \\
temperature range
\end{tabular} & 0 & - & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ORDERING INFORMATION
\begin{tabular}{|l|l|l|l|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
EXTENDED TYPE \\
NUMBER
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & \multicolumn{1}{|c|}{ PIN POSITION } & MATERIAL & CODE \\
\hline TDA8446 & 20 & DIL & plastic & SOT146E \\
\hline TDA8446T & 28 & SO28L & plastic & SOT136A \\
\hline
\end{tabular}

\section*{Fast RGB/YC switch for digital decoding}

Fig. 1 Block diagram (DIL package).

Fast RGB/YC switch for digital decoding

PINNING
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{SYMBOL} & \multicolumn{2}{|r|}{PIN} & \multirow{2}{*}{DESCRIPTION} \\
\hline & DIL & SO & \\
\hline SOUT & 1 & 1 & synchronization signal output; this output provides the synchronization information extracted from the incoming signal at pin 2 (SIN) \\
\hline SIN & 2 & 2 & synchronization signal input; CSYNC or CVBS signal from the video-connector \\
\hline CCL & 3 & 3 & clamping capacitor connection; the clamping pulse is generated by external circuitry connected to this pin; the generated pulse clamps the RGB inputs \\
\hline n.c. & - & 4 & not connected \\
\hline CLO & 4 & 5 & clamping pulse output \\
\hline n.c. & - & 6 & not connected \\
\hline BIN & 5 & 7 & B-signal input \\
\hline GIN & 6 & 8 & G-signal input \\
\hline RIN & 7 & 9 & R-signal input \\
\hline SW1 & 8 & 10 & clamping control signal input; this TTL signal is used to select the clamp signal; a LOW level at this input forces the circuit to output the generated clamping pulse \\
\hline n.c. & - & 11 & not connected \\
\hline CLI & 9 & 12 & clamping pulse input; this TTL signal indicates the black level clamping period for the incoming \(Y\) signal (active HIGH) \\
\hline CIN & 10 & 13 & chrominance signal input \\
\hline COUT & 11 & 14 & chrominance signal output \\
\hline YIN & 12 & 15 & luminance signal input; this input also accepts the CVBS signal \\
\hline FS & 13 & 16 & fast switching signal input; this signal is used to control fast switching of the luminance signals; a HIGH level at this input forces the circuit to output the internal Y \\
\hline n.c. & - & 17 & not connected \\
\hline n.c. & - & 18 & not connected \\
\hline SW2 & 14 & 19 & gain control signal input; this TTL signal is used to fix the gain of the chrominance amplifiers (A); a LOW level at this input forces the gain \(A\) at \(6 \mathrm{~dB},(\mathrm{HIGH}\) forces 0 dB\()\) \\
\hline n.c. & - & 20 & not connected \\
\hline -(R-Y) & 15 & 21 & -(R-Y) signal output \\
\hline YOUT & 16 & 22 & luminance signal output \\
\hline -(B-Y) & 17 & 23 & -(B-Y) signal output \\
\hline n.c. & - & 24 & not connected \\
\hline n.c. & - & 25 & not connected \\
\hline \(V_{C C}\) & 18 & 26 & positive supply voltage (+12 V) \\
\hline VINT & 19 & 27 & internal decoupling \\
\hline GND & 20 & 28 & ground \\
\hline
\end{tabular}

Fig. 2 Pin configuration TDA8446 (DIL20).

Fig. 3 Pin configuration TDA8446T (SO28L).

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum Rating System (IEC134)
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & \multicolumn{1}{|c|}{ PARAMETER } & \multicolumn{1}{c|}{ MIN. } & \multicolumn{1}{c|}{ MAX. } & UNIT \\
\hline\(V_{\text {CC }}\) & positive supply voltage range & -0.3 & +14 & V \\
\hline \(\mathrm{~V}_{1}\) & input voltage & -0.3 & +12.3 & V \\
\hline\(T_{\text {sg }}\) & storage temperature range & -55 & +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{handling}

Each pin will withstand the ESD test in accordance with MLL-STD-883C class \(2(2000 \mathrm{~V}\) to 2999 V\()\). Method 3015 (HBM \(1500 \Omega, 100 \mathrm{pF}\)) 3 pulses + and 3 pulses - on each pin as a function of ground.

\section*{Fast RGB/YC switch for digital decoding}

\section*{OPERATING CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{6}{|l|}{Supply/temperature} \\
\hline \(V_{\text {cc }}\) & positive supply voltage range & 10.8 & - & 13.2 & V \\
\hline \(T_{\text {amb }}\) & operating ambient temperature range & 0 & - & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{6}{|l|}{TTL inputs (SW1, SW2 and CLI)} \\
\hline \(\mathrm{V}_{\text {IH }}\) & HIGH level input voltage & 2 & - & \(V_{C C}\) & V \\
\hline \(\mathrm{V}_{1}\) & LOW level input voltage & -0.3 & - & +0.8 & V \\
\hline \multicolumn{6}{|l|}{SYNC signal (SIN)} \\
\hline \(V_{\text {S(Pp) }}\) & sync amplitude & 0.2 & - & 2.5 & V \\
\hline \multicolumn{6}{|l|}{Fast Switching input (FS)} \\
\hline \(V_{\text {IH }}\) & HIGH level input voltage & 1 & - & 3 & V \\
\hline \(V_{\text {IL }}\) & LOW level input voltage & - & - & 0.4 & V \\
\hline \multicolumn{6}{|l|}{Video inputs (RIN, GIN, BIN, CIN, YIN)} \\
\hline \(V_{1(p-p)}\) & peak-to-peak video amplitude on RIN, GIN and BIN inputs & - & 0.7 & 1 & V \\
\hline \(\mathrm{C}_{1}\) & input capacitance & - & 100 & - & nF \\
\hline \multicolumn{6}{|l|}{Clamping pulse generator (CCL)} \\
\hline \(\mathrm{R}_{\mathrm{CP}}\) & clamping resistance & - & 4.7 & - & \(k \Omega\) \\
\hline \(\mathrm{C}_{\text {CP }}\) & clamping capacitance & - & 1 & - & nF \\
\hline
\end{tabular}

\section*{CHARACTERISTICS}
\(V_{\mathrm{cC}}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\); unless otherwise specified
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Supply} \\
\hline \(l_{\text {cc }}\) & supply current & & - & - & 80 & mA \\
\hline RR & supply voltage rejection ratio & note 1 & 30 & - & - & dB \\
\hline
\end{tabular}

Y and R, G, B channels
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathrm{l}_{\mathrm{CL}}\) & input clamping current & \(V_{C C}=6 \mathrm{~V} ; \mathrm{V}_{1}=0 \mathrm{~V}\) & 0.3 & - & - & mA \\
\hline \(I_{1}\) & input current & \(V_{1}=9 \mathrm{~V}\) & -1.5 & 0.5 & +1.5 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{\(\mathrm{G}_{\text {A }}\)} & \multirow[t]{2}{*}{gain of amplifier A} & \(\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\text {SW2 }}=2.0 \mathrm{~V}\) & -1 & 0 & +1 & dB \\
\hline & & \(\mathrm{V}_{\mathrm{SW}_{2}}=0.8 \mathrm{~V}\) & +5 & +6 & +7 & dB \\
\hline \(G_{B}\) & gain of amplifier B & \(\mathrm{f}=1 \mathrm{MHz}\) & -1 & 0 & +1 & dB \\
\hline & RGB matrixed according to the equations:
\[
\begin{aligned}
& Y=0.30 R+0.59 G+0.11 B \\
& R-Y=0.70 R-0.59 G+0.11 B \\
& B-Y=-0.30 R-0.59 G+0.89 B
\end{aligned}
\] & & & & & \\
\hline \(\Delta \mathrm{G}\) & relative gain difference & note 2 & - & 0 & 10 & \% \\
\hline \(|\Delta \mathrm{G}|\) & maximum gain variation & \(100 \mathrm{kHzz}<\mathrm{f}<8 \mathrm{MHz}\) & - & 3 & - & dB \\
\hline \(\mathrm{R}_{0}\) & output resistance & & - & 15 & - & \(\Omega\) \\
\hline
\end{tabular}

Fast RGB/YC switch for digital decoding
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(\Delta t\) & time difference at output & \(\mathrm{f}=1 \mathrm{MHz}\); note 3 & - & - & 25 & ns \\
\hline \(V_{0}\) & DC output level & \(\mathrm{V}_{\text {ccl }}=6 \mathrm{~V}\) & - & 4.2 & - & V \\
\hline \(\mathrm{t}_{\text {s8d }}\) & fast switching delay & see Fig. 4 & - & 20 & - & ns \\
\hline \(\mathrm{t}_{\text {s }}\) & fast switching time & see Fig. 4 & - & 10 & - & ns \\
\hline \(\mathrm{I}_{\text {IFS }}\) & input current on fast switching control (pin 13) & \[
\begin{aligned}
& V_{1}=0.4 \mathrm{~V} \\
& V_{1}=1 \mathrm{~V}
\end{aligned}
\] & \[
\left.\right|_{-} ^{-}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.5 \\
& \hline
\end{aligned}
\] & \[
{ }_{-}^{-}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A}
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Chrominance channel (CIN, COUT)} \\
\hline \(\mathrm{R}_{\mathrm{i}}\) & internal input resistance & & - & 50 & - & \(k \Omega\) \\
\hline \(V_{0}\) & DC output level & \(l_{1}=0\) & - & 5 & - & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{G}_{\mathrm{A}}\)} & \multirow[t]{2}{*}{gain of amplifier A} & \[
\begin{aligned}
& \mathrm{f}=1 \mathrm{MHz} \\
& \mathrm{~V}_{\mathrm{SW}_{1}}=\mathrm{V}_{\mathrm{SW}_{2}}=2.0 \mathrm{~V}
\end{aligned}
\] & -1 & 0 & +1 & \(d B\) \\
\hline & & \(\mathrm{V}_{\text {SW } 2}=0.8 \mathrm{~V}\) & +5 & +6 & +7 & dB \\
\hline \(|\Delta \mathrm{G}|\) & maximum gain variation & \(100 \mathrm{kHz}<\mathrm{f}<8 \mathrm{MHz}\) & - & 3 & - & dB \\
\hline \(\alpha_{\text {ot }}\) & isolation (off state) & \[
\begin{aligned}
& V_{\text {WW }_{1}}=V_{S W_{2}}=0.8 \mathrm{~V} \\
& f=5 \mathrm{MHz}
\end{aligned}
\] & - & 60 & - & \(d B\) \\
\hline \(Z_{i}\) & output impedance & \(\mathrm{V}_{\text {SW } 1}=\mathrm{V}_{\text {SW } 2}=0.8 \mathrm{~V}\) & 100 & - & - & k \(\Omega\) \\
\hline \(R_{0}\) & output resistance & & - & 7 & - & \(\Omega\) \\
\hline \multicolumn{7}{|l|}{TTL inputs (SW1, SW2, CLI)} \\
\hline \(l_{\text {IH }}\) & HIGH level input current & \(\mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}\) & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline \(l_{1 L}\) & LOW level input current & \(\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}\) & - & - & 600 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{Clamp output (CLO)} \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & LOW level output voltage & \(\mathrm{l}_{\mathrm{a}}=2 \mathrm{~mA}\) & - & - & 0.4 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & HIGH level output voltage & \(\mathrm{t}_{\mathrm{OH}}=10 \mu \mathrm{~A}\) & 2.4 & - & - & V \\
\hline \multicolumn{7}{|l|}{Synchronization channel (SOUT)} \\
\hline \(\mathrm{V}_{\text {(p-p) }}\) & output amplitude & & 0.2 & - & 1.5 & V \\
\hline
\end{tabular}

\section*{Notes to the characteristics}
1. Supply voltage rejection ratio: \(20 \log \mathrm{~V}_{\mathrm{P}(\mathrm{cc})} \mathrm{N}_{\mathrm{R}(\mathrm{O})}\).
2. The relative gain difference is measured when only one input signal (\(R, G\), or \(B\)) is present.
3. The inputs RIN, GIN and BIN are interconnected; \(\Delta t\) is the maximum time coincidence error between the luminance and chrominance signals.

Fast RGB/YC switch for digital decoding

\section*{FS SIGNAL}

Fig. 4 Fast switching times.

\section*{APPLICATION INFORMATION}

Fig. 5 Typical application diagram.

\section*{PAL/NTSC encoder}

\section*{FEATURES}
- Two input stages: \(R, G, B\) and \(-(R-Y),-(B-Y), Y\) with multiplexing
- Chrominance processing, highly integrated, includes low frequency filters for the colour difference signals, and after the modulator a bandpass filter
- Fully controlled modulator produces a signal according to the PAL or NTSC standard without adjustments
- A free running oscillator. Can be tuned by crystal or by an external frequency source
- Output stages with separated \(Y\) + SYNC and chrominance (\(\mathbf{Y}+\mathrm{C}\), SVHS), and a CVBS output. Signal amplitudes are correct for \(\mathbf{7 5} \mathbf{\Omega}\) driving via an external emitter follower. Internal generation of NTSC setup
- Sync separator circuit and pulse shaper, to generate the required pulses for the processing, clamping, blanking, FH/2, and burst pulse
- H/2 control pin. In PAL mode the internally generated H/2 is connected to this pin and the phase of this signal can be reset
- Internal bandgap reference.

\section*{GENERAL DESCRIPTION}

The TDA8501 is a highly integrated PAL/NTSC encoder IC which is designed for use in all applications where \(R\), \(G\) and \(B\) or \(Y, U\) and \(V\) signals require transformation to PAL or NTSC values. the specification of the input signals are fully compatible with the specification of those of the TDA8505 SECAM-encoder.

\section*{ORDERING INFORMATION}
\begin{tabular}{|l|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
EXTENDED TYPE \\
NUMBER
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline TDA8501 & 24 & DIL & plastic & SOT234AH2 \\
\hline TDA8501T & 24 & SO & plastic & SOT137AH1 \\
\hline
\end{tabular}

Fig． 1 Block diagram．
LOS8甘O1 גəроэиə OS」N／7甘d

Fig. 2 Pin configuration.

PINNING
U and V respectively, are the terms used to describe the colour difference signals at the output of the matrix.
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline -(R-n) & 1 & colour difference input signal, for EBU bar (75\%) 1.05 V (p-p) \\
\hline MCONTROL & 2 & multiplexer switch control input; HIGH \(=\) RGB, LOW \(=-(\mathrm{R}-\mathrm{Y}),-(\mathrm{B}-\mathrm{Y}), \mathrm{Y}\) \\
\hline -(B-Y) & 3 & colour difference input signal, for EBU bar (75\%) 1.33 V (p-p) \\
\hline H/2 & 4 & line pulse inpuVoutput divided-by-2 for synchronizing the internal \(H / 2\), if not used, this pin dependent on mode selected, is either left open-circuit, or connected to \(\mathrm{V}_{\mathrm{cc}}\) or to ground (note 1) \\
\hline \(Y\) & 5 & luminance input signal 1 V nominal without sync \\
\hline U OFFSET & 6 & U modulator offset control capacitor \\
\hline R & 7 & RED input signal for EBU bar of 75\% 0.7 V (p-p) \\
\hline \(\mathrm{V}_{\mathrm{cc}}\) & 8 & supply voltage; 5 V nominal \\
\hline G & 9 & GREEN input signal for EBU bar of 75\% 0.7 V (p-p) \\
\hline \(V_{\text {ss }}\) & 10 & ground (0 V) \\
\hline B & 11 & BLUE input signal for EBU bar of 75\% 0.7 V (p-p) \\
\hline V OFFSET & 12 & V modulator offset control capacitor \\
\hline \(V_{\text {ReF }}\) & 13 & 2.5 V internal reference voltage output \\
\hline CHROMA & 14 & chrominance output \\
\hline FLT & 15 & filter tuning loop capacitor \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline CVBS & 16 & composite PAL or NTSC output, 2 V (p-p) nominal \\
\hline PALNTSC and YN + SYNC & 17 & four level control pin (note 2) \\
\hline NOTCH & 18 & Y + SYNC output via an internal resistor of \(\mathbf{2 k \Omega}\); a notch filter can be connected to this pin \\
\hline \(Y\) + SYNC OUT & 19 & \(2 \mathrm{~V}(\mathrm{p}-\mathrm{p})\) nominal \(\mathrm{Y}+\) SYNC output \\
\hline Y + SYNC IN & 20 & Y + SYNC input; (rom pin 22) connected to the output of the external delay line \\
\hline BURST ADJ & 21 & burst current adjustment via external resistor \\
\hline Y + SYNC OUT & 22 & Y + SYNC output \(1 \mathrm{~V}(\mathrm{p}-\mathrm{p})\) nominal, connected to the input of the external delay line \\
\hline OSC & 23 & oscillator tuning: connected to either a crystal in series with capacitor to ground, or to an extemal frequency source via a resistor in series with a capacitor \\
\hline Cs & 24 & composite sync input, \(0.3 \mathrm{~V}(\mathrm{p}-\mathrm{p})\) nominal \\
\hline
\end{tabular}

\section*{Notes}
1. Pin 4: in PAL mode, if not connected to external H 2 pulse, this pin is the output for the intemally generated \(\mathrm{H} / 2\) signal.
Pin 4: in NTSC mode, for internal set-up this pin is connected to ground; when internal set-up is switched off, this pin is connected to \(V_{\text {cc }}\).
2. The listed voltages connected to pin 17 (if \(\mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V}\)) enable the following \(Y\) (via pin 5) input signal states: \(\mathrm{OV}=\mathrm{PAL}\) mode; at pin \(5, Y\) without sync and input blanking on \(5 \mathrm{~V}=\) NTSC mode; at pin \(5, Y\) without sync and input blanking on \(1.8 \mathrm{~V}=\) PAL mode; at pin 5, \(Y\) with sync and input blanking off 3.2 \(\mathrm{V}=\) NTSC mode; at pin \(5, Y\) with sync and input blanking off

\section*{FUNCTIONAL DESCRIPTION}

The TDA8501 device comprises:
- encoder circuit
- oscillator and filter control
- sync separator and pulse shaper.

Within this functional description, the term \(Y\) is used to describe the luminance signal and the terms \(U\) and \(V\) respectively, are used to describe the colour difference signals.

\section*{Encoder circult}

\section*{Input stage}

The input stage of the device uses two signal paths (see Fig.1). Fast switching between the two signal paths is achieved by means of the signal path selection switch MCONTROL (pin 2).

\section*{R, B and \(G\) mput signals path}

One signal path provides the connection for R, G and B signal inputs (via pins 7,9 and 11) which are connected to a matrix via clamping and line blanking circuits. The signal outputs from the matrix are \(\mathrm{U}, \mathrm{V}\) and Y .
For an EBU colour bar of \(75 \%\) the amplitude of the signal must be 0.7 V (peak-to-peak):
\[
\begin{array}{ll}
\mathbf{U} & =0.493(B-Y) \\
\mathbf{V} & =0.877(R-Y) \\
\mathbf{Y} & =0.299 R+0.587 G+0.114 B
\end{array}
\]

When selected (via MCONTROL), the U, V signals from the matrix are routed through the selection switch to the low pass filters. The Y signal from the matrix is routed through the selection switch to the adder and combined with the sync pulse from the sync separator and then connected via a buffer internally to pin 22 (Y + SYNC OUT to delay line).
-(R-Y), -(B-Y) and Y input signals Path
A second signal path provides the connection for negative colour difference signal inputs -(R-Y), \(-(B-Y)\) i.e. \(V, \cup\) (via pins 1,3) and luminance \(Y(\) via pin 5), which are routed directly to the switch inputs via clamping and line blanking circuits.

The \(Y\) input signal (via pin 5) differs from other signal inputs, in that the timing of the internal clamp is after the sync period.

The amplitude and polarity of these colour difference and luminance input signals are processed to provide suitable switch inputs of \(U, V\) and \(Y\) signal values.
The condition for \(75 \%\) colour bar is:
pin \(1-(R-Y)=1.05 V\) (peak-to-peak)
pin \(3-(B-Y)=1.33 V\) (peak-to-peak)
pin \(5 \quad Y=1 V\) (peak-to-peak) without sync
When selected (via MCONTROL), the \(U\) and \(V\) signals (via the switch) are routed to the low pass filters. The \(Y\) signal (via the switch) is routed via the adder and buffer to pin 22 (\(Y+\) SYNC OUT to delay line). Dependent on pin 17 conditioning, the \(Y\) signal may have external or internal sync added (see section Four level control pin).

\section*{Four level control pin}

The Y input signal (via pin 5) is conditioned by use of the 4-level control pin (pin 17) to emulate either the PAL or NTSC modes, with sync and input blanking off or without sync and input blanking on.

Pin 17 may be hard wire connected to either ground (LOW for PAL mode) or \(\mathrm{V}_{c c}\) (HIGH for NTSC mode). External resistors can further modify the voltage level input at pin 17 to condition (pin 5) \(Y\) with sync and input blanking off or Y without sync and input blanking on. (see section PALNTSC and Y/ + SYNC).

\section*{U and V signals}

In PAL and NTSC modes the \(U\) and \(V\) (colour difference) signals at the output of the switch are configured differently as follows:
PAL mode:
- after the adding of the burst pulse to \(U\) and \(V\), these signals are connected to the input of the low pass filters. During the vertical sync period the burst pulse is suppressed.

\section*{NTSC mode:}
- the burst pulse is only added to \(U\) and the gain of the U and V signals is 0.95 of the gain in PAL mode. During the vertical sync period the burst pulse is suppressed.

\section*{LOW PASS FILTERS}

The -3dB nominal frequency response level of the low pass filters are different in PAL and NTSC modes.

(1) frequency response.
(2) group delay.

Fig. 3 Low pass filter response for colour difference signals (PAL mode).

(1) frequency response.
(2) group delay.

Fig. 4 Low pass filter response for colour difference signals (NTSC mode).

PAL mode: \(\quad\) bandwidth \(=1.35 \mathrm{MHz}\) nominal (see Fig.3). NTSC mode: bandwidth \(=1.1 \mathrm{MHz}\) nominal (see Fig.4).

The signal outputs of the low pass filters are connected to the signal inputs of the U and V modulators.

\section*{U and V Modulators}

Two four-quadrant multipliers are used for quadrature amplitude modulation of the U and V signals. The level of harmonics produced by the modulated signals are minimal, because of real multiplication with sinewave carriers.

The unbalance of the modulators is minimized by means of a control loop and two external capacitors, pin 6 for the U modulator and pin 12 for the V modulator. The timing of the control loop is triggered by the H/2 pulse, so that during one sync period the U control is active and during the next sync period the V control is active. In this way, when \(U\) and \(V\) are both zero, the suppressed carrier is guaranteed to be at a low level.
The internal oscillator circuit generates two sinewave carriers (0 degree and 90 degree). The ' 0 degree' (0) carrier is connected to the \(U\) modulator and the '90 degree' (1) carrier is connected to the V modulator.

\section*{PAL mode:}
- switched sequentially by the \(\mathrm{H} / 2\) pulse, the V signal is modulated alternately with the direct and inverse carrier.
- the internal \(\mathrm{H} / 2\) pulse can be forced into a specific phase by means of an external pulse connected to pin \(4(H / 2)\). Forcing is active at HIGH level. If not used pin 4 can be left open-circuit or connected to ground. If pin 4 is left open, the internally generated \(H / 2\) pulse (output) is connected to this pin.

\section*{NTSC mode:}
- altemation of the V modulation is not allowed. If pin 4 is not used for set-up control (see Y + SYNC, CVBS and Chrominance outputs), it can be left open-circuit or connected to ground.

\section*{Chrominance blanking}

The signal outputs from the modulators are connected to the signal input of the chrominance blanking circuit. To avoid signal distortion that may be caused by the control loop, the signal outputs of the modulators are blanked during the sync period. This prevents signal distortion during the adding of the sync pulse at the CVBS output circuit.

\section*{PAL/NTSC encoder}

\section*{Bandpass FILTER}

A wide symmetrical bandpass filter is used so that a maximum performance of the chrominance for \(\mathrm{Y}+\mathrm{C}\) (SVHS) is guaranteed. This wide curve is possible because of the minimal signal level of the harmonics within the modulators see Figs (PAL mode: 5 and 6); (NTSC mode: 7 and 8) which illustrate the nominal response for PAL and NTSC modes.

Fig. 5 Band pass filter nominal frequency response (PAL mode).

(1) frequency response.
(2) group delay.

Fig. 6 Band pass filter nominal frequency/group delay response (PAL mode).

Fig. 7 Band pass filter nominal frequency response (NTSC mode).

(1) frequency response.
(2) group delay.

Fig. 8 Band pass filter nominal frequency/group delay response (NTSC mode).

\section*{\(Y+\) SYNC, CVBS and Chrominance outputs}

The \(Y\) signal from the matrix, or the \(Y\) signal from pin 5 , (selected via the switch) is added with the composite sync signal of the sync separator (dependent on pin 17 conditioning). The output of the adder, nominal 1 V (peak-to-peak), is connected to pin 22 (see Fig.1). Pin 22 is connected to an external delay line.
The delay line is necessary for correct timing of the Y + SYNC signal with the chrominance signal. The output resistor of the delay line is connected to \(\mathrm{V}_{\text {REF }}\) (pin 13). The output of the external delay line is connected to (input) pin 20.

The \(\mathrm{Y}+\) SYNC (delayed) input signal at pin 20 is amplified via a buffer to a level of 2 V (peak-to-peak) nominal and connected to pin 19 (\(Y+\) SYNC output).
The \(Y+\) SYNC (delayed) input signal at pin 20 is also connected via an internal resistor of \(2 \mathrm{k} \Omega\) to the input of the CVBS adder stage. After the internal resistor of \(2 \mathrm{k} \Omega\), and before the input of the CVBS adder, an external notch filter can be connected via pin 18.

The chrominance output of the bandpass filter is added with \(Y+\) SYNC signal via the CVBS adder. The CVBS (combined video and blanking signal) output of the adder is connected to pin 16 with a nominal amplitude of 2 V (peak-to-peak).

The chrominance output of the bandpass filter is amplified via a buffer and connected to pin 14. The chrominance amplitude corresponds with the value of Y + SYNC signal output at pin 19. Together both outputs give the \(Y+C\) (SVHS) signals.

Black and Blanking levels in PAL and NTSC modes
PAL mode: Fig. 9 illustrates the nominal \(Y+\) SYNC signal at pin 22, the difference between black and blanking level is 0 mV .

NTSC mode: Fig. 10 illustrates the nominal \(Y+\) SYNC signal at pin 22, the difference between black and blanking level is 53 mV .

Because of the difference between the black and blanking level in the NTSC mode, there are two options for NTSC.

Fig. 9 Nominal Y + SYNC signal level at pin 22 (PAL mode).

\section*{NTSC option with internal set-up generation}

Pin 4 connected to ground or left open-circuit. The set-up is generated internally and the input signals have the values already specified in section Input stage. The set-up is not suppressed during vertical sync.

NTSC option without internal set-up generation
Pin 4 connected to \(\mathrm{V}_{\mathrm{cc}}\). This option places some restrictions on the input signals as follows:
- If the output signal must be according to the NTSC standard, the Input signals must be generated with a specific set-up level
- for \(R, G\) and \(B\) inputs a set-up level of 53 mV is required, therefore the specified amplitude must be 753 mV (peak-to-peak) instead of 700 mV (peak-to-peak)
- for \(U, V\) and \(Y\) inputs a set-up level for \(Y\) of 76 mV is required, therefore the specified amplitude must be 1076 mV (peak-to-peak) (without sync) instead of 1 V (peak-to-peak). This option, combined with \(\mathrm{U}, \mathrm{V}\) and Y inputs, is not possible if \(\mathrm{V}_{\mathrm{cc}}\) is \(<4.75 \mathrm{~V}\).

Fig. 10 Nominal Y + SYNC signal level at pin 22 (NTSC mode).

\section*{Oscillator and Filter Control}

The internal crystal oscillator is connected to pin 23 which provides for the external connection of a crystal in series with a trimmer to ground. It is possible to connect an external signal source to pin 23, via a capacitor in series with a resistor. The signal shape is not important. Figure 11 shows the external components connected to pin 23 and the required conditions. The minimum AC current of \(50 \mu \mathrm{~A}\) must be determined by the resistors (\(\mathrm{R}_{\text {ine }}\) and \(R_{e x x}\)) and the voltage of the signal source. For example, in this way an external sub-carrier, locked to the sync, can be used.
PAL mode: frequency of the oscillator is 4.433618 MHz . NTSC mode: frequency of the oscillator is 3.579545 MHz .
The -3 dB of the low pass filters and the centre frequency of the bandpass filter are controlled by the filter control loop and directly coupled to the value of the frequency of the oscillator. The external capacitor of the control loop is connected to pin 15.

Fig. 11 Tuning circuit for external signal source.

\section*{Sync separator and Pulse shaper}

The composite sync (CS) input at pin 24 (via the sync separator) together with a sawtooth generator provide the source for all pulses necessary for the processing.
Pulses are used for:
- clamping
- video blanking
- H/2
- chrominance blanking
- burst pulse generation for adding to \(\mathbf{U}, \mathbf{V}\)
- pulses for the modulator offset control.

The value of the sawtooth generator output (current) is determined by the value of a fixed resistor to ground which is connected externally at pin 21 (BURST ADJ). When finer tolerance of the burst position is required, the fixed resistor is connected in series with a variable potentiometer to ground. By use of the potentiometer the burst position at the outputs can be finely adjusted, after which the pulse width of the burst and the position and pulse width of all other internal pulses are then determined. When using a fixed resistor with a tolerance of \(2 \%\), a tolerance of \(10 \%\) of the burst position can be expected. Timing diagrams of the pulses are provided by Figs 12 and 13.
\(H / 2\) at pin 4 is only necessary in the PAL mode when the internal H/2 pulse requires locking with an external H/2 phase (two or more encoders locked in same phase). The forcing of the internal H/2 to a desired phase is possible by means of an external pulse. Forcing is active at HIGH level.

For the functioning of Pin 4 in the NTSC mode see also section Black and Blanking levels in PAL and NTSC modes.
April 1993

Fig. 12 Sync separator and pulse shaper pulses.

LOS8४Q1 」epooue OSLN/7甘d

\section*{PALNTSC and YN + SYNC}

Pin 17 is used as a four level control pin to condition the \(\mathrm{YN}+\) SYNC input signal (via pin 5). Pin 17 is normally connected to ground for PAL mode, or to \(\mathrm{V}_{\mathrm{cc}}\) for the NTSC mode. By use of external resistors (potential divider connected to pin 17), the input blanking at pin 5 can be switched on and off. (see Table 1 and Fig 14).

Table 1 PALNTSC YN + SYNC pin 5 options (pin 17 connection configurations).
\begin{tabular}{|c|c|c|}
\hline MODE & PIN 5 STATUS & PIN 17 CONNECTION REQUIREMENT \\
\hline PAL & \(Y\) without sync and input blanking on & pin 17 LOW, connected to \(\mathrm{V}_{\text {ss }}\) \\
\hline NTSC & \(Y\) without sync and input blanking on & pin 17 HIGH, connected to \(\mathrm{V}_{\text {cc }}\) \\
\hline PAL & \(Y\) with sync and input blanking off & pin 17 with \(39 \mathrm{k} \Omega\) connected to \(\mathrm{V}_{\mathrm{cc}}\) and \(22 \mathrm{k} \Omega\) connected to \(\mathrm{V}_{\mathrm{ss}}\) \\
\hline NTSC & Y with sync and input blanking off & pin 17 with \(22 \mathrm{k} \Omega\) connected to \(\mathrm{V}_{\mathrm{cc}}\) and \(39 \mathrm{k} \Omega\) connected to \(\mathrm{V}_{\text {ss }}\) \\
\hline
\end{tabular}

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum System (IEC134); all voltages referenced to \(\mathrm{V}_{\mathbf{s s}}\) (pin 10).
\begin{tabular}{|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & \multicolumn{1}{|c|}{ MIN. } & \multicolumn{1}{|c|}{ MAX. } & \multicolumn{1}{c|}{ UNIT } \\
\hline\(V_{\text {cc }}\) & positive supply voltage & 0 & 5.5 & \(V^{\prime}\) \\
\hline\(T_{\text {aro }}\) & storage temperature & -65 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {emb }}\) & operating ambient temperature & -25 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

THERMAL RESISTANCE
\begin{tabular}{|c|l|c|}
\hline SYMBOL & \multicolumn{1}{c|}{ PARAMETER } & THERMAL RESISTANCE \\
\hline\(R_{\text {ni }}\) & \begin{tabular}{l}
trom junction to ambient in free air \\
\\
\\
\\
\\
\\
\end{tabular} SOT234 & \\
\hline
\end{tabular}

\section*{DC CHARACTERISTICS}
\(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}\); \(\mathrm{T}_{\text {mbo }}=25^{\circ} \mathrm{C}\); all voltages referenced to ground (pin 10); unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Supply (pin 8)} \\
\hline \(\mathrm{V}_{\text {cc }}\) & supply voltage & & 4.5 & 5.0 & 5.5 & V \\
\hline \(\mathrm{I}_{\text {ce }}\) & supply current & & - & 40 & - & mA \\
\hline \(\mathrm{P}_{\text {b1 }}\) & total power dissipation & & - & 200 & - & mW \\
\hline \(V_{\text {REF }}\) & reference voltage output (pin 13) & & 2.425 & 2.5 & 2.575 & V \\
\hline
\end{tabular}

\section*{AC CHARACTERISTICS}
\(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\); \(\mathrm{T}_{\text {mot }}=25^{\circ} \mathrm{C}\); composite sync signal connected to pin 24; unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Encoder circult} \\
\hline \multicolumn{7}{|l|}{Input stage (pins 1, 3, 5, 7, 9 and 11); black level = clamping level} \\
\hline \[
\begin{aligned}
& V_{n \text { (max) }} \\
& V_{n(\text { min })}
\end{aligned}
\] & maximum signal from black level positive from black level negative & Only pins 1, 3 and 5 & - & \[
\begin{aligned}
& 1.2 \\
& 0.9
\end{aligned}
\] & & \\
\hline \(\mathrm{V}^{\text {bime }}\) & input bias current & \(\mathrm{V}_{1}=\mathrm{V}_{13}\) & - & - & <1 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{1}\) & input voltage clamped & input capacitor connected to ground & tbf & \(V_{13}\) & tbf & V \\
\hline |ZI & input clamping impedance & \[
\begin{aligned}
& I_{1}=1 \mathrm{~mA} \\
& I_{0}=1 \mathrm{~mA}
\end{aligned}
\] & - & \[
\begin{aligned}
& 80 \\
& 80
\end{aligned}
\] & - & \[
\begin{aligned}
& \Omega \\
& \Omega \\
& \hline
\end{aligned}
\] \\
\hline & matrix and gain tolerance of R, G and \(B\) signals & & - & - & < 5 & \% \\
\hline G & gain tolerance of \(Y_{1}-(R-Y)\) and \(-(B-Y)\) & & - & - & < 5 & \% \\
\hline \multicolumn{7}{|l|}{MCONTROL (pin 2; note 1)} \\
\hline \(\mathrm{V}_{\mathrm{k}}\) & \[
\begin{array}{|c|}
\hline \text { LOW level input voltage } \\
Y,-(R-Y) \text { and }-(B-Y) \\
\hline
\end{array}
\] & & 0 & - & 0.4 & V \\
\hline \(\mathbf{V}_{\mathbf{H}}\) & HIGH level input voltage R, G and B & & 1 & - & 5 & V \\
\hline 1 & input current & & - & - & -3 & \(\mu \mathrm{A}\) \\
\hline \(t_{0}\) & switching time & & - & 50 & - & ns \\
\hline \multicolumn{7}{|l|}{\(U\) modulator offset control (pin 6)} \\
\hline \(V_{\text {b }}\) & DC voltage control level & & - & 2.5 & - & V \\
\hline \(\mathrm{I}_{1}\) & input leakage current & & - & - & 100 & nA \\
\hline \(\mathrm{V}_{\mathrm{u}}\) & limited level voltage LOW & & - & 1.8 & - & \(V\) \\
\hline \(V_{\text {HL }}\) & limited level voltage HIGH & & - & 3.2 & - & V \\
\hline \multicolumn{7}{|l|}{V modulator offset control (pin 12)} \\
\hline \(\mathrm{V}_{12}\) & DC voltage control level & & - & 2.5 & - & V \\
\hline \(\mathrm{I}_{1}\) & input leakage current & & - & - & 100 & nA \\
\hline \(V_{\text {u }}\) & limited level voltage LOW & & - & 1.8 & - & V \\
\hline \(V_{\text {HL }}\) & limited level voltage HIGH & & - & 3.2 & - & V \\
\hline \multicolumn{7}{|l|}{Y + SYNC (pin 22 out to delay circult)} \\
\hline \(\mathrm{R}_{0}\) & Output resistance & & - & - & <25 & \(\Omega\) \\
\hline \(\mathrm{I}_{\text {enk }}\) & maximum sink current & & 350 & - & - & \(\mu \mathrm{A}\) \\
\hline I couro & maximum source current & & 1000 & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\mathrm{B}}\) & black level output voltage & & - & 2.5 & - & V \\
\hline
\end{tabular}

\section*{PAL/NTSC encoder}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{PAL mode; pin \(17=0 \mathrm{~V}\)} \\
\hline \(\mathrm{V}_{\text {sruc }}\) & sync voltage amplitude & & 285 & 300 & 315 & mV \\
\hline \(V_{V}\) & Y voltage amplitude & & 665 & 700 & 735 & \(m V\) \\
\hline \(V_{\text {DF }}\) & difference between black and blanking level & & - & 0 & - & mV \\
\hline \multicolumn{7}{|l|}{NTSC mode; pin 17 = 5 V and pin 4 open-circuit or ground} \\
\hline \(\mathrm{V}_{\text {STNC }}\) & sync voltage amplitude & & 270 & 286 & 300 & mV \\
\hline \(V_{V}\) & Y voitage amplitude & & 628 & 661 & 694 & mV \\
\hline \(\mathrm{V}_{\mathrm{DF}}\) & difference between black and blanking level & & - & 53 & - & mV \\
\hline BW & frequency response & pin 22 with external & 10 & - & - & MHz \\
\hline & group delay tolerance & & - & - & 20 & ns \\
\hline 4 & sync delay from pin 24 to pin 22 & & 220 & 290 & 360 & ns \\
\hline \(t_{4}\) & \(Y\) delay from pin 5 to pin 22 & & - & 10 & - & ns \\
\hline \(\boldsymbol{\alpha}\) & Chrominance cross talk & \[
\begin{aligned}
& \begin{array}{l}
0 \mathrm{~dB}=1330 \mathrm{mV} \\
\text { (peak-to-peak) } \\
=75 \% \text { RED }
\end{array} \\
& ={ }^{2}
\end{aligned}
\] & - & - & -60 & dB \\
\hline \multicolumn{7}{|l|}{Y + SYNC IN (pin 20 from delay circult; note 2)} \\
\hline \(\mathrm{l}_{\text {bim }}\) & input bias current & & - & - & 1 & \(\mu \mathrm{A}\) \\
\hline \(V_{1}\) & maximum voltage amplitude & & - & - & 1 & V \\
\hline \multicolumn{7}{|l|}{Y + SYNC OUT (pin 19 output Y (SVHS); note 2)} \\
\hline \(\mathrm{R}_{0}\) & Output resistance & & - & 120 & - & \(\omega\) \\
\hline \(\mathrm{l}_{\text {bink }}\) & maximum sink current & & 650 & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\text {souren }}\) & maximum source current & & 1000 & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\mathrm{a}}\) & black level output voltage & & - & 1.65 & - & V \\
\hline G & Y + SYNC gain; from pin 20 to pin 19 & & - & 12 & - & dB \\
\hline BW & frequency response & pin 19 with external load of \(R=10 \mathrm{k} \Omega\) and \(C=10 \mathrm{pF}\) & 10 & - & & \\
\hline & group delay tolerance & & - & - & 20 & ns \\
\hline \(\boldsymbol{\alpha}\) & Chrominance cross talk & \[
\begin{aligned}
& \begin{array}{l}
0 \mathrm{~dB}=1330 \mathrm{mV} \\
\text { (peak-to-peak) } \\
=75 \% \text { RED }
\end{array} \\
& =7
\end{aligned}
\] & - & - & -54 & dB \\
\hline
\end{tabular}

\section*{Notes}
1. The threshold level of this pin is \(700 \mathrm{mV} \pm 20 \mathrm{mV}\). The specification of the HIGH and LOW levels is according to the SCART fast blanking.
2. Pin 20 condition: black level of input signal must be 2.5 V ; amplitude 0.5 V (peak-to-peak) nominal.

\section*{AC CHARACTERISTICS (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{NOTCH (pln 18)} \\
\hline \(\mathrm{R}_{0}\) & Output resistance & & 1750 & 2000 & 2500 & \(\Omega\) \\
\hline \(\mathrm{V}_{\text {c }}\) & DC voltage level & & - & 2.5 & - & V \\
\hline \(\mathrm{l}_{\text {enk }}\) & maximum sink current & & 350 & - & - & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{Chrominance output (pin 14)} \\
\hline \(\mathrm{I}_{\text {mink }}\) & maximum sink current & & 700 & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\text {soura }}\) & maximum source current & & 1000 & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{R}_{0}\) & Output resistance & & - & 120 & - & \(\Omega\) \\
\hline \(\Delta V_{D C}\) & variation of DC voltage level when chrominance signal is blanked and chrominance signal is not blanked & & - & - & 5 & mV \\
\hline \multicolumn{7}{|l|}{PAL mode; pin 17 = 0 V} \\
\hline Vo & chrominance output voltage (peak-to-peak) amplitude burst ratio: chrominance (75\% RED)/burst & & \[
\begin{aligned}
& 480 \\
& 2.1
\end{aligned}
\] & \[
\begin{gathered}
600 \\
2.2
\end{gathered}
\] & \[
\begin{aligned}
& 720 \\
& 2.3
\end{aligned}
\] & mV \\
\hline \multicolumn{7}{|l|}{NTSC mode; pin 17 \(=5 \mathrm{~V}\)} \\
\hline \(\mathrm{V}_{0}\) & chrominance output voltage (peak-to-peak) amplitude burst ratio: chrominance (75\% RED)/burst & & \[
\begin{aligned}
& 460 \\
& 2.1
\end{aligned}
\] & \[
\begin{aligned}
& 570 \\
& 2.2
\end{aligned}
\] & \[
\begin{aligned}
& 680 \\
& 2.3
\end{aligned}
\] & mV \\
\hline & carrier suppression when input-signals are 0 V & \[
\begin{aligned}
& 0 \mathrm{~dB}=1330 \mathrm{mV} \\
& \text { (peak-to-peak) }
\end{aligned}
\] & - & 37 & - & dB \\
\hline & phase accuracy (difference between 0 and 90 degree carriers) & & - & - & 2 & degrees \\
\hline LPF & Low-pass filters & \multicolumn{5}{|l|}{see Figs 3 and 4} \\
\hline BPF & Band-pass fitters & \multicolumn{5}{|l|}{see Figs 5 and 6} \\
\hline \(\mathrm{V}_{\mathrm{n}}\) & noise level (RMS value) & & - & - & 4 & mV \\
\hline \multirow[t]{2}{*}{BP} & \multicolumn{6}{|l|}{burst phase; 0 degrees \(=\) phase U carrier} \\
\hline & PAL mode NTSC mode & & \[
\left.\right|^{-}
\] & \[
\begin{aligned}
& \pm 135 \\
& 180
\end{aligned}
\] & - & degrees degrees \\
\hline \(\alpha\) & Y + SYNC cross talk (0 to 6 MHz) & \begin{tabular}{l}
\[
0 \mathrm{~dB}=1400 \mathrm{mV}
\] \\
(peak-to-peak)
\end{tabular} & - & - & -60 & dB \\
\hline
\end{tabular}

\section*{PALNTSC encoder}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{CVBS output (pin 16)} \\
\hline \(\mathrm{I}_{\text {cink }}\) & maximum sink current & & 650 & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\text {souce }}\) & maximum source current & & 1000 & - & - & \(\mu \mathrm{A}\) \\
\hline Vo & DC voltage level & \(Y+S Y N C=0\) & - & 1.6 & - & V \\
\hline G & Y + SYNC gain; from pin 20 to pin 16 & & - & 12 & - & dB \\
\hline G & chrominance difference; from pin 14 to pin 16 & & - & 0 & - & dB \\
\hline \(\mathrm{G}_{\mathrm{a}}\) & differential phase & note 1 & - & - & 3 & degrees \\
\hline \(\mathrm{G}_{\mathrm{v}}\) & differential gain & note 2 & - & - & 3 & dB \\
\hline \(\mathrm{R}_{0}\) & Output resistance & & - & 120 & - & \(\boldsymbol{\Omega}\) \\
\hline \multicolumn{7}{|l|}{Oscillator output (pin 23)} \\
\hline OSC & series-resonance & \multicolumn{5}{|l|}{the resonance resistance of the crystal should be < \(60 \Omega\) and the parallel capacitance of the crystal should be \(<10 \mathrm{pF}\).} \\
\hline \multicolumn{7}{|l|}{Filter tuning loop (pin 15)} \\
\hline \(V_{D C}\) & DC control voltage level NTSC & & - & 0.83 & - & V \\
\hline \(V_{D C}\) & DC control voltage level PAL & & - & 0.88 & - & V \\
\hline \(V_{\text {DCL }}\) & limited DC-level LOW & \(l_{0}=200 \mu \mathrm{~A}\) & - & 0.27 & - & V \\
\hline \(\mathrm{V}_{\text {DCH }}\) & limited DC-level HIGH & \(\mathrm{l}_{1}=200 \mu \mathrm{~A}\) & - & 1.8 & - & V \\
\hline \multicolumn{7}{|l|}{H2 (pin 4)} \\
\hline \(V_{1}\) & LOW level input voltage & inactive & 0 & - & 1 & V \\
\hline \(\mathrm{V}_{\mathrm{H}}\) & HIGH level input voltage & active & 4 & - & 5 & V \\
\hline \(\mathrm{I}_{1}\) & current for forcing HIGH & & 220 & - & - & \(\mu \mathrm{A}\) \\
\hline \(H_{0}\) & current for forcing LOW & - & 260 & - & - & \(\mu \mathrm{A}\) \\
\hline \(V_{0}\) & voltage out LOW & & - & - & \(<0.5\) & V \\
\hline \(V_{0}\) & voltage out HIGH & & 4 & - & - & V \\
\hline \(I_{\text {sink }}\) & maximum sink current & & 50 & - & - & \(\mu A\) \\
\hline \(\mathrm{I}_{\text {souros }}\) & maximum source current & & 50 & - & - & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{Composite sync Input (pin 24)} \\
\hline \(\mathrm{V}_{\text {SYNC }}\) & SYNC pulse amplitude & & 75 & 300 & 600 & mV(p-p) \\
\hline & slicing lavel & & - & 50 & - & \% \\
\hline 1 & input current & & - & 4 & - & \(\mu \mathrm{A}\) \\
\hline 10 & maximum output current during SYNC & & - & 100 & - & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{BURST ADJ (pin 21; note 3)} \\
\hline BP & DC voltage leval & & - & \[
\begin{aligned}
& V_{\text {REF }} \\
& (V 13)
\end{aligned}
\] & - & V \\
\hline
\end{tabular}

\section*{PALNTSC encoder}

TDA8501
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Control pin PALNTSC and YN + SYNC (pin 17; note 4)} \\
\hline V & PAL mode and blanking pin 5 active internal sync added to \(Y\) & & 0 & - & 1 & V \\
\hline \(v_{1}\) & PAL mode and blanking pin 5 inactive internal sync not added to \(Y\) & & 1.6 & - & 2.0 & v \\
\hline \(v_{1}\) & NTSC mode and blanking pin 5 active internal sync added to \(Y\) & & 4 & - & 5 & v \\
\hline \(V_{1}\) & NTSC mode and blanking pin 5 inactive internal sync not added to \(Y\) & & 3 & - & 3.4 & v \\
\hline \(\mathrm{I}_{\text {bien }}\) & input bias current & & - & - & -10 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{Notes}
1. Definition: maximum phase - minimum phase \(=\) difference phase
2. Definition: \(\frac{\text { maximum gain - minimum gain }}{\text { maximum gain }} \times 100=\) difference gain \(\%\)
3. The output impedance of this pin is low (<100 \(\Omega\)). The nominal value of the external resistor is \(196 \mathrm{k} \Omega\) (see also section Sync separator and Pulse shaper).
4. The threshold levels are: 0.25 times \(V_{c c}, 0.5\) times \(V_{c c}\) and 0.75 times \(V_{c c}\).

\section*{PALNTSC encoder}

Table 2 Internal circuitry.
\begin{tabular}{|c|c|c|c|}
\hline PIN & NAME & CIRCUIT & DESCRIPTION \\
\hline 1 & -(R-Y) & & -(R-Y) input; connected via 47 nF capacitor \(1.05 \mathrm{~V}(\mathrm{p}-\mathrm{p})\) for EBU bar of 75\% see also pins 3, 5, 7, 9 and 11 \\
\hline 2 & MCONTROL & & \begin{tabular}{l}
multiplexer switch control input \(<0.4 \mathrm{~V} \mathrm{Y}\), \\
\(>1 \mathrm{VR}, \mathrm{G}\) and B
\end{tabular} \\
\hline 3 & -(B-Y) & see pin 1 & -(B-Y) input; connected via 47 nF capacitor \(1.33 \vee(p-p)\) for EBU bar of \(75 \%\) \\
\hline 4 & H/2 INOUT & & \begin{tabular}{l}
\(H / 2\) input PAL MODE: \\
pin open, output of internal H/2 \\
Forcing possibility \\
NTSC mode: \\
O V set-up \\
5 V no set-up
\end{tabular} \\
\hline
\end{tabular}

\section*{PALNTSC encoder}
\begin{tabular}{|c|c|c|c|}
\hline PIN & NAME & CIRCUIT & DESCRIPTION \\
\hline 5 & Y & see pin 1 & \begin{tabular}{l}
Y input; connected via 47 nF capacitor \\
\(1 \mathrm{~V}(\mathrm{p}-\mathrm{p})\) for EBU bar of \(75 \%\)
\end{tabular} \\
\hline 6 & U OFFSET & & 220 nF (low-leakage) connected to ground see also pin 12 \\
\hline 7 & R & see pin 1 & \begin{tabular}{l}
RED input; connected via 47 nF capacitor \\
0.7 V (p-p) for EBU bar of 75\%
\end{tabular} \\
\hline 8 & \(V_{c c}\) & & supply voltage 5 V nominal \\
\hline 9 & G & see pin 1 & GREEN input; connected via 47 nF capacitor \(0.7 \mathrm{~V}(\mathrm{p}-\mathrm{p})\) for EBU bar of \(75 \%\) \\
\hline 10 & \(\mathrm{V}_{\text {ss }}\) & MKA445 & ground \\
\hline 11 & B & see pin 1 & \begin{tabular}{l}
BLUE input; connected via 47 nF capacitor \\
\(0.7 \mathrm{~V}(\mathrm{p}-\mathrm{p})\) for EBU bar of 75\%
\end{tabular} \\
\hline
\end{tabular}

PAL/NTSC encoder
TDA8501
\begin{tabular}{|c|c|c|c|}
\hline PIN & NAME & CIRCUIT & DESCRIPTION \\
\hline 12 & V OFFSET & see pin 6 & 220 nF (low-leakage) connected to ground \\
\hline 13 & \(V_{\text {ReF }}\) & & 2.5 V reference voltage decoupling with \(47 \mu \mathrm{~F}\) and 22 nF capacitors \\
\hline 14 & CHROMA & & chrominance output; together with pin 19 the \(Y+C\) (SVHS) output \\
\hline 15 & FLT & & filter control pin 220 nF capacitor to ground \\
\hline
\end{tabular}

\section*{PALNTSC encoder}
\begin{tabular}{|c|c|c|c|}
\hline PIN & NAME & CIRCUIT & DESCRIPTION \\
\hline 16 & CVBS & & CVBS output \\
\hline 17 & PALNTSC YY + SYNC & & \begin{tabular}{l}
4-level control pin Pin 5: \\
O V PAL, Y \\
1.8 V PALY + SYNC \\
3.2 V NTSC Y + SYNC \\
5 V NTSC Y
\end{tabular} \\
\hline 18 & NOTCH & & pin for external notch filter \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline PIN & NAME & CIRCUIT & DESCRIPTION \\
\hline 19 & Y + SYNC OUT & & output of the \(Y\) + SYNC signal; together with pin 14 the \(Y+C\) (SVHS) output \\
\hline 20 & Y + SYNC IN & & input of the delayed \(Y+\) SYNC signal of the delay line black level must be 2.5 V \\
\hline 21 & BURST ADJ & & external resistor to ground for adjusting the position of the burst \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & NAME & CIRCUIT & \multicolumn{1}{c|}{ DESCRIPTION } \\
\hline 22 & Y + SYNC OUT & & \begin{tabular}{l}
output of the \(\mathrm{Y}+\) SYNC signal, \\
connected to the delay line via a \\
resistor
\end{tabular} \\
\hline 23 & OSC & & & \\
\hline
\end{tabular}

Fig. 14 Application diagram.

\section*{FEATURES}
- \({ }^{2}\) C-bus or the non- \(1^{2}\) - - bus mode (controlled by DC voltages)
- Slave receiver in the \(I^{2} \mathrm{C}\) mode
- S-VHS or CVBS processing
- 3-state switches for all channels
- Selectable gain for the video channels
- sub-address facility
- Auxiliary logic outputs for audio switching
- System expansion possible up to 7 devices (28 sources)
- Static short-circuit proof outputs
- ESD protection.

\section*{APPLICATIONS}
- CTV receivers
- Peritelevision sets
- Satellite receivers.

\section*{GENERAL DESCRIPTION}

The TDA8540 has been designed primarily for switching between composite video signals. Consequently, a minimum of four input lines has been provided as required for switching between two S-VHS sources. Each of the four outputs can be set to a high impedance state, permitting parallel connection to several devices.

\section*{QUICK REFERENCE DATA}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & \multicolumn{1}{|c|}{ PARAMETER } & \multicolumn{1}{c|}{ CONDITIONS } & \multicolumn{1}{c|}{ MIN. } & \multicolumn{1}{c|}{ TYP. } & \multicolumn{1}{c|}{ MAX. } & \multicolumn{1}{c|}{ UNIT } \\
\hline \(\mathrm{V}_{\mathrm{cc}}\) & supply voltage & & 7.2 & - & 8.8 & V \\
\hline \(\mathrm{I}_{\mathrm{cc}}\) & supply current & & - & 20 & 30 & mA \\
\hline \(\mathrm{I}_{\mathrm{so}}\) & isolation "OFF" state & at \(\mathrm{f}=5 \mathrm{MHz}\) & 60 & 80 & - & dB \\
\hline B & 3 dB bandwidth & & 12 & - & - & MHz \\
\hline\(\alpha\) & \begin{tabular}{l}
crosstalk attenuation \\
between channels
\end{tabular} & & 60 & 70 & - & dB \\
\hline
\end{tabular}

\section*{ORDERING INFORMATION}
\begin{tabular}{|l|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
EXTENDED TYPE \\
NUMBER
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline TDA8540 & 20 & DIL & plastic & SOT146E \\
\hline TDA8540T & 20 & SO & plastic & SOT163A \\
\hline
\end{tabular}

Fig. 1 Block diagram.
\(4 \times 4\) video switch matrix

\section*{PINNING}
\begin{tabular}{|l|l|l|}
\hline SYMBOL & PIN & \multicolumn{1}{|c|}{ DESCRIPTION } \\
\hline OUT2 & 1 & video output 2 \\
\hline DO & 2 & control output \\
\hline OUT3 & 3 & video output 3 \\
\hline V \(_{\text {D23 }}\) & 4 & driver supply \\
\hline S2 & 5 & sub-address input 2 \\
\hline INO & 6 & \begin{tabular}{l}
video input (CVBS or chrominance \\
signal)
\end{tabular} \\
\hline S1 & 7 & sub-address input 1 \\
\hline IN1 & 8 & \begin{tabular}{l}
video input (CVBS or chrominance \\
signal)
\end{tabular} \\
\hline AGND & 9 & analog ground \\
\hline IN2 & 10 & \begin{tabular}{l}
video input (CVBS or luminance \\
signal)
\end{tabular} \\
\hline SO & 11 & sub-address input 0 \\
\hline IN3 & 12 & \begin{tabular}{l}
video input (CVBS or luminance \\
signal)
\end{tabular} \\
\hline V \(_{\text {CC }}\) & 13 & positive supply voltage \\
\hline OUT1 & 14 & video output 1 \\
\hline V \(_{\text {D01 }}\) & 15 & driver supply \\
\hline OUT0 & 16 & video output 0 \\
\hline D1 & 17 & control output \\
\hline SCL & 18 & serial clock input \\
\hline SDA & 19 & serial data input/output \\
\hline DGND & 20 & digital ground \\
\hline
\end{tabular}

Fig. 2 Pinning configuration.

\section*{\(4 \times 4\) video switch matrix}

\section*{FUNCTIONAL DESCRIPTION}

The TDA8540 is controlled via a bi-directional \(1^{2} \mathrm{C}\)-bus. 3 -bits of the \(1^{2} \mathrm{C}\) address can be selected via sub-address input pins, thus providing a facility for parallel operation of 7 devices.
Control options via the \(1^{2} C\)-bus:
- the input signals can be clamped at their negative peak (top sync).
- the gain factor of the outputs can be selected between \(1 \times\) or \(2 x\).
- each of the four outputs can be individually connected to one of the four inputs.
- each output can be individually set in a high impedance state.
- two binary output data lines can be controlled for switching accompanying sound signals.

The SDA and SCL pins (pins 19 and 18) can be connected to the \(I^{2} \mathrm{C}\)-bus or to DC switching voltage sources. Address inputs S0 to S2 (pins 11, 7 and 5) are used to select sub-addresses for switching to the non- \(1^{2} \mathrm{C}\) mode. Inputs S0, S1 and S2 can be connected to the supply voltage (HIGH) or the ground (LOW). In this way no peripheral components are required for selection.

Table \(11^{2} \mathrm{C}\)-bus sub-addressing.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ S2 } & \multirow{2}{*}{ S1 } & \multirow{2}{*}{ S0 } & \multicolumn{3}{|c|}{ sub-address } \\
\cline { 4 - 6 } & & & A2 & A1 & A0 \\
\hline L & L & L & 0 & 0 & 0 \\
L & L & H & 0 & 0 & 1 \\
L & H & L & 0 & 1 & 0 \\
L & H & H & 0 & 1 & 1 \\
H & L & L & 1 & 0 & 0 \\
H & L & H & 1 & 0 & 1 \\
H & H & L & 1 & 1 & 0 \\
\hline H & H & H & \multicolumn{4}{|c|}{ non I'C addressable } \\
\hline
\end{tabular}

\section*{\(4 \times 4\) video switch matrix}

TDA8540

\section*{\(I^{2}\) C-bus control}

After power-up the outputs are initialized in the high impedance state, and DO, D1 are at a low level.
Detailed information on \(1^{2} \mathrm{C}\)-bus is available on request.
The TDA8540 is a SLAVE RECEIVER with the following protocol:
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline \(\mathbf{S}\) & SLV & A & SUB & A & DATA & A & DATA & A & P \\
\hline
\end{tabular}

Where:
- S : start condition
- A : acknowledge bit (generated by TDA8540)
- P : stop condition.

Data transmission to the TDA8540 begins with the following slave address (SLV):
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{ MSB } & LSB & \\
\hline SLV: & A6 & A5 & A4 & A3 & A2 & A1 & A0 & R/W & \\
\hline
\end{tabular}

Where:
\(A 6=1, A 5=0, A 4=0, A 3=1\)
\(A 2, A 1, A 0\) : pin programmable address bits
R/W = 0 (write only)
Where:
```

if SUB = OOH: access to switch control (SW1)
if SUB = 01H : access to gain/clamp/data control (GCO)
if SUB = 02H : access to output enable control (OEN)

```

After the slave address, a second byte, SUB, is required for selecting the functions:
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline & MSB & \multicolumn{8}{|c|}{} \\
\hline SUB: & 0 & 0 & 0 & 0 & 0 & 0 & RS1 & RSO & \\
\hline
\end{tabular}

\section*{Note}

If more than one data byte is sent, the SUB byte will be automatically incremented
If more than 3 data bytes are sent, the internal counter will roll over and the device will then rewrite the first register.

\section*{\(4 \times 4\) video switch matrix}

\section*{Data Bytes}
- \(\mathrm{SWI}(\mathrm{SUB}=00 \mathrm{H})\)

SWI (SUB \(=\mathbf{O O H}\)) determines which input is connected to the different outputs:
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline & \multicolumn{2}{|l|}{ MSB } & LSB & \\
\hline SWI: & S31 & S30 & S21 & S20 & S11 & S10 & S01 & S00 & - \\
\hline
\end{tabular}
\begin{tabular}{|l|l|c|c|c|c|}
\hline For J = 0 to 3: & \(\mathrm{S}_{1} 1, \mathrm{~S}_{\mathrm{j}} \mathrm{O}\) & 00 & 01 & 10 & 11 \\
\cline { 2 - 7 } & \(\mathrm{OUT}_{\mathrm{j}}\) & INO & N 1 & IN 2 & IN 3 \\
\hline
\end{tabular}

Example : if \(\mathrm{S} 21=0\) and \(\mathrm{S} 20=1\), then OUT2 is connected to \(\operatorname{IN} 1\).
- GCO (SUB = 01H)
- selects the gain of each output
- selects the clamp action or mean value on inputs 0 and 1
- determines the value of the auxiliary outputs D1 and D0
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline & MSB & & & LSB & \\
\hline GCO: & G3 & G2 & G1 & G0 & CL1 & CLO & D1 & D0 & \\
\hline
\end{tabular}
- for \(\mathrm{j}=0\) to 3 : if \(\mathrm{Gj}=0\) (resp 1), then output j has a gain of 2 (resp 1)
- if CLO (resp CL1) \(=0\), then input signal on INO (resp IN1) is clamped
- for \(\mathrm{j}=0.1\) : if \(\mathrm{Dj}=0\) (resp 1), then logical output j is LOW (resp HIGH).

OEN \((S U B=02 H)\) determines which output is active or high impedance:
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline & MSB & & & & LSB & \\
\hline OEN: & X & X & X & X & EN3 & EN2 & EN1 & ENO & \\
\hline
\end{tabular}
- for \(\mathrm{j}=0\) to 3 : if \(\mathrm{ENj}=0\) (resp 1), then OUT J is HIGHZ (resp ACTIVE).

After a power-on reset: the outputs are set to a high impedance state; the outputs are connected to INO; the gains are set at two and inputs INO and IN1 are clamped.

After a power-on reset, the programming of the device is required by the outputs being in a high impedance state.

\section*{\(4 \times 4\) video switch matrix}

\section*{Non- \(1^{2} \mathrm{C}\)-bus Control}

If the \(S 0, S 1\) and \(S 2\) pins are all tied to \(V_{c c}\) the device will then enter the non- \(1^{2} \mathrm{C}\) mode.
- After a power-on reset :
- gain is set at two for all outputs
- all inputs are clamped
- all outputs are active
- the matrix position is given by SDA and SCL voltage level..

Table 2 Non \(\mathrm{I}^{2} \mathrm{C}\)-bus Control.
\begin{tabular}{|c|c|c|c|c|}
\hline SCL - SDA & 0.0 & 0.1 & 1.0 & 1.1 \\
\hline OUT3 & IN3 & IN2 & IN1 & IN0 \\
\hline OUT2 & IN2 & IN3 & IN0 & IN1 \\
\hline OUT1 & IN1 & IN0 & IN3 & IN2 \\
\hline OUT0 & \(\mathbb{I N 0}\) & \(\mathbb{I N 1}\) & IN2 & IN3 \\
\hline
\end{tabular}

SCL and SDA act as normal input pins:
- SCL interchanges (OUT3 and OUT2) with (OUT1 and OUTO).
- SDA interchanges OUT3 with OUT2; OUT1 with OUT0.

\section*{Note:}

For use with chrominance signals, the clamp action must be overruled by external bias.

Fig. 3 INO and IN1 inputs.
\(4 \times 4\) video switch matrix

Fig. 4 IN2 and \(\operatorname{IN} 3\) inputs.

Fig. 5 Driver output stage.

\section*{\(4 \times 4\) video switch matrix}

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum System (IEC 134).
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & \multicolumn{1}{|c|}{ PARAMETER } & \multicolumn{1}{|c|}{ MIN. } & \multicolumn{1}{c|}{ MAX. } & \multicolumn{1}{c|}{ UNIT } \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & supply voltage & -0.3 & 9.1 & V \\
\hline \(\mathrm{P}_{\text {tot }}\) & total power dissipation & - & 750 & mW \\
\hline \(\mathrm{~T}_{\text {stg }}\) & storage temperature & -55 & +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{j}}\) & maximum junction temperature & - & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{V}_{\text {D01 }}, \mathrm{V}_{\text {D23 }}\) & driver supply input voltage & -0.3 & 13.8 & V \\
\hline INO to IN3 & video input voltage & -0.3 & 7.2 & V \\
\hline OUT0 to OUT3 & video output voltage & -0.3 & 7.2 & V \\
\hline D0, D1 & control output voltage & -0.3 & 7.2 & V \\
\hline SDA, SDL & I'C input/output voltage & -0.3 & 8.8 & V \\
\hline S0 to S2 & sub-address input voltage & -0.3 & 8.8 & V \\
\hline
\end{tabular}

\section*{Handling}

Human Body Model
The IC withstands 1500 V in accordance with UZW-BO-FQ-A303.
Machine Model
The IC withstands 200 V in accordance with UZW-BO-FQ-B303 (stress reference pins : AGND - GNDD short-circuit and \(\mathrm{V}_{\mathrm{cc}}\)).

THERMAL RESISTANCE
\begin{tabular}{|l|l|c|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & THERMAL RESISTANCE \\
\hline\(R_{\mathrm{n} j \mathrm{j}-\mathrm{a}}\) & from junction to ambient in free air & \\
& SOT146 & \(60 \mathrm{k} / \mathrm{W}\) \\
& SOT163A & 85 KW \\
\hline
\end{tabular}
\(4 \times 4\) video switch matrix

\section*{OPERATING CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(V_{c c}\) & supply voltage & & 7.2 & - & 8.8 & V \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature & & 0 & - & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{7}{|l|}{Video inputs (pins 6, 8, 10 and 12)} \\
\hline \(\mathrm{C}_{1}\) & external capacitor & & - & 100 & - & nF \\
\hline \(V_{1}\) & C signal amplitude (peak-to-peak value) & note 1 & - & - & 1 & V \\
\hline \(V_{1}\) & CVBS or Y -signal amplitude (peak-to-peak value) & note 2 & - & - & 1.5 & V \\
\hline \multicolumn{7}{|l|}{Video drivers (pins 4 and 15)} \\
\hline \(\mathrm{R}_{\mathrm{D}}\) & external collector resistor & note 3 & - & 25 & - & \(\Omega\) \\
\hline \(\mathrm{C}_{\mathrm{D}}\) & external decoupling capacitor & note 4 & - & 22 & - & \(\mu \mathrm{F}\) \\
\hline \multicolumn{7}{|l|}{sub-address S0, S1 and S2 (pins 5, 7 and 11)} \\
\hline \(\mathrm{V}_{\mathrm{H}}\) & HIGH level input voltage & & 4 & - & \(\mathrm{V}_{\mathrm{cc}}\) & V \\
\hline \(\mathrm{V}_{\mathrm{H}}\) & LOW level input voltage & & 0 & - & 1 & V \\
\hline
\end{tabular}

\section*{Notes to the Operating Characteristics:}
1. Only for pins 6 and 8 when clamp action is not selected for these pins.
2. On all the video input pins when non- \(\mathrm{l}^{2} \mathrm{C}\)-bus control mode is selected or when clamp action is selected on pins 6 and 8 (by \({ }^{12} \mathrm{C}\)-bus control).
3. Connected between \(\mathrm{V}_{\mathrm{cc}}\) and pin 4 or pin 15.
4. Connected between AGRND and pin 4 or pin 15.

\section*{CHARACTERISTICS}
\(V_{c c}=8 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\); gain condition, clamp condition and OFF state are controlled by the \(\mathrm{I}^{2} \mathrm{C}\) bus unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Supply} \\
\hline \multirow[t]{2}{*}{lcc} & \multirow[t]{2}{*}{supply current} & without load & - & 20 & 30 & mA \\
\hline & & OFF state & - & 12 & - & mA \\
\hline
\end{tabular}

Video inputs : INO to IN3 when the clamp is active (see Figs 3 and 4)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(l_{\mathrm{U}}\) & input leakage current & \(V_{1}=3 \mathrm{~V}\) & - & 0.4 & 1 & mA \\
\hline \(\mathrm{~V}_{\text {damp }}\) & input clamping voltage & \(\mathrm{I}_{1}=5 \mu \mathrm{~A}\) & - & 2.2 & - & V \\
\hline \(\mathrm{I}_{\text {camp }}\) & nput clamping current & \(\mathrm{V}_{1}=0 \mathrm{~V}\) & 1.2 & - & - & mA \\
\hline
\end{tabular}

Video inputs : IN0 and IN2 when the clamp is not active (see Fig.3)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{\text {bias }}\) & DC input bias level & \(I_{1}=0\) & - & 2.9 & - & \(V\) \\
\hline\(R_{1}\) & input resistance & & - & 10 & - & \(\mathrm{k} \Omega\) \\
\hline
\end{tabular}

Video outputs : OUT0 to OUT3 (see Fig.5)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathrm{Z}_{0}\) & output impedance & OFF state & 100 & - & - & \(k \Omega\) \\
\hline \(\mathrm{R}_{0}\) & output resistance & & - & 5 & - & \(\Omega\) \\
\hline ISO & isolation & OFF state \(\mathrm{f}=5 \mathrm{MHz}\) & 60 & - & - & dB \\
\hline \(V_{0}\) & output top sync level (Y or CVBS) & & 0.4 & 0.7 & 1 & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\text {bias }}\)} & \multirow[t]{2}{*}{output mean value for chrominance signals} & \(\mathrm{G}=2\), load \(=150 \Omega\) & 1.5 & 1.9 & 2.2 & V \\
\hline & & \(\mathrm{G}=1\), without load & 1 & 1.3 & 1.6 & V \\
\hline \multirow[t]{2}{*}{G} & \multirow[t]{2}{*}{voltage gain} & \(\mathrm{G}=1 ; \mathrm{f}=1 \mathrm{MHz}\) & -1 & 0 & +1 & dB \\
\hline & & \(\mathrm{G}=2 \mathrm{f}=1 \mathrm{MHz}\) & +5 & +6 & +7 & dB \\
\hline \(\mathrm{G}_{\text {diff }}\) & differential gain & note 1 & - & 0.5 & 3 & \% \\
\hline \(\varphi_{\text {diff }}\) & differential phase & note 1 & - & 0.6 & - & deg \\
\hline NL & non linearity & note 2 & - & 0.5 & 2 & \% \\
\hline \(\alpha\) & crosstalk attenuation between channels & note 3 & 60 & 70 & - & dB \\
\hline SVRR & supply voltage rejection & note 4 & 36 & 55 & - & dB \\
\hline \multirow[t]{3}{*}{\(\Delta \mathrm{G}\)} & \multirow[t]{3}{*}{maximum gain variation} & \(100 \mathrm{kHz}<\mathrm{ff}<5 \mathrm{MHz}\) & - & 0.5 & - & dB \\
\hline & & \(100 \mathrm{kHz}<\mathrm{f}<8.5 \mathrm{MHz}\) & - & 1 & - & dB \\
\hline & & \(100 \mathrm{kHz}<\mathrm{f}<12 \mathrm{MHz}\) & - & 3 & - & dB \\
\hline \(\alpha{ }^{2} \mathrm{C}\) & crosstalk attenuation of bus signals & & 60 & - & - & dB \\
\hline
\end{tabular}

Auxiliary outputs D0, D1 (open collector)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{I}_{\mathrm{OH}}\) & HIGH level output current & \(\mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}\) & - & - & 10 & mA \\
\hline \(\mathrm{~V}_{\mathrm{OL}}\) & LOW level output voltage & \(\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}\) & - & - & 0.4 & V \\
\hline
\end{tabular}

\section*{\(4 \times 4\) video switch matrix}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{\(1^{2} \mathrm{C}\)-bus inputs SCL, SDA} \\
\hline \(\mathrm{I}_{1+}\) & HIGH level input current & \(\mathrm{V}_{\mathrm{IH}}=3.0 \mathrm{~V}\) & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\text {LL }}\) & LOW level input current & \(\mathrm{V}_{\mathrm{LL}}=1.5 \mathrm{~V}\) & -10 & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & & - & - & 10 & pF \\
\hline \multicolumn{7}{|l|}{\(8^{2} \mathrm{C}\)-bus output SDA} \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & LOW level output voltage & \(\mathrm{l}_{\mathrm{OL}}=3 \mathrm{~mA}\) & - & - & 0.4 & V \\
\hline \multicolumn{7}{|l|}{sub-address S0, S1 and S2} \\
\hline \(\mathrm{I}_{\mathrm{H}}\) & HIGH level input current & \(\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}\) & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\text {L }}\) & LOW level input current & \(\mathrm{V}_{\mathrm{HL}}=0 \mathrm{~V}\) & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{Notes to the Characteristics:}
1. Gain set at two, \(R_{L}=150 \Omega\), test signal \(D 2\) from \(C C I R 330\).
2. Gain set at two, \(R_{L}=150 \Omega\), test signal \(D 1\) from CCIR 17.
3. Measured from any selected input to output; \(f=5 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=150 \Omega\), gain set at \(2, \mathrm{~V}_{1}=1.5 \mathrm{~V}(p-p)\).

This measurement requires an optimized board.
4. Supply voltage ripple rejection: \(20 \log \frac{V_{\text {rsupply) }}}{V_{\text {roupun }}}\) measured at \(f=1 \mathrm{kHz}\) with \(V_{\text {r(supply max) }}=100 \mathrm{mV}\) (p-p).

The supply voltage rejection ratio is higher than 36 dB at \(\mathrm{f}_{\text {max }}=100 \mathrm{kHz}\).

\section*{\(4 \times 4\) video switch matrix}

Fig. 6 Application diagram.

\section*{FEATURES}
- 8-bit resolution
- Conversion rate up to 30 MHz
- TTL input levels
- Internal reference voltage generator
- Two complementary analog voltage outputs
- No deglitching circuit required
- Internal input register
- Low power dissipation
- Internal \(75 \Omega\) output load (connected to the analog supply)
- Very few external components required.

\section*{APPLICATIONS}
- High-speed digital-to-analog conversion
- Digital TV including:
- field progressive scan
- line progressive scan
- Subscriber TV decoders
- Satellite TV decoders
- Digital VCRs.

\section*{DESCRIPTION}

The TDA8702 is an 8-bit digital-to-analog converter (DAC) for video and other applications. It converts the digital input signal into an analog voltage output at a maximum conversion rate of 30 MHz . No external reference voltage is required and all digital inputs are TTL compatible.

\section*{QUICK REFERENCE DATA}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\text {CCA }}\) & analog supply voltage & & 4.5 & 5.0 & 5.5 & V \\
\hline \(\mathrm{V}_{\text {CCD }}\) & digital supply voltage & & 4.5 & 5.0 & 5.5 & V \\
\hline \(\mathrm{I}_{\text {cCA }}\) & analog supply current & note 1 & - & 26 & 32 & mA \\
\hline \(\mathrm{I}_{\text {CCD }}\) & digital supply current & note 1 & - & 23 & 30 & mA \\
\hline \(V_{\text {OUT }}-V_{\text {OUT }}\) & full-scale analog output voltage (peak-to-peak value) & note 2
\[
\begin{aligned}
& \mathrm{Z}_{\mathrm{L}}=10 \mathrm{k} \Omega \\
& \mathrm{Z}_{\mathrm{L}}=75 \mathrm{k} \Omega
\end{aligned}
\] & \[
\begin{array}{|}
-1.45 \\
-0.72 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
-1.60 \\
-0.80
\end{array}
\] & \[
\begin{array}{r}
-1.75 \\
-0.88
\end{array}
\] & \[
\begin{aligned}
& V \\
& V
\end{aligned}
\] \\
\hline ILE & DC integral linearity error & & - & - & \(\pm 1 / 2\) & LSB \\
\hline DLE & DC differential linearity error & & - & - & \(\pm 1 / 2\) & LSB \\
\hline \(\mathrm{f}_{\text {CLK }}\) & maximum conversion rate & & - & - & 30 & MHz \\
\hline B & -3 dB analog bandwidth & \[
\begin{aligned}
& \mathrm{f}_{\mathrm{cLK}}=30 \mathrm{MHz} ; \\
& \text { note } 3
\end{aligned}
\] & - & 150 & - & MHz \\
\hline \(\mathrm{P}_{\text {tot }}\) & total power dissipation & & - & 250 & 340 & mW \\
\hline
\end{tabular}

\section*{Notes}
1. D0 to D7 connected to \(V_{C c D}\) and CLK connected to DGND.
2. The analog output voltages \(\left(V_{\text {OUT }}\right.\) and \(\left.V_{O U T}\right)\) are negative with respect to \(V_{C C A}\) (see Table 1). The output resistance between \(\mathrm{V}_{\text {CCA }}\) and each of these outputs is typically \(75 \Omega\).
3. The -3 dB analog output bandwidth is determined by real time analysis of the output transient at a maximum input code transition (code 0 to 255).

\section*{8-bit video digital-to-analog converter}

TDA8702

\section*{ORDERING INFORMATION}
\begin{tabular}{|l|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
EXTENDED TYPE \\
NUMBER
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline TDA8702 & 16 & DIL & plastic & SOT38 \\
\hline TDA8702T & 16 & SO16 & plastic & SOT162A \\
\hline
\end{tabular}

Fig. 1 Block diagram.

PINNING
\begin{tabular}{|l|c|l|}
\hline SYMBOL & PIN & \multicolumn{1}{|c|}{ DESCRIPTION } \\
\hline REF & 1 & voltage reference (decoupling) \\
\hline AGND & 2 & analog ground \\
\hline D2 & 3 & data input; bit 2 \\
\hline D3 & 4 & data input; bit 3 \\
\hline CLK & 5 & clock input \\
\hline DGND & 6 & digital ground \\
\hline D7 & 7 & data input; bit 7 \\
\hline D6 & 8 & data input; bit 6 \\
\hline D5 & 9 & data input; bit 5 \\
\hline D4 & 10 & data input; bit 4 \\
\hline D1 & 11 & data input; bit 1 \\
\hline D0 & 12 & data input; bit 0 \\
\hline\(V_{\text {CCD }}\) & 13 & \begin{tabular}{l}
positive supply voltage for digital \\
circuits (+5 V)
\end{tabular} \\
\hline \(\mathrm{V}_{\text {OUT }}\) & 14 & analog voltage output \\
\hline\(V_{\text {OUT }}\) & 15 & complementary analog voltage output \\
\hline \(\mathrm{V}_{\text {CCA }}\) & 16 & \begin{tabular}{l}
positive supply voltage for analog \\
circuits (+5 V)
\end{tabular} \\
\hline
\end{tabular}

Fig. 2 Pin configuration.

\section*{8-bit video digital-to-analog converter}

\section*{Limiting values}

In accordance with the Absolute Maximum Rating System (IEC 134).
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & \multicolumn{1}{|c|}{ PARAMETER } & \multicolumn{1}{c|}{ MIN. } & \multicolumn{1}{c|}{ MAX. } & \multicolumn{1}{c|}{ UNIT } \\
\hline\(V_{\text {CCA }}\) & analog supply voltage & -0.3 & +7.0 & V \\
\hline \(\mathrm{~V}_{\mathrm{CCD}}\) & digital supply voltage & -0.3 & +7.0 & V \\
\hline \(\mathrm{~V}_{\mathrm{CCA}}-\mathrm{V}_{\text {CCD }}\) & supply voltage differential & -0.5 & +0.5 & V \\
\hline AGND - DGND & ground voltage differential & -0.1 & +0.1 & V \\
\hline \(\mathrm{~V}_{1}\) & input voltage (pins 3 to 5 and 7 to 12) & -0.3 & \(\mathrm{~V}_{\mathrm{CCD}}\) & V \\
\hline \(\mathrm{I}_{\text {OUT }} / I_{\text {OUT }}\) & total output current (pins 14 and 15) & -5 & +26 & mA \\
\hline \(\mathrm{~T}_{\text {stg }}\) & storage temperature & -55 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambienttemperature & 0 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{i}}\) & junction temperature & - & +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

THERMAL RESISTANCE
\begin{tabular}{|l|l|c|}
\hline SYMBOL & \multicolumn{1}{c|}{ PARAMETER } & THERMAL RESISTANCE \\
\hline\(R_{\mathrm{th} \mathrm{j}-\mathrm{a}}\) & from junction to ambient in free air & \\
& SOT38 & 70 KW \\
& SOT162A & 90 KW \\
\hline
\end{tabular}

\section*{HANDLING}

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

\section*{CHARACTERISTICS}
\(\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{16}-\mathrm{V}_{2}=4.5 \mathrm{~V}\) to \(5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CCD}}=\mathrm{V}_{13}-\mathrm{V}_{6}=4.5 \mathrm{~V}\) to \(5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CCA}}-\mathrm{V}_{\mathrm{CCD}}=-0.5 \mathrm{~V}\) to \(+0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}}\) decoupled to AGND by a 100 nF capacitor; \(\mathrm{T}_{\text {amb }}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\); AGND and DGND shorted together; unless otherwise specified (typical values measured at \(\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCD}}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\)).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Supply} \\
\hline \(\mathrm{V}_{\text {CCA }}\) & analog supply voltage & & 4.5 & 5.0 & 5.5 & V \\
\hline \(\mathrm{V}_{\mathrm{CCD}}\) & digital supply voltage & & 4.5 & 5.0 & 5.5 & V \\
\hline \(\mathrm{I}_{\text {CCA }}\) & analog supply current & note 1 & - & 26 & 32 & mA \\
\hline \(l_{\text {CCD }}\) & digital supply current & note 1 & - & 23 & 30 & mA \\
\hline AGND - DGND & ground voltage differential & & -0.1 & - & +0.1 & V \\
\hline \multicolumn{7}{|l|}{Inputs} \\
\hline \multicolumn{7}{|l|}{Digital inputs (D7 to D0) and Clock input (CLK)} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & HIGH level input voltage & & 2.0 & - & \(\mathrm{V}_{\text {CCD }}\) & V \\
\hline \(\mathrm{I}_{\mathrm{LL}}\) & LOW level input current & \(\mathrm{V}_{1}=0.4 \mathrm{~V}\) & - & -0.3 & -0.4 & mA \\
\hline \(\mathrm{I}_{\mathrm{IH}}\) & HIGH level input current & \(\mathrm{V}_{1}=2.7 \mathrm{~V}\) & - & 0.01 & 20 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{f}_{\text {CLK }}\) & maximum clock frequency & & - & - & 30 & MHz \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Outputs (note 2; referenced to \(\mathrm{V}_{\text {cca }}\))} \\
\hline \(V_{\text {OUT }}-V_{\text {OUT }}\) & full-scale analog output voltages (peak-to-peak value) & \[
\begin{aligned}
& Z_{L}=10 \mathrm{k} \Omega \\
& Z_{L}=75 \Omega
\end{aligned}
\] & \[
\left\lvert\, \begin{aligned}
& -1.45 \\
& -0.72
\end{aligned}\right.
\] & \[
\begin{array}{|l}
-1.60 \\
-0.80
\end{array}
\] & \[
\left\lvert\, \begin{array}{r}
-1.75 \\
-0.88
\end{array}\right.
\] & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
\] \\
\hline \(\mathrm{V}_{\text {OS }}\) & analog offset output voltage & code \(=0\) & - & -3 & -25 & mV \\
\hline \(\mathrm{V}_{\text {OUT }} / \mathrm{TC}\) & full-scale analog output voltage temperature coefficient & & - & - & 200 & \(\mu \mathrm{V} / \mathrm{K}\) \\
\hline \(\mathrm{V}_{\text {os }} / \mathrm{TC}\) & analog offset output voltage temperature coefficient & & - & - & 20 & \(\mu \mathrm{V} / \mathrm{K}\) \\
\hline B & -3 dB analog bandwidth & note \(3 ; \mathrm{f}_{\text {CLK }}=30 \mathrm{MHz}\) & - & 150 & - & MHz \\
\hline \(\mathrm{G}_{\text {diff }}\) & differential gain & & - & 0.6 & - & \% \\
\hline \(\Phi_{\text {diff }}\) & differential phase & & - & 1 & - & deg \\
\hline \(\mathrm{Z}_{0}\) & output impedance & & - & 75 & - & \(\Omega\) \\
\hline
\end{tabular}

Transfer function (\(\mathrm{f}_{\text {cLK }}=\mathbf{3 0} \mathbf{~ M H z}\))
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline ILE & DC integral linearity error & & - & - & \(\pm 1 / 2\) & LSB \\
\hline DLE & DC differential linearity error & & - & - & \(\pm 1 / 2\) & LSB \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Switching characteristics (\(\mathrm{f}_{\mathrm{cLK}}=30 \mathrm{MHz}\); notes 4 and 5; see Figs 3, 4 and 5)} \\
\hline \(\mathrm{t}_{\text {SU; }{ }_{\text {dat }}}\) & data set-up time & & -0.3 & - & - & ns \\
\hline \(t_{\text {HD; DAT }}\) & data hold time & & 2.0 & - & - & ns \\
\hline \(t_{\text {PD }}\) & propagation delay time & & - & - & 1.0 & ns \\
\hline \(\mathrm{t}_{\mathrm{s} 1}\) & settling time & \(10 \%\) to \(90 \%\) full-scale change to \(\pm 1\) LSB & - & 1.1 & 1.5 & ns \\
\hline \(\mathrm{t}_{\text {s2 }}\) & settling time & \(10 \%\) to \(90 \%\) full-scale change to \(\pm 1\) LSB & - & 6.5 & 8.0 & ns \\
\hline \(\mathrm{t}_{\text {d }}\) & input to 50\% output delay time & & - & 3.0 & 5.0 & ns \\
\hline \multicolumn{7}{|l|}{Output transients (glitches; (f \(\mathrm{f}_{\text {cLK }}=30 \mathrm{MHz}\); note 6; see Fig.6)} \\
\hline \(\mathrm{E}_{9}\) & glitch energy from code & transition 127 to 128 & - & - & 30 & LSB.ns \\
\hline
\end{tabular}

\section*{Notes}
1. D 0 to D 7 are connected to \(\mathrm{V}_{\mathrm{ccD}}\), CLK is connected to DGND.
2. The analog output voltages (\(\mathrm{V}_{\mathrm{OUT}}\) and \(V_{\mathrm{OUT}}\) are negative with respect to \(\mathrm{V}_{\mathrm{CCA}}\) (see Table 1). The output resistance between \(V_{C C A}\) and each of these outputs is \(75 \Omega\) (typ.).
3. The -3 dB analog output bandwidth is determined by real time analysis of the output transient at a maximum input code transition (code 0 to 255).
4. The worst case characteristics are obtained at the transition from input code 0 to 255 and if an external load impedance greater than \(75 \Omega\) is connected between \(V_{\text {OUT }}\) or \(V_{\text {OUT }}\) and \(V_{\text {CCA }}\). The specified values have been measured with an active probe between \(\mathrm{V}_{\text {out }}\) and AGND. No further load impedance between \(\mathrm{V}_{\text {out }}\) and AGND has been applied. All input data is latched at the rising edge of the clock. The output voltage remains stable (independent of input data variations) during the HIGH level of the clock (CLK = HIGH). During a LOW-to-HIGH transition of the clock (CLK = LOW), the DAC operates in the transparent mode (input data will be directly transferred to their corresponding analog output voltages (see Fig.5).
5. The data set-up (\(t_{\text {Su;DAT }}\)) is the minimum period preceding the rising edge of the clock that the input data must be stable in order to be correctly registered. A negative set-up time indicates that the data may be initiated after the rising edge of the clock and still be recognized. The data hold time (\(t_{\text {HD; }}\) DAT) is the minimum period following the rising edge of the clock that the input data must be stable in order to be correctly registered. A negative hold time indicates that the data may be released prior to the rising edge of the clock and still be recognized.
6. The definition of glitch energy and the measurement set-up are shown in Fig.6. The glitch energy is measured at the input transition between code 127 to 128 and on the falling edge of the clock.

8-bit video digital-to-analog converter

Table 1 Input coding and output voltages (typical values; referenced to \(\mathrm{V}_{\mathrm{CCA}}\), regardless of the offset voltage).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CODE} & \multirow{3}{*}{INPUT DATA (D7 to DO)} & \multicolumn{4}{|c|}{DAC OUTPUT VOLTAGES} \\
\hline & & \multicolumn{2}{|c|}{\(Z_{L}=10 \mathrm{k} \Omega\)} & \multicolumn{2}{|c|}{\(Z_{L}=75 \Omega\)} \\
\hline & & \(\mathrm{V}_{\text {Out }}\) & \(\mathrm{V}_{\text {OUT }}\) & \(\mathrm{V}_{\text {OUT }}\) & \(\sqrt{\text { OUT }}\) \\
\hline \(\cdots\) & 0000000 & 0 & -1.6 & 0 & -0.8 \\
\hline 1 & 00000001 & -0.006 & -1.594 & -0.003 & -0.797 \\
\hline . & & & & & \\
\hline 128 & 10000000 & -0.8 & -0.8 & -0.4 & -0.4 \\
\hline . & & & & & \\
\hline 254 & 11111110 & -1.594 & -0.006 & -0.797 & -0.003 \\
\hline 255 & 11111111 & -1.6 & 0 & -0.8 & 0 \\
\hline
\end{tabular}

The shaded areas indicate when the input data may change and be correctly registered. Data input update must be completed within 0.3 ns after the first rising edge of the clock (\(\mathrm{t}_{\mathrm{Su} ; \mathrm{DAT}}\) is negative; -0.3 ns). Data must be held at least 2 ns after the rising edge (\(\mathrm{t}_{\mathrm{HD} ; \mathrm{DAT}}=+2 \mathrm{~ns}\)).

Fig. 3 Data set-up and hold times.

Fig. 4 Switching characteristics.

During the transparent mode (CLK = LOW), any change of input data will be seen at the output. During the latched mode (CLK = HIGH), the analog output remains stable regardless of any change at the input. A change of input data during the latched mode will be seen on the falling edge of the clock (beginning of the transparent mode).

Fig. 5 Latched and transparent mode.

\section*{8-bit video digital-to-analog converter}

The value of the glitch energy is the sum of the shaded area measured in LSB.ns.

Fig. 6 Glitch energy measurement.

\section*{INTERNAL PIN CONFIGURATIONS}

Fig. 7 Reference voltage generator decoupling.

Fig. 8 AGND and DGND.
Fig. 9 D7 to D0 and CLK.

Fig. 10 Digital supply.

Fig. 12 Analog supply.

\section*{APPLICATION INFORMATION}

Additional application information will be supplied upon request (please quote number FTV/8901).

(1) This is a recommended value for decoupling pin 1.

Fig. 13 Analog output voltage without external load \(\left(V_{O}=-V_{\text {OUT }}\right.\); see Table \(\left.1, Z_{L}=10 \mathrm{k} \Omega\right)\).

(1) This is a recommended value for decoupling pin 1.

Fig. 14 Analog output voltage with external load (external load \(Z_{L}=75 \Omega\) to \(\infty\)).

(1) This is a recommended value for decoupling pin 1.

Fig. 15 Analog output with AGND as reference.

Fig. 16 Example of anti-aliasing filter (analog output referenced to AGND).

\section*{Characteristics}
- Order 5; adapted CHEBYSHEV
- Ripple at \(\leq 0.1 \mathrm{~dB}\)
- \(\mathrm{f}_{(-3 \mathrm{~dB})}=6.7 \mathrm{MHz}\)
- \(\mathrm{f}_{\text {(NOTCH) }}=9.7 \mathrm{MHz}\) and 13.3 MHz

Fig. 17 Frequency response for filter shown in Fig. 16.

(1) This is a recommended value for decoupling pin 1.

Fig. 18 Differential mode (improved supply voltage ripple rejection).

\section*{8-bit high-speed analog-to-digital converter}

\section*{FEATURES}
- 8-bit resolution
- Sampling rate up to 40 MHz
- High signal-to-noise ratio over a large analog input frequency range (7:1 effective bits at 4.43 MHz full-scale input)
- Binary or two's complement 3-state TTL outputs
- Overflow/underflow 3-state TTL output
- TTL compatible digital inputs
- Low-level AC clock input signal allowed
- Internal reference voltage generator
- Power dissipation only 290 mW (typical)
- Low analog input capacitance, no buffer amplifier required
- No sample-and-hold circuit required.

\section*{APPLICATIONS}
- General purpose high-speed analog-to-digital conversion
- Digital TV, IDTV
- Subscriber TV decoder
- Satellite TV decoders
- Digital VCR.

\section*{GENERAL DESCRIPTION}

The TDA8703 is an 8-bit high-speed analog-to-digital converter (ADC) for video and other applications. It converts the analog input signal into 8-bit binary-coded digital words at a maximum sampling rate of 40 MHz . All digital inputs and outputs are TTL compatible, although a low-level AC clock input signal is allowed.

\section*{ORDERING INFORMATION}
\begin{tabular}{|l|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
EXTENDED TYPE \\
NUMBER
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline TDA8703 & 24 & DIL & plastic & SOT101 \\
\hline TDA8703T & 24 & SO24 & plastic & SOT137A \\
\hline
\end{tabular}

\section*{QUICK REFERENCE DATA}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\text {CCA }}\) & analog supply voltage & & 4.5 & 5.0 & 5.5 & V \\
\hline \(\mathrm{V}_{\text {CCD }}\) & digital supply voltage & & 4.5 & 5.0 & 5.5 & V \\
\hline \(\mathrm{V}_{\text {cco }}\) & output stages supply voltage & & 4.2 & 5.0 & 5.5 & V \\
\hline \(\mathrm{I}_{\text {cca }}\) & analog supply current & & - & 28 & 36 & mA \\
\hline \(\mathrm{I}_{\mathrm{CCD}}\) & digital supply current & & - & 19 & 25 & mA \\
\hline \(\mathrm{I}_{\text {cco }}\) & output stages supply current & & - & 11 & 14 & mA \\
\hline ILE & DC integral linearity error & & - & - & \(\pm 1\) & LSB \\
\hline DLE & DC differential linearity error & & - & - & \(\pm 1 / 2\) & LSB \\
\hline AILE & AC integral linearity error & note 1 & - & - & \(\pm 2\) & LSB \\
\hline B & -3 dB bandwidth & note 2; \(\mathrm{f}_{\text {CLK }}=40 \mathrm{MHz}\) & - & 19.5 & - & MHz \\
\hline \(\mathrm{f}_{\text {CLK }} / \mathrm{f} \overline{\mathrm{CLK}}\) & maximum conversion rate & note 3 & 40 & - & - & MHz \\
\hline \(\mathrm{P}_{\text {tot }}\) & total power dissipation & & - & 290 & 415 & mW \\
\hline
\end{tabular}

\section*{Notes}
1. Full-scale sinewave (\(f_{i}=4.4 \mathrm{MHz} ; \mathrm{f}_{\mathrm{CLK}} ; \mathrm{f}_{\overline{\mathrm{CLK}}}=27 \mathrm{MHz}\)).
2. The -3 dB bandwidth is determined by the 3 dB reduction in the reconstructed output (full-scale signal at input).
3. The circuit has two clock inputs CLK and CLK. There are four modes of operation:
- TTL (mode 1); CLK decoupled to DGND by a capacitor. CLK input is TTL threshold voltage of 1.5 V and sampling on the LOW-to-HIGH transition of the input clock signal.
- TTL (mode 2); CLK decoupled to DGND by a capacitor. \(\overline{C L K}\) input is TTL threshold voltage of 1.5 V and sampling on the HIGH-to-LOW transition of the input clock signal.
- AC drive modes (modes 3 and 4); When driving the CLK input directly and with any AC signal of 0.5 V (peak-to-peak value) imposed on a DC level of 1.5 V , sampling takes place on the LOW-to-HIGH transition of the clock signal. When driving the CLK input with such a signal, sampling takes place on the HIGH-to-LOW transition. - If one of the clock inputs is not driven, then it is recommended to decouple this input to DGND with a 100 nF capacitor.

\section*{8-bit high-speed analog-to-digital converter}

Fig. 1 Block diagram.

\section*{8-bit high-speed analog-to-digital} converter

PINNING
\begin{tabular}{|l|c|l|}
\hline SYMBOL & PIN & \\
\hline D1 & 1 & data output; bit 1 \\
\hline D0 & 2 & data output; bit 0 (LSB) \\
\hline AGND & 3 & analog ground \\
\hline V \(_{\text {RB }}\) & 4 & reference voltage bottom (decoupling) \\
\hline DEC & 5 & decoupling input (internal stabilization loop decoupling) \\
\hline n.c. & 6 & not connected \\
\hline\(V_{\text {CCA }}\) & 7 & positive supply voltage for analog circuits (+5 V) \\
\hline VI & 8 & analog voltage input \\
\hline V \(_{\text {RT }}\) & 9 & reference voltage top (decoupling) \\
\hline n.c. & 10 & not connected \\
\hline O/UF & 11 & overflow/underflow data output \\
\hline D7 & 12 & data output; bit 7 (MSB) \\
\hline D6 & 13 & data output; bit 6 \\
\hline D5 & 14 & data output; bit 5 \\
\hline D4 & 15 & data output; bit 4 \\
\hline CLK & 16 & clock input \\
\hline\(\overline{C L K}\) & 17 & complementary clock input \\
\hline\(V_{\text {CCD }}\) & 18 & positive supply voltage for digital circuits (+5 V) \\
\hline\(V_{\text {CCO }}\) & 19 & positive supply voltage for output stages (+5 V) \\
\hline DGND & 20 & digital ground \\
\hline\(\overline{\text { TC }}\) & 21 & \begin{tabular}{l}
input for two's complement output (TTL level input, \\
active LOW)
\end{tabular} \\
\hline\(\overline{\text { CE }}\) & 22 & chip enable input (TTL level input, active LOW) \\
\hline D3 & 23 & data output; bit 3 \\
\hline D2 & 24 & data output; bit 2 \\
\hline
\end{tabular}

Fig. 2 Pin configuration.

\section*{8-bit high-speed analog-to-digital converter}

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum Rating System (IEC134).
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\text {CCA }}\) & analog supply voltage & & -0.3 & 7.0 & V \\
\hline \(\mathrm{V}_{\text {CCD }}\) & digital supply voltage & & -0.3 & 7.0 & V \\
\hline \(\mathrm{V}_{\mathrm{cco}}\) & output stages supply voltage & & -0.3 & 7.0 & V \\
\hline \(V_{\text {CCA }}-V_{\text {CCD }}\) & supply voltage differences & & -1.0 & 1.0 & V \\
\hline \(\mathrm{V}_{\mathrm{CCO}}-\mathrm{V}_{\mathrm{CCD}}\) & supply voltage differences & & -1.0 & 1.0 & V \\
\hline \(\mathrm{V}_{\mathrm{CCA}}-\mathrm{V}_{\text {CCO }}\) & supply voltage differences & & -1.0 & 1.0 & V \\
\hline \(\mathrm{V}_{\mathrm{vi}}\) & input voltage range & referenced to AGND & -0.3 & 7.0 & V \\
\hline \(\mathrm{V}_{\text {CLK }} N_{\text {CLK }}\) & AC input voltage for switching (peak-to-peak value) & note 1; referenced to DGND & - & 2.0 & V \\
\hline \(\mathrm{l}_{0}\) & output current & & - & +10 & mA \\
\hline \(\mathrm{T}_{\text {stg }}\) & storage temperature & & -55 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature & & 0 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathbf{i}}\) & junction temperature & & - & +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Note}
1. The circuit has two clock inputs CLK and CLK. There are four modes of operation:
- TTL (mode 1); \(\overline{C L K}\) decoupled to DGND by a capacitor. CLK input is TTL threshold voltage of 1.5 V and sampling on the LOW-to-HIGH transition of the input clock signal.
- TTL (mode 2); CLK decoupled to DGND by a capacitor. CLK input is TTL threshold voltage of 1.5 V and sampling on the HIGH-to-LOW transition of the input clock signal.
- AC drive modes (modes 3 and 4); When driving the CLK input directly and with any AC signal of 0.5 V (peak-to-peak value) imposed on a DC level of 1.5 V , sampling takes place on the LOW-to-HIGH transition of the clock signal. When driving the \(\overline{C L K}\) input with such a signal, sampling takes place on the HIGH-to-LOW transition. If one of the clock inputs is not driven, then it is recommended to decouple this input to DGND with a 100 nF capacitor.

\section*{THERMAL RESISTANCE}
\begin{tabular}{|c|l|c|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & THERMAL RESISTANCE \\
\hline \(\mathbf{R}_{\mathrm{t} \mathrm{f} \mathrm{j} \mathrm{a}}\) & from junction to ambient in free air & \\
& \begin{tabular}{l}
SOT101 \\
SOT137A
\end{tabular} & \(55 \mathrm{~K} / \mathrm{W}\) \\
& \(75 \mathrm{~K} / \mathrm{W}\) \\
\hline
\end{tabular}

\section*{HANDLING}

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

\section*{8-bit high-speed analog-to-digital converter}

\section*{CHARACTERISTICS (see Tables 1 and 2)}
\(\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{7}-\mathrm{V}_{3}=4.5 \mathrm{~V}\) to \(5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CCD}}=\mathrm{V}_{18}-\mathrm{V}_{20}=4.5 \mathrm{~V}\) to \(5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CCO}}=\mathrm{V}_{19}-\mathrm{V}_{20}=4.5 \mathrm{~V}\) to 5.5 V ; AGND and DGND shorted together; \(\mathrm{V}_{C C A}-\mathrm{V}_{C C D}=-0.5 \mathrm{~V}\) to \(+0.5 \mathrm{~V} ; \mathrm{V}_{C C O}-\mathrm{V}_{C C D}=-0.5 \mathrm{~V}\) to \(+0.5 \mathrm{~V} ; \mathrm{V}_{C C A}-\mathrm{V}_{\mathrm{CCD}}=-0.5 \mathrm{~V}\) to +0.5 V ; \(T_{\text {amb }}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\); unless otherwise specified (typical values measured at \(\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCD}}=\mathrm{V}_{\mathrm{CCO}}=5 \mathrm{~V}\) and \(\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}\)).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Supply} \\
\hline \(\mathrm{V}_{\text {CCA }}\) & analog supply voltage & & 4.5 & 5.0 & 5.5 & V \\
\hline \(V_{\text {CCD }}\) & digital supply voltage & & 4.5 & 5.0 & 5.5 & V \\
\hline \(\mathrm{V}_{\mathrm{cco}}\) & output stages supply voltage & & 4.2 & 5.0 & \(5: 5\) & V \\
\hline \(\mathrm{I}_{\text {CCA }}\) & analog supply current & & - & 28 & 36 & mA \\
\hline \(\mathrm{I}_{\text {CCD }}\) & digital supply current & & - & 19 & 25 & mA \\
\hline \(\mathrm{I}_{\mathrm{cco}}\) & output stage supply current & all outputs LOW & - & 11 & 14 & mA \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline Inputs \\
\hline Clock input C̄K and CLK (note 1; referenced to DGND) \\
\hline\(V\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & HIGH level input voltage & & 2.0 & - & \(\mathrm{V}_{\text {CCD }}\) & V \\
\hline \(\mathrm{I}_{\text {IL }}\) & LOW level input current & \(\mathrm{V}_{\text {CLK }} / \mathrm{V}_{\text {CLK }}=0.4 \mathrm{~V}\) & -400 & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{1 \mathrm{H}}\) & HIGH level input current & \[
\begin{aligned}
& V_{\mathrm{CLK}} / \sqrt{\mathrm{CLK}}=0.4 \mathrm{~V} \\
& V_{\mathrm{CLK}} / V_{\mathrm{CLK}}=V_{\mathrm{CCD}}
\end{aligned}
\] & & & \[
\begin{aligned}
& 100 \\
& 300
\end{aligned}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A}
\end{aligned}
\] \\
\hline \(Z_{i}\) & input impedance & \(\mathrm{f}_{\text {CLK }} / /_{\text {CLK }}=10 \mathrm{MHz}\) & - & 4 & - & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{C}_{\mathrm{i}}\) & input capacitance & \(\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{CLK}}=10 \mathrm{MHz}\) & - & 4.5 & - & pF \\
\hline \(\mathrm{V}_{\mathrm{CLK}}-\mathrm{V}_{\overline{\mathrm{CLK}}}\) & AC input voltage for switching (peak-to-peak value) & note 1; DC level \(=1.5 \mathrm{~V}\) & 0.5 & - & 2.0 & V \\
\hline
\end{tabular}

\section*{\(\overline{\mathrm{TC}}\) and \(\overline{\mathrm{CE}}\) (referenced to DGND)}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{\mathrm{IL}}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{~V}_{\mathrm{IH}}\) & HIGH level input voltage & & 2.0 & - & \(\mathrm{V}_{\mathrm{CCD}}\) & V \\
\hline \(\mathrm{I}_{\mathrm{IL}}\) & LOW level input current & \(\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}\) & -400 & - & - & \(\mu \mathrm{A}\) \\
\hline\(I_{\mathrm{IH}}\) & HIGH level input current & \(\mathrm{V}_{\mathrm{IH}}=2.7 \mathrm{~V}\) & - & - & 20 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

VI (analog input voltage referenced to AGND)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathrm{V}_{\mathrm{VI}(\mathrm{B})}\) & input voltage (bottom) & & 1.33 & 1.41 & 1.48 & V \\
\hline \(V_{V 1(0)}\) & input voltage & output code \(=0\) & 1.455 & 1.55 & 1.635 & V \\
\hline \(\mathrm{V}_{\text {OS(B) }}\) & offset voltage (bottom) & \(\mathrm{V}_{\mathrm{V} 1(0)}-\mathrm{V}_{\mathrm{VI}(\mathrm{B})}\) & 0.125 & - & 0.155 & V \\
\hline \(\mathrm{V}_{\mathrm{VII}}\) & input voltage (top) & & 3.2 & 3.36 & 3.5 & V \\
\hline \(\mathrm{V}_{\text {V1(255) }}\) & input voltage & output code \(=255\) & 3.115 & 3.26 & 3.385 & V \\
\hline \(\mathrm{V}_{\text {OS(} \mathrm{T}}\) & offset voltage (top) & \(\mathrm{V}_{\mathrm{VI}(\mathrm{T})}-\mathrm{V}_{\mathrm{VI}(255)}\) & 0.085 & - & 0.115 & V \\
\hline \(\mathrm{V}_{\mathrm{V}(\mathrm{p}-\mathrm{p})}\) & input voltage amplitude (peak-to-peak value) & & 1.66 & 1.71 & 1.75 & V \\
\hline \(\mathrm{I}_{\text {IL }}\) & LOW level input current & \(\mathrm{V}_{\mathrm{VI}}=1.4 \mathrm{~V}\) & - & 0 & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{IH}}\) & HIGH level input current & \(\mathrm{V}_{\mathrm{vi}}=3.6 \mathrm{~V}\) & 60 & 120 & 180 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{Z}_{\mathrm{i}}\) & input impedance & \(\mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz}\) & - & 10 & - & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{C}_{\mathrm{i}}\) & input capacitance & \(\mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz}\) & - & 14 & - & pF \\
\hline
\end{tabular}

8 -bit high-speed analog-to-digital converter

TDA8703

\section*{CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Reference resistance} \\
\hline \(\mathrm{R}_{\text {ref }}\) & reference resistance & \(V_{R T}\) to \(V_{R B}\) & - & 220 & - & \(\Omega\) \\
\hline \multicolumn{7}{|l|}{Outputs} \\
\hline \multicolumn{7}{|l|}{Digital outputs (D7 - D0) (referenced to DGND)} \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & LOW level output voltage & \(\mathrm{l}_{0}=1 \mathrm{~mA}\) & 0 & - & 0.4 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & HIGH level output voltage & \(\mathrm{l}_{0}=-0.4 \mathrm{~mA}\) & 2.7 & - & \(\mathrm{V}_{\mathrm{CCD}}\) & V \\
\hline \(\mathrm{l}_{\mathrm{Oz}}\) & output current in 3-state mode & \(0.4 \mathrm{~V}<\mathrm{V}_{0}<\mathrm{V}_{\text {CCD }}\) & -20 & - & +20 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{Switching characteristics (note 2; see Fig.3)}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{f}_{\text {CLK }} / \mathrm{f}_{\text {CLK }}\) & maximum clock frequency & & 40 & - & - & MHz \\
\hline
\end{tabular}

Analog signal processing (\(\mathrm{f}_{\text {cLK }}=\mathbf{4 0} \mathrm{MHz}\))
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline B & -3 dB bandwidth & note 3 & - & 19.5 & - & MHz \\
\hline \(\mathrm{G}_{\mathrm{d}}\) & differential gain & note 4 & - & 0.6 & - & \(\%\) \\
\hline\(\phi_{\mathrm{d}}\) & differential phase & note 4 & - & 0.8 & - & deg \\
\hline \(\mathrm{f}_{1}\) & fundamental harmonics (full-scale) & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & - & - & 0 & dB \\
\hline \(\mathrm{f}_{\text {all }}\) & \begin{tabular}{l}
harmonics (full-scale), all \\
components \\
supply voltage ripple rejection
\end{tabular} & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & - & -55 & - & dB \\
note 5
\end{tabular}\(\quad\)\begin{tabular}{ll}
nRR1
\end{tabular}

Transfer function
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline ILE & DC integral linearity error & & - & - & \(\pm 1\) & LSB \\
\hline DLE & DC differential linearity error & & - & - & \(\pm 1 / 2\) & LSB \\
\hline AILE & AC integral linearity error & note 6 & - & - & \(\pm 2\) & LSB \\
\hline EB & effective bits & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & - & 7.1 & - & bits \\
\hline
\end{tabular}

Timing (note 7; see Figs 3 to 6 ; \(f_{\text {cLK }}=40 \mathrm{MHz}\))
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{t}_{\mathrm{dS}}\) & sampling delay & - & - & 2 & ns \\
\hline \(\mathrm{t}_{\mathrm{HD}}\) & output hold time & & 6 & - & - & ns \\
\hline \(\mathrm{t}_{\mathrm{d} H}\) & output delay time & LOW-to-HIGH transition & - & 8 & 10 & ns \\
\hline \(\mathrm{t}_{\mathrm{dHL}}\) & output delay time & HIGH-to-LOW transition & - & 16 & 20 & ns \\
\hline \(\mathrm{t}_{\mathrm{dZH}}\) & 3-state output delay times & enable-to-HIGH & - & 19 & 25 & ns \\
\hline \(\mathrm{t}_{\mathrm{dZL}}\) & 3-state output delay times & enable-to-LOW & - & 16 & 20 & ns \\
\hline \(\mathrm{t}_{\mathrm{dHZ}}\) & 3-state output delay times & disable-to-HIGH & - & 14 & 20 & ns \\
\hline \(\mathrm{t}_{\mathrm{dLZ}}\) & 3-state output delay times & disable-to-LOW & - & 9 & 12 & ns \\
\hline
\end{tabular}

\section*{Notes}
1. The circuit has two clock inputs CLK and \(\overline{C L K}\). There are four modes of operation:
- TTL (mode 1); CLK decoupled to DGND by a capacitor. CLK input is TTL threshold voltage of 1.5 V and sampling on the LOW-to-HIGH transition of the input clock signal.
- TTL (mode 2); CLK decoupled to DGND by a capacitor. \(\overline{C L K}\) input is TTL threshold voltage of 1.5 V and sampling on the HIGH-to-LOW transition of the input clock signal.
- AC drive modes (modes 3 and 4); When driving the CLK input directly and with any AC signal of 0.5 V (peak-to-peak value) imposed on a DC level of 1.5 V , sampling takes place on the LOW-to-HIGH transition of the clock signal. When driving the \(\overline{C L K}\) input with such a signal, sampling takes place on the HIGH-to-LOW transition. If one of the clock inputs is not driven, then it is recommended to decouple this input to DGND with a 100 nF capacitor.
2. In addition to a good layout of the digital and analog ground, it is recommended that the rise and fall times of the clock must not be less than 2 ns .
3. The -3 dB bandwidth is determined by the 3 dB reduction in the reconstructed output (full-scale signal at the input).
4. Low frequency ramp signal \(\left(V_{V(p-p)}=1.8 \mathrm{~V}\right.\) and \(\left.f_{i}=15 \mathrm{kHz}\right)\) combined with a sinewave input voltage \(\left(\mathrm{V}_{\mathrm{V}(1 p-p)}=0.5 \mathrm{~V}, \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\right)\) at the input.
5. Supply voltage ripple rejection:
- SVRR1; variation of the input voltage producing output code 127 for supply voltage variation of 1 V :

SVRR1 \(=20 \log \left(\Delta \mathrm{~V}_{\mathrm{V}(127)} / \Delta \mathrm{V}_{\mathrm{ccA}}\right)\)
- SVRR2; relative variation of the full-scale range of analog input for a supply voltage variation of 1 V :

SVR2 \(=\left\{\Delta\left(\mathrm{V}_{\mathrm{VI}(0)}-\mathrm{V}_{\mathrm{VI}(255)}\right) /\left(\mathrm{V}_{\mathrm{VI}(0)}-\mathrm{V}_{\mathrm{V}(255)}\right)\right\}+\Delta \mathrm{V}_{\mathrm{CCA}}\).
6. Full-scale sinewave (\(f_{i}=4.4 \mathrm{MHz} ; f_{\mathrm{CLK}} ; \mathrm{f}_{\mathrm{CLK}}=27 \mathrm{MHz}\)).
7. Output data acquisition:
- Output data is available after the maximum delay of \(\mathrm{t}_{\mathrm{dHL}}\) and \(\mathrm{t}_{\mathrm{dLH}}\).

\section*{8-bit high-speed analog-to-digital} converter

Table 1 Output coding and input voltage (referenced to AGND; typical values).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{8}{|c|}{BINARY OUTPUT BITS} & \multicolumn{8}{|l|}{TWO'S COMPLEMENT OUTPUT BITS} \\
\hline STEP & \(\mathrm{V}_{\mathrm{V}(\mathrm{p} \cdot \mathrm{p})}\) & O/UF & D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 & D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\hline underilow & < 1.55 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 1.55 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline - & \(\bullet\) & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - \\
\hline - & - & - & \(\bullet\) & - & - & - & - & \(\bullet\) & - & - & - & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & - & - \\
\hline 254 & - & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1. & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 255 & 3.26 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline overflow & > 3.26 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

Table 2 Mode selection.
\begin{tabular}{|c|c|l|l|}
\hline\(\overline{\text { TC }}\) & \(\overline{\mathbf{C E}}\) & \multicolumn{1}{|c|}{\(\mathbf{D} 7\) - DO } & \multicolumn{1}{c|}{ O/UF } \\
\hline \(\mathbf{X}\) & 1 & high impedance & high impedance \\
\hline 0 & 0 & active; two's complement & active \\
\hline 1 & 0 & active; binary & active \\
\hline
\end{tabular}

Where: \(\mathrm{X}=\) don't care

Fig. 3 Timing diagram.

\section*{8-bit high-speed analog-to-digital converter}

Fig. 4 3-state delay timing diagram.

\section*{8-bit high-speed analog-to-digital} converter

Table 3 Timing measurement for load circuit.
\begin{tabular}{|c|c|c|c|}
\hline TIMING MEASUREMENT & SWITCH S1 & SWITCH S2 & CAPACITOR \\
\hline \(\mathrm{t}_{\mathrm{dZH}}\) & open & closed & 15 pF \\
\hline \(\mathrm{t}_{\mathrm{dZL}}\) & closed & open & 15 pF \\
\hline \(\mathrm{t}_{\mathrm{dHZ}}\) & closed & closed & 5 pF \\
\hline \(\mathrm{t}_{\mathrm{dLZ}}\) & closed & closed & 5 pF \\
\hline
\end{tabular}

\section*{INTERNAL PIN CONFIGURATIONS}

Fig. 7 TTL data and overflow/underflow outputs.

Fig. 8 Analog inputs.

Fig. \(10 \overline{\mathrm{TC}}\) (two's complement) input.

8-bit high-speed analog-to-digital converter

Fig. \(11 \mathrm{~V}_{\mathrm{RB}}, \mathrm{V}_{\mathrm{RT}}\) and DEC.

Fig. 12 CLK and CLK inputs. .

\section*{8-bit high-speed analog-to-digital} converter

\section*{APPLICATION INFORMATION}

Additional application information will be supplied upon request (please quote number FTV/8901).

Fig. 13 Application diagram.

\section*{Notes to Fig. 13}
1. It is recommended to decouple \(V_{\text {cco }}\) through a \(22 \Omega\) resistor especially when the output data of the TDA8703 interfaces with a capacitive CMOS load device.
2. CLK should be decoupled to the DGND with a 100 nF capacitor, if a TTL signal is used on CLK (see 'Notes to the characteristics', note 1).
3. CLK and CLK can be used in a differential mode (see 'Notes to the characteristics', note 1).
4. \(\mathrm{V}_{\mathrm{RB}}\) and \(\mathrm{V}_{\mathrm{RT}}\) are decoupling pins for the internal reference ladder; do not draw current from these pins in order to achieve good linearity.
5. If it is required to use the TDA8703 in a parallel system configuration, the references (\(V_{R B}\) and \(V_{R T}\)) of each TDA87803 can be connected together. Code 0 will be identical and code 255 will remain in the 1LSB variation for each TDA8703.
6. Analog and digital supplies should be separated and decoupled.
7. Pins 6 and 10 should be connected to AGND in order to prevent noise influence.

\section*{6-bit analog-to-digital converter with multiplexer and clamp}

\section*{FEATURES}
- 6-bit resolution
- Binary 3-state TTL outputs
- TTL compatible digital inputs
- 3 multiplexed video inputs
- Luminance and colour difference clamps
- Internal reference
- 300 mW power dissipation
- 20-pin plastic package

\section*{APPLICATIONS}
- General purpose video applications
- \(Y, U\) and \(V\) signals
- Colour Picture-in-Picture (PIPCO) for TV
- Videophone
- Frame grabber

\section*{GENERAL DESCRIPTION}

The TDA8706 is a monolithic bipolar 6-bit analog-to-digital converter (ADC) with a 3 analog input multiplexer and a clamp. All digital inputs and outputs are TTL compatible. Regulator with good temperature compensation.

QUICK REFERENCE DATA
Measured over full voltage and temperature ranges
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline V \(_{\text {CCA }}\) & \begin{tabular}{l}
analog supply \\
voltage (pin 2)
\end{tabular} & & 4.5 & 5.0 & 5.5 & V \\
\hline V \(_{\text {CCD }}\) & \begin{tabular}{l}
digital supply \\
voltage (pin 10)
\end{tabular} & & 4.5 & 5.0 & 5.5 & V \\
\hline \(\mathrm{I}_{\text {CCA }}\) & \begin{tabular}{l}
analog supply \\
current (pin 20)
\end{tabular} & & - & 32 & 39 & mA \\
\hline ICCD & \begin{tabular}{l}
digital supply \\
current (pin 10)
\end{tabular} & & - & 28 & 37 & mA \\
\hline ILE & \begin{tabular}{l}
integral \\
linearity error
\end{tabular} & & - & - & \(\pm 0.75\) & LSB \\
\hline DLE & \begin{tabular}{l}
DC differential \\
linearity error
\end{tabular} & & - & - & \(\pm 0.5\) & LSB \\
\hline \(\mathrm{f}_{\text {CLK }}\) & \begin{tabular}{l}
maximum \\
clock frequency
\end{tabular} & & - & 300 & 418 & mW \\
\hline \(\mathrm{P}_{\text {bt }}\) & \begin{tabular}{l}
total power \\
dissipation
\end{tabular} & & 0 & - & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & \begin{tabular}{l}
operating \\
ambient \\
temperature \\
range
\end{tabular} & & & - & - & MHz \\
\hline
\end{tabular}

\section*{ORDERING INFORMATION}
\begin{tabular}{|l|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
EXTENDED \\
TYPE NUMBER
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline TDA8706 & 20 & DIL & plastic & SOT146EF4 \\
TDA8706T & 20 & SO20L & plastic & SOT163AG7 \\
\hline
\end{tabular}

\section*{FUNCTIONAL DESCRIPTION}

The TDA8706 is a "like-flash" converter which produces an output code in one clock period. The device can withstand a duty clock cycle of 50 to \(66.6 \%\) (clock HIGH). Luminance clamping level is fitted with 00 hex. code (output 000000). Chrominance clamping level is fitted with 20 Hex. code (output 100000).

Fig. 1 Block diagram.

\section*{6-bit analog-to-digital converter with multiplexer and clamp}

Fig. 2 Pin configuration.

\section*{HANDLING}

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

PINNING
\begin{tabular}{|l|c|l|}
\hline SYMBOL & PIN & \\
\hline GND & 1 & ground \\
\hline\(V_{\text {CCA }}\) & 2 & analog positive supply (+5 V) \\
\hline\(V_{\text {RT }}\) & 3 & reference voltage TOP decoupling \\
\hline\(V_{\text {RB }}\) & 4 & reference voltage BOTTOM decoupling \\
\hline INC & 5 & chrominance input \\
\hline INB & 6 & chrominance input \\
\hline INA & 7 & luminance input \\
\hline C & 8 & select input \\
\hline B & 9 & select input \\
\hline A & 10 & select input \\
\hline V CCD & 11 & digital positive supply voltage (+5 V) \\
\hline CLAMP & 12 & clamp pulse input (positive pulse) \\
\hline CLK & 13 & clock input \\
\hline\(\overline{\text { CE }}\) & 14 & chip enable (active LOW) \\
\hline D5 & 15 & digital voltage output: most significant bit (MSB) \\
\hline D4 & 16 & digital voltage output \\
\hline D3 & 17 & digital voltage output \\
\hline D2 & 18 & digital voltage output \\
\hline D1 & 19 & digital voltage output \\
\hline D0 & 20 & digital voltage input: least significant bit (LSB) \\
\hline
\end{tabular}

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum System (IEC 134)
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & \multicolumn{1}{|c|}{ PARAMETER } & MIN. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\text {CCA }}\) & analog supply voltage range (pin 2) & -0.3 & 7.0 & V \\
\hline \(\mathrm{~V}_{\text {CCD }}\) & digital supply voltage range (pin 10) & -0.3 & 7.0 & V \\
\hline \(\mathrm{~V}_{\mathrm{CCA}} \mathrm{V}_{\mathrm{CCD}}\) & supply voltage difference & 1.0 & - & V \\
\hline \(\mathrm{V}_{1}\) & input voltage range & -0.3 & 7.0 & V \\
\hline \(\mathrm{I}_{\mathrm{O}}\) & output current & - & 10 & mA \\
\hline \(\mathrm{~T}_{\text {stg }}\) & storage temperature range & -55 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & \begin{tabular}{l}
operating ambient temperature \\
range
\end{tabular} & 0 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{6-bit analog-to-digital converter with multiplexer and clamp}

\section*{CHARACTERISTICS (see Tables 1 and 2)}
\(\mathrm{V}_{\mathrm{CCA}}=4.5 \mathrm{~V}\) to \(5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CCD}}=4.5 \mathrm{~V}\) to \(5.5 \mathrm{~V}=\mathrm{V}_{\mathrm{CCD}} ; \mathrm{T}_{\text {amb }}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{VRB}}=\mathrm{C}_{\mathrm{VR1}}=100 \mathrm{nF}\); Typical values measured at \(\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCD}}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\); unless otherwise specified
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Supply} \\
\hline \(\mathrm{V}_{\text {CCA }}\) & analog supply voltage (pin 2) & & 4.5 & 5.0 & 5.5 & V \\
\hline \(V_{\text {CCD }}\) & digital supply voltage (pin 10) & & 4.5 & 5.0 & 5.5 & V \\
\hline \(\mathrm{I}_{\text {cCA }}\) & analog supply current (pin 2) & - & - & 32 & 39 & mA \\
\hline \(\mathrm{I}_{\mathrm{CCD}}\) & digital supply current (pin 10) & all outputs at LOW level & - & 28 & 37 & mA \\
\hline \multicolumn{7}{|l|}{Inputs} \\
\hline \multicolumn{7}{|l|}{Clock input (PIN 13)} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & HIGH level input voltage & & 2.0 & - & \(\mathrm{V}_{\mathrm{CCD}}\) & V \\
\hline \(I_{1 L}\) & LOW level input current & \(\mathrm{V}_{\text {CLK }}=0.4 \mathrm{~V}\) & -400 & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\text {IH }}\) & HIGH level input current & \(\mathrm{V}_{\text {CLK }}=2.7 \mathrm{~V}\) & - & - & 100 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{Z}_{1}\) & input impedance & \(\mathrm{f}_{\text {cLK }}=20 \mathrm{MHz}\) & - & 4 & - & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{C}_{i}\) & input capacitance & \(\mathrm{f}_{\mathrm{CLK}}=20 \mathrm{MHz}\) & - & 2 & - & pF \\
\hline \multicolumn{7}{|l|}{A, B, C, CLAMP and CEN inputs (pins 8, 9, 10, 12 and 14)} \\
\hline \(\mathrm{V}_{\mathrm{LL}}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & HIGH level input voltage & & 2 & - & \(\mathrm{V}_{\mathrm{CCD}}\) & V \\
\hline \(\mathrm{I}_{\text {LI }}\) & LOW level input current & \(\mathrm{V}_{\text {CLK }}=0.4 \mathrm{~V}\) & -400 & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{H}}\) & HIGH level input current & \(\mathrm{V}_{\text {CLK }}=2.7 \mathrm{~V}\) & - & - & 20 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{Reference voltage (pins 3 and 4)} \\
\hline \(\mathrm{V}_{\text {RT }}\) & reference voltage TOP decoupling & & 3.22 & 3.35 & 3.44 & V \\
\hline \(V_{\text {RB }}\) & reference voltage BOTTOM decoupling & & 1.84 & 1.9 & 1.96 & \(V\) \\
\hline \(V_{\text {RT }}-V_{\text {RB }}\) & reference voltage TOP - BOTTOM decoupling & & 1.36 & 1.435 & 1.48 & V \\
\hline \multicolumn{7}{|l|}{Analog inputs INA, INB, INC (pins 7, 6 and 5)} \\
\hline \(V_{\text {I(} p \text { p- })}\) & input voltage amplitude (peak-to-peak value) & & 840 & 900 & 940 & mV \\
\hline \(\mathrm{Z}_{1}\) & input impedance & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & 100 & - & - & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{C}_{\text {clamp }}\) & coupling clamp capacitance & & 1 & 10 & 1000 & nF \\
\hline \multicolumn{7}{|l|}{Analog signal processing (pins 5, 6 and 7) (\(\mathrm{c}_{\text {cLK }}=20 \mathrm{MHz}\))} \\
\hline \(\mathrm{f}_{1}\) & fundamental harmonics (full scale) & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & - & - & 0 & dB \\
\hline \(\mathrm{f}_{\text {all }}\) & harmonics (full scale); all components & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & - & -45 & - & dB \\
\hline \(\mathrm{G}_{\text {diff }}\) & differential gain & note 1 & - & 0.4 & - & \% \\
\hline \(\phi_{\text {diff }}\) & differential phase & note 1 & - & 1.0 & - & deg \\
\hline SVRR & supply voltage ripple rejection & note 2 & - & -30 & - & dB \\
\hline \multicolumn{7}{|l|}{Outputs} \\
\hline \multicolumn{7}{|l|}{Digital volitage outputs (pins 15 to 20) (see Table 2)} \\
\hline \(\mathrm{V}_{\mathrm{a}}\) & LOW level output voltage & \(\mathrm{I}_{0}=1 \mathrm{~mA}\) & 0 & - & 0.4 & V \\
\hline
\end{tabular}

6-bit analog-to-digital converter with multiplexer and clamp
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & \multicolumn{1}{|c|}{ CONDITIONS } & \multicolumn{1}{|c|}{ MIN. } & \multicolumn{1}{c|}{ TYP. } & \multicolumn{1}{|c|}{ MAX. } & UNIT \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & HIGH level ouptut voltage & \(I_{\mathrm{O}}=0.5 \mathrm{~mA}\) & 2.7 & - & \(\mathrm{V}_{\mathrm{CCD}}\) & V \\
\hline \(\mathrm{I}_{\mathrm{OZ}}\) & output current in 3-state mode & \(0.4 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CCD}}\) & -20 & - & 20 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

\section*{Switching characteristics}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline CLock timing (SEE FIG.3) \\
\hline\(f_{\text {CLK }}\) & maximum clock frequency & & 20 & - & - & MHz \\
\hline\(f_{\text {mux }}\) & maximum multiplexing frequency & & 10 & - & - & MHz \\
\hline\(t_{\text {CLK }}\) & period & & 50 & - & - & ns \\
\hline & duty cycle & CLK \(=V_{\text {IH }}\) & 45 & 50 & 66.6 & \(\%\) \\
\hline\(t_{\text {LOW }}\) & LOW time & at \(50 \%\) & 16 & - & - & ns \\
\hline\(t_{\text {HIGH }}\) & HIGH time & at \(50 \%\) & 22.5 & - & - & ns \\
\hline\(t_{\text {CLR }}\) & rise time & at \(10 \%\) to \(90 \%\) & 4 & 6 & - & ns \\
\hline\(t_{\text {CLF }}\) & fall time & at \(90 \%\) to \(10 \%\) & 4 & 6 & - & ns \\
\hline
\end{tabular}

Select signals, Clamp, Data (see Figs 4 and 5)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(t_{s}\) & set-up time select A, B and C & & 35 & - & - & ns \\
\hline\(t_{\mathrm{t}}\) & rise time (A, B and C) & at \(10 \%\) to \(90 \%\) & 4 & 6 & - & ns \\
\hline\(t_{~}\) & fall time (A, B and C) & at \(90 \%\) to \(10 \%\) & 4 & 6 & - & ns \\
\hline\(t_{\text {CLPS }}\) & set-up time clamp asynchronous & & 0 & - & - & \\
\hline\(t_{\text {CLPH }}\) & hold time clamp asynchronous & & \(C_{C L P}=10 \mathrm{nF}\) & - & 3 & - \\
\hline\(t_{\text {CLPP }}\) & clamp pulse & & - & 15 & 24 & ns \\
\hline\(t_{d}\) & data output delay time & & 12 & - & - & ns \\
\hline\(t_{D H}\) & data hold time & & - & - & \\
\hline
\end{tabular}

Transfer function
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline ILE & DC integral linearity error & & - & - & \(\pm 0.75\) & LSB \\
\hline DLE & DC differential linearity error & & - & - & \(\pm 0.5\) & LSB \\
\hline AILE & AC integral linearity error & note 3 & - & - & \(\pm 2\) & LSB \\
\hline EB & effective bits & note 3 & - & 5.7 & - & bits \\
\hline Timing & & & & \\
\hline DIGITAL OUTPUTS & see Fig.6 & - & 16 & 25 & ns \\
\hline\(T_{1}\) & 3-state delay time & & - & 2 & - & ns \\
\hline\(T_{\text {so }}\) & sampling time offset & & & \\
\hline
\end{tabular}

\section*{Notes to the characteristics}
1. Low frequency ramp signal \(\left(\mathrm{V}_{\mathrm{V}(1)-\mathrm{p})}=1.8 \mathrm{~V}\right.\) and \(\left.\mathrm{f}_{\mathrm{i}}=15 \mathrm{kHz}\right)\) combined with a sinewave input voltage \(\left(\mathrm{V}_{\mathrm{V}(1(p-p)}=0.5 \mathrm{~V}\right.\) and \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\)) at the input.
2. Supply voltage ripple rejection (SVRR): variation of the input voltage produces output code 31 for a supply voltage variation of 1 V .
\(S V R R=20 \log \frac{\Delta V_{\text {Vi31 }}}{\Delta V_{C C A}}\)
3. Full-scale sinewave; \(f_{i}=4.43 \mathrm{MHz}, f_{c L K}=20 \mathrm{MHz}\).

\section*{6-bit analog-to-digital converter with multiplexer and clamp}

Table 1 Output coding
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ STEP } & \(V_{1}\) (note 1) & BINARY OUTPUTS \\
\cline { 2 - 3 } & (TYP. value) & D5 to D0 \\
\hline Underflow & \(<2.2 \mathrm{~V}\) & 000000 \\
0 & 2.2 V & 000000 \\
1 & 2.215 V & 000001 \\
. & & \(\ldots \ldots .\). \\
. & & \(\ldots \ldots .\). \\
. & 3.072 V & 111110 \\
62 & 3.086 V & 111111 \\
63 & \(>3.1 \mathrm{~V}\) & 111111 \\
\hline
\end{tabular}

\section*{Note}
1. With clamping capacitance.

Table 2 Mode selection
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ CEN } & \multicolumn{1}{c|}{ D0 to D5 } \\
\hline 1 & \begin{tabular}{l}
high impedance \\
active. Binary
\end{tabular} \\
\hline
\end{tabular}

Table 3 Clamp input A
\begin{tabular}{|c|c|c|c|}
\hline \(\mathbf{A}\) & CLAMP & DIGITAL OUTPUTS & \(\mathbf{V}_{\mathbf{n}} \mathbf{A}\) \\
\hline 0 & 1 & X & 2.2 \\
1 & 1 & 0 & 2.2 \\
\hline
\end{tabular}

\section*{Note}
\(X=\) don't care.
Table 4 Clamp input B and C
\begin{tabular}{|c|c|c|c|}
\hline B/C & CLAMP & \begin{tabular}{c}
DIGITAL \\
OUTPUTS
\end{tabular} & \(\mathbf{V}_{\mathbf{i n}} \mathbf{B} / \mathbf{V}_{\mathbf{i n}} \mathbf{C}\) \\
\hline 0 & 1 & X & 2.65 \\
1 & 1 & 32 & 2.65 \\
\hline
\end{tabular}

\section*{Note}
\(X=\) don't care .

\section*{6-bit analog-to-digital converter with multiplexer and clamp}

Fig. 3 AC clock characteristics.

Fig. 4 AC characteristics select signals; Clamp, Data.

\section*{6-bit analog-to-digital converter with multiplexer and clamp}

Fig. 5 AC characteristics select signals; Clamp, Data.

Table 5 Clamp characteristic related to TV signals
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ PARAMETER } & MIN. & TYP. & MAX. & UNIT \\
\hline clamping time per line (signal active) & 2.2 & 3.0 & 3.3 & \(\mu \mathrm{~s}\) \\
\hline input signals clamped to correct level after & - & 3 & 10 & lines \\
\hline
\end{tabular}

\section*{6-bit analog-to-digital converter with multiplexer and clamp}

\section*{6-bit analog-to-digital converter with multiplexer and clamp}

\section*{Application information}

Additional application information will be supplied on request (please quote reference number FTV/9112).

Fig. 7 Application diagram.

\section*{Notes to figure 7}
1. ' \(C\) ' capacitors must be determined on the output capacitance of the circuits driving \(A, B\) and \(C\) or CLK pins
2. \(\mathrm{V}_{\mathrm{RB}}\) and \(\mathrm{V}_{\mathrm{RT}}\) are decoupling pins for the internal reference ladder. Do not draw current from these pins in order to achieve good linearity
3. Analog and digital supplies should be separated and decoupled.

Triple RGB 6-bit video analog-to-digital interface

\section*{FEATURES}
- Triple analog-to-digital converter (ADC)
- 6-bit resolution
- Sampling rate up to 35 MHz
- Power dissipation of 300 mW (typical)
- Internal clamping function.

\section*{APPLICATIONS}
- High-speed analog-to-digital conversion for video signals
- VGA signal treatment.

\section*{DESCRIPTION}

The TDA8707 is a CMOS triple 6-bit video low-power analog-to-digital converter (ADC) for RGB signals. It converts the analog inputs into 6-bit binary coded digital words at a sampling rate of 35 MHz . All analog signal inputs are clamped.

\section*{Analog-to-digital converter}

The TDA8707 implements 3 independent 6-bit analog-to-digital converters in CMOS \(1 \mu \mathrm{~m}\) process. These converters use a full-flash approach.

\section*{Clamping feature}

An internal clamping circuit is provided in each of the 3 analog channels. The analog pins INR, ING and INB are switched, through series capacitors, to on-chip clamping levels during an active pulse on the clamp input CLP. Clamping level in the R, G and B channels is Code 0 .

\section*{Input buffers}

Internal buffers are provided to drive the analog-to-digital converter inputs. Their ratio can be adjusted externally at 1.5 or 2.0 with select input SLT.

\section*{QUICK REFERENCE DATA}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(V_{\text {DDA }}\) & analog supply voltage & & 4.5 & 5.0 & 5.5 & V \\
\hline \(V_{\text {DDD }}\) & digital supply voltage & & 4.5 & 5.0 & 5.5 & V \\
\hline IDDA & analog supply current & & - & 50 & - & mA \\
\hline IDDD & digital supply current & & - & 10 & - & mA \\
\hline ILE & DC integral linearity error & & - & - & \(\pm 0.5\) & LSB \\
\hline DLE & DC differential linearity error & & - & - & \(\pm 0.5\) & LSB \\
\hline EB & effective bits & note 1 & - & 5.3 & - & bits \\
\hline \(\mathrm{f}_{\mathrm{clk}}\) & maximum clock conversion rate & & 35 & - & - & MHz \\
\hline \(\mathrm{P}_{\text {tot }}\) & total power dissipation & note 2 & - & 300 & tbf & mW \\
\hline
\end{tabular}

\section*{Notes}
1. The number of effective bits is measured with a clock frequency of 35 MHz . This value is given for a 4.43 MHz frequency on the R, G and B channels.
2. The external resistor (between \(V_{D D A}\) and CLREF), fixing internal static currents, influences \(P_{\text {tot }}\). Its value should be \(15 \mathrm{k} \Omega\).

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ TYPE NUMBER } & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline TDA8707H & 44 & QFP & plastic & SOT307B \\
\hline
\end{tabular}

Triple RGB 6-bit video analog-to-digital interface

\section*{BLOCK DIAGRAM}

Fig. 1 Block diagram.

\section*{Triple RGB 6-bit video analog-to-digital interface}

PINNING
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline n.c. & 1 & not connected \\
\hline n.c. & 2 & not connected \\
\hline G0 & 3 & GREEN data output; bit 0 (LSB) \\
\hline G1 & 4 & GREEN data output; bit 1 \\
\hline G2 & 5 & GREEN data output; bit 2 \\
\hline G3 & 6 & GREEN data output; bit 3 \\
\hline G4 & 7 & GREEN data output; bit 4 \\
\hline G5 & 8 & GREEN data output; bit 5 (MSB) \\
\hline \(\mathrm{V}_{\text {SSD1 }}\) & 9 & digital supply ground 1 \\
\hline CLK & 10 & clock input \\
\hline \(V_{\text {DDD1 }}\) & 11 & digital supply voltage 1 \\
\hline n.c. & 12 & not connected \\
\hline n.c. & 13 & not connected \\
\hline B0 & 14 & BLUE data output; bit 0 (LSB) \\
\hline B1 & 15 & BLUE data output; bit 1 \\
\hline B2 & 16 & BLUE data output; bit 2 \\
\hline n.c. & 17 & not connected \\
\hline B3 & 18 & BLUE data output; bit 3 \\
\hline B4 & 19 & BLUE data output; bit 4 \\
\hline B5 & 20 & BLUE data output; bit 5 (MSB) \\
\hline \(V_{\text {SSD2 }}\) & 21 & digital supply ground 2 \\
\hline \(\mathrm{V}_{\text {DDD2 }}\) & 22 & digital supply voltage 2 \\
\hline CLP & 23 & clamping input \\
\hline CLREF & 24 & current reference level input for ADCs \\
\hline CREFL & 25 & converter reference LOW level input \\
\hline CREFH & 26 & converter reference HIGH level input \\
\hline \(V_{\text {DDA3 }}\) & 27 & analog supply voltage 3 \\
\hline INB & 28 & BLUE analog input \\
\hline \(V_{\text {SSA3 }}\) & 29 & analog supply ground 3 \\
\hline \(V_{\text {DDA2 }}\) & 30 & analog supply voltage 2 \\
\hline ING & 31 & GREEN analog input \\
\hline \(V_{\text {SSA2 }}\) & 32 & analog supply ground 2 \\
\hline \(\mathrm{V}_{\text {DDA } 1}\) & 33 & analog supply voltage 1 \\
\hline INR & 34 & RED analog input \\
\hline \(\mathrm{V}_{\text {SSA } 1}\) & 35 & analog supply ground 1 \\
\hline SLT & 36 & select input buffer ratio \\
\hline n.c. & 37 & not connected \\
\hline R0 & 38 & RED data output; bit 0 (LSB) \\
\hline n.c. & 39 & not connected \\
\hline R1 & 40 & RED data output; bit 1 \\
\hline
\end{tabular}

\section*{Triple RGB 6-bit video analog-to-digital}

TDA8707 interface
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & PIN & \\
\hline R2 & 41 & RED data output; bit 2 \\
\hline R3 & 42 & RED data output; bit 3 \\
\hline R4 & 43 & RED data output; bit 4 \\
\hline R5 & 44 & RED data output; bit \(5(\mathrm{MSB})\) \\
\hline
\end{tabular}

Fig. 2 Pin configuration.

Triple RGB 6-bit video analog-to-digital interface

TDA8707

LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC134).
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & \multicolumn{1}{|c|}{ PARAMETER } & \multicolumn{1}{|c|}{ CONDITIONS } & \multicolumn{1}{c|}{ MIN. } & \multicolumn{1}{c|}{ MAX. } & \multicolumn{1}{c|}{ UNIT } \\
\hline\(V_{\text {DDA }}\) & analog supply voltage (pins 27, 30 and 33) & & -0.3 & +6.5 & V \\
\hline \(\mathrm{~V}_{\text {DDD }}\) & digital supply voltage (pins 11 and 22) & & -0.3 & +6.5 & V \\
\hline\(\Delta \mathrm{~V}_{\text {DD }}\) & supply voltage difference between \(\mathrm{V}_{\text {DDA }}\) and \(\mathrm{V}_{\text {DDD }}\) & & -0.5 & +0.5 & V \\
\hline \(\mathrm{~V}_{1}\) & input voltage (pins 28, 31 and 34) & referenced to \(\mathrm{V}_{\text {SSA }}\) & - & \(\mathrm{V}_{\text {DDA }}\) & V \\
\hline \(\mathrm{V}_{\mathrm{i}(p-p)}\) & \begin{tabular}{l}
AC input voltage for switching \\
(pins 10 and 23; peak-to-peak value)
\end{tabular} & referenced to \(\mathrm{V}_{\text {SSD }}\) & - & \(\mathrm{V}_{\text {DDD }}\) & V \\
\hline \(\mathrm{T}_{\text {stg }}\) & storage temperature & & -55 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature & & 0 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{THERMAL CHARACTERISTICS}
\begin{tabular}{|l|l|c|}
\hline SYMBOL & PARAMETER & THERMAL RESISTANCE \\
\hline\(R_{\text {th } j-a}\) & thermal resistance from junction to ambient in free air & 75 KW \\
\hline
\end{tabular}

\section*{HANDLING}

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

\section*{Triple RGB 6-bit video analog-to-digital interface}

\section*{CHARACTERISTICS (see Tables 1 and 2)}
\(V_{D D A}=V_{D D D}=4.5 \mathrm{~V}\) to \(5.5 \mathrm{~V} ; \mathrm{V}_{S S A}\) and \(\mathrm{V}_{S S D}\) shorted together; \(\mathrm{V}_{\mathrm{DDA}}-\mathrm{V}_{\mathrm{DDD}}=-0.5 \mathrm{~V}\) to \(+0.5 \mathrm{~V} ; \mathrm{T}_{\text {amb }}=0\) to \(+70^{\circ} \mathrm{C}\); \(S L T=0 \mathrm{~V}\); CREFH \(=2.0 \mathrm{~V}\), CREFL \(=0.5 \mathrm{~V}\); typical values measured at \(\mathrm{V}_{\mathrm{DDA}}=\mathrm{V}_{\mathrm{DDD}}=5 \mathrm{~V} ; \mathrm{V}_{S S A}=\mathrm{V}_{\mathrm{SSD}}=0 . \mathrm{V}\) and \(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\); unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & Unit \\
\hline \multicolumn{7}{|l|}{Supply} \\
\hline \(V_{\text {DDA }}\) & analog supply voltage & note 1 & 4.5 & 5.0 & 5.5 & V \\
\hline \(V_{\text {DDD }}\) & digital supply voltage & note 1 & 4.5 & 5.0 & 5.5 & V \\
\hline I DDA & analog supply current & note 2 & - & 50 & tbf & mA \\
\hline IDDD & digital supply current & \(\mathrm{f}_{\mathrm{clk}}=35 \mathrm{MHz}\) & - & 10 & tbf & mA \\
\hline \multicolumn{7}{|l|}{Inputs} \\
\hline \multicolumn{7}{|l|}{DIGITAL INPUTS (CLK: PIN 10 AND CLP: PIN 23)} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & HIGH level input voltage & & 2.0 & - & \(\mathrm{V}_{\text {DDD }}\) & V \\
\hline \(\mathrm{I}_{\text {LI }}\) & input leakage current & & -10 & - & +10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & & - & 7 & - & pF \\
\hline \multicolumn{7}{|l|}{CLAMP AND REFERENCES (CLREF: PIN 24, CREFL: PIN 25 AND CREFH: PIN 26)} \\
\hline \(\mathrm{A}_{\mathrm{CL}}\) & clamping accuracy & & - & \(\pm 0.5\) & - & LSB \\
\hline \(\mathrm{I}_{\mathrm{CL}}\) & input clamping current & & -200 & - & +400 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{C}_{\mathrm{CL}}\) & external series clamping capacitor & & 10 & 22 & - & nF \\
\hline \(\mathrm{R}_{\text {CLREF }}\) & external resistor on CLREF pin for current reference of converter & note 2 & 12 & 15 & - & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{V}_{\text {REFH }}\) & converter reference voltage HIGH level applied to CREFH pin & referenced to \(\mathrm{V}_{S S A}\) & 1.5 & 2.0 & 2.5 & V \\
\hline \(V_{\text {REFL }}\) & converter reference voltage LOW level applied to CREFL pin & referenced to \(\mathrm{V}_{\text {SSA }}\) & 0.25 & 0.5 & 0.75 & V \\
\hline \(\triangle\) REF & reference voltage difference between \(V_{\text {REFH }}\) and \(V_{\text {REFL }}\) & note 3 & - & 1.5 & - & V \\
\hline \(Z_{\text {CREF }}\) & internal ladder impedance between pins CREFH and CREFL & & - & \[
\begin{aligned}
& 300 \\
& (300)
\end{aligned}
\] & - & \(\Omega\) \\
\hline
\end{tabular}

ANALOG INPUTS (INR: PIN 34, ING: PIN 31 AND INB: PIN 28)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{1(p-p)}\) & \begin{tabular}{l}
full-range input voltage \\
(peak-to-peak value)
\end{tabular} & \begin{tabular}{l}
SLT = logic 0; \\
gain = 1.5; note 4
\end{tabular} & - & 1.0 & - & V \\
\cline { 3 - 7 } & \begin{tabular}{l}
SLT = logic \(1 ;\) \\
gain = 2.0; note 4
\end{tabular} & - & 0.75 & - & V \\
\hline \(\mathrm{I}_{1}\) & input current & clamp off & - & 5 & 100 & nA \\
\hline \(\mathrm{C}_{\mathrm{l}}\) & input capacitance & & - & 7 & 15 & pF \\
\hline\(a_{C T}\) & crosstalk between INR, ING and INB & & - & - & -40 & dB \\
\hline
\end{tabular}

INPUT ISOLATION
Outputs (R0 to R5: pins 38 and 40 to 44; G0 to G5: pins 3 to 8; B0 to B5: pins 14 to 16 and 18 to 20)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{\mathrm{OL}}\) & LOW level output voltage & & 0 & - & tbf & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & HIGH level output voltage & & tbf & - & \(\mathrm{V}_{\mathrm{DDD}}\) & V \\
\hline
\end{tabular}

Triple RGB 6-bit video analog-to-digital interface
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & Unit \\
\hline \multicolumn{7}{|l|}{Analog signal processing (see Fig.5)} \\
\hline \(\mathrm{G}_{\text {diff }}\) & differential gain & note 5 & - & tbf & - & \% \\
\hline \(\varphi_{\text {diff }}\) & differential phase & note 5 & - & tbf & - & deg \\
\hline \(\mathrm{f}_{1}\) & fundamental harmonic & note 6 & - & - & 0 & dB \\
\hline fall & harmonics, all components & note 6 & - & -32 & - & dB \\
\hline
\end{tabular}

Transfer function (\(50 \%\) duty factor)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline ILE & DC integral linearity error & & - & - & \(\pm 0.5\) & LSB \\
\hline DLE & DC differential linearity error & & - & - & \(\pm 0.5\) & LSB \\
\hline AILE & AC integral linearity error & note 7 & - & - & \(\pm 1.0\) & LSB \\
\hline EB & effective bits & note 8 & - & 5.3 & - & bits \\
\hline
\end{tabular}

\section*{Timing (see Fig.3, 4 and 6)}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{f}_{\mathrm{clk}(\max)}\) & maximum clock frequency & & 35 & - & - & MHz \\
\hline \(\mathrm{t}_{\mathrm{CPH}}\) & clock pulse width HIGH & & 11 & - & - & ns \\
\hline \(\mathrm{t}_{\mathrm{CPL}}\) & clock pulse width LOW & & 11 & - & - & ns \\
\hline \(\mathrm{t}_{\mathrm{dS}}\) & sampling delay time & & - & tbr & & - \\
\hline \(\mathrm{t}_{\mathrm{h}}\) & output hold time & & 6 & - & - & ns \\
\hline \(\mathrm{t}_{\mathrm{d}}\) & output delay time & note 9 & -6 & - & 16 & ns \\
\hline \(\mathrm{t}_{\mathrm{r}}\) & clock rise time & & 3 & 5 & - & ns \\
\hline \(\mathrm{t}_{\mathrm{f}}\) & clock fall time & & 3 & 5 & - & ns \\
\hline \(\mathrm{t}_{\mathrm{CLP}}\) & active clamping duration & & 3 & 4 & - & \(\mu \mathrm{l}\) \\
\hline
\end{tabular}

\section*{Notes}
1. \(V_{\text {DDA }}\) and \(V_{D D D}\) should be supplied from the same power supply and decoupled separately.
2. The analog supply current is directly proportional to the series resistance between \(V_{D D A}\) and CLREF.
3. CREFH and CREFL are connected respectively to the top and bottom reference ladders of the 3 analog-to-digital converters.
4. \(\quad V_{\mid(p-p)}=\left(V_{\text {REFL }}-V_{\text {REFH }}\right) /\) buffer gain factor. See Table 2 for gain factor selection. When clamping at code 0 is used, active video signal amplitude \(V_{A C T}\) should be:
\[
V_{A C T}=\frac{\left(V_{\text {REFH }}-V_{\text {REFL }}\right)}{\text { buffer gain factor }}
\]
5. Low frequency ramp signal \(\left(V_{l(p-p)}=\right.\) full scale and \(64 \mu s\) period) combined with a sine wave input voltage. \(V_{l(p-p)}=0.3 \mathrm{~V}, f_{i}=\) maximum allowed input frequency; see Fig. 5
6. \(V_{l(p-p)}=\Delta R E F\) with \(f_{i}=4.43 \mathrm{MHz}\).
7. Full scale input sine wave; \(f_{\mathrm{i}}=4.43 \mathrm{MHz}, \mathrm{f}_{\mathrm{CLK}}=35 \mathrm{MHz}\).
8. The number of effective bits is measured with a clock frequency of 35 MHz . This value is given for a 4.43 MHz input frequency.
9. Output data acquisition: output data is available after the maximum delay time of \(t_{d}\).

Triple RGB 6-bit video analog-to-digital interface

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{STEP} & \multirow[b]{2}{*}{\(V_{1(p-p)}\)} & \multicolumn{6}{|c|}{BINARY OUTPUT BITS} \\
\hline & & D5 & D4 & D3 & D2 & D1 & Do \\
\hline - & \(<0.333=V_{\text {REFL }} / 1.5\) & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0.349 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0.364 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline . & . & . & & . & . & . & . \\
\hline 62 & 1.317 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 63 & 1.333 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline - & \(>1.333=V_{\text {REFH }} / 1.5\) & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

Table 2 Mode selection.
\begin{tabular}{|c|c|c|}
\hline SLT & BUFFER RATIO & V \(_{\text {(p-p) }}\) FULL SCALE \\
\hline 0 & 1.5 & \(\left(V_{\text {REFH }}-V_{\text {REFL }}\right) / 1.5\) \\
\hline 1 & 2.0 & \(\left(V_{\text {REFH }}-V_{\text {REFL }}\right) / 2.0\) \\
\hline
\end{tabular}

Triple RGB 6-bit video analog-to-digital
TDA8707 interface

TIMING DIAGRAMS

Fig. 3 Input timing.

Fig. 4 Clamp timing.

Triple RGB 6-bit video analog-to-digital interface

Fig. 5 Differential gain and phase measurements.

Fig. 6 Load circuit for timing measurements.

Triple RGB 6-bit video analog-to-digital interface

TDA8707

\section*{INTERNAL CIRCUITRY}

(a) Digital inputs; pins 10, 23 and 36.
(b) Analog inputs; pins 28,31 and 34 .
(c) Current reference; pin 24.
(d) Digital outputs; pins 3 to 8,14 to 16, 18 to 20 and 40 to 44 .

Fig. 7 Internal circuitry.

Triple RGB 6-bit video analog-to-digital interface

\section*{APPLICATION INFORMATION}

Analog and digital supplies should be separated and decoupled.
Supplies are not connected internally; also applicable to grounds.
The internal reference currents are set by the series resistor between pin \(V_{\text {DDA }}\) and CLREF.
The resistor value should be in the range of \(12 \mathrm{k} \Omega\) and \(15 \mathrm{k} \Omega\).
It is recommended, if possible, to connect pins \(1,2,12,13,17,37\) and 39 to \(V_{\text {SSD. }}\).

Fig. 8 Application diagram.

\section*{Video analog input interface}

\section*{FEATURES}
- 8-bit resolution
- Sampling rate up to 32 MHz
- Binary or two's complement 3-state TTL outputs
- TTL-compatible digital inputs and outputs
- Internal reference voltage regulator
- Power dissipation of 365 mW (typical)
- Input selector circuit (one out of three video inputs)
- Clamp and Automatic Gain Control (AGC) functions for CVBS and \(Y\) signals
- No sample-and-hold circuit required.
- The TDA8708A has white peak control in modes 1 and 2 whereas the TDA8708B has control in mode 1 only.

\section*{APPLICATIONS}
- Video signal decoding
- Scrambled TV (encoding and decoding)
- Digital picture processing
- Frame grabbing.

\section*{GENERAL DESCRIPTION}

The TDA8708A is an analog input interface for video signal processing. It includes a video amplifier with clamp and gain control, an 8-bit analog-to-digital converter (ADC) with a sampling rate of 32 MHz and an input selector.

\section*{QUICK REFERENCE DATA}
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & \multicolumn{1}{c|}{ PARAMETER } & \multicolumn{1}{c|}{ MIN. } & \multicolumn{1}{c|}{ TYP. } & \multicolumn{1}{c|}{ MAX. } & \multicolumn{1}{c|}{ UNIT } \\
\hline\(V_{\text {CCA }}\) & analog supply voltage & 4.5 & 5.0 & 5.5 & V \\
\hline\(V_{\text {CCD }}\) & digital supply voltage & 4.5 & 5.0 & 5.5 & V \\
\hline\(V_{\text {CCO }}\) & TTL output supply voltage & 4.2 & 5.0 & 5.5 & V \\
\hline\(I_{\text {CCA }}\) & analog supply current & - & 37 & 45 & mA \\
\hline\(I_{\text {CCD }}\) & digital supply current & - & 24 & 30 & mA \\
\hline\(I_{\text {CCO }}\) & TTL output supply current & - & 12 & 16 & mA \\
\hline ILE & DC integral linearity error & - & - & \(\pm 1\) & LSB \\
\hline DLE & DC differential linearity error & - & - & \(\pm 0.5\) & LSB \\
\hline\(f_{\text {Clk }(\max)}\) & maximum clock frequency & 30 & 32 & - & MHz \\
\hline B & maximum -3 dB bandwidth (AGC amplifier) & 12 & 18 & - & MHz \\
\hline\(P_{\text {tot }}\) & total power dissipation & - & 365 & 500 & mW \\
\hline
\end{tabular}

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ TYPE NUMBER } & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline TDA8708A & 28 & DIP & plastic & SOT117-1 \\
\hline TDA8708AT & 28 & SO28L & plastic & SOT136-1 \\
\hline
\end{tabular}

Video analog input interface
TDA8708A

\section*{BLOCK DIAGRAM}

Fig. 1 Block diagram.

\section*{Video analog input interface}

\section*{PINNING}
\begin{tabular}{|l|c|l|}
\hline SYMBOL & PIN & \multicolumn{1}{|c|}{ DESCRIPTION } \\
\hline D7 & 1 & data output; bit 7 (MSB) \\
\hline D6 & 2 & data output; bit 6 \\
\hline D5 & 3 & data output; bit 5 \\
\hline D4 & 4 & data output; bit 4 \\
\hline CLK & 5 & clock input \\
\hline V CCD \(^{\text {V }}\) CCO & 6 & digital supply voltage (+5 V) \\
\hline DGND & 7 & TTL outputs supply voltage (+5 V) \\
\hline OF & 8 & digital ground \\
\hline D3 & 10 & \begin{tabular}{l}
output format/chip enable \\
(3-state input)
\end{tabular} \\
\hline D2 & 11 & data output; bit 3 output; bit 2 \\
\hline D1 & 12 & data output; bit 1 \\
\hline D0 & 13 & data output; bit 0 (LSB) \\
\hline IO & 14 & video input selection bit 0 \\
\hline I1 & 15 & video input selection bit 1 \\
\hline VIN0 & 16 & video input 0 \\
\hline VIN1 & 17 & video input 1 \\
\hline VIN2 & 18 & video input 2 \\
\hline ANOUT & 19 & analog voltage output \\
\hline ADCIN & 20 & analog-to-digital converter input \\
\hline DEC & 21 & decoupling input \\
\hline VCCA & 22 & analog supply voltage (+5 V) \\
\hline AGND & 23 & analog ground \\
\hline CLAMP & 24 & lamp capacitor connection \\
\hline AGC & 25 & AGC capacitor connection \\
\hline GATE B & 26 & black level synchronization pulse \\
\hline GATE A & 27 & sync level synchronization pulse \\
\hline RPEAK & 28 & peak level current resistor input \\
\hline
\end{tabular}

\section*{Video analog input interface}

\section*{TDA8708A}

\section*{FUNCTIONAL DESCRIPTION}

The TDA8708A provides a simple interface for decoding video signals.

The TDA8708A operates in configuration mode 1 (see Fig.4) when the video signals are weak (i.e. when the gain of the AGC amplifier has not yet reached its optimum value). This enables a fast recovery of the synchronization pulses in the decoder circuit. When the pulses at the GATE A and GATE B inputs become distinct (GATE A and GATE B pulses are synchronization pulses occurring during the sync period and rear porch respectively) the TDA8708A automatically switches to configuration mode 2 (see Fig.5).

When the TDA8708A is in configuration mode 1 , the gain of the AGC amplifier will be roughly adjusted (sync level to a digital output level of 0 and the peak level to a digital output level of 255).

In configuration mode 2 the digital output of the ADC is compared to internal digital reference levels. The resultant outputs control the charge or discharge current of a capacitor connected to the AGC pin. The voltage across this capacitor controls the gain of the video amplifier. This is the gain control loop.

The sync level comparator is active during a positive-going pulse at the GATE A input. This means that the sync pulse of the composite video signal is used as an amplitude reference. The bottom of the sync pulse is adjusted to obtain a digital output of logic 0 at the converter output. As the black level is at digital level 64 , the sync pulse will have a digital amplitude of 64 LSBs.

The peak-white control loop is always active. If the video signal tends to exceed the digital code of 248 , the gain will be limited to avoid any over-range of the converter.

The use of nominal signals will prevent the output from exceeding a digital code of 213 and the peak-white control loop will be non-active.

The clamp level control is accomplished by using the same techniques as used for the gain control. The black-level digital comparator is active during a positive-going pulse at the GATE B input. The clamp capacitor will be charged or discharged to adjust the digital output to code 64.

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum Rating System (IEC 134).
\begin{tabular}{|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN. & MAX. & UNIT \\
\hline \(V_{\text {CCA }}\) & analog supply voltage & -0.3 & +7.0 & V \\
\hline \(V_{\text {CCD }}\) & digital supply voltage & -0.3 & +7.0 & V \\
\hline \(V_{\text {cco }}\) & output supply voltage & -0.3 & +7.0 & V \\
\hline \multirow[t]{3}{*}{\(\Delta V_{c c}\)} & supply voltage difference between \(\mathrm{V}_{\text {CCA }}\) and \(\mathrm{V}_{\text {CCD }}\) & -1.0 & +1.0 & V \\
\hline & supply voltage difference between \(\mathrm{V}_{C C O}\) and \(\mathrm{V}_{C C D}\) & -1.0 & +1.0 & V \\
\hline & supply voltage difference between \(\mathrm{V}_{\text {CCA }}\) and \(\mathrm{V}_{\text {CCO }}\) & -1.0 & +1.0 & V \\
\hline \(\mathrm{V}_{1}\) & input voltage & -0.3 & \(\mathrm{V}_{\text {CCA }}\) & V \\
\hline \(\mathrm{I}_{0}\) & output current & 0 & +10 & mA \\
\hline \(\mathrm{T}_{\text {stg }}\) & storage temperature & -55 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature & 0 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{i}}\) & junction temperature & 0 & +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

THERMAL CHARACTERISTICS
\begin{tabular}{|l|l|c|c|}
\hline SYMBOL & PARAMETER & VALUE & UNIT \\
\hline\(R_{\text {th } j \text {-a }}\) & thermal resistance from junction to ambient in free air & & \\
& SOT117-1 & 55 & KWW \\
& SOT136-1 & 70 & KWW \\
\hline
\end{tabular}

\section*{CHARACTERISTICS}
\(\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{22}\) to \(\mathrm{V}_{23}=4.5\) to \(5.5 \mathrm{~V} ; \mathrm{V}_{C C D}=\mathrm{V}_{6}\) to \(\mathrm{V}_{8}=4.5\) to \(5.5 \mathrm{~V} ; \mathrm{V}_{C C O}=\mathrm{V}_{7}\) to \(\mathrm{V}_{8}=4.2\) to 5.5 V ; AGND and DGND shorted together; \(V_{C C A}\) to \(V_{C C D}=-0.5\) to +0.5 V ; \(\mathrm{V}_{C C O}\) to \(\mathrm{V}_{C C D}=-0.5\) to \(+0.5 \mathrm{~V} ; \mathrm{V}_{C C A}\) to \(\mathrm{V}_{C C O}=-0.5\) to +0.5 V ; \(\mathrm{T}_{\mathrm{amb}}=0\) to \(+70^{\circ} \mathrm{C}\); typical readings taken at \(\mathrm{V}_{C C A}=\mathrm{V}_{C C D}=\mathrm{V}_{C C O}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\); unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Supplies} \\
\hline \(V_{\text {CCA }}\) & analog supply voltage & & 4.5 & 5.0 & 5.5 & V \\
\hline \(V_{\text {CCD }}\) & digital supply voltage & & 4.5 & 5.0 & 5.5 & V \\
\hline \(\mathrm{V}_{\text {CCO }}\) & TTL output supply voltage & & 4.2 & 5.0 & 5.5 & \(V\) \\
\hline ICCA & analog supply current & & - & 37 & 45 & mA \\
\hline \(\mathrm{I}_{\text {CCD }}\) & digital supply current & & - & 24 & 30 & mA \\
\hline I CCO & TTL output supply current & TTL load (see Fig. 8) & - & 12 & 16 & mA \\
\hline
\end{tabular}

Video amplifier inputs
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{VIN(0 TO 2) InPuts} \\
\hline \(V_{1(p-p)}\) & input voltage (peak-to-peak value) & AGC load with external capacitor; note 1 & 0.6 & - & 1.5 & V \\
\hline \(\left|Z_{i}\right|\) & input impedance & \(\mathrm{f}_{\mathrm{i}}=6 \mathrm{MHz}\) & 10 & 20 & - & k \(\Omega\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & \(\mathrm{f}_{\mathrm{i}}=6 \mathrm{MHz}\) & - & 1 & - & pF \\
\hline \multicolumn{7}{|l|}{IO And 11 TTL inputs (see table 1)} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & HIGH level input voltage & & 2.0 & - & \(\mathrm{V}_{\mathrm{CCD}}\) & V \\
\hline \(\mathrm{I}_{\text {IL }}\) & LOW level input current & \(\mathrm{V}_{1}=0.4 \mathrm{~V}\) & -400 & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{H}}\) & HIGH level input current & \(\mathrm{V}_{1}=2.7 \mathrm{~V}\) & - & - & 20 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{GATE A and Gate b TTL inputs (SEe figs 4 and 5)} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & HIGH level input voltage & & 2.0 & - & \(V_{C C D}\) & V \\
\hline \(\mathrm{I}_{\text {IL }}\) & LOW level input current & \(\mathrm{V}_{1}=0.4 \mathrm{~V}\) & -400 & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{1+}\) & HIGH level input current & \(\mathrm{V}_{1}=2.7 \mathrm{~V}\) & - & - & 20 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{t}_{\mathrm{W}}\) & pulse width & see Fig. 5 & 2 & - & - & \(\mu \mathrm{s}\) \\
\hline \multicolumn{7}{|l|}{RPEAK INPUT (PIN 28)} \\
\hline \(\mathrm{I}_{28 \text { (min) }}\) & minimum peak level current & \(\mathrm{R}_{28}=0 \Omega\) & - & 80 & 150 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{AGC InPUT (PIN 25)} \\
\hline \(V_{25 \text { (min) }}\) & AGC voltage for minimum gain & & - & 2.8 & - & V \\
\hline \(\mathrm{V}_{25 \text { (max) }}\) & AGC voltage for maximum gain & & - & 4.0 & - & V \\
\hline & AGC output current & & & & & \\
\hline \multicolumn{7}{|l|}{CLAMP INPUT (PIN 24)} \\
\hline \(\mathrm{V}_{24}\) & clamp voltage for code 128 output & & - & 3.5 & - & V \\
\hline \(\mathrm{I}_{24}\) & clamp output current & & \multicolumn{3}{|c|}{see Table 3} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Video amplifler outputs} \\
\hline \multicolumn{7}{|l|}{ANOUT OUTPUT (PIN 19)} \\
\hline \(V_{19(p-p)}\) & AC output voltage (peak-to-peak value) & \[
\begin{array}{|l|}
\hline \mathrm{V}_{\mathrm{VIN}}=1.33 \mathrm{~V}(\mathrm{p}-\mathrm{p}) ; \\
\mathrm{V}_{25}=3.6 \mathrm{~V} \\
\hline
\end{array}
\] & - & 1.33 & - & V \\
\hline \(\mathrm{I}_{19}\) & internal current source & \(\mathrm{R}_{\mathrm{L}}=\infty\) & 2.0 & 2.5 & - & mA \\
\hline \(\mathrm{I}_{\mathrm{O}(\mathrm{p}-\mathrm{p})}\) & output current driven by the load & \[
\mathrm{V}_{\text {ANOUT }}=1.33 \vee(p-p) ;
\] note 2 & - & - & 1.0 & mA \\
\hline \(\mathrm{V}_{19}\) & DC output voltage for black level & note 3 & - & \(\mathrm{V}_{\text {CCA }}-2.24\) & - & V \\
\hline \(\mathrm{Z}_{19}\) & output impedance & & - & 20 & - & \(\Omega\) \\
\hline
\end{tabular}

Video amplifier dynamic characteristics
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\alpha_{\text {ct }}\) & crosstalk between VIN inputs & \(\mathrm{V}_{\text {CCA }}=4.75\) to 5.25 V & - & -50 & -45 & dB \\
\hline \(\mathrm{G}_{\text {diff }}\) & differential gain & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{VIN}}=1.33 \mathrm{~V}(\mathrm{p}-\mathrm{p}) ; \\
& \mathrm{V}_{25}=3.6 \mathrm{~V}
\end{aligned}
\] & - & 2 & - & \% \\
\hline \(\varphi_{\text {diff }}\) & differential phase & \[
\begin{aligned}
& V_{V I N}=1.33 \mathrm{~V}(p-p) ; \\
& V_{25}=3.6 \mathrm{~V}
\end{aligned}
\] & - & 0.8 & - & deg \\
\hline B & -3 dB bandwidth & & 12 & - & - & MHz \\
\hline S/N & signal-to-noise ratio & note 4 & 60 & - & - & dB \\
\hline SVRR1 & supply voltage ripple rejection & note 5 & - & 45 & - & dB \\
\hline \(\Delta \mathrm{G}\) & gain range & see Fig. 10 & -4.5 & - & +6.0 & dB \\
\hline \(\mathrm{G}_{\text {stab }}\) & gain stability as a function of supply voltage and temperature & see Fig. 10 & - & - & 5 & \% \\
\hline
\end{tabular}

Analog-to-digital converter inputs
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{CLK INPUT (PIN 5)} \\
\hline \(V_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & HIGH level input voltage & & 2.0 & - & \(\mathrm{V}_{\mathrm{CCD}}\) & V \\
\hline \(\mathrm{I}_{\text {IL }}\) & LOW level input current & \(\mathrm{V}_{\text {clk }}=0.4 \mathrm{~V}\) & -400 & - & - & \(\mu \mathrm{A}\) \\
\hline \(I_{1 H}\) & HIGH level input current & \(\mathrm{V}_{\text {clk }}=2.7 \mathrm{~V}\) & - & - & 100 & \(\mu \mathrm{A}\) \\
\hline \(\left|Z_{i}\right|\) & input impedance & \(\mathrm{f}_{\text {clk }}=10 \mathrm{MHz}\) & - & 4 & - & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & \(\mathrm{f}_{\text {clk }}=10 \mathrm{MHz}\) & - & 4.5 & - & pF \\
\hline \multicolumn{7}{|l|}{OF input (3-state; SEE TABLE 4)} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.2 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & HIGH level input voltage & & 2.6 & - & \(\mathrm{V}_{C C D}\) & V \\
\hline \(\mathrm{V}_{9}\) & input voltage in high impedance state & & - & 1.15 & - & V \\
\hline ILI & LOW level input current & & -370 & -300 & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{1 \mathrm{H}}\) & HIGH level input current & & - & 300 & 450 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

Video analog input interface
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{ADCIN infut (PIN 20; see Table 5)} \\
\hline \(V_{20}\) & input voltage & digital output \(=00\) & - & \(\mathrm{V}_{\text {CCA }}-2.42\) & - & V \\
\hline \(V_{20}\) & input voltage & digital output \(=255\) & - & \(V_{\text {CCA }}-1.41\) & - & V \\
\hline \(V_{20(p-p)}\) & input voltage amplitude (peak-to-peak value) & & - & 1.0 & - & V \\
\hline \(\mathrm{l}_{20}\) & input current & & - & 1.0 & 10 & \(\mu \mathrm{A}\) \\
\hline \(\left|Z_{i}\right|\) & input impedance & \(\mathrm{f}_{\mathrm{i}}=6 \mathrm{MHz}\) & - & 50 & - & \(\mathrm{M} \Omega\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & \(\mathrm{f}_{\mathrm{i}}=6 \mathrm{MHz}\) & - & 1 & - & pF \\
\hline \multicolumn{7}{|l|}{Analog-to-digital converter outputs} \\
\hline \multicolumn{7}{|l|}{Digital outputs D0 to D7} \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & LOW level output voltage & \(\mathrm{l}_{\mathrm{OL}}=2 \mathrm{~mA}\) & 0 & - & 0.6 & V \\
\hline V OH & HIGH level output voltage & \(\mathrm{l}_{\mathrm{OL}}=-0.4 \mathrm{~mA}\) & 2.4 & - & \(\mathrm{V}_{\text {CCD }}\) & V \\
\hline loz & output current in 3-state mode & \(0.4 \mathrm{~V}<\mathrm{V}_{0}<\mathrm{V}_{\text {CCD }}\) & -20 & - & +20 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{Switching characteristics} \\
\hline \(\mathrm{f}_{\text {clk (max) }}\) & maximum clock input frequency & see Fig.6; note 6 & 30 & 32 & - & MHz \\
\hline \multicolumn{7}{|l|}{Analog signal processing (\(\mathrm{f}_{\text {clk }}=32 \mathrm{MHz}\); see Fig.8)} \\
\hline \(\mathrm{G}_{\text {diff }}\) & differential gain & \begin{tabular}{l}
\[
\mathrm{V}_{20}=1.0 \mathrm{~V}(\mathrm{p}-\mathrm{p}) ;
\] \\
see Fig.3; note 7
\end{tabular} & - & 2 & - & \% \\
\hline \(\varphi_{\text {diff }}\) & differential phase & see Fig.3; note 7 & - & 2 & - & deg \\
\hline \(\mathrm{f}_{1}\) & fundamental harmonics (full-scale) & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\); note 7 & - & - & 0 & dB \\
\hline fall & harmonics (full-scale); all components & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\); note 7 & - & -55 & - & dB \\
\hline SVRR2 & supply voltage ripple rejection & note 8 & - & 1 & 5 & \%/V \\
\hline \multicolumn{7}{|l|}{Transfer function (see Fig.8)} \\
\hline ILE & DC integral linearity error & & - & - & \(\pm 1\) & LSB \\
\hline DLE & DC differential linearity error & & - & - & \(\pm 0.5\) & LSB \\
\hline ILE & AC integral linearity error & note 9 & - & - & \(\pm 2\) & LSB \\
\hline \multicolumn{7}{|l|}{Timing (\(\mathrm{f}_{\text {cik }}=32 \mathrm{MHz}\); see Figs 6, \(\mathbf{7}\) and 8)} \\
\hline \multicolumn{7}{|l|}{DIGITAL OUTPUTS (\(C_{L}=15 \mathrm{pF}\); IOL \(=2 \mathrm{~mA}\); \(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\))} \\
\hline \(\mathrm{t}_{\mathrm{ds}}\) & sampling delay time & & - & 2 & - & ns \\
\hline \(\mathrm{t}_{\mathrm{h}}\) & output hold time & & 6 & 8 & - & ns \\
\hline \(\mathrm{t}_{\mathrm{d}}\) & output delay time & & - & 16 & 20 & ns \\
\hline \(t_{\text {dez }}\) & 3 -state delay time; output enable & & - & 19 & 25 & ns \\
\hline \(\mathrm{t}_{\mathrm{d} D}\) & 3-state delay time; output disable & & - & 14 & 20 & ns \\
\hline
\end{tabular}

\section*{Notes}
1. 0 dB is obtained at the AGC amplifier when applying \(\mathrm{V}_{\mathrm{i}(\mathrm{p}-\mathrm{p})}=1.33 \mathrm{~V}\).
2. The output current at pin 19 should not exceed 1 mA . The load impedance \(R_{L}\) should be referenced to \(V_{C C A}\) and defined as:
a) AC impedance \(\geq 1 \mathrm{k} \Omega\) and the DC impedance \(>2.7 \mathrm{k} \Omega\).
b) The load impedance should be coupled directly to the output of the amplifier so that the DC voltage supplied by the clamp is not disturbed.
3. Control mode 2 is selected.
4. Signal-to-noise ratio measured with 5 MHz bandwidth:

5. The voltage ratio is expressed as:

SVRR1 \(=20 \log \frac{\Delta V_{C C A}}{V_{C C A}} \times \frac{G}{\Delta G}\) for \(V_{1}=1 \mathrm{~V}(p-p)\), gain at \(100 \mathrm{kHz}=1\) and 1 V supply variation.
6. It is recommended that the rise and fall times of the clock are \(\geq 2 \mathrm{~ns}\). In addition, a 'good layout' for the digital and analog grounds is recommended.
7. These measurements are realized on analog signals after a digital-to-analog conversion (TDA8702 is used).
8. The supply voltage rejection is the relative variation of the analog signal (full-scale signal at input) for 1 V of supply variation:
SVRR2 \(=\frac{\Delta\left(V_{1(00)}-V_{1(F F)}\right)+\left(V_{1(00)}-V_{1(F F)}\right)}{\Delta V_{C C A}}\)
9. Full-scale sine wave (\(f_{i}=4.4 \mathrm{MHz} ; f_{\text {clk }}=27 \mathrm{MHz}\)).

\section*{Video analog input interface}

Table 1 Video input selection (CVBS).
\begin{tabular}{|c|c|c|}
\hline 11 & 10 & SELECTED INPUT \\
\hline 0 & 0 & VIN0 \\
\hline 0 & 1 & VIN1 \\
\hline 1 & 0 & VIN2 \\
\hline 1 & 1 & VIN2 \\
\hline
\end{tabular}

Table 2 AGC output current.
\begin{tabular}{|c|c|c|c|c|}
\hline GATE A & GATE B & DIGITAL OUTPUT & \(\mathrm{I}_{\text {AGC }}\) & MODE \({ }^{(2)}\) \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{1} & output < 255 & \(-2.5 \mu \mathrm{~A}\) & 1 \\
\hline & & output \(>255\) & \(I_{\text {AGCM }}\) & 1 \\
\hline \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{\(X^{(1)}\)} & output < 248 & \(0 \mu \mathrm{~A}\) & 2 \\
\hline & & output > 248 & \(I_{\text {AGCM }}\) & 2 \\
\hline \multirow[t]{3}{*}{1} & \multirow[t]{3}{*}{0} & output < 0 & \(+2.5 \mu \mathrm{~A}\) & 2 \\
\hline & & \[
\begin{aligned}
& 0<\text { output < } \\
& 248
\end{aligned}
\] & \(-2.5 \mu \mathrm{~A}\) & 2 \\
\hline & & output > 248 & \(\mathrm{I}_{\text {AGCM }}\) & 2 \\
\hline
\end{tabular}

\section*{Note}
1. \(X=\) don't care.
2. Mode 2 can only be initialized with successive pulses on GATE A and GATE B (see Fig.5).

Table 3 CLAMP output current.
\begin{tabular}{|c|c|l|l|c|}
\hline \multirow{2}{*}{ GATE A } & GATE B & \multicolumn{1}{|c|}{\begin{tabular}{c}
DIGITAL \\
OUTPUT
\end{tabular}} & I ICLAMP & MODE \\
\hline 1 & 1 & output \(<0\) & I CLAMPM & 1 \\
\cline { 3 - 5 } & & output \(>0\) & \(-2.5 \mu \mathrm{~A}\) & 1 \\
\hline \(\mathrm{X}^{(1)}\) & 0 & \(\mathrm{X}^{(1)}\) & \(0 \mu \mathrm{~A}\) & 2 \\
\hline 0 & 1 & output \(<64\) & \(+50 \mu \mathrm{~A}\) & 2 \\
\cline { 3 - 5 } & & \(64<\) output & \(-50 \mu \mathrm{~A}\) & 2 \\
\hline
\end{tabular}

\section*{Note}
1. \(X=\) don't care.

Table 4 OF input coding.
\begin{tabular}{|c|l|}
\hline OF & \multicolumn{1}{|c|}{ D0 TO D7 } \\
\hline 0 & active, two's complement \\
\hline 1 & high impedance \\
\hline open circuit(1) & active, binary \\
\hline
\end{tabular}

\section*{Note}
1. Use \(C \geq 10 \mathrm{pF}\) to DGND.

Table 5 Output coding and input voltage (typical values).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{STEP} & \multirow[b]{2}{*}{\(\mathrm{V}_{\text {ADCIN }}\)} & \multicolumn{8}{|c|}{BINARY OUTPUTS} & \multicolumn{8}{|c|}{TWO'S COMPLEMENT} \\
\hline & & D7 & D6 & D5 & D4 & D3 & D2 & D1 & DO & D7 & D6 & D5 & D4 & D3 & D2 & D1 & DO \\
\hline Underflow & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & \(\mathrm{V}_{\text {CCA }}-2.41 \mathrm{~V}\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline . & - & . & . & . & . & . & . & . & . & . & . & . & & . & . & . & . \\
\hline . & - & . & . & . & . & . & . & . & . & . & . & . & . & . & . & . & . \\
\hline 254 & - & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 255 & \(V_{C C A}-1.41 \mathrm{~V}\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline Overflow & - & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

Fig. 3 Test signal on the ADCIN pin for differential gain and phase measurements.

Fig. 4 Control mode 1.

Fig. 5 Control mode 2.

Fig. 6 Timing diagram for data output.

Fig. 7 Output format timing diagram.

Fig. 8 Load circuit for timing measurement; data outputs (OF = LOW or open-circuit).

Fig. 9 Load circuit for timing measurement; 3-state outputs (\(\mathrm{OF}: \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{OF}}=3 \mathrm{~V}\)).

(1) Typical value (\(V_{C C A}=V_{C C D}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\)).
(2) Minimum and maximum values (temperature and supply).

Fig. 10 Gain control curve.

Video analog input interface

\section*{APPLICATION INFORMATION}

Additional information can be found in the laboratory report "FBL/AN9308".

(1) It is recommended to decouple \(V_{c c o}\) through a \(22 \Omega\) resistor especially when the output data of TDA8708A interfaces with a capacitive CMOS load device.
(2) See Figs 13 and 15 for examples of the low-pass filters.

Fig. 12 Application diagram.

\section*{Video analog input interface}

This filter can be adapted to various applications with respect to performance requirements. An input and output impedance of at least \(680 \Omega\) and \(2.2 \mathrm{k} \Omega\) must in any event be applied.

Fig. 13 Example of a low-pass filter for CVBS and \(Y\) signals.

Fig. 14 Frequency response for filter shown in Fig. 13.

\section*{Characteristics of Fig. 13}
- Order 5; adapted CHEBYSHEV
- Ripple \(\rho \leq 0.4 \mathrm{~dB}\)
- \(\mathrm{f}=6.5 \mathrm{MHz}\) at -3 dB
- \(\mathrm{f}_{\text {notch }}=9.75 \mathrm{MHz}\).

Video analog input interface

This filter can be adapted to various applications with respect to performance requirements. An input and output impedance of at least \(680 \Omega\) and \(2.2 \mathrm{k} \Omega\) must in any event be applied.

Fig. 15 Example of an economical low-pass filter for CVBS and \(Y\) signals.

Characteristics of Fig. 15
- Order 5; adapted CHEBYSHEV
- Ripple \(\rho \leq 0.4 \mathrm{~dB}\)
- \(f=6.5 \mathrm{MHz}\) at -3 dB .

Fig. 16 Frequency response for filter shown in Fig. 15.

\section*{Video analog input interface}

\section*{FEATURES}
- 8-bit resolution
- Sampling rate up to 32 MHz
- Binary or two's complement 3-state TTL outputs
- TTL-compatible digital inputs and outputs
- Internal reference voltage regulator
- Power dissipation of 365 mW (typical)
- Input selector circuit (one out of three video inputs)
- Clamp and Automatic Gain Control (AGC) functions for CVBS and \(Y\) signals
- No sample-and-hold circuit required
- The TDA8708B has no white peak control in mode 2 whereas the TDA8708A has control in modes 1 and 2.
- In-range output (not TTL levels).

\section*{APPLICATIONS}
- Video signal decoding
- Scrambled TV (encoding and decoding)
- Digital picture processing
- Frame grabbing.

\section*{GENERAL DESCRIPTION}

The TDA8708B is an analog input interface for video signal processing. It includes a video amplifier with clamp and gain control, an 8-bit analog-to-digital converter (ADC) with a sampling rate of 32 MHz and an input selector.

\section*{QUICK REFERENCE DATA}
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & \multicolumn{1}{c|}{ PARAMETER } & \multicolumn{1}{c|}{ MIN. } & \multicolumn{1}{c|}{ TYP. } & \multicolumn{1}{c|}{ MAX. } & \multicolumn{1}{c|}{ UNIT } \\
\hline\(V_{\text {CCA }}\) & analog supply voltage & 4.5 & 5.0 & 5.5 & V \\
\hline\(V_{\text {CCD }}\) & digital supply voltage & 4.5 & 5.0 & 5.5 & V \\
\hline\(V_{\text {CCO }}\) & TTL output supply voltage & 4.2 & 5.0 & 5.5 & V \\
\hline\(I_{\text {CCA }}\) & analog supply current & - & 37 & 45 & mA \\
\hline\(I_{\text {CCD }}\) & digital supply current & - & 24 & 30 & mA \\
\hline\(I_{\text {CCO }}\) & TTL output supply current & - & 12 & 16 & mA \\
\hline ILE & DC integral linearity error & - & - & \(\pm 1\) & LSB \\
\hline DLE & DC differential linearity error & - & - & \(\pm 0.5\) & LSB \\
\hline\(f_{\text {Clk }(\max)}\) & maximum clock frequency & 30 & 32 & - & MHz \\
\hline B & maximum -3 dB bandwidth (AGC amplifier) & 12 & 18 & - & MHz \\
\hline\(P_{\text {tot }}\) & total power dissipation & - & 365 & 500 & mW \\
\hline
\end{tabular}

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ TYPE NUMBER } & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline TDA8708B & 28 & DIP & plastic & SOT117-1 \\
\hline TDA8708BT & 28 & SO28L & plastic & SOT136-1 \\
\hline
\end{tabular}

\section*{BLOCK DIAGRAM}

Fig. 1 Block diagram.

Video analog input interface

PINNiNG
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline D7 & 1 & data output; bit 7 (MSB) \\
\hline D6 & 2 & data output; bit 6 \\
\hline D5 & 3 & data output; bit 5 \\
\hline D4 & 4 & data output; bit 4 \\
\hline CLK & 5 & clock input \\
\hline \(V_{\text {CCD }}\) & 6 & digital supply voltage (+5 V) \\
\hline \(V_{\text {CCO }}\) & 7 & TTL outputs supply voltage (+5 V) \\
\hline DGND & 8 & digital ground \\
\hline OF & 9 & output format/chip enable (3-state input) \\
\hline D3 & 10 & data output; bit 3 \\
\hline D2 & 11 & data output; bit 2 \\
\hline D1 & 12 & data output; bit 1 \\
\hline D0 & 13 & data output; bit 0 (LSB) \\
\hline 10 & 14 & video input selection bit 0 \\
\hline 11 & 15 & video input selection bit 1 \\
\hline VIN0 & 16 & video input 0 \\
\hline VIN1 & 17 & video input 1 \\
\hline VIN2 & 18 & video input 2 \\
\hline ANOUT & 19 & analog voltage output \\
\hline ADCIN & 20 & analog-to-digital converter input \\
\hline DEC & 21 & decoupling input \\
\hline \(V_{\text {CCA }}\) & 22 & analog supply voltage (+5 V) \\
\hline AGND & 23 & analog ground \\
\hline CLAMP & 24 & clamp capacitor connection \\
\hline AGC & 25 & AGC capacitor connection \\
\hline GATE B & 26 & black level synchronization pulse \\
\hline GATE A & 27 & sync level synchronization pulse \\
\hline IR & 28 & in-range output \\
\hline
\end{tabular}

Fig. 2 Pin configuration.

\section*{FUNCTIONAL DESCRIPTION}

The TDA8708B provides a simple interface for decoding video signals.

The TDA8708B operates in configuration mode 1 (see Fig.4) when the video signals are weak (i.e. when the gain of the AGC amplifier has not yet reached its optimum value). This enables a fast recovery of the synchronization pulses in the decoder circuit. When the pulses at the GATE A and GATE B inputs become distinct (GATE A and GATE B pulses are synchronization pulses occurring during the sync period and rear porch respectively) the TDA8708B automatically switches to configuration mode 2 (see Fig.5).

When the TDA8708B is in configuration mode 1 , the gain of the AGC amplifier will be roughly adjusted (sync level to a digital output level of 0 and the peak level to a digital output level of 255).
In configuration mode 2 the digital output of the ADC is compared to internal digital reference levels. The voltage
across the capacitor connected to the AGC pin controls the gain of the video amplifier. This is the gain control loop.
The sync level comparator is active during a positive-going pulse at the GATE A input. This means that the sync pulse of the composite video signal is used as an amplitude reference. The bottom of the sync pulse is adjusted to obtain a digital output of logic 0 at the converter output. As the black level is at digital level 64, the sync pulse will have a digital amplitude of 64 LSBs.

The use of nominal signals will prevent the output from exceeding a digital code of 213.
The clamp level control is accomplished by using the same techniques as used for the gain control. The black-level digital comparator is active during a positive-going pulse at the GATE B input. The clamp capacitor will be charged or discharged to adjust the digital output to code 64.

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum Rating System (IEC 134).
\begin{tabular}{|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN. & MAX. & UNIT \\
\hline \(V_{\text {CCA }}\) & analog supply voltage & -0.3 & +7.0 & V \\
\hline \(V_{\text {CCD }}\) & digital supply voltage & -0.3 & +7.0 & V \\
\hline \(V_{\text {cco }}\) & TTL output supply voltage & -0.3 & +7.0 & V \\
\hline \multirow[t]{3}{*}{\(\Delta V_{C C}\)} & supply voltage difference between \(\mathrm{V}_{\text {CCA }}\) and \(\mathrm{V}_{C C D}\) & -1.0 & +1.0 & V \\
\hline & supply voltage difference between \(V_{C C O}\) and \(V_{C C D}\) & -1.0 & +1.0 & V \\
\hline & supply voltage difference between \(\mathrm{V}_{\text {CCA }}\) and \(\mathrm{V}_{\text {CCO }}\) & -1.0 & +1.0 & V \\
\hline \(V_{1}\) & input voltage & -0.3 & \(V_{\text {CCA }}\) & V \\
\hline 10 & output current & 0 & +10 & mA \\
\hline \(\mathrm{T}_{\text {stg }}\) & storage temperature & -55 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature & 0 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{j}}\) & junction temperature & 0 & +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

THERMAL CHARACTERISTICS
\begin{tabular}{|l|l|c|c|}
\hline SYMBOL & PARAMETER & VALUE & UNIT \\
\hline\(R_{\text {th } j-a}\) & thermal resistance from junction to ambient in free air & & \\
& SOT117-1 & 55 & K/W \\
& SOT136-1 & 70 & KWW \\
\hline
\end{tabular}

\section*{Video analog input interface}

\section*{CHARACTERISTICS}
\(V_{C C A}=V_{22}\) to \(V_{23}=4.5\) to \(5.5 \mathrm{~V} ; \mathrm{V}_{C C D}=\mathrm{V}_{6}\) to \(\mathrm{V}_{8}=4.5\) to \(5.5 \mathrm{~V} ; \mathrm{V}_{C C O}=\mathrm{V}_{7}\) to \(\mathrm{V}_{8}=4.2\) to \(5.5 \mathrm{~V} ; \mathrm{AGND}\) and DGND shorted together; \(\mathrm{V}_{C C A}\) to \(\mathrm{V}_{C C D}=-0.5\) to \(+0.5 \mathrm{~V} ; \mathrm{V}_{C C O}\) to \(\mathrm{V}_{C C D}=-0.5\) to \(+0.5 \mathrm{~V} ; \mathrm{V}_{C C A}\) to \(\mathrm{V}_{C C O}=-0.5\) to +0.5 V ; \(\mathrm{T}_{\mathrm{amb}}=0\) to \(+70^{\circ} \mathrm{C}\); typical readings taken at \(\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCD}}=\mathrm{V}_{\mathrm{CCO}}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\); unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Supplies} \\
\hline \(V_{\text {CCA }}\) & analog supply voltage & & 4.5 & 5.0 & 5.5 & V \\
\hline \(V_{\text {CCD }}\) & digital supply voltage & \% & 4.5 & 5.0 & 5.5 & V \\
\hline \(V_{\text {cco }}\) & TTL output supply voltage & & 4.2 & 5.0 & 5.5 & V \\
\hline ICca & analog supply current & & - & 37 & 45 & mA \\
\hline ICCD & digital supply current & & - & 24 & 30 & mA \\
\hline \(\mathrm{I}_{\text {cco }}\) & TTL output supply current & TTL. load (see Fig.8) & - & 12 & 16 & mA \\
\hline
\end{tabular}

Video amplifler inputs
VINO TO VIN2 INPUTS
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{\mid(p-p)}\) & input voltage (peak-to-peak value) & \begin{tabular}{l}
AGC load with external \\
capacitor; note 1
\end{tabular} & 0.6 & - & 1.5 & \(V\) \\
\hline\(\left|Z_{i}\right|\) & input impedance & \(\mathrm{f}_{\mathrm{i}}=6 \mathrm{MHz}\) & 10 & 20 & - & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{C}_{\mid}\) & input capacitance & \(\mathrm{f}_{\mathrm{i}}=6 \mathrm{MHz}\) & - & 1 & - & pF \\
\hline
\end{tabular}

10 and 11 TTL inputs (SEE TABLE 1)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{V}_{\mathrm{IL}}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{~V}_{\mathrm{IH}}\) & HIGH level input voltage & & 2.0 & - & \(V_{C C D}\) & V \\
\hline \(\mathrm{I}_{\mathrm{IL}}\) & LOW level input current & \(\mathrm{V}_{1}=0.4 \mathrm{~V}\) & -400 & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{IH}}\) & HIGH level input current & \(\mathrm{V}_{I}=2.7 \mathrm{~V}\) & - & - & 20 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

GATE A and GATE B TTL inputs (see figs 4 and 5)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{I L}\) & LOW level input voltage & & 0 & - & 0.8 & \(V\) \\
\hline\(V_{I H}\) & HIGH level input voltage & & 2.0 & - & \(V_{C C D}\) & \(V\) \\
\hline\(I_{I L}\) & LOW level input current & \(V_{I}=0.4 \mathrm{~V}\) & -400 & - & - & \(\mu \mathrm{A}\) \\
\hline\(I_{I H}\) & HIGH level input current & \(V_{I}=2.7 \mathrm{~V}\) & - & - & 20 & \(\mu \mathrm{~A}\) \\
\hline \(\mathrm{I}_{\mathrm{W}}\) & pulse width & see Fig.5 & 2 & - & - & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

AGC INPUT (PIN 25)

\section*{Video analog input interface}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Video amplifler outputs} \\
\hline \multicolumn{7}{|l|}{ANOUT OUTPUT (PIN 19)} \\
\hline \(V_{\text {19(p-p) }}\) & AC output voltage (peak-to-peak value) & \[
\begin{aligned}
& V_{V I N}=1.33 \mathrm{~V}(p-p) ; \\
& V_{25}=3.6 \mathrm{~V} \\
& \hline
\end{aligned}
\] & - & 1.33 & - & V \\
\hline \(\mathrm{I}_{19}\) & internal current source & \(\mathrm{R}_{\mathrm{L}}=\infty\) & 2.0 & 2.5 & - & mA \\
\hline \(10(p-p)\) & output current driven by the load & \[
\begin{aligned}
& \mathrm{V}_{\text {ANOUT }}=1.33 \mathrm{~V}(p-p) ; \\
& \text { note } 2
\end{aligned}
\] & - & - & 1.0 & mA \\
\hline \(\mathrm{V}_{19}\) & DC output voltage for black level & note 3 & - & \(\mathrm{V}_{\text {CCA }}-2.24\) & - & V \\
\hline \(\mathrm{Z}_{19}\) & output impedance & & - & 20 & - & \(\Omega\) \\
\hline \multicolumn{7}{|l|}{Video amplifier dynamic characteristics} \\
\hline \(\alpha_{c t}\) & crosstalk between VIN inputs & \(\mathrm{V}_{\text {CCA }}=4.75\) to 5.25 V & - & -50 & -45 & dB \\
\hline \(\mathrm{G}_{\text {diff }}\) & differential gain & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{VIN}}=1.33 \mathrm{~V}(\mathrm{p}-\mathrm{p}) ; \\
& \mathrm{V}_{25}=3.6 \mathrm{~V}
\end{aligned}
\] & - & 2 & - & \% \\
\hline \(\varphi_{\text {diff }}\) & differential phase & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{VIN}}=1.33 \mathrm{~V}(\mathrm{p}-\mathrm{p}) ; \\
& \mathrm{V}_{25}=3.6 \mathrm{~V} \\
& \hline
\end{aligned}
\] & - & 0.8 & - & deg \\
\hline B & -3 dB bandwidth & & 12 & - & - & MHz \\
\hline S/N & signal-to-noise ratio & note 4 & 60 & - & - & dB \\
\hline SVRR1 & supply voltage ripple rejection & note 5 & - & 45 & - & dB \\
\hline \(\Delta \mathrm{G}\) & gain range & see Fig. 10 & -4.5 & - & +6.0 & dB \\
\hline \(\mathrm{G}_{\text {stab }}\) & gain stability as a function of supply voltage and temperature & see Fig. 10 & - & - & 5 & \% \\
\hline \multicolumn{7}{|l|}{Analog-to-digital converter inputs} \\
\hline \multicolumn{7}{|l|}{CLK INPUT (PIN 5)} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & HIGH level input voltage & & 2.0 & - & \(V_{\text {CCD }}\) & V \\
\hline \(\mathrm{I}_{\text {IL }}\) & LOW level input current & \(\mathrm{V}_{\text {clk }}=0.4 \mathrm{~V}\) & -400 & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{H}}\) & HIGH level input current & \(\mathrm{V}_{\text {clk }}=2.7 \mathrm{~V}\) & - & - & 100 & \(\mu \mathrm{A}\) \\
\hline \(\left|Z_{i}\right|\) & input impedance & \(\mathrm{f}_{\text {clk }}=10 \mathrm{MHz}\) & - & 4 & - & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & \(\mathrm{f}_{\mathrm{clk}}=10 \mathrm{MHz}\) & - & 4.5 & - & pF \\
\hline \multicolumn{7}{|l|}{OF input (3-state; see table 4)} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.2 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & HIGH level input voltage & & 2.6 & - & \(\mathrm{V}_{\text {CCD }}\) & V \\
\hline \(\mathrm{V}_{9}\) & input voltage in high impedance state & & - & 1.15 & - & V \\
\hline \(\mathrm{I}_{\text {IL }}\) & LOW level input current & & -370 & -300 & - & \(\mu \mathrm{A}\) \\
\hline \(I_{\text {IH }}\) & HIGH level input current & & - & 300 & 450 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

Video analog input interface
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{ADCIN input (PIN 20; see Table 5)} \\
\hline \(V_{20}\) & input voltage & digital output \(=00\) & - & \(V_{\text {CCA }}-2.42\) & - & V \\
\hline \(V_{20}\) & input voltage & digital output \(=255\) & - & \(\mathrm{V}_{\text {CCA }}-1.41\) & - & V \\
\hline \(V_{20(p-p)}\) & input voltage amplitude (peak-to-peak value) & & - & 1.0 & - & V \\
\hline \(\mathrm{I}_{20}\) & input current & & - & 1.0 & 10 & \(\mu \mathrm{A}\) \\
\hline \(\left|Z_{i}\right|\) & input impedance & \(\mathrm{f}_{\mathrm{i}}=6 \mathrm{MHz}\) & - & 50 & - & \(\mathrm{M} \Omega\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & \(\mathrm{f}_{\mathrm{i}}=6 \mathrm{MHz}\) & - & 1 & - & pF \\
\hline
\end{tabular}

Analog-to-digital converter outputs
IR OUTPUT (PIN 28)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Vol & LOW level output voltage & & - & - & 1.7 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & HIGH level output voltage & & 1.9 & - & - & V \\
\hline Io & output current & & -500 & - & - & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{DIgital outputs D0 to D7} \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & LOW level output voltage & \(\mathrm{l}_{\mathrm{OL}}=2 \mathrm{~mA}\) & 0 & - & 0.6 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & HIGH level output voltage & \(\mathrm{I}_{\mathrm{OL}}=-0.4 \mathrm{~mA}\) & 2.4 & - & \(V_{\text {CCD }}\) & V \\
\hline loz & output current in 3-state mode & \(0.4 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CCD}}\) & -20 & - & +20 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{Switching characteristics}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{f}_{\mathrm{clk}(\max)}\) & maximum clock input frequency & see Fig.6; note 6 & 30 & 32 & - & MHz \\
\hline
\end{tabular}

Analog signal processing (\(\mathrm{f}_{\mathrm{clk}}=\mathbf{3 2} \mathbf{~ M H z}\); see Fig.8)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathrm{G}_{\text {diff }}\) & differential gain & \begin{tabular}{l}
\[
V_{20}=1.0 \vee(p-p)
\] \\
see Fig.3; note 7
\end{tabular} & - & 2 & - & \% \\
\hline \(\varphi_{\text {diff }}\) & differential phase & see Fig.3; note 7 & - & 2 & - & deg \\
\hline \(\mathrm{f}_{1}\) & fundamental harmonics (full-scale) & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\); note 7 & - & - & 0 & dB \\
\hline fall & harmonics (full-scale); all components & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\); note 7 & - & -55 & - & dB \\
\hline SVRR2 & supply voltage ripple rejection & note 8 & - & 1. & 5 & \%/V \\
\hline \multicolumn{7}{|l|}{Transfer function (see Fig.8)} \\
\hline ILE & DC integral linearity error & & - & - & \(\pm 1\) & LSB \\
\hline DLE & DC differential linearity error & & - & - & \(\pm 0.5\) & LSB \\
\hline ILE & AC integral linearity error & note 9 & - & - & \(\pm 2\) & LSB \\
\hline
\end{tabular}

Timing (\(\mathrm{f}_{\mathrm{clk}}=32 \mathrm{MHz}\); see Figs 6,7 and 8)
DIGITAL OUTPUTS (\(C_{L}=15 \mathrm{pF} ; \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\))
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(t_{d s}\) & sampling delay time & & - & 2 & - & ns \\
\hline \(\mathrm{t}_{\mathrm{h}}\) & output hold time & & 6 & 8 & - & ns \\
\hline \(\mathrm{t}_{\mathrm{d}}\) & output delay time & & - & 16 & 20 & ns \\
\hline \(\mathrm{t}_{\mathrm{dEZ}}\) & 3-state delay time; output enable & & - & 19 & 25 & ns \\
\hline \(\mathrm{t}_{\mathrm{dDZ}}\) & 3 -state delay time; output disable & & - & 14 & 20 & ns \\
\hline
\end{tabular}

\section*{Video analog input interface}

\section*{TDA8708B}

\section*{Notes to the "Characteristics"}
1. 0 dB is obtained at the AGC amplifier when applying \(\mathrm{V}_{\mathrm{i}(\mathrm{p}-\mathrm{p})}=1.33 \mathrm{~V}\).
2. The output current at pin 19 should not exceed 1 mA . The load impedance \(R_{L}\) should be referenced to \(V_{C C A}\) and defined as:
a) AC impedance \(\geq 1 \mathrm{k} \Omega\) and the DC impedance \(>2.7 \mathrm{k} \Omega\).
b) The load impedance should be coupled directly to the output of the amplifier so that the DC voltage supplied by the clamp is not disturbed.
3. Control mode 2 is selected.
4. Signal-to-noise ratio measured with 5 MHz bandwidth:
\(\frac{S}{N}=20 \log \frac{V_{\text {ANOUTC }(p-p)}}{V_{\text {ANOUTY (RMS noise) }}}\) at \(B=5 \mathrm{MHz}\).
5. The voltage ratio is expressed as:

SVRR1 \(=20 \log \frac{\Delta V_{C C A}}{V_{C C A}} \times \frac{G}{\Delta G}\) for \(V_{1}=1 \mathrm{~V}(p-p)\), gain at \(100 \mathrm{kHz}=1\) and 1 V supply variation.
6. It is recommended that the rise and fall times of the clock are \(\geq 2 \mathrm{~ns}\). In addition, a 'good layout' for the digital and analog grounds is recommended.
7. These measurements are realized on analog signals after a digital-to-analog conversion (TDA8702 is used).
8. The supply voltage rejection is the relative variation of the analog signal (full-scale signal at input) for 1 V of supply variation:
SVRR2 \(=\frac{\Delta\left(\mathrm{V}_{1(00)}-\mathrm{V}_{1(F F)}\right)+\left(\mathrm{V}_{1(00)}-\mathrm{V}_{1(\mathrm{FF})}\right)}{\Delta \mathrm{V}_{\mathrm{CCA}}}\)
9. Full-scale sine wave (\(f_{i}=4.4 \mathrm{MHz} ; \mathrm{f}_{\mathrm{cilk}}=27 \mathrm{MHz}\)).

Video analog input interface

Table 1 Video input selection (CVBS).
\begin{tabular}{|c|c|c|}
\hline 11 & \(\mathbf{1 0}\) & SELECTED INPUT \\
\hline 0 & 0 & VIN0 \\
\hline 0 & 1 & VIN1 \\
\hline 1 & 0 & VIN2 \\
\hline 1 & 1 & VIN2 \\
\hline
\end{tabular}

Table 2 AGC output current.
\begin{tabular}{|c|c|l|l|c|}
\hline \multirow{2}{*}{ GATE A } & \multirow{2}{*}{ GATE B } & \begin{tabular}{c}
DIGITAL \\
OUTPUT
\end{tabular} & I AGC & MODE \({ }^{(2)}\) \\
\hline 1 & 1 & output \(<255\) & \(-2.5 \mu \mathrm{~A}\) & 1 \\
\cline { 3 - 5 } & & output \(>255\) & \(130 \mu \mathrm{~A}\) & 1 \\
\hline 0 & \(X^{(1)}\) & - & \(0 \mu \mathrm{~A}\) & 2 \\
\hline 1 & 0 & output \(<0\) & \(+2.5 \mu \mathrm{~A}\) & 2 \\
\cline { 3 - 5 } & & output \(>0\) & \(-2.5 \mu \mathrm{~A}\) & 2 \\
\hline
\end{tabular}

\section*{Notes}
1. \(X=\) don't care.
2. Mode 2 can only be initialized with successive pulses on GATE A and GATE B (see Fig.5).

Table 3 CLAMP output current.
\begin{tabular}{|c|c|l|l|c|}
\hline \multirow{2}{*}{ GATE A } & \multirow{2}{|c|}{ GATE B } & \begin{tabular}{c}
DIGITAL \\
OUTPUT
\end{tabular} & I \(_{\text {CLAMP }}\) & MODE \\
\hline 1 & 1 & output \(<0\) & \(130 \mu \mathrm{~A}\) & 1 \\
\cline { 3 - 5 } & & output \(>0\) & \(-2.5 \mu \mathrm{~A}\) & 1 \\
\hline \(\mathrm{X}^{(1)}\) & 0 & \(X\) & \(0 \mu \mathrm{~A}\) & 2 \\
\hline 0 & 1 & output \(<64\) & \(+50 \mu \mathrm{~A}\) & 2 \\
\cline { 3 - 5 } & & \(64<\) output & \(-50 \mu \mathrm{~A}\) & 2 \\
\hline
\end{tabular}

Note
1. \(X=\) don't care.

Table 4 OF input coding.
\begin{tabular}{|c|l|}
\hline OF & \multicolumn{1}{|c|}{ D0 TO D7 } \\
\hline 0 & active, two's complement \\
\hline 1 & high impedance \\
\hline open circuit \({ }^{(1)}\) & active, binary \\
\hline
\end{tabular}

\section*{Note}
1. Use \(C \geq 10 \mathrm{pF}\) to DGND.

Table 5 Output coding and input voltage (typical values).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{STEP} & \multirow{2}{*}{\(\mathrm{V}_{\text {ADCIN }}\)} & \multicolumn{8}{|c|}{BINARY OUTPUTS} & \multicolumn{8}{|c|}{TWO'S COMPLEMENT} \\
\hline & & D7 & D6 & D5 & D4 & D3 & D2 & D1 & Do & D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\hline Underflow & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & \(V_{C C A}-2.41 \mathrm{~V}\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline . & - & . & . & . & . & . & . & . & . & . & . & . & . & . & . & . & . \\
\hline & - & . & . & . & . & . & . & . & . & . & . & . & . & . & . & . & . \\
\hline 254 & - & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 255 & \(\mathrm{V}_{C C A}-1.41 \mathrm{~V}\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline Overflow & - & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

\section*{Video analog input interface}

Fig. 3 Test signal on the ADCIN pin for differential gain and phase measurements.

Fig. 4 Control mode 1.

Fig. 5 Control mode 2.

Fig. 6 Timing diagram for data output.

Fig. 7 Output format timing diagram.

Fig. 8 Load circuit for timing measurement; data outputs (OF = LOW or open-circuit).

\section*{Video analog input interface}

Fig. 9 Load circuit for timing measurement; 3-state outputs (\(\mathrm{OF}: \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{OF}}=3 \mathrm{~V}\)).

(1) Typical value (\(\left.V_{C C A}=V_{C C D}=5 \mathrm{~V} ; \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}\right)\).
(2) Minimum and maximum values (temperature and supply)

Fig:10 Gain control curve.

Video analog input interface

\section*{APPLICATION INFORMATION}

Additional information can be found in the laboratory report of TDA8708A "FBL/AN9308".

(1) It is recommended to decouple \(V_{c c o}\) through a \(22 \Omega\) resistor especially when the output data of TDA8708B interfaces with a capacitive CMOS load device.
(2) When IR is not used, it must be connected to ground via a 47 pF capacitor.
(3) See Figs 13 and 15 for examples of the low-pass filters.

Fig. 12 Application diagram.

This filter can be adapted to various applications with respect to performance requirements. An input and output impedance of at least \(680 \Omega\) and \(2.2 \mathrm{k} \Omega\) must in any event be applied.

Fig. 13 Example of a low-pass filter for CVBS and \(Y\) signals.

Fig. 14 Frequency response for filter shown in Fig. 13.

\section*{Characteristics of Fig. 14}
- Order 5; adapted CHEBYSHEV
- Ripple \(\rho \leq 0.4 \mathrm{~dB}\)
- \(\mathrm{f}=6.5 \mathrm{MHz}\) at -3 dB
- \(\mathrm{f}_{\text {notch }}=9.75 \mathrm{MHz}\).

\section*{Video analog input interface}

This filter can be adapted to various applications with respect to performance requirements. An input and output impedance of at least \(680 \Omega\) and \(2.2 \mathrm{k} \Omega\) must in any event be applied.

Fig. 15 Example of an economical low-pass filter for CVBS and \(Y\) signals.

Fig. 16 Frequency response for filter shown in Fig. 15.

\section*{Characteristics of Fig. 16}
- Order 5; adapted CHEBYSHEV
- Ripple \(\rho \leq 0.4 \mathrm{~dB}\)
- \(f=6.5 \mathrm{MHz}\) at -3 dB .

\section*{FEATURES}
- 8-bit resolution
- Sampling rate up to 32 MHz
- TTL-compatible digital inputs and outputs
- Internal reference voltage regulator
- Low-level AC clock inputs and outputs
- Clamp function with selection for ' 16 ' or ' 128 '
- No sample-and-hold circuit required
- Three selectable video inputs.

\section*{APPLICATIONS}
- Video signal processing
- Digital picture processing
- Frame grabbing.
- Colour difference signals (U, V)
- R, G, B signals
- Chrominance signal (C).

\section*{GENERAL DESCRIPTION}

The TDA8709A is an analog input interface for video signal processing. It includes a an input selector (one out-of-three video signals), video amplifier with clamp and external gain control, an 8-bit analog-to-digital converter (ADC) with a sampling rate of 32 MHz and an input selector.

\section*{QUICK REFERENCE DATA}
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & \multicolumn{1}{|c|}{ PARAMETER } & \multicolumn{1}{c|}{ MIN. } & \multicolumn{1}{c|}{ TYP. } & \multicolumn{1}{c|}{ MAX. } & \multicolumn{1}{c|}{ UNIT } \\
\hline\(V_{\text {CCA }}\) & analog supply voltage & 4.5 & 5.0 & 5.5 & V \\
\hline\(V_{\text {CCD }}\) & digital supply voltage & 4.5 & 5.0 & 5.5 & V \\
\hline\(V_{\text {CCO }}\) & TTL output supply voltage & 4.2 & 5.0 & 5.5 & V \\
\hline\(I_{\text {CCA }}\) & analog supply current & - & 40 & 47 & mA \\
\hline\(I_{\text {CCD }}\) & digital supply current & - & 24 & 30 & mA \\
\hline\(I_{\text {CCO }}\) & TTL output supply current & - & 12 & 16 & mA \\
\hline ILE & DC integral linearity error & - & - & \(\pm 1\) & LSB \\
\hline DLE & DC differential linearity error & - & - & \(\pm 0.5\) & LSB \\
\hline \(\mathrm{f}_{\text {Clk }(\max)}\) & maximum clock frequency & 30 & 32 & - & MHz \\
\hline B & maximum -3 dB bandwidth (preamplifier) & 12 & 18 & - & MHz \\
\hline\(P_{\text {tot }}\) & total power dissipation & - & 380 & 512 & mW \\
\hline
\end{tabular}

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ TYPE NUMBER } & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline TDA8709A & 28 & DIP & plastic & SOT117-1 \\
\hline TDA8709AT & 28 & SO28L & plastic & SOT136-1 \\
\hline
\end{tabular}

Video analog input interface
TDA8709A

\section*{BLOCK DIAGRAM}

Fig. 1 Block diagram.

Video analog input interface

\section*{PINNING}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline D7 & 1 & data output; bit 7 (MSB) \\
\hline D6 & 2 & data output; bit 6 \\
\hline D5 & 3 & data output; bit 5 \\
\hline D4 & 4 & data output; bit 4 \\
\hline CLK & 5 & clock input \\
\hline \(V_{\text {CCD }}\) & 6 & digital supply voltage (+5 V) \\
\hline \(\mathrm{V}_{\text {CCO }}\) & 7 & TTL outputs supply voltage (+5 V) \\
\hline DGND & 8 & digital ground \\
\hline FOEN & 9 & fast output chip enable \\
\hline D3 & 10 & data output; bit 3 \\
\hline D2 & 11 & data output; bit 2 \\
\hline D1 & 12 & data output; bit 1 \\
\hline D0 & 13 & data output; bit 0 (LSB) \\
\hline 10 & 14 & video input selection bit 0 \\
\hline 11 & 15 & video input selection bit 1 \\
\hline VINO & 16 & video input 0 \\
\hline VIN1 & 17 & video input 1 \\
\hline VIN2 & 18 & video input 2 \\
\hline ANOUT & 19 & analog voltage output \\
\hline ADCIN & 20 & analog-to-digital converter input \\
\hline DEC & 21 & decoupling input \\
\hline \(V_{\text {CCA }}\) & 22 & analog supply voltage (+5 V) \\
\hline AGND & 23 & analog ground \\
\hline CLAMP & 24 & clamp capacitor connection \\
\hline GAIN & 25 & gain control input \\
\hline CLP & 26 & clamping pulse \\
\hline CLS & 27 & clamping level selection input \\
\hline OFS & 28 & output format selection \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline D7 1 & \multirow[t]{14}{*}{U

TDA8709A} & 28 OFS \\
\hline D6 2 & & 27 cls \\
\hline D5 3 & & 26 CLP \\
\hline D4 4 & & 25 gain \\
\hline CLK 5 & & 24 CLAMP \\
\hline \(\mathrm{v}_{\text {cCD }} 6^{6}\) & & 23 AGND \\
\hline \(\mathrm{v}_{\mathrm{CCO}} 7\) & & \(22 \mathrm{~V}_{\mathrm{CCA}}\) \\
\hline DGND 8 & & 21 DEC \\
\hline Foen 9 & & \(20 . \mathrm{ADCIN}\) \\
\hline D3 10 & & 19 anout \\
\hline D2 11 & & 18 VIN2 \\
\hline D1 12 & & 17 VIN1 \\
\hline D0 13 & & 16 VINo \\
\hline 10.14 & & 15.11 \\
\hline
\end{tabular}

Fig. 2 Pin configuration.

Video analog input interface

\section*{FUNCTIONAL DESCRIPTION}

TDA8709A is an 8-bit ADC with internal clamping and a preamplifier with adjustable gain.

The clamping value is switched via pin 27 between digital 16 (for R, G, B signals) and digital 128 (for
chrominance or colour difference signals). While clamping pulse at pin 27 is logic 1, the device will adjust the clamping level to the chosen value. The output format can be selected between binary and two's complement at pin 28.

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum Rating System (IEC 134).
\begin{tabular}{|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN. & MAX. & UNIT \\
\hline \(V_{\text {CCA }}\) & analog supply voltage & -0.3 & +7.0 & V \\
\hline \(V_{\text {CCD }}\) & digital supply voltage & -0.3 & +7.0 & V \\
\hline \(V_{\text {cco }}\) & TTL output supply voltage & -0.3 & +7.0 & V \\
\hline \multirow[t]{3}{*}{\(\Delta V_{c c}\)} & supply voltage difference between \(\mathrm{V}_{C C A}\) and \(\mathrm{V}_{C C D}\) & -0.5 & +0.5 & V \\
\hline & supply voltage difference between \(\mathrm{V}_{C C O}\) and \(\mathrm{V}_{\text {CCD }}\) & -0.5 & +0.5 & V \\
\hline & supply voltage difference between \(\mathrm{V}_{\text {CCA }}\) and \(\mathrm{V}_{\text {CCO }}\) & -1.0 & +1.0 & V \\
\hline \(V_{1}\) & input voltage & -0.3 & +7.0 & V \\
\hline Io & output current & - & +10 & mA \\
\hline \(\mathrm{T}_{\text {stg }}\) & storage temperature & -55 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature & 0 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{j}}\) & junction temperature & 0 & +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

THERMAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|}
\hline SYMBOL & PARAMETER & VALUE & UNIT \\
\hline\(R_{\text {th } j \text {-a }}\) & thermal resistance from junction to ambient in free air & & \\
& SOT117-1 & 55 & KWW \\
& SOT136-1 & 70 & KWW \\
\hline
\end{tabular}

\section*{Video analog input interface}

\section*{CHARACTERISTICS}
\(\mathrm{V}_{C C A}=\mathrm{V}_{22}\) to \(\mathrm{V}_{23}=4.5\) to \(5.5 \mathrm{~V} ; \mathrm{V}_{C C D}=\mathrm{V}_{6}\) to \(\mathrm{V}_{8}=4.5\) to \(5.5 \mathrm{~V} ; \mathrm{V}_{C C O}=\mathrm{V}_{7}\) to \(\mathrm{V}_{8}=4.2\) to 5.5 V ; AGND and DGND shorted together; \(\mathrm{V}_{C C A}\) to \(\mathrm{V}_{C C D}=-0.5\) to \(+0.5 \mathrm{~V} ; \mathrm{V}_{C C O}\) to \(\mathrm{V}_{C C D}=-0.5\) to \(+0.5 \mathrm{~V} ; \mathrm{V}_{C C A}\) to \(\mathrm{V}_{C C O}=-0.5\) to +0.5 V ; \(\mathrm{T}_{\mathrm{amb}}=0\) to \(+70^{\circ} \mathrm{C}\); typical readings taken at \(\mathrm{V}_{C C A}=\mathrm{V}_{C C D}=\mathrm{V}_{C C O}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\); unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Supplies} \\
\hline \(V_{\text {CCA }}\) & analog supply voltage & & 4.5 & 5.0 & 5.5 & V \\
\hline \(V_{\text {CCD }}\) & digital supply voltage & & 4.5 & 5.0 & 5.5 & V \\
\hline \(V_{\text {CCO }}\) & TTL output supply voltage & & 4.2 & 5.0 & 5.5 & V \\
\hline ICCA & analog supply current & & - & 40 & 47 & mA \\
\hline ICCD & digital supply current & & - & 24 & 30 & mA \\
\hline Icco & TTL output supply current & TTL load (see Fig.7) & - & 12 & 16 & mA \\
\hline \multicolumn{7}{|l|}{Preamplifier inputs} \\
\hline \multicolumn{7}{|l|}{VIN0 To VIN2 INPUTS} \\
\hline \(V_{1(p-p)}\) & input voltage (peak-to-peak value) & note 1 & 0.6 & - & 1.5 & V \\
\hline \(\left|Z_{i}\right|\) & input impedance & \(\mathrm{f}_{\mathrm{i}}=6 \mathrm{MHz}\) & 10 & 20 & - & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & \(\mathrm{f}_{\mathrm{i}}=6 \mathrm{MHz}\) & - & 1 & - & pF \\
\hline \multicolumn{7}{|l|}{10 and 11 TTL inputs (SEE table 1)} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & HIGH level input voltage & & 2.0 & - & \(\mathrm{V}_{\mathrm{CCD}}\) & V \\
\hline \(\mathrm{I}_{\text {IL }}\) & LOW level input current & \(\mathrm{V}_{1}=0.4 \mathrm{~V}\) & -400 & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{H}}\) & HIGH level input current & \(\mathrm{V}_{1}=2.7 \mathrm{~V}\) & - & - & 20 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{CLS, OFS and CLP TTL inputs (SEE FIG.5)} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & HIGH level input voltage & & 2.0 & - & \(\mathrm{V}_{\text {CCD }}\) & V \\
\hline \(\mathrm{I}_{\text {IL }}\) & LOW level input current & \(\mathrm{V}_{1}=0.4 \mathrm{~V}\) & -400 & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{IH}}\) & HIGH level input current & \(\mathrm{V}_{1}=2.7 \mathrm{~V}\) & - & - & 20 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{t}_{\text {CLP }}\) & clamp pulse width & & 2 & - & - & \(\mu \mathrm{s}\) \\
\hline \multicolumn{7}{|l|}{GAIN INPUT (PIN 25)} \\
\hline \(V_{25 \text { (min) }}\) & input voltage for minimum gain & see Fig. 9 & - & 1.8 & - & V \\
\hline \(V_{25 \text { (max) }}\) & input voltage for maximum gain & see Fig. 9 & - & 3.8 & - & V \\
\hline 1 & input current & & - & 1.0 & - & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{CLAMP INPUT (PIN 24)} \\
\hline \(\mathrm{V}_{24}\) & clamp voltage for code 128 output & & - & 3.5 & - & V \\
\hline \(\mathrm{I}_{24}\) & clamp output current & & \multicolumn{4}{|c|}{see Table 2} \\
\hline
\end{tabular}

Video analog input interface
TDA8709A
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Video amplifier outputs} \\
\hline \multicolumn{7}{|l|}{ANOUT OUTPUT (PIN 19)} \\
\hline \(V_{19(p-p)}\) & AC output voltage (peak-to-peak value) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{OF}}=1.33 \mathrm{~V}(\mathrm{p}-\mathrm{p}) \\
& \mathrm{V}_{25}=3.0 \mathrm{~V}
\end{aligned}
\] & - & 1.33 & - & V \\
\hline \(\mathrm{I}_{19}\) & internal current source & \(\mathrm{R}_{\mathrm{L}}=\infty\) & 2.0 & 2.5 & - & mA \\
\hline \(l_{0(p-p)}\) & output current driven by the load & \[
V_{\text {ANOUT }}=1.33 \vee(p-p) ;
\] note 2 & - & - & 1.0 & mA \\
\hline \(\mathrm{V}_{19}\) & DC output voltage for black level & \(C L S=\) logic 1 & - & \(V_{\text {CCA }}-2.02\) & - & V \\
\hline \(V_{19}\) & DC output voltage for black level & CLS \(=\) logic 0 & - & \(V_{\text {CCA }}-2.6\) & - & V \\
\hline \(\mathrm{Z}_{19}\) & output impedance & & - & 20 & - & \(\Omega\) \\
\hline \multicolumn{7}{|l|}{Preamplifler dynamic characteristics} \\
\hline \(\alpha_{c t}\) & crosstalk between VIN inputs & \(\mathrm{V}_{\text {CCA }}=4.75\) to 5.25 V ; note 3 & - & -50 & -45 & dB \\
\hline \(\mathrm{G}_{\text {diff }}\) & differential gain & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{VIN}}=1.33 \mathrm{~V}(\mathrm{p}-\mathrm{p}) ; \\
& \mathrm{V}_{25}=3.0 \mathrm{~V}
\end{aligned}
\] & - & 2 & - & \% \\
\hline \(\varphi_{\text {diff }}\) & differential phase & \[
\begin{aligned}
& V_{V I N}=1.33 \mathrm{~V}(p-p) ; \\
& V_{25}=3.0 \mathrm{~V}
\end{aligned}
\] & - & 0.8 & - & deg \\
\hline B & -3 dB bandwidth & & 12 & - & - & MHz \\
\hline S/N & signal-to-noise ratio & note 4 & 60 & - & - & dB \\
\hline SVRR1 & supply voltage ripple rejection & note 5 & - & 45 & - & dB \\
\hline \(\Delta \mathrm{G}\) & gain range & see Fig. 9 & -4.5 & - & +6.0 & dB \\
\hline \(\mathrm{G}_{\text {stab }}\) & gain stability as a function of supply voltage and temperature & see Fig. 9 & - & - & 5 & \% \\
\hline \multicolumn{7}{|l|}{Analog-to-digital converter inputs} \\
\hline \multicolumn{7}{|l|}{CLK INPUT (PIN 5)} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{1 \mathrm{H}}\) & HIGH level input voltage & , & 2.0 & - & \(\mathrm{V}_{\text {CCD }}\) & V \\
\hline \(\mathrm{I}_{\text {IL }}\) & LOW level input current & \(\mathrm{V}_{\text {clk }}=0.4 \mathrm{~V}\) & -400 & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\text {IH }}\) & HIGH level input current & \(\mathrm{V}_{\text {clk }}=2.7 \mathrm{~V}\) & - & - & 100 & \(\mu \mathrm{A}\) \\
\hline \(\left|Z_{i}\right|\) & input impedance & \(\mathrm{f}_{\text {clk }}=10 \mathrm{MHz}\) & - & 4 & - & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & \(\mathrm{f}_{\text {clk }}=10 \mathrm{MHz}\) & - & 4.5 & - & pF \\
\hline \multicolumn{7}{|l|}{FOEN INPUT (SEE TABLE 3)} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & HIGH level input voltage & & 2.0 & - & \(\mathrm{V}_{\text {CCD }}\) & V \\
\hline \(\mathrm{I}_{\text {IL }}\) & LOW level input current & \(\mathrm{V}_{9}=0.4 \mathrm{~V}\) & -400 & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{IIH}^{\text {H }}\) & HIGH level input current & \(\mathrm{V}_{9}=2.7 \mathrm{~V}\) & - & - & 20 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

Video analog input interface
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{ADCIN Input (PIN 20; SEE TABLE 4)} \\
\hline \(\mathrm{V}_{20}\) & input voltage & digital output \(=00\) & - & \(\mathrm{V}_{\text {CCA }}-2.52\) & - & V \\
\hline \(V_{20}\) & input voltage & digital output \(=255\) & - & \(\mathrm{V}_{\text {CCA }}-1.52\) & - & V \\
\hline \(V_{20(p-p)}\) & input voltage amplitude (peak-to-peak value) & & - & 1.0 & - & V \\
\hline \(\mathrm{I}_{20}\) & input current & & - & 1.0 & 10 & \(\mu \mathrm{A}\) \\
\hline \(\left|Z_{i}\right|\) & input impedance & \(\mathrm{f}_{\mathrm{i}}=6 \mathrm{MHz}\) & - & 50 & - & \(\mathrm{M} \Omega\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & \(\mathrm{f}_{\mathrm{i}}=6 \mathrm{MHz}\) & - & 1 & - & pF \\
\hline
\end{tabular}

Analog-to-digital converter outputs
DIGITAL OUTPUTS DO TO D7
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{\mathrm{OL}}\) & LOW level output voltage & \(\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}\) & 0 & - & 0.6 & V \\
\hline \(\mathrm{~V}_{\mathrm{OH}}\) & HIGH level output voltage & \(\mathrm{I}_{\mathrm{OL}}=-0.4 \mathrm{~mA}\) & 2.4 & - & \(V_{\mathrm{CCD}}\) & V \\
\hline \(\mathrm{I}_{\mathrm{OZ}}\) & output current in 3-state mode & \(0.4 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CCD}}\) & -20 & - & +20 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

Switching characteristics
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{f}_{\text {clk(max) }}\) & maximum clock input frequency & see Fig.5; note 6 & 30 & 32 & - & MHz \\
\hline
\end{tabular}

Analog signal processing (\(\mathbf{f}_{\text {clk }}=\mathbf{3 2} \mathbf{~ M H z ; ~ s e e ~ F i g . 7) ~}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathrm{G}_{\text {diff }}\) & differential gain & \begin{tabular}{l}
\[
\mathrm{V}_{20}=1.0 \mathrm{~V}(\mathrm{p}-\mathrm{p})
\] \\
see Fig.6; note 7
\end{tabular} & - & 2 & - & \% \\
\hline \(\varphi_{\text {diff }}\) & differential phase & see Fig.6; note 7 & - & 2 & - & deg \\
\hline \(\mathrm{f}_{1}\) & fundamental harmonics (full-scale) & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\); note 7 & - & - & 0 & dB \\
\hline fall & harmonics (full-scale); all components & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\); note 7 & - & -55 & - & dB \\
\hline SVRR2 & supply voltage ripple rejection & note 8 & - & 1 & 5 & \%N \\
\hline \multicolumn{7}{|l|}{Transfer function} \\
\hline ILE & DC integral linearity error & & - & - & \(\pm 1\) & LSB \\
\hline DLE & DC differential linearity error & & - & - & \(\pm 0.5\) & LSB \\
\hline ILE & AC integral linearity error & note 9 & - & - & \(\pm 2\) & LSB \\
\hline
\end{tabular}

Timing (\(\mathrm{f}_{\mathrm{clk}}=32 \mathrm{MHz}\); see Figs 5,6 and 7)
DIGITAL OUTPUTS (\(\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\); IoL \(=2 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\))
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(t_{d s}\) & sampling delay time & & - & 2 & - & ns \\
\hline \(\mathrm{t}_{\mathrm{h}}\) & output hold time & & - & 8 & - & ns \\
\hline \(\mathrm{t}_{\mathrm{d}}\) & output delay time & & - & 16 & 20 & ns \\
\hline \(\mathrm{t}_{\mathrm{dEZ}}\) & 3-state delay time; output enable & & - & 16 & 25 & ns \\
\hline \(\mathrm{t}_{\mathrm{dDZ}}\) & 3-state delay time; output disable & & - & 12 & 25 & ns \\
\hline
\end{tabular}

\section*{Video analog input interface}

\section*{TDA8709A}

\section*{Notes to the "Characteristics"}
1. 0 dB is obtained at the AGC amplifier when applying \(\mathrm{V}_{\mathrm{i}(p-p)}=1.33 \mathrm{~V}\).
2. The output current at pin 19 should not exceed 1 mA . The load impedance \(R_{L}\) should be referenced to \(V_{C C A}\) and defined as:
a) AC impedance \(\geq 1 \mathrm{k} \Omega\) and the DC impedance \(>2.7 \mathrm{k} \Omega\).
b) The load impedance should be coupled directly to the output of the amplifier so that the DC voltage supplied by the clamp is not disturbed.
3. Input signals with the same amplitude. Gain is adjusted to obtain ANOUT \(=1.33 \mathrm{~V}(p-p)\).
4. Signal-to-noise ratio measured with 5 MHz bandwidth:
\(\frac{S}{N}=20 \log \frac{V_{\text {ANOUT (p-p) }}}{V_{\text {ANOUT (RMS noise) }}}\) at \(B=5 \mathrm{MHz}\).
5. The voltage ratio is expressed as:

SVRR1 \(=20 \log \frac{\Delta V_{C C A}}{V_{C C A}} \times \frac{G}{\Delta G}\) for \(V_{1}=1 \mathrm{~V}(p-p)\), gain at \(100 \mathrm{kHz}=1\) and 1 V supply variation.
6. It is recommended that the rise and fall times of the clock are \(\geq 2 \mathrm{~ns}\). In addition, a 'good layout' for the digital and analog grounds is recommended.
7. These measurements are realized on analog signals after a digital-to-analog conversion (TDA8702 is used).
8. The supply voltage rejection is the relative variation of the analog signal (full-scale signal at input) for 1 V of supply variation:
SVRR2 \(=\frac{\Delta\left(V_{1(00)}-V_{1(F F)}\right)+\left(V_{1(00)}-V_{1(F F)}\right)}{\Delta V_{\text {CCA }}}\)
9. Full-scale sine wave (\(f_{i}=4.4 \mathrm{MHz} ; \mathrm{f}_{\mathrm{clk}}=27 \mathrm{MHz}\)).

Table 1 Video input selection (CVBS).
\begin{tabular}{|c|c|c|}
\hline \(\mathbf{1 1}\) & \(\mathbf{1 0}\) & SELECTED INPUT \\
\hline 0 & 0 & VIN0 \\
\hline 0 & 1 & VIN1 \\
\hline 1 & 0 & VIN2 \\
\hline 1 & 1 & VIN1 \\
\hline
\end{tabular}

Table 2 CLAMP output current.
\begin{tabular}{|c|c|l|l|}
\hline CLS & CLP & \multicolumn{1}{|c|}{\begin{tabular}{r}
DIGITAL \\
OUTPUT
\end{tabular}} & \multicolumn{1}{|c|}{ ICLAMP } \\
\hline 1 & 1 & output \(<128\) & \(+50 \mu \mathrm{~A}\) \\
\cline { 3 - 4 } & & output \(>128\) & \(-50 \mu \mathrm{~A}\) \\
\hline\(X^{(1)}\) & 0 & \(X\) & \(0 \mu \mathrm{~A}\) \\
\hline 0 & 1 & output <16 & \(+50 \mu \mathrm{~A}\) \\
\cline { 3 - 4 } & & \(16<\) output & \(-50 \mu \mathrm{~A}\) \\
\hline
\end{tabular}

\section*{Note}
1. \(X=\) don't care.

Table 4 Output coding and input voltage (typical values).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{STEP} & \multirow[b]{2}{*}{\(\mathrm{V}_{\text {ADCIN }}\)} & \multicolumn{8}{|c|}{BINARY OUTPUTS} & \multicolumn{8}{|c|}{TWO'S COMPLEMENT} \\
\hline & & D7 & D6 & D5 & D4 & D3 & D2 & D1 & Do & D7 & D6 & D5 & D4 & D3 & D2 & D1 & DO \\
\hline Underflow & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & \(\mathrm{V}_{\text {CCA }}-2.52 \mathrm{~V}\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline & - & . & . & . & . & . & . & . & . & . & . & . & . & . & . & . & . \\
\hline & - & . & . & . & . & . & . & . & . & . & . & . & . & . & . & . & . \\
\hline 254 & - & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 255 & \(\mathrm{V}_{\text {CCA }}-1.52 \mathrm{~V}\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline Overflow & - & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

Video analog input interface

Fig. 3 Test signal on the ADCIN pin for differential gain and phase measurements.

Fig. 4 Control mode selection.

Fig. 5 Timing diagram.

Fig. 6 Output format timing diagram.

\section*{Video analog input interface}

Fig. 7 Load circuit for timing measurement; data outputs (FOEN = LOW).

Fig. 8 Load circuit for timing measurement; 3-state outputs (FOEN: \(f_{i}=1 \mathrm{MHz} ; \mathrm{V}_{\text {FOEN }}=3 \mathrm{~V}\)).

\section*{Video analog input interface}

(1) Typical value (\(\mathrm{V}_{C C A}=\mathrm{V}_{C C D}=5 \mathrm{~V} ; \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}\)).
(2) Minimum and maximum values (temperature and supply).

Fig. 9 Typical gain control curve as a function of gain voltage.

\(\forall 60 \angle 8 \forall \square \perp\)
Video analog inputin

Video analog input interface

\section*{APPLICATION INFORMATION}

Additional information can be found in the laboratory report of TDA8708A "FBL/AN9308".

(1) It is recommended to decouple \(V_{\text {cco }}\) through a \(22 \Omega\) resistor especially when the output data of TDA8709A interfaces with a capacitive CMOS load device.
(2) See Figs 12, 14, 16 and 18 for examples of the low-pass fitters.

Fig. 11 Application diagram.

This filter can be adapted to various applications with respect to performance requirements. An input and output impedance of at least \(680 \Omega\) and \(2.2 \mathrm{k} \Omega\) must in any event be applied.

Fig. 12 Example of a low-pass filter for RGB and \(C\) signals.

\section*{Characteristics of Fig. 13}
- Order 5; adapted CHEBYSHEV
- Ripple \(\rho \leq 0.4 \mathrm{~dB}\)
- \(f=6.5 \mathrm{MHz}\) at -3 dB
- \(f_{\text {notch }}=9.65 \mathrm{MHz}\).

Fig. 13 Frequency response for filter shown in Fig. 12.

This filter can be adapted to various applications with respect to performance requirements. An input and output impedance of at least \(680 \Omega\) and \(2.2 \mathrm{k} \Omega\) must in any event be applied.

Fig. 14 Example of an economical low-pass filter for RGB and \(C\) signals.

Fig. 15 Frequency response for filter shown in Fig. 14.

\section*{Characteristics of Fig. 15}
- Order 3; adapted CHEBYSHEV
- Ripple \(\rho \leq 0.4 \mathrm{~dB}\)
- \(f=6.5 \mathrm{MHz}\) at -3 dB .

This filter can be adapted to various applications with respect to performance requirements. An input and output impedance of at least \(680 \Omega\) and \(2.2 \mathrm{k} \Omega\) must in any event be applied.

Fig. 16 Example of a low-pass filter for \(U\) and \(V\) signals.

Fig. 17 Frequency response for filter shown in Fig. 16.

\section*{Characteristics of Fig. 17}
- Order 5; adapted CHEBYSHEV
- Ripple \(\rho \leq 0.4 \mathrm{~dB}\)
- \(\mathrm{f}=2.3 \mathrm{MHz}\) at -3 dB
- \(\mathrm{f}_{\text {notch }}=4.5 \mathrm{MHz}\).

This filter can be adapted to various applications with respect to performance requirements. An input and output impedance of at least \(680 \Omega\) and \(2.2 \mathrm{k} \Omega\) must in any event be applied.

Fig. 18 Example of an economical low-pass filter for \(U\) and \(V\) signals.

\section*{Characteristics of Fig. 19}
- Order 3; adapted CHEBYSHEV
- Ripple \(\rho \leq 0.3 \mathrm{~dB}\)
- \(f=2.8 \mathrm{MHz}\) at -3 dB
- \(\mathrm{f}_{\text {notch }}=11.9 \mathrm{MHz}\).

Fig. 19 Frequency response for filter shown in Fig. 18.

\section*{8-bit digital-to-analog converters}

\section*{FEATURES}
- 8-bit resolution
- Conversion rate up to 50 MHz
- TTL input levels
- Internal reference voltage generator
- Two complementary analog voltage outputs
- No deglitching circuit required
- Internal input register
- Low power dissipation
- Internal \(75 \Omega\) output load (connected to the analog supply)
- Very few external components required
- Temperature range
- TDA8712: 0 to \(70^{\circ} \mathrm{C}\)
- TDF8712: -40 to \(+85^{\circ} \mathrm{C}\).

\section*{APPLICATIONS}
- High-speed digital-to-analog conversion
- Digital TV including:
- field progressive scan
- line progressive scan
- Subscriber TV decoders
- Satellite TV decoders
- Digital VCRs
- Industrial and automotive.

\section*{GENERAL DESCRIPTION}

The TDA8712 and TDF8712 are 8-bit digital-to-analog converters (DACs) for video and other applications. They convert the digital input signal into an analog voltage output at a maximum conversion rate of 50 MHz . No external reference voltage is required and all digital inputs are TTL compatible.

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ TYPE NUMBER } & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline TDA8712 & 16 & DIP & plastic & SOT38-1 \\
\hline TDF8712 & 16 & DIP & plastic & SOT38-1 \\
\hline TDA8712T & 16 & SO16L & plastic & SOT162-1 \\
\hline TDF8712T & 16 & SO16L & plastic & SOT162-1 \\
\hline
\end{tabular}

\section*{8-bit digital-to-analog converters}

TDA8712; TDF8712

QUICK REFERENCE DATA
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(V_{\text {CCA }}\) & \begin{tabular}{l}
analog supply voltage \\
TDA8712 \\
TDF8712
\end{tabular} & & \[
\begin{aligned}
& 4.5 \\
& 4.75
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.5 \\
& 5.25
\end{aligned}
\] & \[
\begin{aligned}
& V \\
& V
\end{aligned}
\] \\
\hline \(V_{C C D}\) & \begin{tabular}{l}
digital supply voltage \\
TDA8712 \\
TDF8712
\end{tabular} & & \[
\begin{aligned}
& 4.5 \\
& 4.75
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.5 \\
& 5.25
\end{aligned}
\] & \[
\mathrm{v}
\] \\
\hline ICCA & analog supply current & note 1 & 20 & 26 & 32 & mA \\
\hline ICCD & digital supply current & note 1 & 16 & 23 & 30 & mA \\
\hline \multirow[t]{2}{*}{\(\Delta \mathrm{V}_{\text {OUT(p-p) }}\)} & \multirow[t]{2}{*}{full-scale analog output voltage differences between \(V_{\text {OUT }}\) and \(\overline{\mathrm{V}}_{\text {OUT }}\) (peak-to-peak value)} & \(Z_{L}=10 \mathrm{k} \Omega\); note 2 & -1.45 & -1.60 & -1.75 & V \\
\hline & & \(Z_{L}=75 \Omega\); note 2 & -0.72 & 0.80 & -0.88 & V \\
\hline ILE & DC integral linear error & & - & \(\pm 0.3\) & \(\pm 0.5\) & LSB \\
\hline DLE & DC differential linearity error & & - & \(\pm 0.3\) & \(\pm 0.5\) & LSB \\
\hline \(\mathrm{f}_{\mathrm{clk}(\text { max })}\) & maximum conversion rate & & 50 & - & - & MHz \\
\hline B & -3 dB analog bandwidth & \(\mathrm{f}_{\text {clk }}=50 \mathrm{MHz}\); note 3 & - & 150 & - & MHz \\
\hline \(\mathrm{P}_{\text {tot }}\) & \begin{tabular}{l}
total power dissipation \\
TDA8712 \\
TDF8712
\end{tabular} & & \[
\begin{aligned}
& 160 \\
& 170
\end{aligned}
\] & \[
\begin{aligned}
& 250 \\
& 250
\end{aligned}
\] & \[
\begin{aligned}
& 340 \\
& 325
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{mW} \\
& \mathrm{~mW}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Notes}
1. DO to D7 are connected to \(\mathrm{V}_{\mathrm{CCD}}\) and CLK is connected to DGND.
2. The analog output voltages (\(V_{\text {OUT }}\) and \(\bar{V}_{\text {OUT }}\)) are negative with respect to \(V_{C C A}\) (see Table 1). The output resistance between \(V_{C C A}\) and each of these outputs is typically \(75 \Omega\).
3. The -3 dB analog output bandwidth is determined by real time analysis of the output transient at a maximum input code transition (code 0 to 255).

\section*{BLOCK DIAGRAM}

Fig. 1 Block diagram.

\section*{8-bit digital-to-analog converters}

\section*{PINNING}
\begin{tabular}{|l|c|l|}
\hline SYMBOL & PIN & \multicolumn{1}{|c|}{ DESCRIPTION } \\
\hline REF & 1 & voltage reference (decoupling) \\
\hline AGND & 2 & analog ground \\
\hline D2 & 3 & data input; bit 2 \\
\hline D3 & 4 & data input; bit 3 \\
\hline CLK & 5 & clock input \\
\hline DGND & 6 & digital ground \\
\hline D7 & 7 & data input; bit 7 (MSB) \\
\hline D6 & 8 & data input; bit 6 \\
\hline D5 & 9 & data input; bit 5 \\
\hline D4 & 10 & data input; bit 4 \\
\hline D1 & 11 & data input; bit 1 \\
\hline D0 & 12 & data input; bit 0 (LSB) \\
\hline\(V_{\text {CCD }}\) & 13 & digital supply voltage (+5 V) \\
\hline\(V_{\text {Out }}\) & 14 & analog output voltage \\
\hline \(\bar{V}_{\text {OUT }}\) & 15 & complimentary analog output voltage \\
\hline\(V_{\text {CCA }}\) & 16 & analog supply voltage (+5 V) \\
\hline
\end{tabular}

Fig. 2 Pin configuration.

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum Rating System (IEC134).
\begin{tabular}{|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN. & MAX. & UNIT \\
\hline \(V_{\text {CCA }}\) & analog supply voltage & -0.3 & +7.0 & V \\
\hline \(V_{\text {CCD }}\) & digital supply voltage & -0.3 & +7.0 & V \\
\hline \(\Delta \mathrm{V}_{\text {cc }}\) & supply voltage differences between \(\mathrm{V}_{\text {CCA }}\) and \(\mathrm{V}_{\text {CCD }}\) & -0.5 & +0.5 & V \\
\hline \(\Delta \mathrm{V}_{\mathrm{GND}}\) & ground voltage differences between \(\mathrm{V}_{\text {AGND }}\) and \(\mathrm{V}_{\text {DGND }}\) & -0.1 & +0.1 & V \\
\hline \(V_{1}\) & input voltage (pins 3 to 5 and 7 to 12) & -0.3 & \(\mathrm{V}_{\text {CCD }}\) & V \\
\hline \(I_{\text {tot }}\) & & -5 & +26 & mA \\
\hline \(\mathrm{T}_{\text {stg }}\) & storage temperature & -55 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & \begin{tabular}{l}
operating ambient temperature \\
TDA8712 \\
TDF8712
\end{tabular} & \[
\begin{aligned}
& 0 \\
& -40
\end{aligned}
\] & \[
\begin{aligned}
& +70 \\
& +85
\end{aligned}
\] & \[
{ }^{\circ} \mathrm{C}
\] \\
\hline \(\mathrm{T}_{\mathrm{j}}\) & junction temperature & - & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{HANDLING}

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

THERMAL CHARACTERISTICS
\begin{tabular}{|c|l|c|c|}
\hline SYMBOL & PARAMETER & VALUE & UNIT \\
\hline\(R_{\text {th j-a }}\) & thermal resistance from junction to ambient in free air & & \\
& SOT38-1 & 70 & KWW \\
& SOT162-1 & 90 & KWW \\
\hline
\end{tabular}

\section*{CHARACTERISTICS}
\(V_{C C A}=V_{16}\) to \(V_{2}=4.5\) to 5.5 V (TDA8712) \(=4.75\) to 5.25 V (TDF8712); \(\mathrm{V}_{C C D}=\mathrm{V}_{13}\) to \(\mathrm{V}_{6}=4.5\) to 5.5 V (TDA8712) \(=\) 4.75 to 5.25 V (TDF8712); \(\mathrm{V}_{C C A}\) to \(\mathrm{V}_{C C D}=-0.5\) to +0.5 V (TDA8712) \(=-0.25\) to +0.25 V (TDF8712); REF decoupled to AGND via a 100 nF capacitor; \(\mathrm{T}_{\mathrm{amb}}=-40\) to \(+85^{\circ} \mathrm{C}\); AGND and DGND shorted together; typical readings taken at \(V_{C C A}=V_{C C D}=5 \mathrm{~V}\) and \(\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}\); unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MiN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Supply} \\
\hline \(V_{\text {CCA }}\) & \begin{tabular}{l}
analog supply voltage \\
TDA8712 \\
TDF8712
\end{tabular} & & \[
\begin{aligned}
& 4.5 \\
& 4.75
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.5 \\
& 5.25
\end{aligned}
\] & \[
\begin{aligned}
& V \\
& V
\end{aligned}
\] \\
\hline \(V_{\text {CCD }}\) & \begin{tabular}{l}
digital supply voltage \\
TDA8712 \\
TDF8712
\end{tabular} & & \[
\begin{aligned}
& 4.5 \\
& 4.75
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.5 \\
& 5.25
\end{aligned}
\] & \[
\begin{aligned}
& V \\
& V
\end{aligned}
\] \\
\hline ICCA & analog supply current & note 1 & 20 & 26 & 32 & mA \\
\hline \(\mathrm{I}_{\text {CCD }}\) & digital supply current & note 1 & 16 & 23 & 30 & mA \\
\hline \(\triangle \mathrm{V}_{\text {GND }}\) & ground voltage differences between \(\mathrm{V}_{\text {AGND }}\) and \(\mathrm{V}_{\text {DGND }}\) & & -0.1 & - & +0.1 & V \\
\hline \multicolumn{7}{|l|}{Inputs} \\
\hline \multicolumn{7}{|l|}{Digital inputs (D7 To D0) And Clock input CLK} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & HIGH level input voltage & & 2.0 & - & \(V_{C C D}\) & V \\
\hline \(\mathrm{I}_{\text {L }}\) & LOW level input current & \(\mathrm{V}_{1}=0.4 \mathrm{~V}\) & - & -0.3 & -0.4 & mA \\
\hline \(\mathrm{I}_{\mathrm{H}}\) & HIGH level input current & \(\mathrm{V}_{1}=2.7 \mathrm{~V}\) & - & 0.01 & 20 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{f}_{\text {clk (max) }}\) & maximum clock frequency & & 50 & - & - & MHz \\
\hline
\end{tabular}

\section*{Outputs (referenced to \(\mathrm{V}_{\mathrm{CCA}}\))}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\Delta \mathrm{V}_{\text {OUT }}(\mathrm{p}-\mathrm{p})\)} & \multirow[t]{2}{*}{full-scale analog output voltage differences between \(V_{\text {Out }}\) and \(\overline{\mathrm{V}}_{\text {OUT }}\) (peak-to-peak value)} & \(Z_{L}=10 \mathrm{k} \Omega\); note 2 & -1.45 & -1.60 & -1.75 & V \\
\hline & & \(\mathrm{Z}_{\mathrm{L}}=75 \Omega\); note 2 & -0.72 & 0.80 & -0.88 & V \\
\hline \(\mathrm{V}_{\text {os }}\) & analog offset output voltage & code \(=0\) & - & -3 & -25 & mV \\
\hline TC Vout & full-scale analog output voltage temperature coefficient & & - & - & 200 & \(\mu \mathrm{V} / \mathrm{K}\) \\
\hline TC Vos & analog offset output voltage temperature coefficient & & - & - & 20 & \(\mu \mathrm{V} / \mathrm{K}\) \\
\hline B & -3 dB analog bandwidth & \(\mathrm{f}_{\text {clk }}=50 \mathrm{MHz}\); note 3 & - & 150 & - & MHz \\
\hline \(\mathrm{G}_{\text {diff }}\) & differential gain & & - & 0.6 & - & \% \\
\hline \(\varphi_{\text {diff }}\) & differential phase & & - & 1 & - & deg \\
\hline \(\mathrm{Z}_{0}\) & output impedance & & - & 75 & - & \(\Omega\) \\
\hline \multicolumn{7}{|l|}{Transfer function (\(\mathrm{f}_{\mathbf{c l k}}=\mathbf{5 0 ~ M H z}\))} \\
\hline ILE & DC integral linear error & & - & \(\pm 0.3\) & \(\pm 0.5\) & LSB \\
\hline DLE & DC differential linearity error & & - & \(\pm 0.3\) & \(\pm 0.5\) & LSB \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Switching characteristics (\(\mathrm{f}_{\mathrm{clk}}=50 \mathrm{MHz}\); notes 4 and 5; see Figs 3, 4 and 5)} \\
\hline \(\mathrm{t}_{\text {SU; DAT }}\) & data set-up time & & -0.3 & - & - & ns \\
\hline \(\mathrm{t}_{\text {HD; }}\) DAT & data hold time & & 2.0 & - & - & ns \\
\hline \(\mathrm{t}_{\text {PD }}\) & propagation delay time & & - & - & 1.0 & ns \\
\hline \(t_{S 1}\) & settling time 1 & \(10 \%\) to \(90 \%\) full-scale change to \(\pm 1\) LSB & - & 1.1 & 1.5 & ns \\
\hline \(\mathrm{t}_{\mathrm{S} 2}\) & settling time 2 & \(10 \%\) to \(90 \%\) full-scale change to \(\pm 1\) LSB & - & 6.5 & 8.0 & ns \\
\hline \(\mathrm{t}_{\text {d }}\) & input to \(50 \%\) output delay time & & - & 3.0 & 5.0 & ns \\
\hline \multicolumn{7}{|l|}{Output transients (glitches; \(\mathrm{f}_{\text {clk }}=50 \mathrm{MHz}\); note 6; see Fig.6)} \\
\hline \(\mathrm{E}_{\mathrm{g}}\) & glitch energy from code & transition 127 to 128 & - & - & 30 & LSB.ns \\
\hline
\end{tabular}

\section*{Notes}
1. DO to \(D 7\) are connected to \(V_{C C D}\) and CLK is connected to DGND.
2. The analog output voltages (\(V_{\text {OUT }}\) and \(\bar{V}_{\text {OUT }}\)) are negative with respect to \(V_{C C A}\) (see Table 1). The output resistance between \(V_{C C A}\) and each of these outputs is typically \(75 \Omega\).
3. The -3 dB analog output bandwidth is determined by real time analysis of the output transient at a maximum input code transition (code 0 to 255).
4. The worst case characteristics are obtained at the transition from input code 0 to 255 and if an external load impedance greater than \(75 \Omega\) is connected between \(V_{\text {OUT }}\) or \(\bar{V}_{\text {OUT }}\) and \(V_{\text {CCA }}\). The specified values have been measured with an active probe between \(V_{\text {Out }}\) and AGND. No further load impedance between \(V_{\text {Out }}\) and AGND has been applied. All input data is latched at the rising edge of the clock. The output voltage remains stable (independent of input data variations) during the HIGH level of the clock (CLK = HIGH). During a LOW-to-HIGH transition of the clock (CLK = LOW), the DAC operates in the transparent mode (input data will be directly transferred to their corresponding analog output voltages; see Fig. 5.
5. The data set-up time (\(\mathrm{tsu}_{\mathrm{DAT}}\)) is the minimum period preceding the rising edge of the clock that the input data must be stable in order to be correctly registered. A negative set-up time indicates that the data may be initiated after the rising edge of the clock and still be recognized. The data hold time (\(t_{H D ; D A T}\)) is the minimum period following the rising edge of the clock that the input data must be stable in order to be correctly registered. A negative hold time indicates that the data may be released prior to the rising edge of the clock and still be recognized.
6. The definition of glitch energy and the measurement set-up are shown in Fig.6. The glitch energy is measured at the input transition between code 127 and 128 and on the falling edge of the clock.

Table 1 Input coding and output voltages (typical values; referenced to \(\mathrm{V}_{\mathrm{CCA}}\), regardless of the offset voltage).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CODE} & \multirow{3}{*}{INPUT DATA (D7 to D0)} & \multicolumn{4}{|c|}{DAC OUTPUT VOLTAGES (V)} \\
\hline & & \multicolumn{2}{|c|}{\(\mathrm{Z}_{\mathrm{L}}=10 \mathrm{k} \Omega\)} & \multicolumn{2}{|c|}{\(\mathrm{Z}_{\mathrm{L}}=75 \Omega\)} \\
\hline & & \(\mathrm{V}_{\text {OUT }}\) & \(\overline{\mathrm{V}}_{\text {OUT }}\) & \(\mathrm{V}_{\text {OUT }}\) & \(\overline{\mathbf{V}}_{\text {OUT }}\) \\
\hline 0 & 0000000 & 0 & -1.6 & 0 & -0.8 \\
\hline 1 & 00000001 & -0.006 & -1.594 & -0.003 & -0.797 \\
\hline & . & . & . & & . \\
\hline 128 & 10000000 & -0.8 & -0.8 & -0.4 & -0.4 \\
\hline . & . & . & . & . & . \\
\hline 254 & 11111110 & -1.594 & -0.006 & -0.797 & -0.003 \\
\hline 255 & 11111111 & -1.6 & 0 & -0.8 & 0 \\
\hline
\end{tabular}

The shaded areas indicate when the input data may change and be correctly registered. Data input update must be completed within 0.3 ns after the first rising edge of the clock (\(\mathrm{t} \mathrm{su}_{\mathrm{DAT}}\) is negative; -0.3 ns). Data must be held at least 2 ns after the rising edge (\(\mathrm{t}_{\mathrm{HD} ; \mathrm{DAT}}=+2 \mathrm{~ns}\)).

Fig. 3 Data set-up and hold times.

Fig. 4 Switching characteristics.

During the transparent mode (CLK = LOW), any change of input data will be seen at the output. During the latched mode (CLK = HIGH), the analog output remains stable regardless of any change at the input. A change of input data during the latched mode will be seen on the falling edge of the clock (beginning of the transparent mode).

Fig. 5 Latched and transparent mode.

The value of the glitch energy is the sum of the shaded area measured in LSB ns.

Fig. 6 Glitch energy measurement.

Fig. 7 Reference voltage generator decoupling.

Fig. 10 Digital supply.

Fig. 12 Analog supply.

\section*{8-bit digital-to-analog converters}

\section*{APPLICATION INFORMATION}

Additional application information can be supplied on request (please quote "FTV/8901").

(1) This is a recommended value for decoupling pin 1 .
\(V_{O}=-\bar{V}_{\text {Out; }}\) see Table \(1 ; Z_{\mathrm{L}}=10 \mathrm{k} \Omega\).

Fig. 13 Analog output voltage without external load.

(1) This is a recommended value for decoupling pin 1.

External load \(Z_{L}=75 \Omega\) to \(\infty\).
Fig. 14 Analog output voltage with external load.

(1) This is a recommended value for decoupling pin 1.

Fig. 15 Analog output voltage with AGND as reference.

Fig. 16 Example of anti-aliasing filter (analog output referenced to AGND).

\section*{8-bit digital-to-analog converters}

Characteristics of Fig. 17
- Order 5; adapted CHEBYSHEV
- Ripple \(\rho \leq 0.1 \mathrm{~dB}\)
- \(f=6.7 \mathrm{MHz}\) at -3 dB
- \(f_{\text {notch }}=9.7 \mathrm{MHz}\) and 13.3 MHz .

Fig. 17 Frequency response for filter shown in Fig. 16.

(1) This is a recommended value for decoupling pin 1.

Fig. 18 Differential mode (improved supply voltage ripple rejection).

\section*{FEATURES}
- 8-bit resolution
- Sampling rate up to 75 MHz
- High signal-to-noise ratio over a large analog input frequency range (7.7 effective bits at 4.43 MHz full-scale input at \(\mathrm{f}_{\mathrm{c} \mid \mathrm{k}}=75 \mathrm{MHz}\))
- Overflow/underflow 3-state TTL output
- TTL compatible digital inputs
- Low-level AC clock input signal allowed
- External reference voltage regulator
- Power dissipation only 340 mW (typical)
- Low analog input capacitance, no buffer amplifier required
- No sample-and-hold circuit required.

\section*{APPLICATIONS}

High-speed analog-to-digital conversion for:
- video data digitizing
- radar pulse analysis
- transient signal analysis
- high energy physics research
- \(\Sigma \Delta\) modulators
- medical imaging.

\section*{GENERAL DESCRIPTION}

The TDA8714 is an 8-bit high-speed analog-to-digital converter (ADC) for professional video and other applications. It converts the analog input signal into 8 -bit binary-coded digital words at a maximum sampling rate of 75 MHz . All digital inputs and outputs are TTL compatible, although a low-level sine wave clock input signal is allowed.

\section*{QUICK REFERENCE DATA}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\text {CCA }}\) & analog supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline \(V_{\text {CCD }}\) & digital supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline \(\mathrm{V}_{\text {cco }}\) & output stages supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline \(I_{\text {CCA }}\) & analog supply current & & - & 25 & 27 & mA \\
\hline \(\mathrm{I}_{\text {CCD }}\) & digital supply current & & - & 27 & 30 & mA \\
\hline I CCO & output stages supply current & & - & 16 & 18 & mA \\
\hline ILE & DC integral linear error & & - & \(\pm 0.4\) & \(\pm 0.5\) & LSB \\
\hline DLE & DC differential linearity error & & - & \(\pm 0.2\) & \(\pm 0.35\) & LSB \\
\hline AILE & AC integral linearity error & note 1 & - & \(\pm 0.5\) & \(\pm 1.0\) & LSB \\
\hline \(\mathrm{f}_{\text {clk }(\text { max })}\) & maximum clock frequency
TDA8714/7
TDA8714/6
TDA8714/4 & & \[
\begin{aligned}
& 75 \\
& 60 \\
& 40
\end{aligned}
\] & & & \[
\begin{aligned}
& \mathrm{MHz} \\
& \mathrm{MHz} \\
& \mathrm{MHz}
\end{aligned}
\] \\
\hline \(P_{\text {tot }}\) & total power dissipation & & - & 340 & 400 & mW \\
\hline
\end{tabular}

Note
1. Full-scale sine wave (\(f_{i}=4.43 \mathrm{MHz} ; f_{c \mid k}=75 \mathrm{MHz}\)).

\section*{8-bit high-speed analog-to-digital converter}

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ TYPE NUMBER } & \multicolumn{4}{|c|}{ PACKAGE } & \multirow{2}{*}{\begin{tabular}{c}
SAMPLING \\
FREQUENCY
\end{tabular}} \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE & 40 MHz \\
\hline TDA8714T/4 & 24 & SO24L & plastic & SOT137-1 & 40 MHz \\
\hline TDA8714M/4 & 24 & SSOP24M & plastic & SOT340-1 & 60 MHz \\
\hline TDA8714T/6 & 24 & SO24L & plastic & SOT137-1 & 60 MHz \\
\hline TDA8714M/6 & 24 & SSOP24M & plastic & SOT340-1 & 75 MHz \\
\hline TDA8714T/7 & 24 & SO24L & plastic & SOT137-1 & 75 MHz \\
\hline TDA8714M/7 & 24 & SSOP24M & plastic & SOT340-1 & 7 \\
\hline
\end{tabular}

\section*{BLOCK DIAGRAM}

Fig. 1 Block diagram.

\section*{8-bit high-speed analog-to-digital converter}

PINNING
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline D1 & 1 & data output; bit 1 \\
\hline D0 & 2 & data output; bit 0 (LSB) \\
\hline n.c. & 3 & not connected \\
\hline \(V_{\text {RB }}\) & 4 & reference voltage BOTTOM input \\
\hline n.c. & 5 & not connected \\
\hline AGND & 6 & analog ground \\
\hline \(V_{\text {CCA }}\) & 7 & analog supply voltage (+5 V) \\
\hline \(V_{1}\) & 8 & analog input voltage \\
\hline \(V_{\text {RT }}\) & 9 & reference voltage TOP input \\
\hline n.c. & 10 & not connected \\
\hline O/UF & 11 & overflow/underflow data output \\
\hline D7 & 12 & data output; bit 7 (MSB) \\
\hline D6 & 13 & data output; bit 6 \\
\hline D5 & 14 & data output; bit 5 \\
\hline D4 & 15 & data output; bit 4 \\
\hline CLK & 16 & clock input \\
\hline DGND & 17 & digital ground \\
\hline \(V_{\text {CCD }}\) & 18 & digital supply voltage (+5 V) \\
\hline \(V_{\text {CCO1 }}\) & 19 & supply voltage for output stages 1
\[
(+5 \mathrm{~V})
\] \\
\hline OGND & 20 & output ground \\
\hline \(\mathrm{V}_{\mathrm{CCO} 2}\) & 21 & supply voltage for output stages 2
\[
(+5 \mathrm{~V})
\] \\
\hline \(\overline{\mathrm{CE}}\) & 22 & chip enable input (TTL level input, active LOW) \\
\hline D3 & 23 & data output; bit 3 \\
\hline D2 & 24 & data output; bit 2 \\
\hline
\end{tabular}

Fig. 2 Pin configuration.

8-bit high-speed analog-to-digital converter

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum Rating System (IEC134).
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\text {CCA }}\) & analog supply voltage & note 1 & -0.3 & +7.0 & V \\
\hline \(V_{\text {CCD }}\) & digital supply voltage & note 1 & -0.3 & +7.0 & V \\
\hline \(V_{\text {CCO }}\) & output stages supply voltage & note 1 & -0.3 & +7.0 & V \\
\hline \(\Delta \mathrm{V}_{\mathrm{cc}}\) & supply voltage differences between \(\mathrm{V}_{\mathrm{CCA}}\) and \(\mathrm{V}_{\mathrm{CCD}}\) & & \(-1.0\) & +1.0 & V \\
\hline \(\Delta \mathrm{V}_{\mathrm{CC}}\) & supply voltage differences between \(V_{C c o}\) and \(V_{C C D}\) & & -1.0 & +1.0 & V \\
\hline \(\Delta \mathrm{V}_{\mathrm{CC}}\) & supply voltage differences between \(V_{C c A}\) and \(V_{\text {cco }}\) & & -1.0 & +1.0 & V \\
\hline \(V_{1}\) & input voltage & referenced to AGND & -0.3 & +7.0 & V \\
\hline \(\mathrm{V}_{\mathrm{clk}(\mathrm{p}-\mathrm{p})}\) & AC input voltage for switching (peak-to-peak value) & referenced to DGND & - & \(\mathrm{V}_{\text {CCD }}\) & V \\
\hline Io & output current & & - & 10 & mA \\
\hline \(\mathrm{T}_{\text {stg }}\) & storage temperature & & -55 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature & & 0 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{j}}\) & junction temperature & & - & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Note}
1. The supply voltages \(V_{C C A}\) and \(V_{C C D}\) may have any value between \(-0.3 V\) and \(+7.0 \vee\) provided the difference between \(V_{C C A}\) and \(V_{C C D}\) is between \(-1 V\) and \(+1 V\).

\section*{HANDLING}

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

\section*{THERMAL CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|}
\hline SYMBOL & PARAMETER & VALUE & UNIT \\
\hline\(R_{\text {th j-a }}\) & thermal resistance from junction to ambient in free air & & \\
& SOT137-1 & 75 & KWW \\
& SOT340-1 & 119 & KWW \\
\hline
\end{tabular}

\section*{8-bit high-speed analog-to-digital converter}

TDA8714

\section*{CHARACTERISTICS}
\(\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{7}\) to \(\mathrm{V}_{6}=4.75\) to \(5.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{CCD}}=\mathrm{V}_{18}\) to \(\mathrm{V}_{17}=4.75\) to \(5.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{CCO}}=\mathrm{V}_{19}\) and \(\mathrm{V}_{21}\) to \(\mathrm{V}_{20}=4.75\) to 5.25 V ; AGND and DGND shorted together; \(V_{C C A}\) to \(V_{C C D}=-0.25\) to \(+0.25 \mathrm{~V} ; V_{C C O}\) to \(V_{C C D}=-0.25\) to +0.25 V ;
\(V_{C C A}\) to \(V_{C C O}=-0.25\) to \(+0.25 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=0\) to \(+70^{\circ} \mathrm{C}\); typical values measured at \(\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCD}}=\mathrm{V}_{\mathrm{CCO}}=5 \mathrm{~V}\) and \(\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}\); unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Supply} \\
\hline \(V_{\text {CCA }}\) & analog supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline \(V_{\text {CCD }}\) & digital supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline \(\mathrm{V}_{\text {cco }}\) & output stages supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline ICcA & analog supply current & & - & 25 & 27 & mA \\
\hline \(l_{\text {CCD }}\) & digital supply current & & - & 27 & 30 & mA \\
\hline Icco & output stages supply current & & - & 16 & 18 & mA \\
\hline \multicolumn{7}{|l|}{Inputs} \\
\hline \multicolumn{7}{|l|}{CLOCK INPUT CLK (REFERENCED TO DGND); NOTE 1} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & HIGH level input voltage & & 2.0 & - & \(\mathrm{V}_{\text {CCD }}\) & V \\
\hline ILL & LOW level input current & \(\mathrm{V}_{\text {clk }}=0.4 \mathrm{~V}\) & -400 & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{IH}}\) & HIGH level input current & \(\mathrm{V}_{\mathrm{clk}}=2.7 \mathrm{~V}\) & - & - & 300 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{Z}_{1}\) & input impedance & \(\mathrm{f}_{\text {clk }}=75 \mathrm{MHz}\) & - & 2 & - & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & \(\mathrm{f}_{\text {clk }}=75 \mathrm{MHz}\) & - & 4.5 & - & pF \\
\hline \multicolumn{7}{|l|}{INPUT \(\overline{\mathrm{CE}}\) (REFERENCED TO DGND) SEE TABLE 2} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & HIGH level input voltage & & 2.0 & - & \(V_{C C D}\) & V \\
\hline \(\mathrm{I}_{\text {IL }}\) & LOW level input current & \(\mathrm{V}_{\text {IL }}=0.4 \mathrm{~V}\) & -400 & - & - & \(\mu \mathrm{A}\) \\
\hline IIH & HIGH level input current & \(\mathrm{V}_{1 H}=2.7 \mathrm{~V}\) & - & - & 20 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{\(V_{1}\) (ANALOG INPUT VOLTAGE REFERENCED TO AGND)} \\
\hline \(\mathrm{I}_{\text {IL }}\) & LOW level input current & \(V_{1}=1.2 \mathrm{~V}\) & - & 0 & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{IIH}^{\text {H }}\) & HIGH level input current & \(\mathrm{V}_{1}=3.5 \mathrm{~V}\) & 60 & 130 & 180 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{Z}_{1}\) & input impedance & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & - & 10 & - & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & - & 14 & - & pF \\
\hline \multicolumn{7}{|l|}{Reference voltages for the resistor ladder; see Table 1} \\
\hline \(\mathrm{V}_{\text {RB }}\) & reference voltage BOTTOM & & 1.2 & 1.3 & 1.6 & V \\
\hline \(V_{R T}\) & reference voltage TOP & & 3.5 & 3.6 & 3.9 & V \\
\hline \(\mathrm{V}_{\text {diff }}\) & differential reference voltage \(\mathrm{V}_{R T}-\mathrm{V}_{\mathrm{RB}}\) & & 1.9 & 2.3 & 2.7 & V \\
\hline \(\mathrm{I}_{\text {ref }}\) & reference current & & - & 11.5 & - & mA \\
\hline \(\mathrm{R}_{\text {LAD }}\) & resistor ladder & & - & 200 & - & \(\Omega\) \\
\hline TC \({ }_{\text {RLAD }}\) & temperature coefficient of the resistor ladder & & - & 0.24 & - & \(\Omega / \mathrm{K}\) \\
\hline \(V_{\text {osB }}\) & offset voltage BOTTOM & note 2 & - & 255 & - & mV \\
\hline \(\mathrm{V}_{\text {OST }}\) & offset voltage TOP & note 2 & - & 300 & - & mV \\
\hline
\end{tabular}

\section*{8-bit high-speed analog-to-digital converter}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Outputs} \\
\hline \multicolumn{7}{|l|}{Digital outputs D7 to D0 (referenced to DGND)} \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & LOW level output voltage & \(\mathrm{l}_{0}=1 \mathrm{~mA}\) & 0 & - & 0.4 & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & \multirow[t]{2}{*}{HIGH level output voltage} & \(\mathrm{I}_{0}=-0.4 \mathrm{~mA}\) & 2.7 & - & \(V_{C C D}\) & V \\
\hline & & \(\mathrm{I}_{0}=-1 \mathrm{~mA}\) & 2.4 & - & \(V_{\text {CCD }}\) & V \\
\hline loz & output current in 3-state mode & \(0.4 \mathrm{~V}<\mathrm{V}_{0}<\mathrm{V}_{\text {CCD }}\) & -20 & - & +20 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{Switching characteristics} \\
\hline \multicolumn{7}{|l|}{Clock input CLK (NOTE 1; SEE FIG.3)} \\
\hline \(\mathrm{f}_{\mathrm{clk}(\text { max })}\) & \begin{tabular}{l}
maximum clock frequency \\
TDA8714/4 \\
TDA8714/6 \\
TDA8714/7
\end{tabular} & & \[
\begin{aligned}
& 40 \\
& 60 \\
& 75
\end{aligned}
\] & \[
\left.\right|_{-} ^{-}
\] & - & \begin{tabular}{l}
MHz \\
MHz \\
MHz
\end{tabular} \\
\hline \(\mathrm{t}_{\text {cPH }}\) & clock pulse width HIGH & & 6 & - & - & ns \\
\hline \(\mathrm{t}_{\text {CPL }}\) & clock pulse width LOW & & 6 & - & - & ns \\
\hline \multicolumn{7}{|l|}{Analog signal processing} \\
\hline \multicolumn{7}{|l|}{LINEARITY} \\
\hline ILE & DC integral linearity error & & - & \(\pm 0.4\) & \(\pm 0.5\) & LSB \\
\hline DLE & DC differential linearity error & & - & \(\pm 0.2\) & \(\pm 0.35\) & LSB \\
\hline AILE & AC integral linearity error & note 3 & - & \(\pm 0.5\) & \(\pm 1.0\) & LSB \\
\hline \multicolumn{7}{|l|}{BANDWIDTH (\(\mathrm{f}_{\mathrm{clk}}=40 \mathrm{MHz}\))} \\
\hline \multirow[t]{2}{*}{B} & \multirow[t]{2}{*}{-0.5 dB analog bandwidth} & full-scale sine wave & - & 12 & - & MHz \\
\hline & & \(75 \%\) full-scale sine wave & - & 18 & - & MHz \\
\hline \(\mathrm{t}_{\text {STLH }}\) & analog input settling time LOW-to-HIGH & full-scale square wave; Fig.12; note 4 & - & 2.5 & 3.5 & ns \\
\hline \(\mathrm{t}_{\text {STHL }}\) & analog input settling time HIGH-to-LOW & full-scale square wave; Fig.12; note 4 & - & 3.0 & 4.0 & ns \\
\hline \multicolumn{7}{|l|}{HARMONICS (\(\mathrm{f}_{\text {clk }}=40 \mathrm{MHz}\))} \\
\hline \(\mathrm{h}_{1}\) & fundamental harmonics (full scale) & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & - & - & 0 & dB \\
\hline \(h_{\text {all }}\) & harmonics (full scale); all components second harmonics third harmonics & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & |- & \[
\left\lvert\, \begin{aligned}
& -64 \\
& -58
\end{aligned}\right.
\] & \[
\begin{aligned}
& -60 \\
& -55
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{dB} \\
& \mathrm{~dB}
\end{aligned}
\] \\
\hline THD & total harmonic distortion & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & - & -56 & - & dB \\
\hline \multicolumn{7}{|l|}{SIGNAL-TO-NOISE RATIO (NOTE 6; SEE FIG. 7 AND FIG.13)} \\
\hline S/N & signal-to-noise ratio (full scale) & without harmonics;
\[
\begin{aligned}
& f_{c l k}=40 \mathrm{MHz} ; \\
& f_{\mathrm{i}}=4.43 \mathrm{MHz}
\end{aligned}
\] & 46 & 48 & - & dB \\
\hline
\end{tabular}

8 -bit high-speed analog-to-digital converter
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{EfFECTIVE bits (note 6; SEE FIGs. 7 AND 13)} \\
\hline \multirow[t]{3}{*}{EB} & effective bits TDA8714/4 & \[
\begin{aligned}
f_{\text {clk }} & =40 \mathrm{MHz} \\
f_{i} & =4.43 \mathrm{MHz} \\
f_{i} & =7.5 \mathrm{MHz}
\end{aligned}
\] & & \[
\begin{aligned}
& 7.75 \\
& 7.6
\end{aligned}
\] & - & \begin{tabular}{l}
bits \\
bits
\end{tabular} \\
\hline & effective bits TDA8714/6 & \[
\begin{aligned}
f_{\text {clk }} & =60 \mathrm{MHz} \\
f_{i} & =4.43 \mathrm{MHz} \\
f_{i} & =7.5 \mathrm{MHz} \\
f_{i} & =10 \mathrm{MHz}
\end{aligned}
\] & & \[
\begin{array}{|l|}
7.7 \\
7.55 \\
7.4
\end{array}
\] & - & \begin{tabular}{l}
bits \\
bits \\
bits
\end{tabular} \\
\hline & effective bits TDA8714/7 & \[
\begin{aligned}
\mathrm{f}_{\mathrm{clk}} & =75 \mathrm{MHz} \\
\mathrm{f}_{\mathrm{i}} & =4.43 \mathrm{MHz} \\
\mathrm{f}_{\mathrm{i}} & =7.5 \mathrm{MHz} \\
\mathrm{f}_{\mathrm{i}} & =10 \mathrm{MHz} \\
\mathrm{f}_{\mathrm{i}} & =15 \mathrm{MHz}
\end{aligned}
\] & \[
\left.\right|_{-} ^{-}
\] & \[
\begin{aligned}
& 7.7 \\
& 7.5 \\
& 7.2 \\
& 6.3
\end{aligned}
\] & & \begin{tabular}{l}
bits \\
bits \\
bits \\
bits
\end{tabular} \\
\hline \multicolumn{7}{|l|}{TWO-TONE (NOTE 7)} \\
\hline TTIR & two-tone intermodulation rejection & \(\mathrm{f}_{\mathrm{clk}}=40 \mathrm{MHz}\) & - & -56 & - & dB \\
\hline \multicolumn{7}{|l|}{Bit error rate} \\
\hline BER & bit error rate & \[
\begin{aligned}
& \mathrm{f}_{\mathrm{clk}}=40 \mathrm{MHz} ; \\
& \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz} ; \\
& \mathrm{V}_{\mathrm{I}}= \pm 16 \mathrm{LSB} \text { at } \\
& \text { code } 128
\end{aligned}
\] & - & \(10^{-11}\) & - & times/ samples \\
\hline \multicolumn{7}{|l|}{Differential gain (note 5)} \\
\hline \(\mathrm{G}_{\text {diff }}\) & differential gain & \[
\begin{aligned}
& \mathrm{f}_{\mathrm{clk}}=40 \mathrm{MHz} ; \\
& \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}
\end{aligned}
\] & - & 0.6 & - & \% \\
\hline \multicolumn{7}{|l|}{DIFFERENTIAL PHASE (NOTE 5)} \\
\hline \(\varphi_{\text {diff }}\) & differential phase & \[
\begin{aligned}
& f_{c l k}=40 \mathrm{MHz} \\
& f_{\mathrm{i}}=4.43 \mathrm{MHz}
\end{aligned}
\] & - & 0.8 & - & deg \\
\hline \multicolumn{7}{|l|}{Timing (note 8; see Figs 3 and 5; \(\mathrm{f}_{\text {clk }}=\mathbf{7 5} \mathbf{M H z}\))} \\
\hline \(\mathrm{t}_{\mathrm{ds}}\) & sampling delay time & & - & - & 2 & ns \\
\hline \(t_{\text {h }}\) & output hold time & & 5 & - & - & ns \\
\hline \(\mathrm{t}_{\text {d }}\) & output delay time & & - & 10 & 11 & ns \\
\hline \multicolumn{7}{|l|}{3-state output delay times (see Fig.4)} \\
\hline \(\mathrm{t}_{\mathrm{d} Z \mathrm{H}}\) & enable HIGH & & - & 6 & 10 & ns \\
\hline \(\mathrm{t}_{\mathrm{dzL}}\) & enable LOW & & - & 12 & 16 & ns \\
\hline \(\mathrm{t}_{\mathrm{d} \mathrm{H} \mathrm{Z}}\) & disable HIGH & & - & 50 & 54 & ns \\
\hline \(\mathrm{t}_{\mathrm{dLL}}\) & disable LOW & & - & 10 & 14 & ns \\
\hline
\end{tabular}

\section*{8 -bit high-speed analog-to-digital converter}

\section*{Notes to the "Characteristics"}
1. In addition to a good layout of the digital and analog ground, it is recommended that the rise and fall times of the clock must not be less than 1 ns .
2. Analog input voltages producing code 00 up to and including FF :
a) \(\mathrm{V}_{\text {OSB }}\) (voltage offset BOTTOM) is the difference between the analog input which produces data equal to 00 and the reference voltage BOTTOM \(\left(\mathrm{V}_{\mathrm{RB}}\right)\) at \(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\).
b) \(\mathrm{V}_{\text {ost }}\) (voltage offset TOP) is the difference between \(\mathrm{V}_{\mathrm{RT}}\) (reference voltage TOP) and the analog input which produces data outputs equal to FF at \(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\).
3. Full-scale sine wave (\(f_{i}=4.43 \mathrm{MHz} ; f_{\mathrm{cIk}}=75 \mathrm{MHz}\)).
4. The analog input settling time is the minimum time required for the input signal to be stabilized after a sharp full-scale input (square-wave signal) in order to sample the signal and obtain correct output data.
5. Measurement carried out using video analyser VM700A.
6. Effective bits are obtained via a Fast Fourier Transform (FFT) treatment taking 8K acquisition points per period. The calculation takes into account all harmonics and noise up to half of the clock frequency (NYQUIST frequency). Conversion to signal-to-noise ratio: \(\mathrm{S} / \mathrm{N}=\mathrm{EB} \times 6.02+1.76 \mathrm{~dB}\).
7. Intermodulation measured relative to either tone with analog input frequencies of 4.43 MHz and 4.53 MHz . The two input signals have the same amplitude and the total amplitude of both signals provides full scale to the converter.
8. Output data acquisition: the output data is available after the maximum delay time of \(t_{d}\); in the event of 75 MHz clock operation, the hardware design must take into account the \(t_{d}\) and \(t_{h}\) limits with respect to the input characteristics of the acquisition circuit.

8-bit high-speed analog-to-digital converter
TDA8714

Table 1 Output coding and input voltage (typical values; referenced to AGND).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{STEP} & \multirow[b]{2}{*}{\(V_{1(p-p)}\)} & \multirow{2}{*}{O/UF} & \multicolumn{8}{|c|}{BINARY OUTPUT BITS} \\
\hline & & & D7 & D6 & D5 & D4 & D3 & D2 & D1 & Do \\
\hline Underflow & <1.555 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 1.555 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & . & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline . & . & . & . & & . & . & . & . & . & . \\
\hline . & . & . & . & . & . & . & . & . & . & . \\
\hline 254 & . & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 255 & 3.30 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline Overflow & >3.30 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

Table 2 Mode selection.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{\(\overline{\text { CE }}\)} & \multicolumn{1}{|c|}{ D7 TO DO } & \multicolumn{1}{c|}{ O/UF } \\
\hline 1 & high impedance & high impedance \\
\hline 0 & active; binary & active \\
\hline
\end{tabular}

Fig. 3 Timing diagram.

\(f \overline{C E}=100 \mathrm{kHz}\).
Fig. 4 Timing diagram and test conditions of 3-state output delay time.

Fig. 5 Load circuit for timing measurement.

8 -bit high-speed analog-to-digital converter

Fig. 6 Analog input settling-time diagram.

Effective bits: 7.80 ; \(\mathrm{THD}=-57.82 \mathrm{~dB}\);
Harmonic levels \((\mathrm{dB}): 2 \mathrm{nd}=-68.00 ; 3 \mathrm{rd}=-61.54 ; 4\) th \(=-72.46 ; 5\) th \(=-65.80 ; 6\) th \(=-68.88\).

Fig. 7 Fast Fourier Transform (\(f_{\text {clk }}=40 \mathrm{MHz} ; \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\)).

Effective bits: 7.27; THD \(=-49.23 \mathrm{~dB}\);
Harmonic levels \((\mathrm{dB}): 2 \mathrm{nd}=-56.16 ; 3 \mathrm{rd}=-51.01 ; 4 \mathrm{th}=-69.84 ; 5 \mathrm{th}=-59.10 ; 6 \mathrm{th}=-65.34\).

Fig. 8 Fast Fourier Transform (\(\mathrm{f}_{\mathrm{clk}}=75 \mathrm{MHz} ; \mathrm{f}_{\mathrm{i}}=10 \mathrm{MHz}\)).

\section*{INTERNAL PIN CONFIGURATIONS}

Fig. 9 TTL data and overflow/underflow outputs.

Fig. 10 Analog inputs.

Fig. \(11 \overline{\mathrm{CE}}\) (3-state) input.

Fig. 13 :CLK input.

\section*{APPLICATION INFORMATION}

The analog and digital supplies should be separated and decoupled.
The external voltage generator must be built such that a good supply voltage ripple rejection is achieved with respect to the LSB value
(1) \(V_{R B}\) and \(V_{R T}\) are decoupled to AGND.
(2) Pin 5 should be connected to AGND; pins 3 and 10 to DGND in order to prevent noise influence.

Fig. 14 Application diagram.

\section*{FEATURES}
- 8-bit resolution
- Sampling rate up to 120 MHz
- ECL (10 K family) compatible digital inputs and outputs
- Overflow/Underflow output
- Low power dissipation
- Low input capacitance (13 pF typ.).

\section*{GENERAL DESCRIPTION}

The TDA8716 is an 8 -bit high-speed analog-to-digital converter (ADC) designed for HDTV and professional applications. The device converts the analog input signal into 8-bit binary coded digital words at a sampling rate of 120 MHz . All digital outputs are ECL compatible.

\section*{APPLICATIONS}
- High speed analog-to-digital convertion
- Video signal digitizing
- Radar pulse analysis
- Transient signal analysis
- High energy physics research
- Medical systems
- Industrial instrumentation.

\section*{QUICK REFERENCE DATA}

Measured over full voltage and temperature ranges, unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(V_{\text {EEA }}\) & analog supply voltage & & -5.45 & -5.2 & -4.95 & V \\
\hline \(V_{\text {EED }}\) & digital supply voltage & & -5.45 & -5.2 & -4.95 & \(V\) \\
\hline \(\mathrm{I}_{\text {EEA }}\) & analog supply current & & - & 50 & 55 & mA \\
\hline \(\mathrm{I}_{\text {EED }}\) & digital supply current & & - & 100 & 110 & mA \\
\hline \(\mathrm{I}_{\text {EEO }}\) & output supply current & \(\mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega\) & - & 20 & 25 & mA \\
\hline \(\mathrm{V}_{\mathrm{RB}}\) & reference voltage BOTTOM & & - & -3.130 & - & V \\
\hline \(\mathrm{V}_{\text {RT }}\) & reference voltage TOP & & - & -1.870 & - & V \\
\hline ILE & DC integral linearity error & see Fig. 8 & - & \(\pm 0.5\) & \(\pm 1\) & LSB \\
\hline DLE & DC differential linearity error & see Fig. 9 & - & \(\pm 0.25\) & \(\pm 0.45\) & LSB \\
\hline EB & effective bit & \[
\begin{aligned}
& \mathrm{f}_{\mathrm{i}}=20 \mathrm{MHz} ; \\
& \mathrm{f}_{\mathrm{cLK}}=100 \mathrm{MHz}
\end{aligned}
\] & - & 7 & - & bits \\
\hline \(\mathrm{f}_{\mathrm{CLK}}\) & maximum clock frequency & & 120 & - & - & MHz \\
\hline \(\mathrm{P}_{\text {bot }}\) & total power dissipation & excluding load & - & 780 & 900 & mW \\
\hline
\end{tabular}

\section*{ORDERING INFORMATION}
\begin{tabular}{|l|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
EXTENDED TYPE \\
NUMBER
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline TDA8716 & 24 & DIL & plastic & SOT101 \\
\hline TDA8716T & 32 & SO32L & plastic & SOT287 \\
\hline
\end{tabular}

\section*{8-bit high-speed analog-to-digital converter}

Fig. 1 Block diagram; TDA8716.

\section*{8-bit high-speed analog-to-digital} converter

PINNING
\begin{tabular}{|l|c|l|}
\hline SYMBOL & PIN & \multicolumn{1}{|c|}{ DESCRIPTION } \\
\hline CLK & 1 & Complementary clock input \\
\hline CLK & 2 & clock input \\
\hline V \(_{\text {EED1 }}\) & 3 & \begin{tabular}{l}
digital negative supply voltage \\
(-5.2 V)
\end{tabular} \\
\hline CPLT2 & 4 & \begin{tabular}{l}
two's complement output select \\
(active HIGH)
\end{tabular} \\
\hline V EEA \(^{\text {analog negative supply voltage }}\) \\
(-5.2 V)
\end{tabular}

Fig. 2 Pin configuration; TDA8716.

\section*{8-bit high-speed analog-to-digital converter}

PINNING
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline \(\overline{\overline{C L K}}\) & 1 & complementary clock input \\
\hline CLK & 2 & clock input \\
\hline \(\mathrm{V}_{\text {EEDI }}\) & 3 & digital negative supply voltage
\[
(-5.2 \mathrm{~V})
\] \\
\hline n.c. & 4 & not connected \\
\hline n.c. & 5 & not connected \\
\hline \(\mathrm{C}_{\text {PLT2 }}\) & 6 & two's complement output select (active HIGH) \\
\hline \(V_{\text {EEA }}\) & 7 & analog negative supply voltage
\[
(-5.2 \mathrm{~V})
\] \\
\hline \(\mathrm{V}_{\text {RB }}\) & 8 & reference voltage BOTTOM \\
\hline AGND1 & 9 & analog ground 1 \\
\hline \(V_{1}\) & 10 & analog input \\
\hline \(\mathrm{V}_{\mathrm{RM}}\) & 11 & reference voltage MIDDLE decoupling \\
\hline n.c. & 12 & not connected \\
\hline n.c. & 13 & not connected \\
\hline \(\mathrm{V}_{\text {RT }}\) & 14 & reference voltage TOP \\
\hline AGND2 & 15 & analog ground 2 \\
\hline \(\mathrm{V}_{\text {EED2 }}\) & 16 & digital negative supply voltage
\[
(-5.2 \mathrm{~V})
\] \\
\hline DGND1 & 17 & digital ground 1 \\
\hline D0 & 18 & digital output (LSB) \\
\hline D1 & 19 & digital output \\
\hline n.c. & 20 & not connected \\
\hline n.c. & 21 & not connected \\
\hline D2 & 22 & digital output \\
\hline D3 & 23 & digital output \\
\hline D4 & 24 & digital output \\
\hline OGND & 25 & output ground supply voltage
\[
(0 \mathrm{~V})
\] \\
\hline D5 & 26 & digital output \\
\hline D6 & 27 & digital output \\
\hline n.c. & 28 & not connected \\
\hline n.c. & 29 & not connected \\
\hline D7 & 30 & digital output (MSB) \\
\hline IR & 31 & IN range \\
\hline DGND2 & 32 & digital ground 2 \\
\hline
\end{tabular}

Fig. 3 Pin configuration; TDA8716T.

8-bit high-speed analog-to-digital converter

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum Rating System (IEC 134).
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\text {EEA }}\) & analog supply voltage & & -7.0 & +0.3 & V \\
\hline \(\mathrm{V}_{\text {EED } 1}, \mathrm{~V}_{\text {EED2 }}\) & digital supply voltage & & -7.0 & +0.3 & V \\
\hline \[
\begin{array}{|l|}
\hline V_{\text {EEA }}-V_{E E D 1} ; \\
V_{\text {EEA }}-V_{\text {EEDO }} \\
\hline
\end{array}
\] & supply voltage differences & & -1 & +1 & V \\
\hline \(\mathrm{V}_{1}\) & input voltage & referenced to AGND & \(V_{\text {EEA }}\) & 0 & V \\
\hline \(\mathrm{V}_{\text {cL; }} \overline{\text { CLK }}\) (p-p) & input voltage for differential clock drive (peak-to-peak value) & note 1 & - & 2.0 & V \\
\hline \(I_{0}\) & output current (each output stage) & & - & 10 & mA \\
\hline \(\mathrm{T}_{\text {stg }}\) & storage temperature & & -55 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(T_{\text {amb }}\) & operating ambient temperature & & 0 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{i}}\) & junction temperature & & - & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Note}
1. The circuit has two clock inputs: CLK and CLK. Sampling takes place on the rising edge of the clock input signal: CLK and CLK are two's complementary ECL signals.

THERMAL RESISTANCE
\begin{tabular}{|l|l|c|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & THERMAL RESISTANCE \\
\hline \(\mathrm{R}_{\mathrm{m} / \mathrm{j}, \mathrm{a}}\) & from junction to ambient in free air & \\
& SOT101 & 35 KW \\
& SOT287 (see Fig.4) & 65 KW \\
\hline
\end{tabular}

\section*{HANDLING}

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

\section*{8-bit high-speed analog-to-digital converter}

CHARACTERISTICS
\(V_{E E A}=-4.95 \mathrm{~V}\) to \(-5.45 \mathrm{~V} ; \mathrm{V}_{\text {EED1 }}, \mathrm{V}_{\text {EED2 }}=-4.95 \mathrm{~V}\) to -5.45 V ; AGND, DGND and OGND shorted together;
\(\mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\); unless otherwise specified. (Typical values taken at \(\mathrm{V}_{\mathrm{EEA}}=-5.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{EED1} 1}, \mathrm{~V}_{\mathrm{EED2}}=-5.2 \mathrm{~V}\);
\(\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}\)).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Supply} \\
\hline \(V_{\text {EEA }}\) & analog supply voltage & & -5.45 & -5.2 & -4.95 & V \\
\hline \(V_{\text {EED } 1}, V_{\text {EED2 }}\) & digital supply voltage & & -5.45 & -5.2 & -4.95 & V \\
\hline \(\mathrm{I}_{\text {EEA }}\) & analog supply current & & - & 50 & 55 & mA \\
\hline \(\mathrm{I}_{\text {EED } 1}, \mathrm{I}_{\text {EED2 }}\) & digital supply current & & - & 100 & 110 & mA \\
\hline \(\mathrm{I}_{\text {EE }}\) & output supply current & \(\mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega\) & - & 20 & 25 & mA \\
\hline \(V_{\text {dif }}\) & supply voltage differential & \(\mathrm{V}_{\text {EEA }}-\mathrm{V}_{\text {EED1 }} ; \mathrm{V}_{\text {EEA }}-\mathrm{V}_{\text {EED2 }}\) & -0.5 & 0 & +0.5 & V \\
\hline
\end{tabular}

Reference voltages for the resistor ladder
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{V}_{\mathrm{RB}}\) & reference voltage BOTTOM & & -3.5 & -3.13 & - & V \\
\hline \(\mathrm{V}_{\mathrm{RT}}\) & reference voltage TOP & & - & -1.87 & -1.5 & V \\
\hline \(\mathrm{~V}_{\text {ref }}\) & reference voltage differential & \(\mathrm{V}_{\mathrm{RT}}-\mathrm{V}_{\mathrm{RB}}\) & note 1 & note 1 & - & 1.26 \\
\hline \(\mathrm{~V}_{\mathrm{OB}}\) & voltage offset BOTTOM & & - & V \\
\hline \(\mathrm{V}_{\mathrm{OT}}\) & voltage offset TOP & & - & 130 & - & mV \\
\hline \(\mathrm{V}_{\text {(p-p) }}\) & \begin{tabular}{l}
input voltage amplitude \\
(peak-to-peak value)
\end{tabular} & reference current & & 0.95 & 1.0 & 1.5 \\
\hline \(\mathrm{I}_{\text {ref }}\) & resistor ladder & & - & 15 & - & mA \\
\hline \(\mathrm{R}_{\mathrm{LAD}}\) & & & - & 85 & - & \(\Omega\) \\
\hline \(\mathrm{TC}_{\mathrm{RL}}\) & \begin{tabular}{l}
temperature coefficient of the \\
resistor ladder
\end{tabular} & & - & 0.18 & - & \(\Omega / \mathrm{K}\) \\
\hline
\end{tabular}

Inputs
CLK and CLK input
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathrm{V}_{\mathrm{L}}\) & LOW level input voltage & & -1850 & -1770 & -1650 & mV \\
\hline \(\mathrm{V}_{\text {H }}\) & HIGH level input voltage & & -960 & -880 & -810 & mV \\
\hline ILI & LOW level input current & \(\mathrm{V}_{\text {CLK }}=-1.77 \mathrm{~V}\) & - & 1 & - & \(\mu \mathrm{A}\) \\
\hline \(I_{1 H}\) & HIGH level input current & \(\mathrm{V}_{\text {CLK }}=-0.88 \mathrm{~V}\) & - & 10 & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{R}_{1}\) & input resistance & & - & 20 & - & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & & - & 2 & - & pF \\
\hline \(\mathrm{V}_{\text {cLK(p-p) }}\) & differential clock input \(\mathbf{V}_{\text {cuk }}-\) \(\sqrt{\text { CLK }}\) (peak-to-peak value) & & - & 900 & - & mV \\
\hline
\end{tabular}

\section*{Analog input; note 2}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(I_{I B}\) & input current BOTTOM & \(V_{R B}=-3.13 \mathrm{~V}\) & - & 0 & - & \(\mu \mathrm{A}\) \\
\hline\(I_{I T}\) & input current TOP & \(V_{R T}=-1.87 \mathrm{~V}\) & - & 170 & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{R}_{\mathbf{I}}\) & input resistance & & - & 7 & - & \(\mathrm{k} \Omega\) \\
\hline\(C_{1}\) & input capacitance & & - & 13 & 20 & pF \\
\hline
\end{tabular}

\section*{8-bit high-speed analog-to-digital converter}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Outputs (\(\mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega\))} \\
\hline \multicolumn{7}{|l|}{Digital 10K ECL outputs (D0 to D7; IR)} \\
\hline \(\mathrm{V}_{\mathrm{ol}}\) & LOW level output voltage & & -1850 & -1770 & -1600 & mV \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & HIGH level output voltage & & -960 & -880 & -810 & mV \\
\hline \(\mathrm{l}_{\text {ol }}\) & LOW level output current & & - & 1.8 & 4.0 & mA \\
\hline \(\mathrm{IOH}^{\text {O }}\) & HIGH level output current & & - & 2.0 & 4.0 & mA \\
\hline \multicolumn{7}{|l|}{Timing (f \({ }_{\text {clk }}=100 \mathrm{MHz} ; \mathrm{R}_{\mathrm{L}}=\mathbf{2 . 2} \mathrm{kS}\); see Fig. 5)} \\
\hline \(\mathrm{t}_{\text {ts }}\) & sampling delay & & - & 1 & 3 & ns \\
\hline \(\mathrm{t}_{\mathrm{HD}}\) & output hold time & & 4 & - & - & ns \\
\hline \(t_{d}\) & output delay time & note 3
\[
\begin{aligned}
& C_{L}=3.3 \mathrm{pF} \\
& C_{L}=7.5 \mathrm{pF}
\end{aligned}
\] & & - & \[
\begin{array}{|l}
7.5 \\
9
\end{array}
\] & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns}
\end{aligned}
\] \\
\hline \(\mathrm{t}_{\text {al }}\) & aperture jitter & & - & 15 & - & ps \\
\hline \multicolumn{7}{|l|}{Switching characteristics} \\
\hline \(\mathrm{f}_{\text {CLK }}\); fLK & maximum clock frequency & & 120 & - & - & MHz \\
\hline \multicolumn{7}{|l|}{Analog signal processing (\(\mathrm{f}_{\text {cLK }}=100 \mathrm{MHz}\))} \\
\hline \(\mathrm{G}_{\text {diff }}\) & differential gain & note 4 & - & 0.3 & - & \% \\
\hline \(\phi_{\text {diff }}\) & differential phase & note 4 & - & 0.4 & - & \({ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{7}{|l|}{Harmonics (full scale); \(f_{1}=10 \mathrm{MHz} ; \mathrm{f}_{\text {cLK }}=100 \mathrm{MHz}\)} \\
\hline \(f 1\) & fundamental & & - & 0 & - & dB \\
\hline 12 & even harmonics & & - & -60 & - & dB \\
\hline f3 & odd harmonics & & - & -50 & - & dB \\
\hline \multicolumn{7}{|l|}{Transfer function} \\
\hline ILE & DC integral linearity error & & - & \(\pm 0.5\) & \(\pm 1\) & LSB \\
\hline DLE & DC differential linearity error & & - & \(\pm 0.25\) & \(\pm 0.45\) & LSB \\
\hline AILE & AC integral linearity error & note 4 & - & \(\pm 1\) & \(\pm 1.5\) & LSB \\
\hline EB & effective bits
\[
\begin{aligned}
& f_{i}=4.43 \mathrm{MHz} \\
& f_{i}=10 \mathrm{MHz} \\
& f_{i}=20 \mathrm{MHz} \\
& f_{i}=30 \mathrm{MHz}
\end{aligned}
\] & \begin{tabular}{l}
Figs 13 and 14; note 5; \(\mathrm{f}_{\text {CLK }}=100 \mathrm{MHz}\) \\
Fig. 10 \\
Fig. 11 \\
Fig. 12
\end{tabular} & - & \[
\begin{aligned}
& 7.7 \\
& 7.5 \\
& 7.0 \\
& 6.5 \\
& \hline
\end{aligned}
\] & - & \begin{tabular}{l}
bits \\
bits \\
bits \\
bits
\end{tabular} \\
\hline BER & bit error rate & \[
\begin{aligned}
& \mathrm{f}_{\mathrm{cLK}}=100 \mathrm{MHz} ; \\
& \mathrm{f}_{\mathrm{i}}=10 \mathrm{MHz} ; \mathrm{V}_{\mathrm{i}}= \pm 8 \text { LSB at } \\
& \text { code } 128 ; 50 \% \text { clock duty } \\
& \text { cycle }
\end{aligned}
\] & - & \(10^{-11}\) & - & times/ samples \\
\hline
\end{tabular}

\section*{8-bit high-speed analog-to-digital converter}

\section*{Notes}
1. Voltage offset BOTTOM \(\left(\mathrm{V}_{\mathrm{OB}}\right)\) is the difference between the analog input which produces data outputs equal to 00 and the reference voltage BOTTOM \(\left(\mathrm{V}_{\mathrm{RB}}\right)\), at \(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\). Voltage offset TOP \(\left(\mathrm{V}_{\mathrm{OT}}\right)\) is the difference between reference voltage TOP \(\left(V_{R T}\right)\) and the analog input which produces data outputs equal to FF , at \(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\).
2. The analog input is not internally biased. It should be externally biased between \(V_{R B}\) and \(V_{R T}\) levels.
3. The TDA8716 can only withstand one or two 10 K or 100 K ECL loads in order to work-out timings at the maximum sampling frequency. It is therefore recommended to minimize the printed-circuit board load by implementing the load device as close as possible to the TDA8716.
4. Full-scale sinewave; \(f_{i}=4.43 \mathrm{MHz} ; f_{C L K}, f_{\overline{C L K}}=100 \mathrm{MHz}\).
5. Effective bits are obtained via a Fast Fourier Transformer (FFT) treatment taking 4 K acquisition points per period. The calculation takes into account all harmonics and noise up to half of the clock frequency (NYQUIST frequency). Conversion to SNR: \(\mathrm{SNR}=\mathrm{EB}(\mathrm{dB}) \times 6.02+1.76\).

Fig. 4 Average effect of air flow on thermal resistance.

\section*{8-bit high-speed analog-to-digital converter}

Table 1 Output coding (CPLT2 HIGH).
\begin{tabular}{|c|c|c|c|}
\hline STEP & \(\mathbf{V}_{\mathbf{1}}\) (TYP.) & \begin{tabular}{c}
BINARY \\
OUTPUTS \\
D7 to DO
\end{tabular} & IR \\
\hline Underflow & \(<-3 \mathrm{~V}\) & 00000000 & 0 \\
0 & -3 V & 00000000 & 1 \\
1 & \(\cdot\) & 00000001 & 1 \\
. & \(\cdot\) & \(\ldots .\). &. \\
. &. & \(\ldots .\). &. \\
. & \(\cdot\) & \(\ldots .\). &. \\
254 & \(\cdot\) & 11111110 & 1 \\
255 & -2 V & 11111111 & 1 \\
Overflow & \(>-2 \mathrm{~V}\) & 11111111 & 0 \\
\hline
\end{tabular}

Table 2 Two's complement coding.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{\(C_{\text {PLT2 }}\)} & \multicolumn{1}{c|}{ D7 (MSB) } \\
\hline \(\mathbf{1}\left(\mathrm{V}_{\text {HI }}\right)\) & non inverted \\
\(0\left(\mathrm{~V}_{\mathrm{IL}}\right)\) & inverted \\
\hline
\end{tabular}

Fig. 5 Timing diagram.

\section*{8-bit high-speed analog-to-digital converter}

\section*{APPLICATION INFORMATION}

Additional application information will be supplied upon request, please quote reference number FTV/AN 9109.

Fig. 6 Application diagram; TDA8716.

\section*{Notes to Fig. 6}
1. Typical value for resistors \(=2.2 \mathrm{k} \Omega\).
2. Lower resistor values can be used down to \(500 \Omega\) to obtain higher sampling frequencies in the 150 MSPS range (limited by \(t_{d}\) and \(t_{H D}\) timings). In this configuration a DC shift of the ECL output levels \(V_{O L}\) and \(V_{O H}\) will occur.
3. \(V_{R B}, V_{R T}\) and \(V_{M}\) are decoupled to AGND.
4. Analog, digital and output supplies should be separated and decoupled.
5. The external voltage regulator must be constructed in such a way that a good supply voltage ripple rejection is achieved with respect to the LSB value.

\section*{8-bit high-speed analog-to-digital} converter

Fig. 7 Internal pin configuration diagram.

\section*{8-bit high-speed analog-to-digital converter}

Fig. 8 DC Integral linearity error (ILE).

Fig. 9 DC differential linearity error (DLE).

\section*{8-bit high-speed analog-to-digital converter}

Effective bits: 7.74; Harmonic levels (in dB): \(2 \mathrm{nd}=-69.34\); 3rd \(=-58.85 ; 4\) th \(=-82.55 ; 5\) th \(=-68.16\) and 6 th \(=-63.01\)

Fig. 10 Fast fourier transformer (\(f_{\text {cLK }}=100 \mathrm{MHz} ; \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\)).

\section*{8-bit high-speed analog-to-digital converter}

Effective bits: 7.57; Harmonic levels (in dB): \(2 \mathrm{nd}=-82.07\); \(3 \mathrm{rd}=-61.90 ; 4\) th \(=-75.70 ; 5\) th \(=-65.61\) and 6 th \(=-72.50\)

Fig. 11 Fast fourier transformer (\(f_{\text {CLK }}=100 \mathrm{MHz} ; \mathfrak{f}_{\mathrm{i}}=10 \mathrm{MHz}\)).

\section*{8-bit high-speed analog-to-digital converter}

Effective bits: 7.04; Harmonic levels (in dB): \(2 \mathrm{nd}=-61.36\); 3 rd \(=-56.66 ; 4\) th \(=-61.97 ; 5\) th \(=-62.79\) and 6 th \(=-61.52\)

Fig. 12 Fast fourier transformer (\(\mathrm{f}_{\mathrm{CLK}}=100 \mathrm{MHz}\); \(\mathrm{f}_{\mathrm{i}}=20 \mathrm{MHz}\)).

Fig. 13 Typical effective bit as a function of input signal at \(\mathrm{f}_{\mathrm{cLK}}=100 \mathrm{MHz}\).

\section*{8-bit high-speed analog-to-digital converter}

Fig. 14 Typical effective bits as a function of clock frequency at \(f_{i}=10 \mathrm{MHz}\).

\section*{FEATURES}
- 8-bit resolution
- Sampling rate up to 600 MHz
- ECL (100K family) compatible for digital inputs and outputs
- Overflow/Underflow output
- \(50 \Omega\) load drive capability
- Low input capacitance (5 pF typ.).

\section*{GENERAL DESCRIPTION}

The TDA8718 is an 8-bit analog-to-digital converter (ADC) designed for professional applications. The device converts the analog input signal into 8 -bit binary coded digital words at a sampling rate of 600 MHz . It has an effective bandwidth capability up to 150 MHz full-scale sine wave. All digital outputs are ECL compatible.

\section*{APPLICATIONS}
- High speed analog-to-digital conversion
- Industrial instrumentation
- Data communication
- RF communication.

\section*{QUICK REFERENCE DATA}

Measured over full voltage and temperature ranges, unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(V_{\text {EEA }}\) & analog supply voltage & & -4.2 & -4.5 & -4.8 & V \\
\hline \(V_{\text {EED }}\) & digital supply voltage & & -4.2 & -4.5 & -4.8 & V \\
\hline \(\mathrm{I}_{\text {ref }}\) & resistive ladder current & \(\mathrm{R}=48 \Omega\) & 30 & 45 & 60 & mA \\
\hline Ieea & analog supply current & & 30 & 42 & 54 & mA \\
\hline IEED & digital supply current & & 100 & 120 & 150 & mA \\
\hline \(\mathrm{I}_{\text {EEO(L) }}\) & LOW level output supply current & \(\mathrm{R}_{\mathrm{L}}=50 \Omega\) & 40 & 70 & 90 & mA \\
\hline \(\mathrm{I}_{\text {EEO(H) }}\) & HIGH level output supply current & \(\mathrm{R}_{\mathrm{L}}=50 \Omega\) & 155 & 170 & 185 & mA \\
\hline ILE & DC integral linearity error & & - & \(\pm 0.7\) & \(\pm 1.0\) & LSB \\
\hline DLE & DC differential linearity error & & - & \(\pm 0.3\) & \(\pm 0.5\) & LSB \\
\hline \multirow[t]{2}{*}{EB} & \multirow[t]{2}{*}{effective bits} & \[
\begin{aligned}
& \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz} ; \mathrm{l}_{\text {ref }}=45 \mathrm{~mA} ; \\
& \mathrm{f}_{\mathrm{clk}}=100 \mathrm{MHz} \\
& \hline
\end{aligned}
\] & - & 7.5 & - & bits \\
\hline & & \[
\begin{aligned}
& \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz} ; \mathrm{l}_{\text {ref }}=45 \mathrm{~mA} ; \\
& \mathrm{f}_{\mathrm{clk}}=100 \mathrm{MHz}
\end{aligned}
\] & - & 6.5 & - & bits \\
\hline \(\mathrm{f}_{\text {clk (max) }}\) & maximum clock frequency & & 600 & - & - & MHz \\
\hline \(\mathrm{P}_{\text {tot }}\) & total power dissipation & & - & 990 & 1250 & mW \\
\hline
\end{tabular}

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ TYPE NUMBER } & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline TDA8718K & 28 & PLCC28 & plastic & SOT261-2 \\
\hline
\end{tabular}

\section*{BLOCK DIAGRAM}

Fig. 1 Block diagram.

\section*{PINNING}
\begin{tabular}{|l|r|l|}
\hline \begin{tabular}{c}
SYMB \\
OL
\end{tabular} & PIN & \multicolumn{1}{|c|}{ DESCRIPTION } \\
\hline\(V_{\text {RB }}\) & 1 & reference voltage BOTTOM \\
\hline\(V_{\text {RM }}\) & 2 & reference voltage MIDDLE decoupling \\
\hline\(V_{\text {I }}\) & 3 & analog input voltage \\
\hline n.c. & 4 & not connected \\
\hline\(V_{\text {RT }}\) & 5 & reference voltage TOP \\
\hline OF & 6 & overflow digital output \\
\hline n.c. & 7 & not connected \\
\hline CLK & 8 & clock input \\
\hline CLK & 9 & complementary clock input \\
\hline D7 & 10 & digital output; bit 7 (MSB) \\
\hline\(V_{\text {BB }}\) & 11 & ECL reference voltage \\
\hline OGND1 & 12 & output ground 1 (0 V) \\
\hline D6 & 13 & digital output; bit 6 \\
\hline D5 & 14 & digital output; bit 5 \\
\hline D4 & 15 & digital output; bit 4 \\
\hline D3 & 16 & digital output; bit 3 \\
\hline D2 & 17 & digital output; bit 2 \\
\hline OGND2 & 18 & output ground 2 (0 V) \\
\hline D1 & 19 & digital output; bit 1 \\
\hline D0 & 20 & digital output; bit 0 (LSB) \\
\hline UF & 21 & underflow digital output \\
\hline n.c. & 22 & not connected \\
\hline\(V_{\text {EED }}\) & 23 & digital supply voltage (-4.5 V) \\
\hline DGND & 24 & digital ground \\
\hline n.c. & 25 & not connected \\
\hline n.c. & 26 & not connected \\
\hline AGND & 27 & analog ground \\
\hline\(V_{\text {EEA }}\) & 28 & analog supply voltage (-4.5 V) \\
\hline & & \\
\hline
\end{tabular}

Fig. 2 Pin configuration.

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum Rating System (IEC 134).
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & MAX. & UNIT \\
\hline \(V_{\text {EEA }}\) & analog supply voltage (pin 28) & & -7.0 & +0.3 & V \\
\hline \(V_{\text {EED }}\) & digital supply voltage (pin 23) & & -7.0 & +0.3 & V \\
\hline \(\Delta \mathrm{V}_{\mathrm{EE}}\) & supply voltage difference between \(V_{\text {EEA }}\) and \(V_{E E D}\) & & -1.00 & +1.0 & V \\
\hline \(V_{1}\) & input voltage (pin 3) & referenced to AGND & \(V_{\text {EEA }}\) & 0 & V \\
\hline \(\Delta \mathrm{V}_{\text {clk(p-p) }}\) & clock input voltage difference between CLK and \(\overline{\text { CLK }}\) pin 8 to pin 9 (peak-to-peak value) & referenced to \(V_{\text {EED }}\); note 1 & - & 2.0 & V \\
\hline 10 & output current for each digital output & & - & 30 & mA \\
\hline \(\mathrm{T}_{\text {stg }}\) & storage temperature & & -55 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature & & 0 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{j}}\) & junction temperature & & - & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Note}
1. The circuit has two clock inputs CLK and CLK. Sampling takes place on the falling edge of the clock input signal; CLK and \(\overline{C L K}\) are two complementary signals.

THERMAL CHARACTERISTICS
\begin{tabular}{|c|l|c|c|}
\hline SYMBOL & PARAMETER & VALUE & UNIT \\
\hline\(R_{\text {th } j-a}\) & thermal resistance from junction to ambient in free air & 55 & K/W \\
\hline
\end{tabular}

Test conditions: PCB (\(2.24 \times 2.24 \times 0.062\) inches \()\). LFPM \(=\) Linear Foot Per Minute.

Fig. 3 Average effect of air flow on \(\mathrm{R}_{\text {th }} \mathrm{j}\)-a.

\section*{CHARACTERISTICS}
\(\mathrm{V}_{\mathrm{EEA}}=-4.2\) to \(-4.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{EED}}=-4.2\) to \(-4.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{EEA}}\) to \(\mathrm{V}_{\mathrm{EED}}=-0.1\) to +0.1 V ; AGND and DGND shorted together; \(\mathrm{T}_{\mathrm{amb}}=0\) to \(+70^{\circ} \mathrm{C}\); typical values measured at \(\mathrm{V}_{\mathrm{EEA}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EED}}=-4.5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\);
unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Supply} \\
\hline \(\mathrm{V}_{\text {EEA }}\) & analog supply voltage (pin 28) & & -4.2 & -4.5 & -4.8 & V \\
\hline \(\mathrm{V}_{\text {EED }}\) & digital supply voltage (pin 23) & & -4.2 & -4.5 & -4.8 & V \\
\hline \(l_{\text {eEA }}\) & analog supply current (pin 28) & & 30 & 42 & 54 & mA \\
\hline \(\mathrm{I}_{\text {EED }}\) & digital supply current (pin 23) & & 100 & 120 & 150 & mA \\
\hline IEEO(L) & LOW level output supply current & \(\mathrm{R}_{\mathrm{L}}=50 \Omega\) & 40 & 70 & 90 & mA \\
\hline \(\mathrm{I}_{\text {EEO(H) }}\) & HIGH level output supply current & \(\mathrm{R}_{\mathrm{L}}=50 \Omega\) & 155 & 170 & 185 & mA \\
\hline
\end{tabular}

Reference voltages for the resistor ladder (see Table 1)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(I_{R T}\) & reference current (pin 5) & \(\mathrm{R}=48 \Omega\) & 30 & 45 & 60 & mA \\
\hline \(\mathrm{~V}_{\mathrm{RB}}\) & reference voltage BOTTOM (pin 1) & & - & \(48 \Omega \times \mathrm{I}_{\mathrm{RT}}\) & - & V \\
\hline \(\mathrm{V}_{\mathrm{RT}}\) & reference voltage TOP (pin 5) & & - & 0 & - & V \\
\hline \(\mathrm{R}_{\mathrm{LAD}}\) & resistor ladder & & - & 48 & - & \(\Omega\) \\
\hline \(\mathrm{TC}_{\mathrm{RLAD}}\) & \begin{tabular}{l}
temperature coefficient of the \\
resistor ladder
\end{tabular} & & - & 175 & - & \(\mathrm{M} \Omega / \mathrm{K}\) \\
\hline \(\mathrm{V}_{\text {osB }}\) & voltage offset BOTTOM & note 1 & note 1 & - & \(8 \Omega \times \mathrm{I}_{\mathrm{RT}}\) & - \\
\hline \(\mathrm{V}_{\text {osT }}\) & voltage offset TOP & - & \(8 \Omega \times \mathrm{I}_{\mathrm{RT}}\) & - & mV \\
\hline
\end{tabular}

Inputs
CLK INPUT (PIN 8); CLK INPUT (PIN 9)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{V}_{\mathrm{IL}}\) & LOW level input voltage & & - & -1.8 & - & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & HIGH level input voltage & & - & -0.8 & - & V \\
\hline \(\mathrm{I}_{\mathrm{IL}}\) & LOW level input current & \(\mathrm{V}_{\text {clk }}=-1.8 \mathrm{~V}\) & - & 0 & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{IH}}\) & HIGH level input current & \(\mathrm{V}_{\text {clk }}=-0.8 \mathrm{~V}\) & - & 120 & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{R}_{\mathrm{I}}\) & input resistance & \(\mathrm{f}_{\mathrm{clk}}=100 \mathrm{MHz}\) & - & 1.5 & - & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{C}_{\mathrm{I}}\) & input capacitance & \(\mathrm{f}_{\mathrm{clk}}=100 \mathrm{MHz}\) & - & 3.5 & - & pF \\
\hline\(\Delta \mathrm{V}_{\text {clk(p-p) }}\) & \begin{tabular}{l}
clock input voltage difference \\
between CLK and \(\overline{C L K}\) pin 8 to \\
pin 9 (peak-to-peak value)
\end{tabular} & & - & 900 & - & mV \\
\hline
\end{tabular}

ANALOG INPUT (PIN 3); NOTE 2
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(I_{I L}\) & LOW level input current & data output \(=00\) & 20 & 40 & 80 & \(\mu \mathrm{~A}\) \\
\hline\(I_{I H}\) & HIGH level input current & data output \(=\mathrm{FF}\) & 100 & 200 & 400 & \(\mu \mathrm{~A}\) \\
\hline \(\mathrm{R}_{I}\) & input resistance & & - & 10 & - & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{C}_{I}\) & input capacitance & & - & 5 & - & pF \\
\hline
\end{tabular}

8-bit high-speed analog-to-digital converter
TDA8718
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Outputs (\(\mathrm{R}_{\mathrm{L}}=50 \Omega\))} \\
\hline \multicolumn{7}{|l|}{DIGITAL 100K ECL OUTPUTS (D0 To D7; OF; UF)} \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & LOW level output voltage & Tamb \(=25^{\circ} \mathrm{C}\) & - & -1770 & -1650 & mV \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & HIGH level output voltage & Tamb \(=25^{\circ} \mathrm{C}\) & -1300 & -1150 & - & mV \\
\hline \(V_{\text {ECL }}\) & ECL reference voltage & & -1550 & -1450 & -1350 & mV \\
\hline \({ }_{\mathrm{OL}}\) & LOW level output current & & 4 & 6 & 8 & mA \\
\hline IOH & HIGH level output current & & 10 & 20 & 25 & mA \\
\hline \multicolumn{7}{|l|}{Switching characteristics} \\
\hline \(\mathrm{f}_{\mathrm{Clk}(\text { max })}\) & maximum clock frequency (pins 8 and 9) & & 600 & - & - & MHz \\
\hline \(\mathrm{t}_{\mathrm{f}} ; \mathrm{t}_{\mathrm{f}}\) & rise and fall times & \(\mathrm{f}_{\mathrm{i}}=100 \mathrm{MHz}\) & - & - & 750 & ps \\
\hline \multicolumn{7}{|l|}{Analog signal processing (\(\mathrm{fclk}=500 \mathrm{MHz}\))} \\
\hline \multicolumn{7}{|l|}{HARMONICS (FULL SCALE)} \\
\hline \(\mathrm{h}_{1}\) & fundamental harmonics & \(\mathrm{f}_{\mathrm{i}}=100 \mathrm{MHz}\) & - & 0 & - & dB \\
\hline \(\mathrm{h}_{2}\) & second harmonics & \(\mathrm{f}_{\mathrm{i}}=100 \mathrm{MHz}\) & - & -54 & - & dB \\
\hline \(\mathrm{h}_{3}\) & third harmonics & \(\mathrm{f}_{\mathrm{i}}=100 \mathrm{MHz}\) & - & -50 & - & dB \\
\hline \multicolumn{7}{|l|}{Transfer function} \\
\hline ILE & DC integral linearity error & & - & \(\pm 0.7\) & \(\pm 1.0\) & LSB \\
\hline DLE & DC differential linearity error & & - & \(\pm 0.3\) & \(\pm 0.5\) & LSB \\
\hline AILE & AC integral linearity error & note 3 & - & \(\pm 0.9\) & \(\pm 1.5\) & LSB \\
\hline \multirow[t]{2}{*}{EB} & \multirow[t]{2}{*}{effective bits} & \[
\begin{array}{|l}
\hline f_{i}=4.43 \mathrm{MHz}, \text { full scale; } \\
\mathrm{l}_{\text {ref }}=45 \mathrm{~mA} ; \text { note } 4 ; \\
\mathrm{f}_{\text {clk }}=100 \mathrm{MHz} ; \text { Fig. } 5 \\
\hline
\end{array}
\] & - & 7.5 & - & bits \\
\hline & & \[
\begin{aligned}
& \mathrm{f}_{\mathrm{i}}=100 \mathrm{MHz}, \text { full scale; } \\
& \mathrm{I}_{\text {ref }}=45 \mathrm{~mA} ; \text { note } 4 ; \\
& \mathrm{f}_{\text {clk }}=500 \mathrm{MHz} ; \text { Fig. } 6 \\
& \hline
\end{aligned}
\] & - & 6.5 & - & bits \\
\hline BER & bit error rate & \[
\begin{aligned}
& \hline \mathrm{f}_{\text {clk }}=500 \mathrm{MHz} ; \\
& \mathrm{f}_{\mathrm{i}}=100 \mathrm{MHz} ; \\
& \mathrm{V}_{\mathrm{i}}= \pm 8 \mathrm{LSB} \text { at code } \\
& 128 ; 50 \% \text { clock duty } \\
& \text { cycle }
\end{aligned}
\] & - & \(10^{-11}\) & - & times/ samples \\
\hline \multicolumn{7}{|l|}{Timing (\(\mathrm{f}_{\mathrm{clk}}=500 \mathrm{MHz} ; \mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}\)) note 5} \\
\hline \(\mathrm{t}_{\mathrm{ds}}\) & sampling delay & & - & - & 300 & ps \\
\hline \(t_{h}\) & output hold time & & 400 & 700 & - & ps \\
\hline \(\mathrm{t}_{\mathrm{d}}\) & output delay time & & - & 1300 & 1500 & ps \\
\hline
\end{tabular}

\section*{Notes to the "Characteristics"}
1. Voltage offset BOTTOM \(\left(V_{o s B}\right)\) is the difference between the analog input which produces data outputs equal to 00 and the reference voltage BOTTOM (\(\mathrm{V}_{\mathrm{RB}}\)) at \(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\). Voltage offset TOP \(\left(\mathrm{V}_{\mathrm{os}}\right)\) is the difference between reference voltage \(T O P\left(V_{R T}\right)\) and the analog input which produces data outputs equal to FF , at \(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\).
2. The analog input is not internally biased. It should be externally biased between \(V_{R T}\) and \(V_{R B}\) levels.
3. Full-scale sine wave; \(f_{i}=4.43 \mathrm{MHz} ; f_{c l k}=100 \mathrm{MHz}\).
4. Effective bits are obtained via a Fast Fourier Transform (FFT) treatment taking 4 K acquisition points per period. The calculation takes into account all harmonics and noise up to half of the clock frequency (NYQUIST frequency). Conversion to signal-to-noise ratio: \(\mathrm{S} / \mathrm{N}=\mathrm{EB} \times 6.02+1.76 \mathrm{~dB}\).
5. TDA8718 can only withstand one or two 100 K ECL loads in order to work out timings at the maximum sampling frequency. It is recommended to minimize the printed circuit-board load by implementing the load device as close as possible to the TDA8718.

Table 1 Output coding and input voltage (typical values; referenced to AGND.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{STEP} & \multirow[b]{2}{*}{\(V_{1}\)} & \multirow{2}{*}{O/UF} & \multicolumn{6}{|c|}{BINARY OUTPUT BITS} \\
\hline & & & D5 & D4 & D3 & D2 & D1 & D0 \\
\hline Underflow & \(<-40 \Omega \times \mathrm{I}_{\text {RT }}\) & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & \(-40 \Omega \times \mathrm{I}_{\mathrm{RT}}\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & . & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline . & . & . & . & & . & . & . & . \\
\hline . & . & . & . & . & . & . & . & . \\
\hline . & . & . & . & . & . & . & . & . \\
\hline 254 & . & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 255 . & \(-8 \Omega \times \mathrm{I}_{\mathrm{RT}}\) & 0 & 1. & 1 & 1 & 1 & 1 & 1 \\
\hline Overflow & \(>-8 \Omega \times \mathrm{I}_{\mathrm{RT}}\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

Fig. 4 Timing diagram.

Effective bits: 7.53; \(\mathrm{THD}=-54.56 \mathrm{~dB}\).
Harmonic levels \((\mathrm{dB}): 2 \mathrm{nd}=-77.28 ; 3 \mathrm{rd}=-54.76 ; 4 \mathrm{th}=-71.43 ; 5\) th \(=-71.85 ; 6\) th \(=-105.50\).
Fig. 5 Fast Fourier Transform (\(\mathrm{f}_{\mathrm{clk}}=100 \mathrm{MHz} ; \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\)).

Effective bits: 6.60: \(\mathrm{THD}=-48.60 \mathrm{~dB}\).
Harmonic levels \((\mathrm{dB}): 2 \mathrm{nd}=-64.81 ; 3 \mathrm{rd}=-51.10 ; 4 \mathrm{th}=-65.05 ; 5 \mathrm{th}=-58.33 ; 6 \mathrm{th}=-54.07\).
Fig. 6 Fast Fourier Transform (\(\mathrm{f}_{\mathrm{clk}}=500 \mathrm{MHz} ; \mathrm{f}_{\mathrm{i}}=100 \mathrm{MHz}\)).

\section*{8-bit high-speed analog-to-digital converter}

\section*{APPLICATION INFORMATION}

Fig. 7 Application diagram.

\section*{FEATURES}
- 8-bit resolution
- Sampling rate up to 20 MHz
- TTL compatible digital inputs
- 3-state TTL outputs
- U, V two's complement outputs
- Y binary output
- Power dissipation of 550 mW (typical)
- Low analog input capacitance, no buffer amplifier required
- High signal-to-noise ratio over a large analog input frequency range
- Track-and-hold included
- Clamp functions included
- UV multiplexed ADC
- \(4: 1: 1\) output data encoder
- Stable voltage regulator included.

\section*{APPLICATIONS}
- High speed analog-to-digital convertion for video signal digitizing
- 100 Hz improved definition TV (IDTV).

\section*{GENERAL DESCRIPTION}

The TDA8755 is a bipolar 8-bit video low-power analog-to-digital conversion (ADC) interface for YUV signals. The device converts the YUV analog input signal into 8-bit coded digital words in a \(4: 1: 1\) format at a sampling rate of 20 MHz . The \(\mathrm{U} / \mathrm{V}\) signals are converted in a multiplexed manner. All analog signal inputs are digitally clamped and a fast precharge is provided for start-up. All digital inputs and outputs are TTL compatible. Frame synchronization is supported in a multiplexed manner.

QUICK REFERENCE DATA
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN: & TYP. & MAX. & UNIT \\
\hline \(V_{\text {CCA }}\) & analog supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline \(V_{\text {CCD }}\) & digital supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline \(V_{\text {cco }}\) & output stages supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline ICCA & analog supply current & & - & 46 & 51 & mA \\
\hline \(\mathrm{I}_{\text {CCD }}\) & digital supply current & & - & 55 & 61 & mA \\
\hline Icco & output stages supply current & & - & 9 & 12 & mA \\
\hline ILE & DC integral linear error & \(\mathrm{f}_{\text {clk }}=2 \mathrm{MHz}\) & - & \(\pm 0.4\) & \(\pm 1\) & LSB \\
\hline DLE & DC differential linearity error & \(\mathrm{f}_{\text {clk }}=2 \mathrm{MHz}\) & - & \(\pm 0.3\) & \(\pm 0.5\) & LSB \\
\hline EB & effective bit & & - & 7.1 & - & MHz \\
\hline \(\mathrm{f}_{\text {clk }}\) (max) & maximum clock frequency & & 20 & - & - & MHz \\
\hline \(\mathrm{P}_{\text {tot }}\) & total power dissipation & & - & 550 & 650 & mW \\
\hline
\end{tabular}

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ TYPE NUMBER } & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline TDA8755T & 32 & SO32L & plastic & SOT287-1 \\
\hline
\end{tabular}

YUV 8-bit video low-power analog-to-digital interface

PINNING
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline n.c. & 1 & not connected \\
\hline REG1 & 2 & decoupling input (internal stabilization loop decoupling) \\
\hline INY & 3 & Y analog voltage input \\
\hline REG2 & 4 & decoupling input (internal stabilization loop decoupling) \\
\hline CLPY & 5 & Y clamp capacitor connection \\
\hline \(V_{\text {CCA }}\) & 6 & analog positive supply voltage
\[
(+5 \mathrm{~V})
\] \\
\hline INU & 7 & U analog voltage input \\
\hline SBN & 8 & stabilizer decoupling node and analog reference voltage (+3.35 V) \\
\hline INV & 9 & \(V\) analog voltage input \\
\hline AGND & 10 & analog ground \\
\hline CLPU & 11 & U clamp capacitor connection \\
\hline CLPV & 12 & \(V\) clamp capacitor connection \\
\hline REG3 & 13 & decoupling input (internal stabilization loop decoupling) \\
\hline \(\overline{\mathrm{CE}}\) & 14 & chip enable input (TTL level input active LOW) \\
\hline CLP & 15 & clamp control input \\
\hline HREF & 16 & horizontal reference signal \\
\hline CLK & 17 & clock input \\
\hline DGND & 18 & digital ground \\
\hline D'0 & 19 & \(\checkmark\) data output; bit 0 (\(\mathrm{n}-1\)) \\
\hline D'1 & 20 & \(V\) data output; bit 1 (n) \\
\hline D'2 & 21 & U data output; bit 0 (\(\mathrm{n}-1\)) \\
\hline D'3 & 22 & U data output; bit 1 (n) \\
\hline Vcco & 23 & positive supply voltage for output stages (+5 V) \\
\hline D0 & 24 & Y data output; bit 0 (LSB) \\
\hline D1 & 25 & Y data output; bit 1 \\
\hline D2 & 26 & Y data output; bit 2 \\
\hline D3 & 27 & Y data output; bit 3 \\
\hline D4 & 28 & Y data output; bit 4 \\
\hline D5 & 29 & Y data output; bit 5 \\
\hline D6 & 30 & Y data output; bit 6 \\
\hline D7 & 31 & Y data output; bit 7 (MSB) \\
\hline \(V_{\text {CCD }}\) & 32 & digital positive supply voltage (+5 V) \\
\hline
\end{tabular}

Fig. 2 Pin configuration.

\section*{YUV 8-bit video low-power analog-to-digital interface}

LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC134).
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & MAX. & UNIT \\
\hline \(V_{\text {CCA }}\) & analog supply voltage & & -0.3 & +7.0 & V \\
\hline \(V_{\text {CCD }}\) & digital supply voltage & . & -0.3 & +7.0 & V \\
\hline \(V_{\text {cco }}\) & output stages supply voltage & & -0.3 & +7.0 & V \\
\hline \multirow[t]{3}{*}{\(\Delta V_{C C}\)} & supply voltage difference between \(\mathrm{V}_{C C A}\) and \(\mathrm{V}_{C C D}\) & & -1.0 & +1.0 & V \\
\hline & supply voltage difference between \(\mathrm{V}_{C C O}\) and \(\mathrm{V}_{C C D}\) & & -1.0 & +1.0 & V \\
\hline & supply voltage difference between \(\mathrm{V}_{\text {CCA }}\) and \(\mathrm{V}_{\text {CCO }}\) & & -1.0 & \(+1.0\) & V \\
\hline \(V_{1}\) & input voltage & referenced to AGND & - & +5.0 & V \\
\hline \(\mathrm{V}_{\text {clk }(p-p)}\) & AC input voltage for switching (peak-to-peak value) & referenced to DGND & - & \(\mathrm{V}_{\text {CCD }}\) & V \\
\hline \(\mathrm{l}_{0}\) & output current & & - & +6 & mA \\
\hline \(\mathrm{T}_{\text {stg }}\) & storage temperature & & -55 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature & & 0 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{i}}\) & junction temperature & & - & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{HANDLING}

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

THERMAL CHARACTERISTICS
\begin{tabular}{|l|l|c|c|}
\hline SYMBOL & PARAMETER & VALUE & UNIT \\
\hline\(R_{\text {th } j-a}\) & thermal resistance from junction to ambient in free air & 70 & KN \\
\hline
\end{tabular}

YUV 8-bit video low-power analog-to-digital interface

\section*{CHARACTERISTICS}
\(V_{C C A}=V_{6}\) to \(V_{10}=4.75\) to \(5.25 \mathrm{~V} ; V_{C C D}=V_{32}\) to \(V_{18}=4.75\) to \(5.25 \mathrm{~V} ; V_{C C O}=V_{23}\) to \(V_{18}=4.75\) to 5.25 V ; AGND and DGND shorted together; \(V_{C C A}\) to \(V_{C C D}=-0.25\) to \(+0.25 \mathrm{~V} ; V_{C C O}\) to \(V_{C C D}=-0.25\) to +0.25 V ; \(V_{C C A}\) to \(V_{C C O}=-0.25\) to \(+0.25 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=0\) to \(+70^{\circ} \mathrm{C}\); typical values measured at \(\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCD}}=\mathrm{V}_{\mathrm{CCO}}=5 \mathrm{~V}\) and \(\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}\); unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Supply} \\
\hline \(V_{\text {CCA }}\) & analog supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline \(V_{\text {CCD }}\) & digital supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline \(\mathrm{V}_{\text {cco }}\) & output stages supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline ICCA & analog supply current & & - & 46 & 51 & mA \\
\hline ICCD & digital supply current & & - & 55 & 61 & mA \\
\hline I CCo & output stages supply current & & - & 9 & 12 & mA \\
\hline \multicolumn{7}{|l|}{Inputs} \\
\hline \multicolumn{7}{|l|}{CLK (PIN 17)} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & HIGH level input voltage & & 2.0 & - & \(V_{\text {CCD }}\) & V \\
\hline \(\mathrm{I}_{1 /}\) & LOW level input current & \(\mathrm{V}_{\mathrm{clk}}=0.4 \mathrm{~V}\) & -400 & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{IH}}\) & HIGH level input current & \(\mathrm{V}_{\text {clk }}=2.7 \mathrm{~V}\) & - & - & 100 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{Z}_{1}\) & input impedance & \(\mathrm{f}_{\text {clk }}=20 \mathrm{MHz}\) & - & 4 & - & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & \(\mathrm{f}_{\text {clk }}=20 \mathrm{MHz}\) & - & 4.5 & - & pF \\
\hline \multicolumn{7}{|l|}{\(\overline{\mathrm{CE}}, \mathrm{CLP}\) and HREF (PINS 14 To 16)} \\
\hline \(\mathrm{V}_{\text {II }}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{1 H}\) & HIGH level input voltage & & 2.0 & - & \(V_{\text {CCD }}\) & V \\
\hline ILL & LOW level input current & \(\mathrm{V}_{\mathrm{clk}}=0.4 \mathrm{~V}\) & -400 & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{IIH}^{\text {I }}\) & HIGH level input current & \(\mathrm{V}_{\text {clk }}=2.7 \mathrm{~V}\) & - & - & 100 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{CLPY (PIN 5)} \\
\hline \(V_{5}\) & clamp voltage for 16 output code & & - & 3.725 & - & V \\
\hline \(l_{5}\) & clamp output current & & - & \(\pm 50\) & - & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{CLPU AND CLPV (PINS 11 AND 12)} \\
\hline \(V_{11,12}\) & clamp voltage for 128 output code & & - & 3.30 & - & V \\
\hline \(\mathrm{I}_{11,12}\) & clamp output current & & - & \(\pm 50\) & - & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{INY (PIN 3)} \\
\hline \(\mathrm{V}_{1(p-p)}\) & input voltage, full range (peak-to-peak value) & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & 0.93 & 1.0 & 1.07 & V \\
\hline \(\mathrm{Z}_{1}\) & input impedance & \(\mathrm{f}_{\mathrm{i}}=6 \mathrm{MHz}\) & - & 30 & - & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & \(\mathrm{f}_{\mathrm{i}}=6 \mathrm{MHz}\) & - & 1 & - & pF \\
\hline
\end{tabular}

YUV 8-bit video low-power analog-to-digital interface

TDA8755
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{INU AND INV (PINS 7 AND 9)} \\
\hline \(V_{1(p-p)}\) & input voltage, full range (peak-to-peak value) & \(\mathrm{f}_{\mathrm{i}}=1.5 \mathrm{MHz}\) & 0.9 & 1.0 & 1.1 & V \\
\hline \(\mathrm{Z}_{1}\) & input impedance & \(\mathrm{f}_{\mathrm{i}}=2 \mathrm{MHz}\) & - & 30 & - & k \(\Omega\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & \(\mathrm{f}_{\mathrm{i}}=2 \mathrm{MHz}\) & - & 1 & - & pF \\
\hline \multicolumn{7}{|l|}{InPUTS ISOLATION} \\
\hline \(\alpha_{c t}\) & crosstalk between \(\mathrm{Y}, \mathrm{U}\) and V & & - & -55 & -50 & dB \\
\hline \multicolumn{7}{|l|}{Outputs} \\
\hline \multicolumn{7}{|l|}{SDN (PIN 8)} \\
\hline \(V_{\text {ref }}\) & reference voltage & & - & 3.35 & - & V \\
\hline \(\mathrm{V}_{\text {REG }}\) & line regulation & \(4.75 \mathrm{~V} \leq \mathrm{V}_{\text {CCA }} \leq 5.25 \mathrm{~V}\) & - & 4.0 & - & mV \\
\hline IL & load current & & -2 & - & - & mA \\
\hline
\end{tabular}

DIGITAL OUTPUTS DO TO D7 AND D'0 TO D'3 (pins 24 To 31 AND 19 то 22)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multirow{2}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & LOW level output voltage & \(I_{0}=0.4 \mathrm{~mA}\) & 0 & - & 0.4 & V \\
\cline { 3 - 7 } & & \(I_{0}=1.5 \mathrm{~mA}\) & 0 & - & 0.5 & V \\
\hline \(\mathrm{~V}_{\mathrm{OH}}\) & HIGH level output voltage & \(I_{0}=-0.4 \mathrm{~mA}\) & 2.4 & - & \(\mathrm{V}_{\mathrm{CCD}}\) & V \\
\hline \(\mathrm{I}_{\mathrm{OZ}}\) & output current in 3-state mode & \(0.4 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CCD}}\) & -20 & - & +20 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

\section*{Switching characteristics}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{f}_{\mathrm{clk}(\text { max })}\) & maximum clock frequency & & 20 & - & - & MHz \\
\hline \(\mathrm{f}_{\mathrm{clk}(\text { min })}\) & minimum clock frequency & & - & - & 2.0 & MHz \\
\hline \(\mathrm{t}_{\mathrm{CPH}}\) & clock pulse width HIGH & & 20 & - & - & ns \\
\hline \(\mathrm{t}_{\mathrm{CPL}}\) & clock pulse width LOW & & 20 & - & - & ns \\
\hline
\end{tabular}

Analog signal processing (\(\mathbf{f}_{\mathrm{clk}}=\mathbf{2 0} \mathbf{~ M H z ; ~ 5 0 \% ~ c l o c k ~ d u t y ~ f a c t o r) ~}\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{G}_{\text {diff }}\) & differential gain & note 1; see Fig.8 & - & 2 & - & \(\%\) \\
\hline\(\varphi_{\text {diff }}\) & differential phase & note 1; see Fig.8 & - & 3 & - & deg \\
\hline \(\mathrm{f}_{1}\) & fundamental harmonics (full-scale) & note 2 & - & - & 0 & dB \\
\hline \(\mathrm{f}_{\text {all }}\) & \begin{tabular}{l}
harmonics (full-scale), \\
all components
\end{tabular} & note 2; see Fig.10 & - & -54 & - & dB \\
\hline SVRR1 & supply voltage ripple rejection 1 & note 3 & - & -40 & - & dB \\
\hline SVRR2 & supply voltage ripple rejection 2 & note 3 & - & 1.0 & - & \(\% / \mathrm{N}\) \\
\hline
\end{tabular}

Transfer function (50\% clock duty factor)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline ILE & DC integral linearity error & \(\mathrm{f}_{\mathrm{clk}}=2 \mathrm{MHz}\) & - & \(\pm 0.4\) & \(\pm 1.0\) & LSB \\
\hline DLE & DC differential linearity error & \(\mathrm{f}_{\text {clk }}=2 \mathrm{MHz}\) & - & \(\pm 0.3\) & \(\pm 0.5\) & LSB \\
\hline AILE & AC integral linearity error & note 4 & - & \(\pm 1.0\) & \(\pm 2.0\) & LSB \\
\hline EB & effective bit & note \(5 ;\) Fig.10 & - & 7.1 & - & bits \\
\hline
\end{tabular}

YUV 8-bit video low-power analog-to-digital interface
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Timing (note 6; see Figs 3 to 7; \(\mathbf{f}_{\text {clk }}=\mathbf{2 0} \mathbf{~ M H z}\))} \\
\hline \(t_{\text {ds }}\) & sampling delay time & & - & 1 & - & ns \\
\hline \(t_{\text {h }}\) & output hold time & & 7 & - & - & ns \\
\hline \(\mathrm{t}_{\text {d }}\) & output delay time & & - & 33 & 42 & ns \\
\hline \(\mathrm{t}_{\mathrm{dz}} \mathrm{H}\) & 3-state output delay time & enable-to-HIGH & - & 10 & 14 & ns \\
\hline \(\mathrm{t}_{\text {dZL }}\) & 3-state output delay time & enable-to-LOW & - & 10 & 14 & ns \\
\hline \(\mathrm{t}_{\mathrm{dHz}}\) & 3-state output delay time & disable-to-HIGH & - & 8 & 11 & ns \\
\hline \(\mathrm{t}_{\text {dLZ }}\) & 3-state output delay time & disable-to-LOW & - & 4 & 6 & ns \\
\hline \(\mathrm{t}_{\mathrm{r}}\) & clock rise time & & 3 & 5 & - & ns \\
\hline \(\mathrm{t}_{\mathrm{f}}\) & clock fall time & & 3 & 5 & - & ns \\
\hline \(\mathrm{t}_{\text {su }}\) & HREF set-up time & & 7 & - & - & ns \\
\hline \(t_{\text {h }}\) & HREF hold time & & 3 & - & - & ns \\
\hline \(t_{r}\) & data output rise time & & - & 10 & - & ns \\
\hline \(t_{f}\) & data output fall time & & - & 10 & - & ns \\
\hline \(\mathrm{t}_{\text {cLP }}\) & minimum time for active clamp & note 7; see Fig. 9 & 3 & - & - & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

\section*{Notes}
1. Low frequency ramp signal \(\left(V_{l(p-p)}=\right.\) full-scale and \(64 \mu s\) period) combined with a sine wave input voltage \(\left(V_{1(p-p)}=0.25\right.\) full-scale, \(f_{i}=\) maximum permitted frequency) at the input.
2. The input conditions are related as follows:
a) \(Y\) channel: \(V_{I(p-p)}=1.0 \mathrm{~V} ; f_{i}=4.43 \mathrm{MHz}\)
b) \(\mathrm{U} / \mathrm{V}\) channel: \(\mathrm{V}_{I(p-p)}=1.0 \mathrm{~V} ; \mathrm{f}_{\mathrm{i}}=1.5 \mathrm{MHz}\).
3. Supply voltage ripple rejection:
a) SVRR1 is the variation of the input voltage producing output code 127 (code 15) for supply voltage variation of 0.5 V :
\[
\text { SVRR1 }=20 \log \frac{\Delta V_{1(127)}}{\Delta V_{\mathrm{CCA}}}
\]
b) SVRR2 is the relative variation of the full-scale range of analog input for a supply voltage variation of 0.5 V :
\[
\text { SVVR2 }=\frac{\Delta\left(V_{1(0)}-V_{1(255)}\right)}{V_{1(0)}-V_{1(255)}} \times \frac{1}{\Delta V_{C C A}}
\]
4. Full-scale sine wave (\(f_{i}=4.43 \mathrm{MHz}\) for \(Y\) and \(f_{i}=1.5 \mathrm{MHz}\) for \(U\) and \(V ; f_{c l k}=20 \mathrm{MHz}\)).
5. The number of effective bits is measured using a 20 MHz clock frequency. This value is given for a 4.43 MHz input frequency on the \(Y\) channel (1.5 MHz on the \(U\) and \(V\) channels). This value is obtained via a Fast Fourier Transform (FFT) treatment taking \(4 \times \mathrm{T}_{\text {clk }}\) (clock periods) acquisition points per period. The calculation takes into account all harmonics and noise up to half of the clock frequency (NYQUIST frequency).
Conversion to signal-to-noise ratio: \(\mathrm{S} / \mathrm{N}=\mathrm{EB} \times 6.02+1.76 \mathrm{~dB}\).
6. Output data acquisition is available after the maximum delay time of \(t_{d}\).
7. \(U\) and \(V\) output data is not valid during \(t_{C L P}\).

\section*{YUV 8-bit video low-power analog-to-digital interface}

Table 1 Mode selection.
\begin{tabular}{|c|c|}
\hline\(\overline{\mathbf{C E}}\) & D7 TO D0; D'3 TO D'0 \\
\hline 1 & high impedance \\
\hline 0 & active; binary \\
\hline
\end{tabular}

Table 2 Output data coding.
\begin{tabular}{|c|c|c|c|c|c|}
\hline OUTPUT PORT & BIT & \multicolumn{4}{|c|}{OUTPUT DATA} \\
\hline \multirow[t]{8}{*}{Y} & D7 & \(Y_{0} 7\) & \(Y_{1} 7\) & \(Y_{2} 7\) & \(Y_{3} 7\) \\
\hline & D6 & \(Y_{0} 6\) & \(Y_{1} 6\) & \(Y_{2} 6\) & \(Y_{3} 6\) \\
\hline & D5 & \(Y_{0} 5\) & \(Y_{1} 5\) & \(Y_{2}{ }^{5}\) & \(Y_{3} 5\) \\
\hline & D4 & \(\mathrm{Y}_{0} 4\) & \(Y_{1} 4\) & \(Y_{2} 4\) & \(\mathrm{Y}_{3} 4\) \\
\hline & D3 & \(\mathrm{Y}_{0} 3\) & \(Y_{1} 3\) & \(\mathrm{Y}_{2}{ }^{3}\) & \(Y_{3} 3\) \\
\hline & D2 & \(Y_{0} 2\) & \(Y_{1} 2\) & \(\mathrm{Y}_{2} 2\) & \(Y_{3} 2\) \\
\hline & D1 & \(Y_{0} 1\) & \(Y_{1} 1\) & \(\mathrm{Y}_{2} 1\) & \(Y_{3} 1\) \\
\hline & D0 & \(\mathrm{Y}_{0} 0\) & \(Y_{1} 0\) & \(\mathrm{Y}_{2} \mathrm{O}\) & \(Y_{3} 0\) \\
\hline \multirow[t]{2}{*}{U} & D'3 & \(\bar{U}_{0} 7\) & \(\cup_{0} 5\) & \(\mathrm{U}_{0} 3\) & \(\mathrm{U}_{0} 1\) \\
\hline & D'2 & \(\mathrm{U}_{0} 6\) & \(\mathrm{U}_{0} 4\) & \(\mathrm{U}_{0} 2\) & \(\mathrm{U}_{0} 0\) \\
\hline \multirow[t]{2}{*}{V} & D'1 & \(\bar{V}_{0} 7\) & \(\mathrm{V}_{0} 5\) & \(\mathrm{V}_{0} 3\) & \(\mathrm{V}_{0} 1\) \\
\hline & D'0 & \(V_{0} 6\) & \(\mathrm{V}_{0} 4\) & \(\mathrm{V}_{0} 2\) & \(\mathrm{V}_{0} 0\) \\
\hline
\end{tabular}

Fig. 3 Timing diagram (INY signal).

\section*{YUV 8-bit video low-power analog-to-digital interface}

Fig. 4 Timing diagram and test conditions of 3-state output delay time.

Fig. 5 Load circuit for the 3-state output timing measurement.

\section*{YUV 8-bit video low-power analog-to-digital interface}

The output data is valid 4 clock periods after HREF goes HIGH.
Fig. 6 Timing definition for set-up and hold times (HREF signal).

When the HREF period is a multiple of 4 clock periods, the output data is valid without any clock delay. The internal circuit always gives an internal delay of 4 clock periods as illustrated in Fig. 6.

Fig. 7 Timing diagram (HREF signal).

\section*{YUV 8-bit video low-power analog-to-digital interface}

\(Y\) channel \(=4.43 \mathrm{MHz}\) sine wave.
\(U, V\) channel \(=1.5 \mathrm{MHz}\) sine wave.
Fig. 8 Input test signal for differential gain and phase measurements.

Fig. 9 Clamping control timing.

\section*{YUV 8-bit video low-power analog-to-digital interface \\ TDA8755}

Effective bits: 7.30; \(\mathrm{THD}=-53.35 \mathrm{~dB}\).
Harmonic levels \((\mathrm{dB}): 2 \mathrm{nd}=-58.38 ; 3 \mathrm{rd}=-60.03 ; 4 \mathrm{th}=-57.30 ; 5 \mathrm{th}=-69.38 ; 6\) th \(=-67.09\).
Fig. 10 Fast Fourier Transform (\(\mathrm{f}_{\mathrm{clk}}=20 \mathrm{MHz} ; \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\)).

\section*{YUV 8-bit video low-power analog-to-digital interface}

\section*{APPLICATION INFORMATION}

The analog and digital supplies should be separated and decoupled.
(1) Clamp capacitors must be determined in accordance with the application; recommended values are CLPY \(=18 \mathrm{nF}, \mathrm{CLPU}\) and CLPV \(=33 \mathrm{nF}\).
(2) It is possible to use the reference output voltage pin SDN to drive other analog circuits under the limits indicated in Chapter "Characteristics".
(3) Input signal pins have a high bandwidth. It is necessary to take special care on PCB layout to avoid any interaction from other signals (digital clocks for example).

Fig. 11 Application diagram.

\section*{YUV 8-bit video low-power analog-to-digital interface}

Fig. 12 Block diagram of a full-options Improved Picture Quality (IPQ) module.

\section*{YUV 8-bit video low-power analog-to-digital interface}

Fig. 13 Block diagram of an economic Improved Picture Quality (IPQ) module.

YC 8-bit low-power analog-to-digital video interface

\section*{FEATURES}
- Two 8-bit ADCs:
- one Luminance or CVBS channel
- one Chrominance channel
- Sampling rate up to 32 MHz
- Binary or two's complement 3-state TTL outputs for each channel
- Internal reference voltage regulator
- TTL-compatible digital inputs and outputs
- Power dissipation of 485 mW (typical)
- Input selector circuit (five selectable video inputs for CVBS or YC processing)
- Peak white enable input
- Clamp and Automatic Gain Control (AGC) functions for Y/CVBS channel (clamping on code 64 and Peak White level control at code 255)
- Clamp function for C channel (code 128)
- No sample-and-hold circuit required.

\section*{APPLICATIONS}
- Video signal decoding
- Digital picture processing
- Frame grabbing
- Multimedia with the Philips Desktop Video chip set (SAA7151B, SAA7191B, SAA7194, SAA7196 and SAA9051).

\section*{GENERAL DESCRIPTION}

The TDA8758 is an 8-bit video high-speed low-power analog-to-digital conversion (ADC) interface for YC and CVBS signal processing. It converts 1-of-3 CVBS input signals or 1-of-2 YC input signals into binary or two's complement words at a sampling rate of 32 MHz . All analog signal inputs are digitally clamped and an ADC interface is provided on the Y/CVBS channel. A fast precharge on clamp and AGC is provided for start-up. All digital inputs and outputs are TTL compatible.

\section*{QUICK REFERENCE DATA}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(V_{\text {CCA }}\) & analog supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline \(V_{\text {CCD }}\) & digital supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline \(\mathrm{V}_{\text {cco }}\) & output stages supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline ICca & analog supply current & & - & 55 & tbf & mA \\
\hline \(I_{\text {CCD }}\) & digital supply current & & - & 24 & tbf & mA \\
\hline İco & output supply current & & - & 18 & tbf & mA \\
\hline ILE & DC integral linearity error & & - & \(\pm 0.75\) & tbf & LSB \\
\hline DLE & DC differential linearity error & & - & \(\pm 0.4\) & tbf & LSB \\
\hline EB & effective bits (from video input to digital outputs) & \[
\begin{aligned}
& f_{\mathrm{clk}}=32 \mathrm{MHz} ; \\
& \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}
\end{aligned}
\] & - & 7.0 & - & bits \\
\hline \(\mathrm{f}_{\text {clk }(\text { max })}\) & maximum clock frequency & & 30 & 32 & - & MHz \\
\hline B & maximum -3 dB bandwidth (input preamplifier) & full-scale; 0 dB gain & - & 45 & - & MHz \\
\hline \(\alpha_{\text {ct }}\) & crosstalk between Y and C channels & & - & -56 & -50 & dB \\
\hline \(\mathrm{P}_{\text {tot }}\) & total power dissipation & & - & 485 & tbf & mW \\
\hline
\end{tabular}

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ TYPE NUMBER } & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline TDA8758G & 48 & TQFP48 & plastic & SOT313-2 \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { YC 8-bit low-power analog-to-digital video TDA8758 } \\
& \text { interface }
\end{aligned}
\]

\section*{BLOCK DIAGRAM}

Fig. 1 Block diagram.

\section*{PINNING}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline DEC1 & 1 & decoupling input 1 \\
\hline CHROM2 & 2 & chrominance analog voltage input 2 \\
\hline AGND & 3 & analog ground \\
\hline CHROM1 & 4 & chrominance analog voltage input 1 \\
\hline SEL2 & 5 & selection control input 2 \\
\hline CVBS3 & 6 & luminance analog voltage input 3 \\
\hline \(\mathrm{C}_{\text {CLPY }}\) & 7 & Y channel clamping capacitor \\
\hline SDN & 8 & stabilizer decoupling node \\
\hline Y2/CVBS2 & 9 & luminance analog voltage input 2 \\
\hline \(\mathrm{V}_{\text {CCA }}\) & 10 & analog supply voltage (+5 V) \\
\hline Y1/CVBS1 & 11 & luminance analog voltage input 1 \\
\hline SEL1 & 12 & selection control input 1 \\
\hline \(\mathrm{C}_{\text {AGC }}\) & 13 & AGC capacitor \\
\hline \(\overline{\text { PWE }}\) & 14 & peak white enable input (active LOW) \\
\hline DEC3 & 15 & decoupling input 3 \\
\hline ANOUTY & 16 & analog output for \(Y\) channel \\
\hline REG2 & 17 & decoupling input 2 (internal stabilization loop decoupling) \\
\hline DGND & 18 & digital ground \\
\hline GATE A & 19 & AGC control input \\
\hline GATE B & 20 & clamp control input \\
\hline \(\mathrm{V}_{\text {CCD }}\) & 21 & digital supply voltage (+5 V) \\
\hline OFY & 22 & Y channel output format/chip enable (3-state input) \\
\hline Y7 & 23 & Y channel data output; bit 7 (MSB) \\
\hline Y6 & 24 & Y channel data output; bit 6 \\
\hline Y5 & 25 & Y channel data output; bit 5 \\
\hline Y4 & 26 & Y channel data output; bit 4 \\
\hline Y3 & 27 & Y channel data output; bit 3 \\
\hline Y2 & 28 & Y channel data output; bit 2 \\
\hline Y1 & 29 & Y channel data output; bit 1 \\
\hline Y0 & 30 & Y channel data output; bit 0 (LSB) \\
\hline OGND2 & 31 & output ground 2 \\
\hline \(\mathrm{V}_{\mathrm{CCO2}}\) & 32 & output supply voltage \(2(+5 \mathrm{~V})\) \\
\hline C7 & 33 & C channel data output; bit 7 (MSB) \\
\hline C6 & 34 & C channel data output; bit 6 \\
\hline C5 & 35 & C channel data output; bit 5 \\
\hline C 4 & 36 & C channel data output; bit 4 \\
\hline C3 & 37 & C channel data output; bit 3 \\
\hline C2 & 38 & C channel data output; bit 2 \\
\hline C1 & 39 & C channel data output; bit 1 \\
\hline C 0 & 40 & C channel data output; bit 0 (LSB) \\
\hline
\end{tabular}

YC 8-bit low-power analog-to-digital video interface
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & PIN & \multicolumn{1}{c|}{ DESCRIPTION } \\
\hline V CCO1 \(^{\text {SYM }}\) & 41 & output supply voltage 1 (+5 V) \\
\hline CLK & 42 & clock input \\
\hline OGND1 & 43 & output ground 1 \\
\hline REG1 & 44 & decoupling input 1 (internal stabilization loop decoupling) \\
\hline ANOUTC & 45 & analog output for C channel \\
\hline DEC2 & 46 & decoupling input 2 \\
\hline OFC & 47 & C channel output format/chip enable (3-state input) \\
\hline C \(_{\text {CLPC }}\) & 48 & C channel clamping capacitor \\
\hline
\end{tabular}

Fig. 2 Pin configuration.

\title{
YC 8-bit low-power analog-to-digital video interface
}

\section*{FUNCTIONAL DESCRIPTION}

The TDA8758 provides a simple interface between CVBS or \(\mathrm{Y} / \mathrm{C}\) analog signals and a digital colour decoder.

\section*{Video inputs selection}

The input selector allows a choice from different video sources, and has one of the following configurations:

A: Two Y/C and one CVBS signals
\(B\) : One \(Y / C\) and two CVBS signals
\(C\) : Three CVBS signals (only the \(Y\) channel is used).
The wiring of the five video inputs (pins 2, 4, 6, 9 and 11) and the control of the two selection inputs (pins 5 and 12) will depend on the available video sources.
- In configuration A, connect as follows:
- Y1 to pin 11
- C1 to pin 4
- Y2 to pin 9
- C2 to pin 2
- CVBS3 to pin 6.

Keep SEL2 (pin 5) LOW and select \(\mathrm{Y} 1 / \mathrm{C} 1\) or \(\mathrm{Y} 2 / \mathrm{C} 2\) by switching SEL1 (pin 12).
CVBS3 is selected with SEL1 and SEL2 HIGH.
- In configuration B , replace Y 1 (or Y2) by a CVBS input (no more C1 or C2). The selection mode is the same.
- In configuration C, connect as follows:
- CVBS1 to pin 11
- CVBS2 to pin 9
- CVBS3 to pin 6.

Use both SEL1 and SEL2 to select inputs.
Remark: the video inputs selection is a static selection.

\section*{Synchronization pulses}

GATE A and GATE B pulses are synchronization pulses occurring during the sync period and rear porch respectively. They should be distinct.

On the \(Y\) channel, the digital output of the ADC is compared to internal digital reference levels. The resultant outputs control the charge or discharge current of a capacitor connected to the \(\mathrm{C}_{\mathrm{AGC}}\) pin. The voltage across this capacitor controls the gain of the video amplifier. This is the control loop.

The sync level comparator is active during a positive-going pulse at the GATE A input. This means that sync pulse of the composite video signal is used as an amplitude reference. The bottom of the sync pulse is adjusted to obtain a digital output of logic 1 at the converter Y output. As the black level is digital level 64, the sync pulse will have a digital amplitude of 64 LSBs.

The Peak White control loop is active when the selection pin \(\overline{\text { PWE }}\) is LOW. Then, if the \(Y\) video signal exceeds the digital code of 255 , it will be limited to avoid any over-range of the converter.
The clamp level control is accomplished by using the same techniques as used for the gain control. On both \(Y\) and \(C\) channels, the black level digital comparators are active during a positive-going pulse at the GATE B input. On the Y channel, the clamping capacitor connected to the \(\mathrm{C}_{\mathrm{CLPY}}\) pin will be charged or discharged to adjust the digital output to code 64 . On the C channel, the clamping capacitor connected to the \(\mathrm{C}_{\text {CLPC }}\) pin will be charged or discharged to adjust the digital output to code 128.

\section*{YC 8-bit low-power analog-to-digital video interface}

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum Rating System (IEC 134).
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & MAX. & UNIT \\
\hline \(V_{\text {CCA }}\) & analog supply voltage & & -0.3 & +7.0 & V \\
\hline \(V_{\text {CCD }}\) & digital supply voltage & & -0.3 & +7.0 & V \\
\hline \(V_{\text {cco }}\) & output supply voltage & & -0.3 & +7.0 & V \\
\hline \multirow[t]{3}{*}{\(\Delta V_{c c}\)} & supply voltage difference between \(\mathrm{V}_{\text {CCA }}\) and \(\mathrm{V}_{\text {CCD }}\) & & -1.0 & +1.0 & V \\
\hline & supply voltage difference between \(V_{C C O}\) and \(V_{C C D}\) & & -1.0 & +1.0 & V \\
\hline & supply voltage difference between \(\mathrm{V}_{\text {CCA }}\) and \(\mathrm{V}_{\text {CCO }}\) & & -1.0 & +1.0 & V \\
\hline \(V_{1}\) & input voltage & referenced to AGND & - & 5.0 & V \\
\hline \(V_{\text {clk }(p-p)}\) & AC input voltage for switching (peak-to-peak value) & referenced to DGND & - & \(\mathrm{V}_{\mathrm{CcO}}\) & V \\
\hline Io & output current & & - & +6 & mA \\
\hline \(\mathrm{T}_{\text {stg }}\) & storage temperature & & -55 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature & & 0 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{i}}\) & junction temperature & & - & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

THERMAL CHARACTERISTICS
\begin{tabular}{|l|l|c|c|}
\hline SYMBOL & PARAMETER & VALUE & UNIT \\
\hline\(R_{\text {th } j-a}\) & thermal resistance from junction to ambient in free air & 75 & KW \\
\hline
\end{tabular}

YC 8-bit low-power analog-to-digital video interface

\section*{CHARACTERISTICS}
\(\mathrm{V}_{\text {CCA }}=\mathrm{V}_{10}\) to \(\mathrm{V}_{3}=4.75\) to \(5.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{CCD}}=\mathrm{V}_{21}\) to \(\mathrm{V}_{18}=4.75\) to \(5.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{CCO1}}=\mathrm{V}_{41}\) to \(\mathrm{V}_{43}=4.75\) to 5.25 V ;
\(V_{C C O 2}=V_{32}\) to \(V_{31}=4.75\) to 5.25 V ; AGND and DGND shorted together; \(V_{C C A}\) to \(V_{C C D}=-0.25\) to +0.25 V ;
\(V_{C C O}\) to \(V_{C C D}=-0.25\) to \(+0.25 \mathrm{~V} ; \mathrm{V}_{C C A}\) to \(\mathrm{V}_{C C O}=-0.25\) to \(+0.25 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=0\) to \(+70^{\circ} \mathrm{C}\); typical values measured at \(\mathrm{V}_{C C A}=\mathrm{V}_{C C D}=\mathrm{V}_{C C O}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\); unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Supplies} \\
\hline \(V_{\text {CCA }}\) & analog supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline \(V_{\text {CCD }}\) & digital supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline \(\mathrm{V}_{\text {CCO }}\) & output stages supply voltage & & 4.75 & 5.0 & 5.25 & \(V\) \\
\hline \(\mathrm{I}_{\text {CCA }}\) & analog supply current & & - & 55 & - & mA \\
\hline \(l_{\text {CCD }}\) & digital supply current & & - & 24 & - & mA \\
\hline Iccolot & total output supply current & see Fig. 8 & - & 18 & - & mA \\
\hline \multicolumn{7}{|l|}{Video amplifier inputs} \\
\hline \multicolumn{7}{|l|}{Y1/CVBS1, Y2/CVBS2, CVBS3, CHROM1 AND CHROM2 InPuTs} \\
\hline \(V_{\text {I(p-p) }}\) & input voltage (peak-to-peak value) & AGC load with external capacitor; note 1 & 0.7 & - & 1.4 & V \\
\hline \(\left|Z_{i}\right|\) & input impedance & \(\mathrm{f}_{\mathrm{i}}=6 \mathrm{MHz}\) & - & 20 & - & k \(\Omega\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & \(\mathrm{f}_{\mathrm{i}}=6 \mathrm{MHz}\) & - & 1 & - & pF \\
\hline \multicolumn{7}{|l|}{SEL1 AND SEL2 TTL inputs (sEe table 1)} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & HIGH level input voltage & & 2.0 & - & \(V_{\text {CCD }}\) & V \\
\hline \(\mathrm{I}_{\text {L }}\) & LOW level input current & \(\mathrm{V}_{1}=0.4 \mathrm{~V}\) & -400 & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{IH}}\) & HIGH level input current & \(\mathrm{V}_{1}=2.7 \mathrm{~V}\) & - & - & 20 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{GATE A AND GATE B TTL Inputs (SEE FIGS 5 AND 6)} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & HIGH level input voltage & & 2.0 & - & \(V_{\text {CCD }}\) & V \\
\hline \(\mathrm{I}_{\text {IL }}\) & LOW level input current & \(\mathrm{V}_{1}=0.4 \mathrm{~V}\) & -400 & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{IH}}\) & HIGH level input current & \(\mathrm{V}_{1}=2.7 \mathrm{~V}\) & - & - & 20 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{AGC INPUT (PIN 13)} \\
\hline \(V_{13 \text { (min) }}\) & AGC voltage for minimum gain & & - & 3.0 & - & V \\
\hline \(\mathrm{V}_{13 \text { (max) }}\) & AGC voltage for maximum gain & & - & 3.35 & - & V \\
\hline \(\mathrm{l}_{12}\) & AGC output current & & & ee Table & & \\
\hline \multicolumn{7}{|l|}{C-CHANNEL CLAMP INPUT (PIN 48)} \\
\hline \(\mathrm{V}_{48}\) & CLAMP voltage for code 128 output & & - & 3.4 & - & V \\
\hline \(\mathrm{I}_{48}\) & CLAMP output current & & & ee Table & & \\
\hline \multicolumn{7}{|l|}{Y-CHANNEL CLAMP INPUT (PIN 7)} \\
\hline \(\mathrm{V}_{7}\) & CLAMP voltage for code 64 output & & - & 3.65 & - & V \\
\hline \(\mathrm{I}_{7}\) & CLAMP output current & & \multicolumn{3}{|c|}{see Table 3} & \\
\hline
\end{tabular}

YC 8-bit low-power analog-to-digital video interface
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Video amplifier dynamic characteristics} \\
\hline \(\alpha_{c t}\) & crosstalk between video inputs (pins 2, 4, 6, 9 and 11) & \(V_{\text {CCA }}=4.75\) to 5.25 V & - & -50 & -45 & dB \\
\hline B & -3 dB bandwidth & & - & 45 & - & MHz \\
\hline S/N & signal-to-noise ratio & note 3 & 60 & - & - & dB \\
\hline SVRR1 & supply voltage ripple rejection & note 4 & - & 45 & - & dB \\
\hline \(\Delta \mathrm{G}\) & gain range & & -3 & - & +3 & dB \\
\hline \(\mathrm{G}_{\text {stab }}\) & gain stability as a function of supply voltage and temperature & & - & - & 5 & \% \\
\hline \multicolumn{7}{|l|}{Analog-to-digital converter inputs} \\
\hline \multicolumn{7}{|l|}{CLK INPUT (PIN 42)} \\
\hline \(\mathrm{V}_{1 L}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{1}\) & HIGH level input voltage & & 2.0 & - & \(\mathrm{V}_{\text {CCD }}\) & V \\
\hline \(t_{1 L}\) & LOW level input current & \(\mathrm{V}_{\text {clk }}=0.4 \mathrm{~V}\) & -400 & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{IH}}\) & HIGH level input current & \(\mathrm{V}_{\text {clk }}=2.7 \mathrm{~V}\) & - & - & 100 & \(\mu \mathrm{A}\) \\
\hline | \(\mathrm{Z}_{\mathrm{i}} \mid\) & input impedance & \(\mathrm{f}_{\mathrm{clk}}=10 \mathrm{MHz}\) & - & 4 & - & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & \(\mathrm{f}_{\text {clk }}=10 \mathrm{MHz}\) & - & 4.5 & - & pF \\
\hline \multicolumn{7}{|l|}{OFY AND OFC InPUTS (3-state; see table 4)} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.2 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & HIGH level input voltage & & 2.6 & - & \(V_{C C D}\) & V \\
\hline \(V_{1}\) & input voltage in high impedance state & & - & 1.15 & - & V \\
\hline \(\mathrm{I}_{\text {LL }}\) & LOW level input current & & -370 & \(-300\) & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{H}}\) & HIGH level input current & & - & 300 & 450 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

Analog-to-digital converter outputs
ANOUTY and ANOUTC OUTPUTS (PINS 16 AND 45; SEE TABLE 5)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{\text {ANOUT }}\) & output voltage & digital output \(=00\) & - & 2.6 & - & V \\
\hline \(\mathrm{V}_{\text {ANOUT }}\) & output voltage & digital output \(=255\) & - & 3.6 & - & V \\
\hline \(\mathrm{V}_{\text {ANOUT(p-p) }}\) & \begin{tabular}{l}
output voltage amplitude (peak-to-peak \\
value)
\end{tabular} & & - & 1.0 & - & V \\
\hline \(\mathrm{I}_{\text {ANOUTmax }}\) & maximum output current & & - & - & tbf & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{Z}_{\text {node }} \mid\) & node impedance & \(\mathrm{f}_{\mathrm{i}}=6 \mathrm{MHz}\) & - & 200 & - & \(\Omega\) \\
\hline \(\mathrm{C}_{\text {node }}\) & node capacitance & \(\mathrm{f}_{\mathrm{i}}=6 \mathrm{MHz}\) & - & 4 & - & pF \\
\hline
\end{tabular}

Digital outputs yo to Y7, C0 TO C7
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{O L}\) & LOW level output voltage & \(I_{\mathrm{OL}}=2 \mathrm{~mA}\) & 0 & - & 0.6 & V \\
\hline\(V_{O H}\) & HIGH level output voltage & \(I_{O L}=-0.4 \mathrm{~mA}\) & 2.4 & - & \(V_{C C D}\) & V \\
\hline
\end{tabular}

\section*{Switching characteristics; see Fig. 7}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(f_{\text {clk(max) }}\) & CLK input maximum frequency & note 5 & 30 & 32 & - & MHz \\
\hline \(\mathrm{t}_{\mathrm{CPH}}\) & clock pulse width HIGH & & 12 & - & - & ns \\
\hline \(\mathrm{t}_{\mathrm{CPL}}\) & clock pulse with LOW & & 12 & - & - & ns \\
\hline
\end{tabular}

YC 8-bit low-power analog-to-digital video interface
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Analog signal processing from video input to digital output on both channels; \(0 \mathbf{d B}\) gain (\(\mathbf{f}_{\text {clk }}=\mathbf{3 2} \mathbf{~ M H z}\))} \\
\hline ILE & DC integral linearity error & & - & \(\pm 0.75\) & tbf & LSB \\
\hline DLE & DC differential linearity error & & - & \(\pm 0.4\) & tbf & LSB \\
\hline ILE & AC integral linearity error & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & - & \(\pm 1.5\) & tbf & LSB \\
\hline THD & total harmonic distortion & note 2 & - & -52 & - & dB \\
\hline EB & effective bits & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\); note 7 & - & 7.0 & - & bits \\
\hline \(\mathrm{G}_{\text {diff }}\) & differential gain & \[
\begin{aligned}
& V_{16,45}=1.0 \mathrm{~V}(\mathrm{p}-\mathrm{p}) \\
& \text { see Fig. } 4
\end{aligned}
\] & - & 3 & - & \% \\
\hline \(\varphi_{\text {diff }}\) & differential phase & see Fig. 4 & - & 1 & - & deg \\
\hline SVRR2 & supply voltage ripple rejection & note 6 & - & - & 5 & \% N \\
\hline \multicolumn{7}{|l|}{Timing (\(\mathrm{f}_{\mathrm{clk}}=\mathbf{3 2 ~ M H z ; ~ s e e ~ F i g . 7) ~}\)} \\
\hline \multicolumn{7}{|l|}{Digital outputs (\(\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\))} \\
\hline \(\mathrm{t}_{\text {ds }}\) & sampling delay time & & - & 1.5 & - & ns \\
\hline \(\mathrm{t}_{\mathrm{h}}\) & output hold time & & 7 & - & - & ns \\
\hline \(\mathrm{t}_{\text {d }}\) & output delay time & & - & - & 16 & ns \\
\hline tw & clamp pulse width & see Figs 5 and 6 & 2 & 3 & - & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

\section*{Notes}
1. 0 dB is obtained at the AGC amplifier when applying \(\mathrm{V}_{1(p-\mathrm{p})}=1.0 \mathrm{~V}\).
2. THD (total harmonic distortion) is obtained with the addition of the first five harmonics:
\(T H D=20 \log \frac{F}{\sqrt{(2 n d)^{2}+(3 \mathrm{rd})^{2}+(4 \mathrm{th})^{2}+(5 \mathrm{~h})^{2}+(6 \mathrm{th})^{2}}}\)
\(F\) being the fundamental harmonic referenced at 0 dB for a full-scale sine wave input.
3. Signal-to-noise ratio measured with 5 MHz bandwidth:

4. The supply voltage ripple rejection is expressed as:

SVRR1 \(=20 \log \frac{\Delta V_{C C A}}{V_{C C A}} \times \frac{G}{\Delta G}\) for \(V_{I}=1 \mathrm{~V}(p-p)\), gain at \(100 \mathrm{kHz}=1\) and 1 V supply variation.
5. It is recommended that the rise and fall times of the clock are \(\geq 1 \mathrm{~ns}\). In addition, a 'good layout' for the digital and analog grounds is recommended.
6. The supply voltage ripple rejection is the relative variation of the analog signal (full-scale signal at input) for 0.5 V of supply variation:
SVRR2 \(=\frac{\Delta\left(\mathrm{V}_{1(00)}-\mathrm{V}_{1(F F)}\right)+\left(\mathrm{V}_{1(00)}-\mathrm{V}_{1(\mathrm{FF})}\right)}{\Delta \mathrm{V}_{\mathrm{CCA}}}\)
7. Effective bits are obtained via a Fast Fourier Transform (FFT) treatment taking \(8 \times T_{\text {cik }}\) (clock periods) acquisition points per period. The calculation takes into account all harmonics and noise up to half of the clock frequency (NYQUIST frequency). Conversion to signal-to-noise ratio: \(\mathrm{S} / \mathrm{N}=\mathrm{EB} \times 6.02+1.76 \mathrm{~dB}\).

\section*{YC 8-bit low-power analog-to-digital video}

Fig. 3 Video inputs selector.

Table 1 Video input selection.
\begin{tabular}{|c|c|c|c|c|}
\hline SEL1 & SEL2 & Y-CHANNEL & C-CHANNEL & FIGURE 3 \\
\hline 0 & \(\mathrm{X}^{(1)}\) & Y1/CVBS1 & CHROM1 & (a) \\
\hline 1 & 0 & Y2/CVBS2 & CHROM2 & (b) \\
\hline 1 & 1 & CVBS3 & CHROM2 & (c) \\
\hline
\end{tabular}

Note
1. \(X=\) don't care.

YC 8-bit low-power analog-to-digital video interface

Table 2 AGC output current.
\begin{tabular}{|c|c|l|l|}
\hline\(\overline{\text { PWE }}\) & \multirow{2}{*}{ GATE A } & \multicolumn{1}{|c|}{\begin{tabular}{c}
DIGITAL \\
OUTPUT
\end{tabular}} & \multicolumn{1}{|c|}{\(\mathbf{I}_{\text {AGC }}\)} \\
\hline \multirow{2}{*}{0} & \multirow{2}{|c|}{0} & output <255 & \(0 \mu \mathrm{~A}\) \\
\cline { 3 - 4 } & & output \(>255\) & \(+500 \mu \mathrm{~A}\) \\
\hline \multirow{2}{*}{0} & \multirow{2}{*}{1} & output \(<0\) & \(+7.5 \mu \mathrm{~A}\) \\
\cline { 3 - 4 } & \multirow{3}{*}{} & \(0<\) output \(<255\) & \(-7.5 \mu \mathrm{~A}\) \\
\cline { 3 - 4 } & & output \(>255\) & \(+500 \mu \mathrm{~A}\) \\
\hline 1 & 0 & \(\mathrm{X}^{(1)}\) & \(0 \mu \mathrm{~A}\) \\
\hline 1 & \multirow{2}{*}{1} & output \(<0\) & \(+7.5 \mu \mathrm{~A}\) \\
\cline { 3 - 4 } & & \(0<\) output \(<255\) & \(-7.5 \mu \mathrm{~A}\) \\
\hline
\end{tabular}

\section*{Note}
1. \(X=\) don't care.

Table 3 CLAMP output current.
\begin{tabular}{|c|c|l|l|}
\hline CLAMP & \multirow{2}{*}{ GATE B } & \multicolumn{1}{|c|}{\begin{tabular}{c}
DIGITAL \\
OUTPUT
\end{tabular}} & \multicolumn{1}{|c|}{ ICLAMP } \\
\hline C & 1 & output <128 & \(+50 \mu \mathrm{~A}\) \\
\cline { 3 - 4 } & & output \(>128\) & \(-50 \mu \mathrm{~A}\) \\
\hline \(\mathrm{X}^{(1)}\) & 0 & \(\mathrm{X}^{(1)}\) & \(0 \mu \mathrm{~A}\) \\
\hline Y & 1 & output <64 & \(+50 \mu \mathrm{~A}\) \\
\cline { 3 - 4 } & & \(64<\) output & \(-50 \mu \mathrm{~A}\) \\
\hline
\end{tabular}

\section*{Note}
1. \(X=\) don't care.

Table 4 OFY and OFC input coding.
\begin{tabular}{|c|l|}
\hline OFY (OR OFC) & \multicolumn{1}{|c|}{ Y0 TO Y7 (OR C0 TO C7) } \\
\hline 0 & active, two's complement \\
\hline 1 & high impedance \\
\hline open circuit \({ }^{(1)}\) & active, binary \\
\hline
\end{tabular}

\section*{Note}
1. Use \(C \geq 10 \mathrm{pF}\) to DGND.

Table 5 Output coding and input voltage (typical values).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{STEP} & \multirow[b]{2}{*}{\(V_{1}\)} & \multicolumn{8}{|c|}{BINARY OUTPUTS} & \multicolumn{8}{|c|}{TWO'S COMPLEMENT} \\
\hline & & D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 & D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\hline Underflow & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 2.6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline . & - & . & . & . & . & . & . & . & . & . & . & . & . & . & . & . & . \\
\hline . & - & . & . & . & . & . & . & . & . & . & . & . & . & . & . & . & . \\
\hline 254 & - & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 255 & 3.6 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline Overflow & - & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

\section*{YC 8-bit low-power analog-to-digital video interface}

(1) Full-scale divided by 5 .
\(\varphi_{\text {oiff }}=\) maximum of \(\varphi_{n(1 \text { to } 4)}-\varphi_{0}\)
\(G_{\text {diff }}=\) maximum of \(\left(\frac{V_{n(1 \text { to })}-V_{0}}{V_{0}}\right) \times 100 \%\)

Fig. 4 Differential gain and phase measurements for Y and C channels.

Fig. 5 Control mode \(Y\) channel.
YC 8-bit low-power analog-to-digital video

\section*{}
YC 8-bit low-power analog-to-digital video interface

Fig. 8 Load circuit for timing measurement; data outputs.

\section*{YC 8-bit low-power analog-to-digital video interface}

\section*{APPLICATION INFORMATION}

Fig. 9 Application diagram.

\section*{10-bit high-speed analog-to-digital converter}

\section*{FEATURES}
- 10-bit resolution
- Sampling rate up to 50 MHz
- Total harmonic distortion (THD): -65 dB at 4.43 MHz full scale and a 40 MHz clock frequency
- High signal-to-noise ratio over a large analog input frequency range (8.8 effective bits at 10 MHz full-scale input at a 40 MHz clock frequency)
- +5 V power supplies
- Binary or two's complement 3-state TTL outputs
- In-range 3-state TTL output
- TTL compatible digital inputs
- LOW-level AC clock input signal allowed
- Power dissipation 850 mW (typical)
- Low analog input capacitance (typ. 4.5 pF), no buffer amplifier required
- No external sample-and-hold circuit required
- Analog Input; single or differential
- External amplitude range control
- Voltage controlled regulator included.

\section*{APPLICATIONS}
- High-speed analog-to-digital conversion for
- Video signal digitizing
- High Definition TV (HDTV)
- Digital video broadcasting (satellite and cable)
- Transient signal analysis
- High energy physics research
- Sigma-delta (SD) modulators
- Medical imaging
- Radar pulse digitizing.

\section*{GENERAL DESCRIPTION}

The TDA8760 is a monolithic bipolar 10-bit analog-to-digital converter (ADC) for video or other applications. It converts the analog input signal into 10-bit binary coded digital words at a maximum sampling rate of 50 MHz . All digital inputs and outputs are TTL compatible. However, a sine-wave clock input signal is allowed.

\section*{10-bit high-speed analog-to-digital converter}

QUICK REFERENCE DATA
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\text {CCA }}\) & analog supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline \(V_{\text {CCD }}\) & digital supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline \(\mathrm{V}_{\mathrm{CCO}}\) & output supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline \(l_{\text {CCA }}\) & analog supply current & & - & 95 & 100 & mA \\
\hline I cco & digital supply current & & - & 40 & 45 & mA \\
\hline I cco & output supply current & & - & 35 & 40 & mA \\
\hline ILE & DC integral linearity error & \(\mathrm{f}_{\mathrm{clk}}=4 \mathrm{MHz}\) & -. & \(\pm 1.0\) & \(\pm 2.0\) & LSB \\
\hline DLE & DC differential linearity error & \(\mathrm{f}_{\mathrm{clk}}=4 \mathrm{MHz}\) & - & \(\pm 0.6\) & \(\pm 1.0\) & LSB \\
\hline AILE & AC integral linearity error & \[
\begin{aligned}
& \mathrm{f}_{\text {clk }}=40 \mathrm{MHz} ; \\
& \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}
\end{aligned}
\] & - & \(\pm 1.2\) & \(\pm 2.0\) & LSB \\
\hline \(\mathrm{f}_{\mathrm{clk}(\text { max })}\) & \begin{tabular}{l}
maximum clock frequency \\
TDA8760K/2 \\
TDA8760K/4 \\
TDA8760K/5
\end{tabular} & & \[
\begin{aligned}
& 20 \\
& 40 \\
& 50
\end{aligned}
\] & & - & \begin{tabular}{l}
MHz \\
MHz \\
MHz
\end{tabular} \\
\hline \(\mathrm{P}_{\text {tot }}\) & total power dissipation & & - & 850 & 970 & mW \\
\hline Tamb & operating ambient temperature & & 0 & - & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ORDERING INFORMATION
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
EXTENDED TYPE \\
NUMBER
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 6 } & PINS & PIN POSITION & MATERIAL & CODE & \begin{tabular}{c}
SAMPLING \\
FREQUENCY \\
(MHz)
\end{tabular} \\
\hline TDA8760K/2 & 44 & PLCC & plastic & SOT187 & 20 \\
\hline TDA8760K/4 & 44 & PLCC & plastic & SOT187 & 40 \\
\hline TDA8760K/5 & 44 & PLCC & plastic & SOT187 & 50 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 996-६ & จ661 ! 1 d \\
\hline
\end{tabular}

Fig. 1 Block diagram for SO187 package.

\section*{10-bit high-speed analog-to-digital converter}

PINNING
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline CLK & 1 & clock input \\
\hline \(\overline{\text { CLK }}\) & 2 & complementary clock input \\
\hline \(V_{C C D 1}\) & 3 & digital supply voltage (+5 V) \\
\hline DGND1 & 4 & digital ground \\
\hline n.c. & 5 & not connected \\
\hline n.c. & 6 & not connected \\
\hline VCCA1 & 7 & analog supply voltage (+5 V) \\
\hline AGND1 & 8 & analog ground \\
\hline AGND2 & 9 & analog ground \\
\hline \(V_{1}\) & 10 & analog input voltage \\
\hline \(\bar{V}_{1}\) & 11 & complementary analog input voltage \\
\hline AGND3 & 12 & analog ground \\
\hline \(\mathrm{V}_{\text {CCA2 }}\) & 13 & analog supply voltage (+5 V) \\
\hline \(V_{\text {refL }}\) & 14 & reference voltage LOW \\
\hline \(V_{\text {refH }}\) & 15 & reference voltage HIGH \\
\hline AGND4 & 16 & analog ground \\
\hline \(V_{\text {CCA3 }}\) & 17 & analog supply voltage (+5 V) \\
\hline n.c. & 18 & not connected \\
\hline n.c. & 19 & not connected \\
\hline DGND2 & 20 & digital ground \\
\hline \(\mathrm{V}_{\text {CCO2 }}\) & 21 & digital supply voltage (+5 V) \\
\hline CS & 22 & chip select input (TTL level input; active HIGH) \\
\hline OTC & 23 & output two's complement \\
\hline OGND1 & 24 & output ground \\
\hline \(\mathrm{V}_{\mathrm{CCO}}\) & 25 & output supply voltage (+5 V) \\
\hline IR & 26 & in-range output \\
\hline D9 & 27 & data output, bit 9 (MSB) \\
\hline \(\mathrm{V}_{\mathrm{CCO} 2}\) & 28 & output supply voltage (+5 V) \\
\hline D8 & 29 & data output, bit 8 \\
\hline OGND2 & 30 & output ground \\
\hline D7 & 31 & data output, bit 7 \\
\hline D6 & 32 & data output, bit 6 \\
\hline D5 & 33 & data output, bit 5 \\
\hline D4 & 34 & data output, bit 4 \\
\hline D3 & 35 & data output, bit 3 \\
\hline D2 & 36 & data output, bit 2 \\
\hline OGND3 & 37 & output ground \\
\hline n.c. & 38 & not connected \\
\hline n.c. & 39 & not connected \\
\hline D1 & 40 & data output, bit 1 \\
\hline
\end{tabular}

\section*{10-bit high-speed analog-to-digital converter}
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & PIN & \multicolumn{1}{c|}{ DESCRIPTION } \\
\hline DO & 41 & data output, bit 0 (LSB) \\
\hline\(V_{\mathrm{CCO} 3}\) & 42 & output supply voltage (+5 V) \\
\hline \(\mathrm{V}_{\mathrm{CCO} 4}\) & 43 & output supply voltage (+5 V) \\
\hline OGND4 & 44 & output ground \\
\hline
\end{tabular}

Fig. 2 Pin configuration for SOT187.

10-bit high-speed analog-to-digital converter

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum Rating System (IEC 134).
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & MAX. & UNIT \\
\hline \(V_{\text {CCA }}\) & analog supply voltage & & -0.3 & +7.0 & V \\
\hline \(\mathrm{V}_{\text {CCD }}\) & digital supply voltage & & -0.3 & +7.0 & V \\
\hline \(\mathrm{V}_{\mathrm{CCO}}\) & output supply voltage & & -0.3 & +7.0 & V \\
\hline \(\Delta \mathrm{V}_{\mathrm{CC} 1}\) & supply voltage difference between \(V_{C C A}\) and \(V_{C C D}\) & & -0.5 & +0.5 & V \\
\hline \(\Delta \mathrm{V}_{\mathrm{CC} 2}\) & supply voltage difference between \(V_{C C O}\) and \(V_{C C D}\) & & -0.5 & +0.5 & V \\
\hline \(\Delta \mathrm{V}_{\text {CC3 }}\) & supply voltage difference between \(V_{C C A}\) and \(V_{\text {CCO }}\) & & -0.5 & 0.5 & V \\
\hline \(V_{1}\) & input voltage & referenced to AGND & 0.3 & \(\mathrm{V}_{\text {CCA }}\) & V \\
\hline \(V_{1(p-p)}\) & input voltage for differential clock drive (peak-to-peak value) & & - & \(\mathrm{V}_{\text {CCD }}\) & V \\
\hline Io & output current & & - & 10 & mA \\
\hline \(\mathrm{T}_{\text {stg }}\) & storage temperature & & -55 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(T_{\text {amb }}\) & operating ambient temperature & & 0 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{j}}\) & junction temperature & & - & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{HANDLING}

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

THERMAL RESISTANCE
\begin{tabular}{|l|l|c|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & PARAMETER & THERMAL RESISTANCE \\
\hline \(\mathrm{R}_{\mathrm{th} \mathrm{j}-\mathrm{a}}\) & \begin{tabular}{l}
from junction to ambient in free air \\
TDA8760K/5; TDA8760K/4 \\
TDA8760K/2
\end{tabular} & 35 KNW \\
& & 46 KW \\
\hline
\end{tabular}

\section*{10-bit high-speed analog-to-digital converter}

\section*{CHARACTERISTICS}
\(\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCD}}=\mathrm{V}_{\mathrm{CCO}}=4.75\) to 5.25 V ; AGND and DGND shorted together;
\(V_{C C A}-V_{C C D}=V_{C C O}-V_{C C D}=V_{C C A}-V_{C C O}=-0.25\) to \(+0.25 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=0\) to \(+70^{\circ} \mathrm{C}\); unless otherwise specified.
Typical values measured at \(\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCD}}=\mathrm{V}_{\mathrm{CCO}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Supply} \\
\hline \(V_{\text {CCA }}\) & analog supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline \(V_{C C D}\) & digital supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline \(\mathrm{V}_{\text {CCO }}\) & output supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline \(I_{\text {cca }}\) & analog supply current & & - & 95 & 100 & mA \\
\hline \(\mathrm{I} C \mathrm{CD}\) & digital supply current & & - & 40 & 45 & mA \\
\hline I'co & output supply current & all outputs LOW & - & 35 & 40 & mA \\
\hline \multicolumn{7}{|l|}{Inputs} \\
\hline \multicolumn{7}{|l|}{CLK and \(\overline{\mathrm{CLK}}\) (REFERENCED TO DGND); NOTE 1} \\
\hline \(\mathrm{V}_{\mathrm{IL}}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & HIGH level input voltage & & 2.0 & - & \(\mathrm{V}_{\mathrm{CCD}}\) & V \\
\hline \(\mathrm{I}_{\text {IL }}\) & LOW level input current & \(\mathrm{V}_{\mathrm{clk}}\) or \(\mathrm{V}_{\text {cik }}=0.4 \mathrm{~V}\) & -400 & - & - & mA \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{IH}}\)} & \multirow[t]{2}{*}{HIGH level input current} & \(\mathrm{V}_{\text {clk }}\) or \(\mathrm{V}_{\overline{\mathrm{cIk}}}=2.0 \mathrm{~V}\) & - & - & 100 & mA \\
\hline & & \(\mathrm{V}_{\text {clk }}\) or \(\mathrm{V}_{\overline{\mathrm{c} / \mathrm{k}}}=\mathrm{V}_{\mathrm{CCD}}\) & - & - & 300 & mA \\
\hline \(Z_{1}\) & input impedance & \(\mathrm{f}_{\text {clk }}=40 \mathrm{MHz}\) & - & 2 & - & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & \(\mathrm{f}_{\text {clk }}=40 \mathrm{MHz}\) & - & 4.5 & - & pF \\
\hline \multirow[t]{2}{*}{\(\Delta \mathrm{V}_{\text {clk }}\)} & \multirow[t]{2}{*}{AC input voltage for switching (\(\mathrm{V}_{\mathrm{clk}}-\mathrm{V}_{\overline{\mathrm{clk}}}\))} & DC level \(=1.5 \mathrm{~V}\) & 0.5 & - & 2.0 & V \\
\hline & & DC level \(=2.5 \mathrm{~V}\) & 1.5 & - & 5.0 & V \\
\hline \multicolumn{7}{|l|}{\(\overline{\text { OTC }}\) and CS (referenced to DGND); see Table 3} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & HIGH level input voltage & & 2.0 & - & \(\mathrm{V}_{\text {CCD }}\) & V \\
\hline \(\mathrm{I}_{\text {IL }}\) & LOW level input current & \(\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}\) & -400 & - & - & \(\mu \mathrm{A}\) \\
\hline \(I_{\text {IH }}\) & HIGH level input current & \(\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}\) & - & - & 20 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{10-bit high-speed analog-to-digital converter}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{\(\mathrm{V}_{1}\) And \(\overline{\mathrm{V}}_{1}\) (REFERENCED To AGND; SEe also Tables 1 and 2)} \\
\hline ILL & LOW level input current & \(\mathrm{V}_{\text {refH }}-\mathrm{V}_{\text {refl }}=1.5 \mathrm{~V}\) & - & 7 & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{H}}\) & HIGH level input current & \(\mathrm{V}_{\text {reit }}-\mathrm{V}_{\text {refil }}=1.5 \mathrm{~V}\) & - & 22 & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{Z}_{1}\) & input impedance & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & - & 2 & - & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & - & 4.5 & - & pF \\
\hline \(\mathrm{V}_{\text {Ioftset(d) }}\) & input offset voltage & differential mode; \(\mathrm{V}_{1}=\overline{\mathrm{V}}_{1}\); output code 511; Table 1
\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CCA}}=5 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CCA}}=4.75 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CCA}}=5.25 \mathrm{~V} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3.3 \\
& 3.2 \\
& 3.3 \\
& \hline
\end{aligned}
\] & \[
\left\lvert\, \begin{aligned}
& 3.4 \\
& -
\end{aligned}\right.
\] & \[
\begin{array}{|l|}
\hline 3.6 \\
3.45 \\
3.8 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \mathrm{v} \\
& \mathrm{v} \\
& \mathrm{v} \\
& \hline
\end{aligned}
\] \\
\hline \(\mathrm{V}_{\text {Ioffset(s) }}\) & input offset voltage & \begin{tabular}{l}
single mode; \\
\(\mathrm{V}_{1}=\mathrm{V}_{\text {Iffiset(s); }}\); output code 511; Table 2
\[
V_{C C A}=5 \mathrm{~V}
\] \\
\(V_{C C A}=4.75 \mathrm{~V}\) \\
\(\mathrm{V}_{\mathrm{CCA}}=5.25 \mathrm{~V}\)
\end{tabular} & \[
\begin{aligned}
& 3.6 \\
& \text { tbf } \\
& \text { tbf }
\end{aligned}
\] & \[
\begin{aligned}
& 3.7 \\
& - \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3.8 \\
& \text { tbf } \\
& \text { tbf }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{v} \\
& \mathrm{v} \\
& \mathrm{v}
\end{aligned}
\] \\
\hline
\end{tabular}

Voltage controlled regulator inputs \(\mathrm{V}_{\text {refH }}\) and \(\mathrm{V}_{\text {refl }}\) (referenced to AGND); differential input
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{V}_{\text {refH }}\) & reference voltage HIGH & & 4.0 & 4.5 & \(\mathrm{~V}_{\text {CCA }}\) & V \\
\hline \(\mathrm{V}_{\text {refl }}\) & reference voltage LOW & & 2.5 & 3.0 & 3.5 & V \\
\hline \(\mathrm{~V}_{\text {I(}(\mathrm{p}-\mathrm{p})}\) & \begin{tabular}{l}
input voltage amplitude \\
(peak-to-peak value)
\end{tabular} & & 1.4 & 1.5 & 1.6 & V \\
\hline \(\mathrm{I}_{\text {refl }}\) & input current at \(\mathrm{V}_{\text {reff }}\) & & - & 10 & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\text {refl }}\) & input current at \(\mathrm{V}_{\text {reft }}\) & & - & 10 & - & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

Voltage controlled regulator inputs \(\mathrm{V}_{\text {reft }}\) and \(\mathrm{V}_{\text {refL }}\) (referenced to AGND); single input
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathrm{V}_{\text {reft }}\) & reference voltage HIGH & & 4.0 & 4.4 & \(\mathrm{V}_{\text {CCA }}\) & V \\
\hline \(\mathrm{V}_{\text {reth }}\) & reference voltage LOW & & 2.5 & 3.0 & 3.5 & V \\
\hline \(\mathrm{V}_{1(\mathrm{p} \cdot \mathrm{p})}\) & input voltage amplitude (peak-to-peak value) & & 1.3 & 1.4 & 1.5 & V \\
\hline \(\mathrm{I}_{\text {reft }}\) & input current at \(\mathrm{V}_{\text {reif }}\) & & - & 10 & - & \(\mu \mathrm{A}\) \\
\hline \(1{ }_{\text {refl }}\) & input current at \(\mathrm{V}_{\text {refl }}\) & & - & 10 & - & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{Outputs (referenced to DGND)} \\
\hline \multicolumn{7}{|l|}{DIGITAL OUTPUTS D9 To D0 And IR (REFERENCED To DGND)} \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & LOW level output voltage & \(\mathrm{l}_{\mathrm{O}}=2 \mathrm{~mA}\) & 0 & - & 0.4 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & HIGH level output voltage & \(\mathrm{I}_{\mathrm{O}}=-0.4 \mathrm{~mA}\) & 2.4 & - & \(\mathrm{V}_{\mathrm{CCD}}\) & V \\
\hline \% & output current in 3-state mode & \(0.4 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{cco}}\) & -20 & - & +20 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{10-bit high-speed analog-to-digital converter}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Switching characteristics} \\
\hline \multicolumn{7}{|l|}{Clock frequency \(f_{\text {clk }}\) (NOTE 1; SEe Fig.3)} \\
\hline \(\mathrm{f}_{\mathrm{clk}(\text { min })}\) & minimum clock frequency & & - & - & 1 & MHz \\
\hline \(\mathrm{f}_{\mathrm{clk}(\text { max })}\) & \begin{tabular}{l}
maximum clock frequency \\
TDA8760K/5 \\
TDA8760K/4 \\
TDA8760K/2
\end{tabular} & & \[
\begin{aligned}
& 50 \\
& 40 \\
& 20
\end{aligned}
\] & - & - & \begin{tabular}{l}
MHz \\
MHz \\
MHz
\end{tabular} \\
\hline \(t_{\text {cPH }}\) & clock pulse width HIGH & note 7 & 10 & - & - & ns \\
\hline \(\mathrm{t}_{\text {CPL }}\) & clock pulse width LOW & & 8 & - & - & ns \\
\hline
\end{tabular}

Analog signal processing in differential input mode; see Table 1; 50\% clock duty factor;
\(V_{l(p-p)}=V_{\text {refH }}-V_{\text {refL }}=1.5 \mathrm{~V}\)
LINEARITY
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline ILE & DC integral linearity error & \(\mathrm{f}_{\mathrm{clk}}=4 \mathrm{MHz}\) & - & \(\pm 1.0\) & \(\pm 2.0\) & LSB \\
\hline DLE & DC differential linearity error & \(\mathrm{f}_{\mathrm{clk}}=4 \mathrm{MHz}\) & - & \(\pm 0.6\) & \(\pm 1.0\) & LSB \\
\hline AILE & AC integral linearity error & note 3 & - & \(\pm 1.2\) & \(\pm 2.0\) & LSB \\
\hline BANDWIDTH (\(\mathrm{f}_{\mathrm{clk}}=50 \mathrm{MHz}\)); NOTE 9 & Analog bandwidth & -1 dB & - & 140 & - & MHz \\
\hline B & -3 dB & - & 220 & - & MHz \\
\hline
\end{tabular}

Harmonics (\(\mathrm{f}_{\mathrm{clk}}=40 \mathrm{MHz}\)); see Figs 6, 8, 9 and 10
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{f}_{1}\) & \begin{tabular}{l}
fundamental harmonics \\
(full scale)
\end{tabular} & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & - & - & 0 & dB \\
\hline \(\mathrm{f}_{\text {all }}\) & \begin{tabular}{l}
harmonics (full scale); \\
all components \\
second harmonics \\
third harmonics
\end{tabular} & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & - & -70 & -63 \\
\hline \(\mathrm{THD}_{\mathrm{d}}\) & total harmonic distortion & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\); note 2 & - & -65 & -60 & dB \\
\hline
\end{tabular}

Signal-to-noise ratio; notes 4 and 5; see Figs 6, 8, 9 and 10
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline SNR & signal-to-noise ratio & \begin{tabular}{l}
without harmonics; \\
\(f_{\text {cli }}=40 \mathrm{MHz} ;\) \\
\(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\)
\end{tabular} & 54 & 56 & - & dB \\
\hline
\end{tabular}

\section*{Effective bits; notes 4 and 5; see Figs 6, 8, 9 and 10}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{9}{*}{EB} & \multirow[t]{2}{*}{effective bits TDA8760K/2 \(\left(\mathrm{f}_{\mathrm{clk}}=20 \mathrm{MHz}\right)\)} & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & - & 8.90 & - & bits \\
\hline & & \(\mathrm{f}_{\mathrm{i}}=7.5 \mathrm{MHz}\) & - & 8.70 & - & bits \\
\hline & \multirow[t]{3}{*}{effective bits TDA8760K/4 \(\left(f_{c l k}=40 \mathrm{MHz}\right)\)} & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & - & 8.80 & - & bits \\
\hline & & \(\mathrm{f}_{\mathrm{i}}=10 \mathrm{MHz}\) & - & 8.80 & - & bits \\
\hline & & \(\mathrm{f}_{\mathrm{i}}=15 \mathrm{MHz}\) & - & 8.70 & - & bits \\
\hline & \multirow[t]{4}{*}{effective bits TDA8760K/5 (\(\mathrm{f}_{\mathrm{clk}}=50 \mathrm{MHz}\))} & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & - & 8.70 & - & bits \\
\hline & & \(\mathrm{f}_{\mathrm{i}}=10 \mathrm{MHz}\) & - & 8.65 & - & bits \\
\hline & & \(\mathrm{f}_{\mathrm{i}}=15 \mathrm{MHz}\) & - & 8.60 & - & bits \\
\hline & & \(\mathrm{f}_{\mathrm{i}}=20 \mathrm{MHz}\) & - & 8.20 & - & bits \\
\hline
\end{tabular}

\section*{10-bit high-speed analog-to-digital} converter
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Two-tone} \\
\hline Two-tone & two-tone intermodulation rejection & \(\mathrm{f}_{\text {clk }}=40 \mathrm{MHz}\); note 8 & - & -65 & - & dB \\
\hline \multicolumn{7}{|l|}{Bit error rate} \\
\hline BER & bit error rate & \[
\begin{aligned}
& \hline \mathrm{f}_{\mathrm{clk}}=40 \mathrm{MHz} ; \\
& \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz} ; \\
& \mathrm{V}_{1}= \pm 16 \mathrm{LSB} \text { at code } 512 \\
& \hline
\end{aligned}
\] & - & \(2 \times 10^{-12}\) & - & times/ samples \\
\hline \multicolumn{7}{|l|}{Differential gain; see Fig. 5} \\
\hline \multirow[t]{2}{*}{\(\mathrm{G}_{\text {diff }}\)} & \multirow[t]{2}{*}{differential gain} & \[
\begin{aligned}
& \mathrm{f}_{\mathrm{clk}}=20 \mathrm{MHz} ; \\
& \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}
\end{aligned}
\] & - & 0.5 & tbf & \% \\
\hline & & \[
\begin{aligned}
& f_{\text {clk }}=40 \mathrm{MHz} ; \\
& \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}
\end{aligned}
\] & - & 1.0 & tbf & \% \\
\hline \multicolumn{7}{|l|}{DIfFERENTIAL PHASE} \\
\hline \(\Phi_{\text {diff }}\) & differential phase & \[
\begin{aligned}
& \mathrm{f}_{\mathrm{clk}}=40 \mathrm{MHz} ; \\
& \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}
\end{aligned}
\] & - & 0.1 & 0.2 & deg \\
\hline
\end{tabular}

Analog signal processing in single input mode; see Table 2; 50\% clock duty factor; \(V_{l(p-p)}=V_{\text {refH }}-V_{\text {refL }}=1.4 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Linearity} \\
\hline ILE & DC integral linearity error & \(\mathrm{f}_{\mathrm{clk}}=4 \mathrm{MHz}\) & - & \(\pm 1.0\) & \(\pm 2.0\) & LSB \\
\hline DLE & DC differential linearity error & \(\mathrm{f}_{\mathrm{clk}}=4 \mathrm{MHz}\) & - & \(\pm 0.6\) & \(\pm 1.0\) & LSB \\
\hline AlLE & AC integral linearity error & note 3 & - & \(\pm 1.2\) & \(\pm 2.0\) & LSB \\
\hline \multicolumn{7}{|l|}{BANDWIDTH (\(\mathrm{f}_{\text {clk }}=50 \mathrm{MHz}\)); NOTE 9} \\
\hline \multirow[t]{2}{*}{B} & \multirow[t]{2}{*}{Analog bandwidth} & -1 dB & - & 140 & - & MHz \\
\hline & & -3 dB & - & 220 & - & MHz \\
\hline \multicolumn{7}{|l|}{Harmonics (f \({ }_{\text {clik }}=40 \mathrm{MHz}\)); see Fig. 7} \\
\hline \(\mathrm{f}_{1}\) & fundamental harmonics (full scale) & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & - & - & 0 & dB \\
\hline fall & harmonics (full scale); all components second harmonics third harmonics & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & - & \[
\left\lvert\, \begin{aligned}
& -61 \\
& -62
\end{aligned}\right.
\] & - & \[
\begin{aligned}
& \mathrm{dB} \\
& \mathrm{~dB}
\end{aligned}
\] \\
\hline THD \({ }_{\text {s }}\) & total harmonic distortion & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\); note 2 & - & -59 & - & dB \\
\hline \multicolumn{7}{|l|}{Signal-to-noise ratio; notes 4 and 5; see Fig. 7} \\
\hline SNR & signal-to-noise ratio & without harmonics;
\[
\begin{aligned}
& f_{\text {clk }}=40 \mathrm{MHz} ; \\
& f_{i}=4.43 \mathrm{MHz} \\
& \hline
\end{aligned}
\] & 54 & 56 & - & dB \\
\hline
\end{tabular}

\section*{10-bit high-speed analog-to-digital converter}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Effective bits; notes 4 and 5; see Fig. 7} \\
\hline \multirow[t]{6}{*}{EB} & \multirow[t]{2}{*}{effective bits TDA8760K/2 \(\left(\mathrm{f}_{\mathrm{clk}}=20 \mathrm{MHz}\right)\)} & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & - & 8.70 & - & bits \\
\hline & & \(\mathrm{f}_{\mathrm{i}}=7.5 \mathrm{MHz}\) & - & 8.50 & - & bits \\
\hline & \multirow[t]{2}{*}{effective bits
\[
\text { TDA8760K/4 }\left(\mathrm{f}_{\mathrm{clk}}=40 \mathrm{MHz}\right)
\]} & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & - & 8.50 & - & bits \\
\hline & & \(\mathrm{f}_{\mathrm{i}}=10 \mathrm{MHz}\) & - & 8.20 & - & bits \\
\hline & \multirow[t]{2}{*}{effective bits
\[
\text { TDA8760K/5 }\left(\mathrm{f}_{\mathrm{clk}}=50 \mathrm{MHz}\right)
\]} & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & - & 8.25 & - & bits \\
\hline & & \(\mathrm{f}_{\mathrm{i}}=10 \mathrm{MHz}\) & - & 8.00 & - & bits \\
\hline \multicolumn{7}{|l|}{TWO-TONE} \\
\hline Two-tone & two-tone intermodulation rejection & \(\mathrm{f}_{\mathrm{clk}}=40 \mathrm{MHz}\); note 8 & - & -60 & - & dB \\
\hline \multicolumn{7}{|l|}{Bit error rate} \\
\hline BER & bit error rate & \[
\begin{aligned}
& \mathrm{f}_{\mathrm{clk}}=40 \mathrm{MHz} ; \\
& \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz} ; \\
& \mathrm{V}_{\mathrm{I}}= \pm 16 \mathrm{LSB} \text { at code } 512
\end{aligned}
\] & - & \(2 \times 10^{-12}\) & - & times/ samples \\
\hline \multicolumn{7}{|l|}{Differential gain; see Fig. 5} \\
\hline \multirow[t]{2}{*}{\(\mathrm{G}_{\text {diff }}\)} & \multirow[t]{2}{*}{differential gain} & \[
\begin{aligned}
& \mathrm{f}_{\mathrm{clk}}=20 \mathrm{MHz} ; \\
& \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz} \\
& \hline
\end{aligned}
\] & - & 0.5 & tbf & \% \\
\hline & & \[
\begin{aligned}
& \mathrm{f}_{\mathrm{clk}}=40 \mathrm{MHz} ; \\
& \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}
\end{aligned}
\] & - & 1.0 & tbf & \% \\
\hline \multicolumn{7}{|l|}{DIFFERENTIAL PHASE} \\
\hline \(\Phi_{\text {diff }}\) & differential phase & \[
\begin{aligned}
& \mathrm{f}_{\mathrm{clk}}=40 \mathrm{MHz} ; \\
& \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}
\end{aligned}
\] & - & 0.1 & 0.2 & deg \\
\hline \multicolumn{7}{|l|}{Timing (note 6; see Fig.3; \(\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\))} \\
\hline \(\mathrm{t}_{\text {ds }}\) & sampling delay time & & - & - & 2 & ns \\
\hline \(\mathrm{t}_{\mathrm{h}}\) & output hold time & & 8 & - & - & ns \\
\hline \(\mathrm{t}_{\text {d }}\) & output delay time & & - & 12 & 16 & ns \\
\hline \multicolumn{7}{|l|}{3-state output delay times (see Fig.4)} \\
\hline \(\mathrm{t}_{\mathrm{dZH}}\) & enable HIGH & & - & 12 & 16 & ns \\
\hline \(\mathrm{t}_{\mathrm{dZL}}\) & enable LOW & & - & 12 & 16 & ns \\
\hline \(\mathrm{t}_{\mathrm{d} \mathrm{H} \mathrm{Z}}\) & disable HIGH & & - & 8 & 12 & ns \\
\hline \(\mathrm{t}_{\text {dLL }}\) & disable LOW & & - & 16 & 20 & ns \\
\hline
\end{tabular}

\section*{10-bit high-speed analog-to-digital converter}

\section*{Notes}
1. The circuit has two clock inputs: CLK and \(\overline{\mathrm{CLK}}\). There are three modes of operation:

TTL mode 1:
CLK input is at TTL level with a threshold voltage of 1.5 V and sampling is taken on the falling edge of the clock input signal. CLK decoupled to DGND via a 100 nF capacitor.
TTL mode 2:
\(\overline{\text { CLK }}\) input is at TTL level with threshold voltage of 1.5 V and sampling is taken on the rising edge of the clock input signal. CLK decoupled to DGND via a 100 nF capacitor.
TTL mode3:
CLK and CLK inputs are at differential TTL levels.
AC driving modes:
When driving the CLK input directly and with any \(A C\) signal of minimum \(0.5 \mathrm{~V}(p-p)\) and with a DC level of 1.5 V , the sampling takes place at the falling edge of the clock signal.
When driving the \(\overline{C L K}\) input with the same signal, sampling takes place at the rising edge of the clock signal.It is recommended to decouple the \(\overline{\text { CLK }}\) or CLK input to DGND via a 100 nF capacitor.
2. THD (total harmonic distortion) is obtained with the addition of the first five harmonics:
\[
\mathrm{THD}=20 \log \frac{\mathrm{~F}}{\sqrt{(2 \mathrm{nd})^{2}+(3 \mathrm{rd})^{2}+(4 \mathrm{th})^{2}+(5 \mathrm{th})^{2}+(6 \mathrm{th})^{2}}}
\]
\(F\) being the fundamental harmonic referenced at 0 dB for a full-scale sinewave input.
3. AC linearity: full-scale differential sinewave (\(f_{i}=4.43 \mathrm{MHz} ; f_{c l k}=40 \mathrm{MHz}\)).
4. Effective bits with differential input and single input are respectively executed with full scale differential input and full scale single sinewave.
5. Effective bits are obtained via a Fast Fourier Transformer (FFT) treatment taking 8K acquisition points per period. The calculation takes into account all harmonics and noise up to half of the clock frequency (NYQUIST frequency). Conversion to SNR: SNR \(=\mathrm{EB} \times 6.02+1.76 \mathrm{~dB}\).
6. Output data acquisition: the output data is available after the maximum delay of \(t_{d}\).
7. \(t_{\text {CPH }}\) of 9 ns (minimum) can be applied at the penalty of 0.5 effective bit drop compared to typical values.
8. Intermodulation measured relative to either tone with analog input frequencies of 4.43 MHz and 4.53 MHz . The two input signals have the same amplitude and the total amplitude of both signals provides full scale to the converter.
9. The -3 dB (or -1 dB) analog bandwidth is determined by the 3 dB (or 1 dB) reduction in the reconstructed output, the input being a full-scale sine wave.

10-bit high-speed analog-to-digital converter

TDA8760

Table 1 Output coding with differential inputs (typical values to AGND); \(\mathrm{V}_{\mathrm{I}(\mathrm{p}-\mathrm{p})}=\mathrm{V}_{\text {reft }}-\mathrm{V}_{\text {refL }}=1.5 \mathrm{~V}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ CODE } & \multirow{2}{*}{\(\mathbf{V}_{\mathbf{I (p - p)}}\)} & \(\overline{\mathbf{V}}_{\mathbf{I (p - p)}}\) & \multirow{2}{*}{\(\mathbf{I R}\)} & BINARY OUTPUTS & \begin{tabular}{c}
TWO'S COMPLEMENT \\
OUTPUTS
\end{tabular} \\
\cline { 5 - 6 } & & & & D9 TO DO & D9 TO DO
\end{tabular}

Table 2 Output coding with single inputs (typical values to \(A G N D\)); \(V_{I(p-p)}=V_{\text {refH }}-V_{\text {refL }}=1.4 \mathrm{~V} ; \bar{V}_{1(p-p)}=3.7 \mathrm{~V}\).
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CODE} & \multirow[t]{2}{*}{\(V_{1(p-p)}\)} & \multirow[t]{2}{*}{IR} & BINARY OUTPUTS & TWO'S COMPLEMENT OUTPUTS \\
\hline & & & D9 TO D0 & D9 TO D0 \\
\hline underflow & <3.0 & 0 & 0000000000 & 100000000 \\
\hline 0 & 3.0 & 1 & 000000000 & 100000000 \\
\hline 1 & - & 1 & 0000000001 & 1000000001 \\
\hline \(\bullet\) & - & - & \(\cdots \cdots \cdots \cdot \cdots \cdot\) & -••••••••• \\
\hline 511 & 3.7 & 1 & 0111111111 & 1111111111 \\
\hline - & - & \(\bullet\) & -•••••••• & -•••••••• \\
\hline 1022 & - & 1 & 1111111110 & 0111111110 \\
\hline 1023 & 4.4 & 1 & 1111111111 & 0111111111 \\
\hline overflow & >4.4 & 0 & 1111111111 & 0111111111 \\
\hline
\end{tabular}

Table 3 Mode selection.
\begin{tabular}{|c|c|l|}
\hline\(\overline{\text { OTC }}\) & CS & \multicolumn{1}{c|}{ D0 TO D9 AND IR } \\
\hline 1 & 1 & binary; active \\
\hline 0 & 1 & two's complement; active \\
\hline \(\mathrm{X}^{(1)}\) & 0 & high impedance \\
\hline
\end{tabular}

\section*{Note}
1. Where: \(\mathrm{X}=\) don't care.

10-bit high-speed analog-to-digital converter

Fig. 3 Timing diagram

\(C S=100 \mathrm{kHz}\)

Fig. 4 Timing diagram and test conditions of 3-state output delay time.

10-bit high-speed analog-to-digital converter

TDA8760

(1) Full-scale divided by 5.
\(G_{\text {diff }}=\) maximum of \(\left(\frac{V_{n}(1 \text { to } 4)-V 0}{V 0}\right) \times 100 \%\)
Fig. 5 Differential gain measurement conditions.

\section*{10-bit high-speed analog-to-digital converter}

TDA8760

Effective bits: \(9.1 ; \mathrm{THD}=-65.81 \mathrm{~dB}\);
Harmonic levels (dB): 2nd \(=-75.54 ; 3 \mathrm{rd}=-76.29 ; 4 \mathrm{th}=-74.90 ; 5 \mathrm{th}=-67.50 ; 6 \mathrm{th}=-90.87\).
Fig. 8 Fast Fourier Transformer (\(f_{c l k}=20 \mathrm{MHz} ; \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\)); for differential input mode.

Effective bits: \(8.92 ;\) THD \(=-65.86 \mathrm{~dB}\);
Harmonic levels \((\mathrm{dB}): 2 \mathrm{nd}=-70.92 ; 3 \mathrm{rd}=-68.48 ; 4 \mathrm{th}=-75.32 ; 5 \mathrm{th}=-81.40 ; 6 \mathrm{th}=-72.69\).
Fig.9 Fast Fourier Transformer (\(f_{\mathrm{clk}}=40 \mathrm{MHz} ; \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\)); for differential input mode.

\section*{10-bit high-speed analog-to-digital converter}

Effective bits: 8.73 ; THD \(=-66.03 \mathrm{~dB}\);
Harmonic levels (dB): 2nd \(=-69.50 ; 3 \mathrm{rd}=-70.57 ; 4 \mathrm{th}=-82.71 ; 5 \mathrm{th}=-73.54 ; 6 \mathrm{th}=-71.83\).

Fig. 10 Fast Fourier Transformer (\(\mathrm{f}_{\mathrm{clk}}=50 \mathrm{MHz} ; \mathrm{f}_{\mathrm{i}}=10 \mathrm{MHz}\)); for differential input mode.

\section*{10-bit high-speed analog-to-digital converter}

\section*{INTERNAL PIN CONFIGURATION}

Fig. 11 Description of input and output circuitry.

\section*{10-bit high-speed analog-to-digital converter}

\section*{APPLICATION INFORMATION}

The analog, digital and output supplies should be separated and decoupled.
(1) Differential clock signals can be applied if required.
(2) R1 and R2 must be determined in order to obtain a middle voltage of 3.4 V ; see Table 1.
(3) \(V_{\text {reth }}\) and \(V_{\text {reft }}\) must be decoupled to AGND.

Fig. 12 Application diagram for differential input mode.

\section*{10-bit high-speed analog-to-digital converter}

The analog, digital and output supplies should be separated and decoupled.
(1) Differential clock signals can be applied if required.
(2) R1 and R2 must be determined in order to obtain 3.4 V at the transformer; see Table 1 Adaptation with the single input signal impedance must be taken care of.
(3) \(V_{\text {reft }}\) and \(V_{\text {retL }}\) must be decoupled to AGND.

Fig. 13 Application diagram for differential input mode using an input transformer.

\section*{10-bit high-speed analog-to-digital converter}

The analog, digital and output supplies should be separated and decoupled.
(1) Differential clock signals can be applied if required.
(2) \(\mathrm{R} 1=\mathrm{R} 3\); R2 = R4. R1, R2, R3 and R4 must be determined in order to obtain a middle voltage of 3.7 V ; see Table 2.
(3) \(V_{\text {reft }}\) and \(V_{\text {refl }}\) must be decoupled to AGND.

Fig. 14 Application diagram for single input mode.

\section*{FEATURES}
- 8-bit resolution
- Sampling rate up to 35 MHz
- Internal reference voltage regulator
- No deglitching circuit required
- Large output voltage range
- 1 k \(\Omega\) output load
- Power dissipation only 200 mW
- Single 5 V power supply
- 44-pin QFP package.

\section*{GENERAL DESCRIPTION}

The TDA8771 is a triple 8-bit video digital-to-analog converter (DAC). It converts the digital input signals into analog voltage outputs at a maximum conversion rate of 35 MHz .

The DACs are based on resistor-string architecture with integrated output buffers. The output voltage range is determined by a built-in reference source.

The device is fabricated in a 5 V , CMOS process that ensures high functionality with low power dissipation.

\section*{APPLICATIONS}
- General purpose high-speed digital-to-analog conversion
- Digital TV
- Graphic display
- Desktop video processing.

\section*{QUICK REFERENCE DATA}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & \multicolumn{1}{|c|}{ PARAMETER } & \multicolumn{1}{c|}{ CONDITIONS } & \multicolumn{1}{c|}{ MIN. } & \multicolumn{1}{c|}{ TYP. } & \multicolumn{1}{c|}{ MAX. } & \multicolumn{1}{c|}{ UNIT } \\
\hline\(V_{\text {DDA }}\) & analog supply voltage & & 4.5 & 5.0 & 5.5 & V \\
\hline\(V_{\text {DDD }}\) & digital supply voltage & & 4.5 & 5.0 & 5.5 & V \\
\hline\(I_{\text {DDA }}\) & analog supply current & \(\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\) & - & 33 & 45 & mA \\
\hline\(I_{\text {DDD }}\) & digital supply current & & - & 7 & 20 & mA \\
\hline ILE & DC integral linear error & & - & \(\pm 0.5\) & \(\pm 1\) & LSB \\
\hline DLE & DC differential linearity error & & - & \(\pm 0.25\) & \(\pm 0.5\) & LSB \\
\hline \(\mathrm{f}_{\text {clk(max) }}\) & maximum clock frequency & & 35 & - & - & MHz \\
\hline\(P_{\text {tot }}\) & total power dissipation & \(\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\) & - & 200 & 360 & mW \\
\hline
\end{tabular}

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ TYPE NUMBER } & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline TDA8771H & 44 & QFP & plastic & SOT307-2 \\
\hline
\end{tabular}

Triple 8-bit video digital-to-analog converter

\section*{BLOCK DIAGRAM}

Fig. 1 Block diagram.

\section*{Triple 8-bit video digital-to-analog converter}

\section*{PINNING}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline Iref & 1 & reference current input for output buffers \\
\hline \(\mathrm{V}_{\text {SSA1 }}\) & 2 & analog supply ground 1 \\
\hline R7 & 3 & RED digital input data; bit 7 (MSB) \\
\hline R6 & 4 & RED digital input data; bit 6 \\
\hline R5 & 5 & RED digital input data; bit 5 \\
\hline \(\mathrm{V}_{\text {SSD1 }}\) & 6 & digital supply ground 1 \\
\hline \(\mathrm{V}_{\text {DDD1 }}\) & 7 & digital supply voltage 1 \\
\hline R4 & 8 & RED digital input data; bit 4 \\
\hline R3 & 9 & RED digital input data; bit 3 \\
\hline R2 & 10 & RED digital input data; bit 2 \\
\hline R1 & 11 & RED digital input data; bit 1 \\
\hline R0 & 12 & RED digital input data; bit 0 (LSB) \\
\hline G7 & 13 & GREEN digital input data; bit 7 (MSB) \\
\hline G6 & 14 & GREEN digital input data; bit 6 \\
\hline G5 & 15 & GREEN digital input data; bit 5 \\
\hline G4 & 16 & GREEN digital input data; bit 4 \\
\hline G3 & 17 & GREEN digital input data; bit 3 \\
\hline G2 & 18 & GREEN digital input data; bit 2 \\
\hline G1 & 19 & GREEN digital input data; bit 1 \\
\hline G0 & 20 & GREEN digital input data; bit 0 (LSB) \\
\hline B7 & 21 & BLUE digital input data; bit 7 (MSB) \\
\hline B6 & 22 & BLUE digital input data; bit 6 \\
\hline B5 & 23 & BLUE digital input data; bit 5 \\
\hline B4 & 24 & BLUE digital input data; bit 4 \\
\hline B3 & 25 & BLUE digital input data; bit 3 \\
\hline B2 & 26 & BLUE digital input data; bit 2 \\
\hline \(\mathrm{V}_{\mathrm{DDD} 2}\) & 27 & digital supply voltage 2 \\
\hline \(\mathrm{V}_{\text {SSD2 }}\) & 28 & digital supply ground 2 \\
\hline B1 & 29 & BLUE digital input data; bit 1 \\
\hline B0 & 30 & BLUE digital input data; bit 0 (LSB) \\
\hline CLK & 31 & clock input \\
\hline \(\mathrm{V}_{\text {DDA } 1}\) & 32 & analog supply voltage 1 \\
\hline \(\mathrm{V}_{\text {REF }}\) & 33 & decoupling input for reference voitage \\
\hline n.c. & 34 & not connected \\
\hline \(\mathrm{V}_{\text {DDA } 2}\) & 35 & analog supply voltage 2 \\
\hline OUTB & 36 & BLUE analog output \\
\hline n.c. & 37 & not connected \\
\hline n.c. & 38 & not connected \\
\hline \(\mathrm{V}_{\text {DDA } 3}\) & 39 & analog supply voltage 3 \\
\hline OUTG & 40 & GREEN analog output \\
\hline
\end{tabular}

Triple 8-bit video digital-to-analog
TDA8771 converter
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & PIN & \\
\hline n.c. & 41 & not connected \\
\hline\(V_{\text {SSA2 }}\) & 42 & analog supply ground 2 \\
\hline\(V_{\text {DDA4 }}\) & 43 & analog supply voltage 4 \\
\hline OUTR & 44 & RED analog output \\
\hline
\end{tabular}

Fig. 2 Pin configuration.

Triple 8-bit video digital-to-analog

\section*{converter}

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum Rating System (IEC134).
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & \multicolumn{1}{|c|}{ PARAMETER } & \multicolumn{1}{|c|}{ MIN. } & \multicolumn{1}{c|}{ MAX. } & \multicolumn{1}{c|}{ UNIT } \\
\hline\(V_{\text {DDA }}\) & analog supply voltage & -0.5 & +6.5 & V \\
\hline \(\mathrm{~V}_{\text {DDD }}\) & digital supply voltage & -0.5 & +6.5 & V \\
\hline\(\Delta \mathrm{~V}_{\text {DD }}\) & supply voltage difference between \(\mathrm{V}_{\text {DDA }}\) and \(\mathrm{V}_{\text {DDD }}\) & -1.0 & +1.0 & V \\
\hline \(\mathrm{~T}_{\text {stg }}\) & storage temperature & -55 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{amb}}\) & operating ambient temperature & 0 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{j}}\) & junction temperature & - & +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

THERMAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|}
\hline SYMBOL & PARAMETER & VALUE & UNIT \\
\hline\(R_{\text {th } \mathrm{j} \text {-a }}\) & thermal resistance from junction to ambient in free air & 75 & KW \\
\hline
\end{tabular}

\section*{HANDLING}

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

Triple 8-bit video digital-to-analog converter

\section*{CHARACTERISTICS}
\(V_{D D A}=V_{D D D}=4.5\) to \(5.5 \mathrm{~V} ; \mathrm{V}_{S S A}\) and \(\mathrm{V}_{\mathrm{SSD}}\) shorted together; \(\mathrm{V}_{\mathrm{DDA}}-\mathrm{V}_{\mathrm{DDD}}=-0.5\) to \(+0.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=0\) to \(+70^{\circ} \mathrm{C}\); typical values measured at \(\mathrm{V}_{\mathrm{DDA}}=\mathrm{V}_{\mathrm{DDD}}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\); unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Supply} \\
\hline \(V_{\text {DDA }}\) & analog supply voltage & & 4.5 & 5.0 & 5.5 & V \\
\hline \(\mathrm{V}_{\text {DDD }}\) & digital supply voltage & & 4.5 & 5.0 & 5.5 & V \\
\hline IDDA & analog supply current & \(\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\) & - & 33 & 45 & mA \\
\hline IDDD & digital supply current & \(\mathrm{f}_{\mathrm{clk}}=35 \mathrm{MHz}\) & - & 7 & 20 & mA \\
\hline \multicolumn{7}{|l|}{Inputs} \\
\hline \multicolumn{7}{|l|}{Clock input (PIN 31)} \\
\hline \(\mathrm{V}_{\mathrm{IL}}\) & LOW level input voltage & & 0 & - & 1.2 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & HIGH level input voltage & & 2.0 & - & \(\mathrm{V}_{\text {DDD }}\) & V \\
\hline \multicolumn{7}{|l|}{R, G, B digital inputs (pins 12 to 8,5 to 3, 20 to 13, 30, 29 and 26 to 21)} \\
\hline \(\mathrm{V}_{\mathrm{iL}}\) & LOW level input voltage & & 0 & - & 1.2 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & HIGH level input voltage & & 2.0 & - & \(\mathrm{V}_{\text {DDD }}\) & V \\
\hline
\end{tabular}

I REF REFERENCE CURRENT INPUT FOR OUTPUT BUFFERS (PIN 1)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 11 & input current & & - & 0.6 & 0.7 & mA \\
\hline \multicolumn{7}{|l|}{Timing (see Fig.3)} \\
\hline \(\mathrm{f}_{\mathrm{clk}(\text { max })}\) & maximum clock frequency & & 35 & - & - & MHz \\
\hline \(\delta_{\text {clk }}\) & clock duty factor & & 40 & - & 60 & \% \\
\hline \(\mathrm{tr}_{\mathrm{r}}\) & clock rise time & & - & - & 5 & ns \\
\hline \(t_{f}\) & clock fall time & & - & - & 6 & ns \\
\hline \(\mathrm{t}_{\text {SU; }}\) DAT & input data set-up time & & 4 & - & - & ns \\
\hline \(\mathrm{t}_{\text {HD; }}\) DAT & input data hold time & & 4 & - & - & ns \\
\hline
\end{tabular}

Voltage reference (pin 33, referenced to \(\mathbf{V}_{\text {SSA }}\))
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{\text {REF }}\) & output reference voltage & & 1.180 & 1.242 & 1.305 & V \\
\hline \multicolumn{7}{|l|}{} \\
\hline
\end{tabular}

OUTB, OUTR, OUTG ANALOG OUTPUTS (PINS 36,44 AND 40, REFERENCED TO \(V_{S S A}\)) FOR \(1 \mathrm{k} \Omega\) LOAD; SEE TABLE 1
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline FSR & full-scale output voltage range & & 2.80 & 2.95 & 3.10 & V \\
\hline \(\mathrm{~V}_{\text {OS }}\) & offset of analog voltage output & & - & 0.25 & - & V \\
\hline\(V_{\text {Omax }}\) & maximum output voltage & \begin{tabular}{l}
data inputs = logic 1; \\
note 1
\end{tabular} & 2.95 & 3.20 & 3.45 & V \\
\hline \(\mathrm{~V}_{\text {Omin }}\) & minimum output voltage & \begin{tabular}{l}
data inputs = logic 0; \\
note 1
\end{tabular} & 0.05 & 0.25 & 0.45 & V \\
\hline THD & total harmonic distortion & \begin{tabular}{l}
\(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz} ;\) \\
\(\mathrm{f}_{\mathrm{clk}}=35 \mathrm{MHz}\)
\end{tabular} & - & -44 & - & dB \\
\hline \(\mathrm{Z}_{\mathrm{L}}\) & output load impedance & & 0.9 & 1.0 & 1.1 & \(\mathrm{k} \Omega\) \\
\hline
\end{tabular}

Triple 8-bit video digital-to-analog converter
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Transfer function (\(\mathrm{f}_{\mathbf{c l k}}=\mathbf{3 5} \mathbf{M H z}\))} \\
\hline ILE & DC integral linear error & & - & \(\pm 0.5\) & \(\pm 1\) & LSB \\
\hline DLE & DC differential linearity error & & - & \(\pm 0.25\) & \(\pm 0.5\) & LSB \\
\hline \(\alpha_{C T}\) & crosstalk DAC to DAC & & -50 & - & - & dB \\
\hline & DAC to DAC matching & & - & 1.0 & 2.0 & \% \\
\hline \multicolumn{7}{|l|}{Switching characteristics (for \(1 \mathbf{k \Omega}\) output load; see Fig.4)} \\
\hline \(t_{\text {d }}\) & input to \(50 \%\) output delay time & full-scale change & - & 12 & - & ns \\
\hline \(\mathrm{t}_{\text {s }}\) & settling time & \(10 \%\) to \(90 \%\) of full-scale change & - & 15 & - & ns \\
\hline \(\mathrm{t}_{\text {s2 }}\) & settling time & to \(\pm 1\) LSB & - & 50 & - & ns \\
\hline \multicolumn{7}{|l|}{Output transients (glitches)} \\
\hline \(\mathrm{V}_{\mathrm{g}}\) & area for 1 LSB change & & - & 1 & - & LSB.ns \\
\hline
\end{tabular}

\section*{Note}
1. \(V_{O}\) is directly proportional to \(V_{R E F}\).

Table 1 Input coding and DAC output voltages (typical values).
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
BINARY INPUT DATA \\
(SYNC \(=\) BLANK = 0)
\end{tabular} & CODE & \begin{tabular}{c}
DAC OUTPUT VOLTAGES (V) \\
OUTB, OUTR, OUTG \\
\(\mathbf{R}_{\mathbf{L}}=\mathbf{1} \mathbf{k} \Omega\)
\end{tabular} \\
\hline 00000000 & 0 & 0.262 \\
\hline 00000001 & 1 & 0.273 \\
\hline\(\ldots \ldots .\). & \(\cdot\) &. \\
\hline 10000000 & 128 & 1.731 \\
\hline\(\ldots \ldots \ldots\) &. & \(\cdot\) \\
\hline 11111110 & 254 & 3.188 \\
\hline 11111111 & 255 & 3.200 \\
\hline
\end{tabular}

Triple 8-bit video digital-to-analog converter

TIMING

Fig. 3 Input timing.
clock input
\begin{tabular}{l}
input code \\
(example of a scale input \\
data transition)
\end{tabular}
code 255

Triple 8-bit video digital-to-analog converter

INTERNAL CIRCUITRY

(a) Digital inputs; pins 3 to 5,8 to 26 and 29 to 31 .
(b) \(V_{\text {REF }}\) pin 33.
(c) lref; pin 1 .
(d) OUTR, G, B; pins 44, 40 and 36 .

Fig. 5 Internal circuitry.

Triple 8-bit video digital-to-analog converter

\section*{APPLICATION INFORMATION}

Analog and digital supplies should be separated and decoupled.
Supplies are not connected internally.
All ground pins must be connected. One ground plane is preferred although it depends on application.
See Figs 7 and 9 for example of anti-aliasing filter.
Fig. 6 Application diagram.

\section*{Triple 8-bit video digital-to-analog} converter

Fig. 7 Example of anti-aliasing filter for 2.4 V output swing.

Fig. 8 Frequency response for filter shown in Fig. 7.

\section*{Characteristics of Fig. 7}
- Order 5; adapted CHEBYSHEV
- Ripple \(\rho \geq 0.7 \mathrm{~dB}\)
- f at \(-3 \mathrm{~dB}=6.2 \mathrm{MHz}\)
- \(\mathrm{f}_{\mathrm{NOTCH}}=10.8 \mathrm{MHz}\).

\section*{Triple 8-bit video digital-to-analog} converter

Fig.9 Example of anti-aliasing filter for 1.5 V output swing.

Fig. 10 Frequency response for filter shown in Fig.9.

\section*{Characteristics of Fig. 10}
- Order 5; adapted CHEBYSHEV
- Ripple \(\rho \geq 0.25 \mathrm{~dB}\)
- f at \(-3 \mathrm{~dB}=5.6 \mathrm{MHz}\)
- \(\mathrm{f}_{\mathrm{NOTCH}}=11.7 \mathrm{MHz}\).

\section*{GENERAL DESCRIPTION}

The TDA8772, TDA8772A are triple 8-bit video digital-to-analog converters (DACs). They convert the digital input signals into analog voltage outputs at a maximum conversion rate of 35 MHz (TDA8772H/3, TDA8772AH/3) and 85 MHz (TDA8772H/8, TDA8772AH/8).

The DACs are based on resistor-string architecture with integrated output buffers. The output voltage range is determined by a built-in reference source.
The devices are fabricated in a 5 V CMOS process that ensures high functionality with low power dissipation.
onver

\section*{FEATURES \\ FEATURES}
- 8-bit resolution
- Sampling rate up to

35 MHz for TDA8772H/3, TDA8772AH/3
85 MHz for TDA8772H/8, TDA8772AH/8
- Internal reference voltage regulator
- No deglitching circuit required
- \(\overline{\text { SYNC }}, \overline{\text { BLANK }}\) control inputs
- 3 independent clock inputs (one per DAC)
- 1 V output voltage range
- \(75 \Omega\) output load
- TDA8772A has \(\overline{\text { BLANK }}\) control input on the GREEN channel only while TDA8772 has it on the 3 channels
- Single \(5 \vee\) power supply
- 44-pin QFP package.

44-pin QFP package.

\section*{APPLICATIONS}
- General purpose high-speed digital-to-analog
conversion
- Digital TV
- Graphic display
- Desktop video processing.

\section*{QUICK REFERENCE DATA}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\text {DDA }}\) & analog supply voltage & & 4.5 & 5.0 & 5.5 & V \\
\hline \(\mathrm{V}_{\text {DDD }}\) & digital supply voltage & & 4.5 & 5.0 & 5.5 & V \\
\hline \(\mathrm{I}_{\text {DDA }}\) & analog supply current & \(\mathrm{R}_{\mathrm{L}}=75 \Omega\) & - & 45 & 85 & mA \\
\hline IDDD & \begin{tabular}{l}
digital supply current \\
TDA8772H/3, TDA8772AH/3 \\
TDA8772H/8, TDA8772AH/8
\end{tabular} & & & \[
\begin{aligned}
& 7 \\
& 16
\end{aligned}
\] & \[
\begin{aligned}
& 16 \\
& 27
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{ILE} & \multirow[t]{2}{*}{DC integral linear error} & \(\mathrm{f}_{\text {clk }}=35 \mathrm{MHz}\) & - & \(\pm 0.5\) & \(\pm 1\) & LSB \\
\hline & & \(\mathrm{f}_{\text {clk }}=85 \mathrm{MHz}\) & - & \(\pm 0.75\) & tbf & LSB \\
\hline \multirow[t]{2}{*}{DLE} & \multirow[t]{2}{*}{DC differential linearity error} & \(\mathrm{f}_{\text {clk }}=35 \mathrm{MHz}\) & - & \(\pm 0.25\) & \(\pm 0.5\) & LSB \\
\hline & & \(\mathrm{f}_{\mathrm{clk}}=85 \mathrm{MHz}\) & - & \(\pm 0.5\) & tbf & LSB \\
\hline \(\mathrm{f}_{\text {clk(max) }}\) & \begin{tabular}{l}
maximum clock frequency \\
TDA8772H/3, TDA8772AH/3 \\
TDA8772H/8, TDA8772AH/8
\end{tabular} & & \[
\begin{aligned}
& 35 \\
& 85
\end{aligned}
\] & - & & \\
\hline \(P_{\text {tot }}\) & \begin{tabular}{l}
total power dissipation \\
TDA8772H/3, TDA8772AH/3 TDA8772H/8, TDA8772AH/8
\end{tabular} & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=75 \Omega \\
& \mathrm{R}_{\mathrm{L}}=75 \Omega
\end{aligned}
\] & - & \[
\begin{aligned}
& 260 \\
& 310
\end{aligned}
\] & \[
\begin{aligned}
& 530 \\
& 590
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{mW} \\
& \mathrm{~mW}
\end{aligned}
\] \\
\hline
\end{tabular}

Triple 8-bit video digital-to-analog
TDA8772; TDA8772A converter

ORDERING INFORMATION
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multirow{2}{*}{ TYPE NUMBER } & \multicolumn{4}{|c|}{ PACKAGE } & \multirow{2}{c|}{\begin{tabular}{c}
SAMPLING \\
FREQUENCY
\end{tabular}} \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE & 35 MHz \\
\hline TDA8772H/3 & 44 & QFP44 & plastic & SOT307B & 35 MHz \\
\hline TDA8772AH/3 & 44 & QFP44 & plastic & SOT307B & 85 MHz \\
\hline TDA8772H \(/ 8\) & 44 & QFP44 & plastic & SOT307B & 85 MHz \\
\hline TDA8772AH/8 & 44 & QFP44 & plastic & SOT307B & 85 \\
\hline
\end{tabular}

\section*{Triple 8-bit video digital-to-analog converter}

\section*{BLOCK DIAGRAMS}

(\(\mathrm{V}_{\mathrm{REF}}\))

Fig. 1 Block diagram for TDA8772.

Triple 8-bit video digital-to-analog

Fig. 2 Block diagram for TDA8772A.

Triple 8-bit video digital-to-analog converter

\section*{PINNING}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline R7 & 1 & RED digital input data; bit 7 (MSB) \\
\hline R6 & 2 & RED digital input data; bit 6 \\
\hline R5 & 3 & RED digital input data; bit 5 \\
\hline R4 & 4 & RED digital input data; bit 4 \\
\hline R3 & 5 & RED digital input data; bit 3 \\
\hline R2 & 6 & RED digital input data; bit 2 \\
\hline R1 & 7 & RED digital input data; bit 1 \\
\hline R0 & 8 & RED digital input data; bit 0 (LSB) \\
\hline \(\mathrm{V}_{\text {SSO1 }}\) & 9 & digital supply ground 1 \\
\hline \(\mathrm{V}_{\text {DDD } 1}\) & 10 & digital supply voltage 1 \\
\hline SYNC & 11 & composite sync control input; for GREEN channel only (active LOW) \\
\hline BLANK & 12 & composite blank control input (active LOW) \\
\hline G7 & 13 & GREEN digital input data; bit 7 (MSB) \\
\hline G6 & 14 & GREEN digital input data; bit 6 \\
\hline G5 & 15 & GREEN digital input data; bit 5 \\
\hline G4 & 16 & GREEN digital input data; bit 4 \\
\hline G3 & 17 & GREEN digital input data; bit 3 \\
\hline G2 & 18 & GREEN digital input data; bit 2 \\
\hline G1 & 19 & GREEN digital input data; bit 1 \\
\hline G0 & 20 & GREEN digital input data; bit 0 (LSB) \\
\hline CLKR & 21 & RED clock input \\
\hline CLKG & 22 & GREEN clock input \\
\hline CLKB & 23 & BLUE clock input \\
\hline B7 & 24 & BLUE digital input data; bit 7 (MSB) \\
\hline B6 & 25 & BLUE digital input data; bit 6 \\
\hline B5 & 26 & BLUE digital input data; bit 5 \\
\hline B4 & 27 & BLUE digital input data; bit 4 \\
\hline B3 & 28 & BLUE digital input data; bit 3 \\
\hline B2 & 29 & BLUE digital input data; bit 2 \\
\hline B1 & 30 & BLUE digital input data; bit 1 \\
\hline B0 & 31 & BLUE digital input data; bit 0 (LSB) \\
\hline \(\mathrm{V}_{\text {DDD2 }}\) & 32 & digital supply voltage 2 \\
\hline \(V_{\text {SSD2 }}\) & 33 & digital supply ground 2 \\
\hline \(\mathrm{V}_{\text {REF }}\) & 34 & decoupling input for reference voltage \\
\hline \(\mathrm{V}_{\text {DDA }}\) & 35 & analog supply voltage 1 \\
\hline OUTB & 36 & BLUE analog output \\
\hline \(\mathrm{V}_{\text {SSA1 }}\) & 37 & analog supply ground 1 \\
\hline \(\mathrm{I}_{\text {REFA }}\) & 38 & reference current input for internal reference \\
\hline \(\mathrm{V}_{\text {DDA } 2}\) & 39 & analog supply voltage 2 \\
\hline OUTG & 40 & GREEN analog output \\
\hline
\end{tabular}

Triple 8-bit video digital-to-analog converter
\begin{tabular}{|l|r|l|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & PIN & \multicolumn{1}{|c|}{ DESCRIPTION } \\
\hline I REFB & 41 & reference current input for output buffers \\
\hline\(V_{\text {SSA2 }}\) & 42 & analog supply ground 2 \\
\hline\(V_{\text {DDA3 }}\) & 43 & analog supply voltage 3 \\
\hline OUTR & 44 & RED analog output \\
\hline
\end{tabular}

Fig. 3 Pin configuration.

Triple 8-bit video digital-to-analog converter

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum Rating System (IEC134).
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & \multicolumn{1}{|c|}{ PARAMETER } & \multicolumn{1}{|c|}{ MIN. } & \multicolumn{1}{c|}{ MAX. } & \multicolumn{1}{c|}{ UNIT } \\
\hline\(V_{\text {DDA }}\) & analog supply voltage & -0.5 & +6.5 & V \\
\hline \(\mathrm{~V}_{\mathrm{DDD}}\) & digital supply voltage & -0.5 & +6.5 & V \\
\hline\(\Delta \mathrm{~V}_{\mathrm{DD}}\) & supply voltage differences between \(\mathrm{V}_{\mathrm{DDA}}\) and \(\mathrm{V}_{\text {DDD }}\) & -1.0 & +1.0 & V \\
\hline \(\mathrm{~T}_{\text {stg }}\) & storage temperature & -55 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{amb}}\) & operating ambient temperature & 0 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{j}}\) & junction temperature & - & +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

THERMAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|}
\hline SYMBOL & PARAMETER & VALUE & UNIT \\
\hline\(R_{\text {th } \mathrm{j}-\mathrm{a}}\) & thermal resistance from junction to ambient in free air & 75 & K/W \\
\hline
\end{tabular}

\section*{HANDLING}

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

Triple 8-bit video digital-to-analog converter

\section*{CHARACTERISTICS}

TDA8772H/3, TDA8772AH/3 operating at 35 MHz and TDA8772H/8, TDA8772AH/8 operating at 85 MHz unless otherwise specified.
\(V_{D D A}=V_{D D D}=4.5 \mathrm{~V}\) to \(5.5 \mathrm{~V} ; \mathrm{V}_{S S A}\) and \(\mathrm{V}_{S S D}\) shorted together; \(\mathrm{V}_{\mathrm{DDA}}-\mathrm{V}_{\mathrm{DDD}}=-0.5 \mathrm{~V}\) to \(+0.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=0\) to \(+70^{\circ} \mathrm{C}\); typical values measured at \(V_{D D A}=V_{D D D}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\); unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Supply} \\
\hline \(\mathrm{V}_{\text {DDA }}\) & analog supply voltage & & 4.5 & 5.0 & 5.5 & V \\
\hline \(\mathrm{V}_{\text {DDD }}\) & digital supply voltage & & 4.5 & 5.0 & 5.5 & V \\
\hline IDDA & analog supply current & \(\mathrm{R}_{\mathrm{L}}=75 \Omega\) & - & 45 & 85 & mA \\
\hline IDDD & \begin{tabular}{l}
digital supply current \\
TDA8772H/3, TDA8772AH/3 \\
TDA8772H/8, TDA8772AH/8
\end{tabular} & \(\cdots\) & \[
\left.\right|_{-} ^{-}
\] & \[
\begin{aligned}
& 7 \\
& 16
\end{aligned}
\] & \[
\begin{aligned}
& 16 \\
& 27
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Inputs} \\
\hline \multicolumn{7}{|l|}{CLOCK INPUTS (PINS 21, 22 AND 23)} \\
\hline \(\mathrm{V}_{1}\) & LOW level input voltage & & \(\mathrm{V}_{\text {SSD }}-0.5\) & - & 0.8 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & HIGH level input voltage & & 2.0 & - & \(\mathrm{V}_{\text {DDD }}+0.5\) & V \\
\hline \multicolumn{7}{|l|}{\(\overline{\text { BLANK, }} \overline{\text { SYNC }}\) INPUTS (PINS 12 AND 11; ACTIVE LOW)} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & \(\mathrm{V}_{\text {SSD }}-0.5\) & - & 0.8 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & HIGH level input voltage & & 2.0 & - & \(\mathrm{V}_{\text {DDD }}+0.5\) & V \\
\hline \multicolumn{7}{|l|}{R, G, B digital inputs (Pins 1 to 8, 13 To 20 and 24 to 31)} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & " & \(\mathrm{V}_{\text {SSD }}-0.5\) & - & 0.8 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & HIGH level input voltage & & 2.0 & - & \(V_{\text {DDD }}+0.5\) & V \\
\hline \multicolumn{7}{|l|}{IREFA INTERNAL REFERENCE SUPPLY CURRENT (PIN 38)} \\
\hline 4 & input current & & - & 0.17 & 0.25 & mA \\
\hline \multicolumn{7}{|l|}{I REFB OUTPUT BUFFER SUPPLY CURRENT (PIN 41)} \\
\hline 1 & input current & & - & 0.5 & 0.7 & mA \\
\hline \multicolumn{7}{|l|}{Timing (\(C_{L}=\mathbf{2 5 ~ p F ; ~} \mathrm{R}_{\mathrm{L}} 75 \Omega\); see Fig.4)} \\
\hline \(\mathrm{f}_{\mathrm{lk}(\text { (max })}\) & \begin{tabular}{l}
maximum clock frequency \\
TDA8772H/3, TDA8772AH/3 TDA8772H/8, TDA8772AH/8
\end{tabular} & & \[
\begin{aligned}
& 35 \\
& 85
\end{aligned}
\] & - & & \[
\begin{aligned}
& \mathrm{MHz} \\
& \mathrm{MHz}
\end{aligned}
\] \\
\hline \(\delta_{\text {clk }}\) & clock duty factor & & 40 & - & 60 & \% \\
\hline \(\mathrm{t}_{\mathrm{r}}\) & \begin{tabular}{l}
clock rise time \\
TDA8772H/3, TDA8772AH/3 TDA8772H/8, TDA8772AH/8
\end{tabular} & & - & \[
\left.\right|_{-} ^{-}
\] & \[
\begin{aligned}
& 5 \\
& 3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns}
\end{aligned}
\] \\
\hline \(\mathrm{t}_{\mathrm{f}}\) & \begin{tabular}{l}
clock fall time \\
TDA8772H/3, TDA8772AH/3 TDA8772H/8, TDA8772AH/8
\end{tabular} & & - & |- & \[
\begin{aligned}
& 5 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& \text { ns } \\
& \text { ns }
\end{aligned}
\] \\
\hline \(\mathrm{t}_{\text {SU; }}\) & input data set-up time & & 4 & - & - & ns \\
\hline \(\mathrm{t}_{\text {HD; DAT }}\) & input data hold time & & 2.5 & - & - & ns \\
\hline
\end{tabular}

Triple 8-bit video digital-to-analog converter
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Voltage reference (pin 34, referenced to \(\mathbf{V}_{\text {SSA }}\))} \\
\hline \(V_{\text {REF }}\) & output reference voltage & & 1.180 & 1.242 & 1.305 & V \\
\hline \multicolumn{7}{|l|}{Outputs} \\
\hline \multicolumn{7}{|l|}{OUTB, OUTR, OUTG analog outputs (pins 36,44 and 40, referenced to \(V_{\text {SSA }}\)) for \(75 \Omega\) load; see Tables 1 AND 2} \\
\hline FSR & full-scale output voltage range & & 0.9 & 1.0 & 1.1 & V \\
\hline \(V_{\text {os }}\) & offset of analog voltage output & & 0.75 & 0.83 & 0.95 & V \\
\hline \(V_{\text {OUTmax }}\) & maximum output voltage & \[
\text { data inputs = logic } 1 ;
\] note 1 & 1.65 & 1.83 & 2.05 & V \\
\hline \(\mathrm{V}_{\text {OUTmin }}\) & minimum output voltage & data inputs = logic 0 ; note 1 & 0.75 & 0.83 & 0.95 & V \\
\hline \multirow[t]{2}{*}{THD} & \multirow[t]{2}{*}{total harmonic distortion} & \[
\begin{aligned}
& \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz} ; \\
& \mathrm{f}_{\mathrm{clk}}=35 \mathrm{MHz}
\end{aligned}
\] & - & -41 & - & dB \\
\hline & & \[
\begin{aligned}
& \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz} ; \\
& \mathrm{f}_{\mathrm{clk}}=85 \mathrm{MHz}
\end{aligned}
\] & - & -40 & - & dB \\
\hline \(\mathrm{Z}_{\mathrm{L}}\) & output load impedance & & 60 & 75 & 90 & \(\Omega\) \\
\hline
\end{tabular}

Transfer function (\(\mathbf{f}_{\mathbf{c l k}} \mathbf{= 8 5} \mathbf{~ M H z}\))
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multirow{2}{*}{ ILE } & DC integral linear error & \(\mathrm{f}_{\mathrm{ck}}=35 \mathrm{MHz}\) & - & \(\pm 0.5\) & \(\pm 1\) & LSB \\
\cline { 3 - 7 } & & \(\mathrm{f}_{\mathrm{ckk}}=85 \mathrm{MHz}\) & - & \(\pm 0.75\) & tbf & LSB \\
\hline DLE & DC differential linearity error & \(\mathrm{f}_{\mathrm{ckk}}=35 \mathrm{MHz}\) & - & \(\pm 0.25\) & \(\pm 0.5\) & LSB \\
\cline { 3 - 7 } & & \(\mathrm{f}_{\mathrm{clk}}=85 \mathrm{MHz}\) & - & \(\pm 0.5\) & tbf & LSB \\
\hline\(\alpha_{\mathrm{CT}}\) & crosstalk DAC to DAC & & -45 & - & - & dB \\
\hline & DAC to DAC matching & & - & 1.0 & 2.0 & \(\%\) \\
\hline
\end{tabular}

Switching characteristics (for \(75 \Omega\) output load; see Fig.5)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{t}_{\mathrm{d}}\) & input to \(50 \%\) output delay time & full-scale change & - & 10 & - & ns \\
\hline \(\mathrm{t}_{\mathrm{s} 1}\) & settling time & \begin{tabular}{l}
\(10 \%\) to \(90 \%\) \\
full-scale change
\end{tabular} & - & 6 & - & ns \\
\hline \(\mathrm{t}_{\mathrm{s} 2}\) & settling time & to \(\pm 1\) LSB & - & 30 & - & ns \\
\hline
\end{tabular}

Output transients (glitches)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{g}\) & area for 1 LSB change & & - & 1 & - & LSB.ns \\
\hline
\end{tabular}

\section*{Note}
1. \(\mathrm{V}_{\mathrm{OUT}}\) is directly proportional to \(\mathrm{V}_{\mathrm{REF}}\).

\section*{Triple 8-bit video digital-to-analog converter}

TDA8772; TDA8772A

Table 1 Input coding and DAC output voltages (typical values).
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
BINARY INPUT DATA \\
(SYNC = BLANK = 0)
\end{tabular} & CODE & \begin{tabular}{c}
DAC OUTPUT VOLTAGES (V) \\
OUTB, OUTR, OUTG \\
\(\mathbf{R}_{\mathrm{L}}=75 \Omega\)
\end{tabular} \\
\hline 00000000 & 0 & 0.830 \\
\hline 00000001 & 1 & 0.834 \\
\hline\(\ldots \ldots .\). &. &. \\
\hline 10000000 & 128 & 1.330 \\
\hline\(\ldots \ldots\) &. &. \\
\hline 1111110 & 254 & 1.826 \\
\hline 11111111 & 255 & 1.830 \\
\hline
\end{tabular}

Table 2 Input coding and DAC output voltages (typical values).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{BINARY INPUT DATA} & \multirow[b]{2}{*}{\begin{tabular}{l}
SYNC \\
(PIN 11)
\end{tabular}} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { BLANK } \\
& \text { (PIN 12) }
\end{aligned}
\]} & \multicolumn{3}{|c|}{DAC OUTPUT VOLTAGES (V)} \\
\hline & & & \[
\begin{aligned}
& \text { OUTG } \\
& \text { (PIN 40) }
\end{aligned}
\] & OUTR/B (PIN 44, 46) TDA8772 & OUTR/B (PIN 44, 46) TDA8772A \\
\hline & X & 1 & see Table 1 & see Table 1 & \multirow{3}{*}{see Table 1} \\
\hline & 1 & 0 & 0.830 & \multirow{2}{*}{0.830} & \\
\hline & 0 & 0 & 0.440 & & \\
\hline
\end{tabular}

Triple 8-bit video digital-to-analog converter

TDA8772; TDA8772A

\section*{TIMING}

Fig. 4 Input timing.

Fig. 5 Switching timing.

\section*{Triple 8-bit video digital-to-analog converter}

\section*{INTERNAL CIRCUITRY}

(a) Digital inputs; pins 1 to 8 , and 11 to 31 .
(b) VREF; pin 34.
(c) IREFA; pin 38.
(d) OUTR, G, B; pins 44, 40 and 36.
(e) IREFB; pin 41.

Fig. 6 Internal circuitry.

Triple 8-bit video digital-to-analog

\section*{converter}

TDA8772; TDA8772A

\section*{APPLICATION INFORMATION}

Analog and digital supplies should be separated and decoupled.
Supplies are not connected internally.
All ground pins must be connected. One ground plane is preferred although it depends on the application.
See Fig. 8 for example of anti-aliasing filter.

Fig. 7 Application diagram.

Triple 8-bit video digital-to-analog converter

Fig. 8 Example of anti-aliasing filter for 1 V output swing.

\section*{Characteristics of Fig. 9}
- Order 5; adapted CHEBYSHEV
- Ripple \(\rho \geq 0.6 \mathrm{~dB}\)
- f at \(-3 \mathrm{~dB}=6.5 \mathrm{MHz}\)
- \(\mathrm{f}_{\mathrm{NOTCH}}=46 \mathrm{MHz}\).

Fig. 9 Frequency response for filter shown in Fig. 8.

\section*{FEATURES}
- Multistandard PAL, NTSC and SECAM
- \(1^{2} \mathrm{C}\)-bus controlled
- \({ }^{2} \mathrm{C}\)-bus addresses can be selected by hardware
- Alignment free
- Few external components
- Designed for use with baseband delay lines
- Integrated video filters
- CVBS or YC input with automatic detection
- CVBS output
- Vertical divider system
- Two-level sandcastle signal
- \(V_{A}\) synchronization pulse (3-state)
- \(H_{A}\) synchronization pulse or clamping pulse CLP input/output
- Line-locked clock output or stand-alone \(\mathrm{I}^{2} \mathrm{C}\)-bus output port
- Stand-alone \(1^{2} \mathrm{C}\)-bus input/output port
- Colour matrix and fast YUV switch
- Comb filter enable input/output with subcarrier frequency.

\section*{GENERAL DESCRIPTION}

The TDA9141 is an \(1^{2} \mathrm{C}\)-bus controlled, alignment-free PAL/NTSC/SECAM decoder/sync processor. The TDA9141 has been designed for use with baseband chrominance delay lines, and has a combined subcarrier frequency/comb filter enable signal for communication with a PAL comb filter.
The IC can process CVBS signals and \(Y / C\) input signals. The input signal is available on an output pin, in the event of a \(Y / C\) signal, it is added into a CVBS signal. The sync processor provides a two-level sandcastle, a horizontal pulse (CLP or \(\mathrm{H}_{A}\) pulse, bus selectable) and a vertical \(\left(V_{A}\right)\) puise. When the \(H_{A}\) pulse is selected a line-locked clock (LLC) signal is available at the output port pin.

A fast switch can select either the internal \(Y\) signal with the UV input signals, or YUV signals made of the RGB input signals. The RGB input signals can be clamped with either the internal or an external clamping signal (search tuning mode). Two pins with an input/output port and an output port of the \(1^{2} \mathrm{C}\)-bus are available.
The \(I^{2} \mathrm{C}\)-bus address of the TDA9141 is hardware programmable.

\section*{ORDERING INFORMATION}
\begin{tabular}{|l|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
EXTENDED TYPE \\
NUMBER
\end{tabular}} & \multicolumn{4}{|c|}{ PACKAGE } \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE \\
\hline TDA9141 & 32 & SDIL & plastic & SOT232 \\
\hline
\end{tabular}

Fig. 1 Block diagram

QUICK REFERENCE DATA
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\text {cc }}\) & positive supply voltage & & 7.2 & 8.0 & 8.8 & V \\
\hline \(\mathrm{l}_{\mathrm{cc}}\) & supply current & & - & 45 & - & mA \\
\hline \(\mathrm{V}_{26(0-p)}\) & CVBS input voltage (peak-to-peak value) & top sync - white & - & 1.0 & - & V \\
\hline \(V_{26(p-p)}\) & luminance input voltage (peak-to-peak value) & top sync - white & - & 1.0 & - & V \\
\hline \(\mathrm{V}_{22(p-p)}\) & chrominance burst input voltage (peak-to-peak value) & & - & 0.3 & - & V \\
\hline \(\mathrm{V}_{12}\) & luminance black-white output voltage & & - & 1.0 & - & V \\
\hline \(V_{12(0 \cdot p)}\) & U output voltage (peak-to-peak value) & standard colour bar & - & 1.33 & - & V \\
\hline \(V_{13(p-p)}\) & V output voltage (peak-to-peak value) & standard colour bar & - & 1.05 & - & V \\
\hline \(\mathrm{V}_{10}\) & sandcastle blanking voltage level & & - & 2.5 & - & V \\
\hline \(\mathrm{V}_{10}\) & sandcastle clamping voltage level & & - & 4.5 & - & V \\
\hline \(V_{11}\) & \(\mathrm{V}_{\mathrm{A}}\) output voltage & & - & 5.0 & - & V \\
\hline \(V_{17}\) & \(\mathrm{H}_{\text {A }}\) output voltage & & - & 5.0 & - & V \\
\hline \(\mathrm{V}_{16(p-\mathrm{p})}\) & LLC output voltage amplitude (peak-to-peak value) & & - & 500 & - & mV \\
\hline \(\mathrm{V}_{21,20}\) 19(p-p) & RGB input voltage (peak-to-peak value) & 0 to 100\% saturation & - & 0.7 & - & V \\
\hline \(\mathrm{V}_{\text {clamp 10 }}\) & clamping pulse input/output voltage & & - & 5.0 & - & V \\
\hline \(\mathrm{V}_{\text {stb }}\) & subcarrier output voltage amplitude (peak-to-peak value) & & - & 200 & - & mV \\
\hline \(\mathrm{V}_{15,16}\) & O port output voltage & & - & 5.0 & - & V \\
\hline
\end{tabular}

Fig. 2 Pin configuration.

PINNING
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline -(R-Y) & 1 & chrominance output \\
\hline -(B-Y) & 2 & chrominance output \\
\hline \(\mathrm{U}_{\text {in }}\) & 3 & chrominance \(U\) input \\
\hline \(V_{\text {in }}\) & 4 & chrominance voltage input \\
\hline SCL & 5 & serial clock input \\
\hline SDA & 6 & serial data input/output \\
\hline \(V_{C C}\) & 7 & positive supply input \\
\hline DEC & 8 & digital supply decoupling \\
\hline DGND & 9 & digital ground \\
\hline SC & 10 & sandcastle output \\
\hline \(V_{\text {A }}\) & 11 & vertical acquisition synchronization pulse \\
\hline \(Y_{\text {out }}\) & 12 & luminance output \\
\hline \(\mathrm{V}_{\text {out }}\) & 13 & chrominance V output \\
\hline \(\mathrm{U}_{\text {out }}\) & 14 & chrominance U output \\
\hline I/O PORT & 15 & input/output port \\
\hline O PORT/LLC & 16 & output port/line-locked clock output \\
\hline CLP/HA & 17 & clamping pulse \(/ \mathrm{H}_{\mathrm{A}}\) synchronization pulse input/output \\
\hline F & 18 & fast switch select input \\
\hline B & 19 & BLUE input \\
\hline G & 20 & GREEN input \\
\hline R & 21 & RED input \\
\hline \begin{tabular}{l}
ADDR \\
(CVBS)
\end{tabular} & 22 & \({ }^{2} \mathrm{C}\)-bus address input (CVBS output) \\
\hline Fscomb & 23 & comb filter status input/output \\
\hline HPLL & 24 & horizontal PLL filter \\
\hline C & 25 & chrominance input \\
\hline Y/CVBS & 26 & luminance/CVBS input \\
\hline AGND & 27 & analog ground \\
\hline \(\mathrm{FILT}_{\text {ref }}\) & 28 & filter reference decoupling \\
\hline CPLL & 29 & colour PLL filter \\
\hline XTAL & 30 & reference crystal input \\
\hline XTAL2 & 31 & second crystal input \\
\hline \(\mathrm{SEC}_{\text {ref }}\) & 32 & SECAM reference decoupling \\
\hline
\end{tabular}

\section*{FUNCTIONAL DESCRIPTION}

\section*{General}

The TDA9141 is an \(I^{2}\) C-bus controlled, alignment-free PALNTSC/SECAM colour decoder/sync processor which has been designed for use with baseband chrominance delay lines. In the standard operating mode the \(1^{2} \mathrm{C}\)-bus address is 8 A . If the address input is connected to the positive rail the address will change to 8 E .

\section*{Input switch}

WARNING: The voltage on the CHROMINANCE PIN MUST NEVER EXCEED 5.5 V. If it does the IC enters a test MODE.

The TDA9141 has a two pin input for CVBS or YC signals which can be selected via the \(\mathrm{I}^{2} \mathrm{C}\)-bus. The input selector also has a position in which it automatically detects whether a CVBS or YC signal is on the input. In this input selector position, standard identification first takes place on an added Y/CVBS and \(C\) input signal. After that, both chrominance signal input amplitudes are checked once and the input with the strongest chrominance burst signal is selected. The input switch status is read out by the \(I^{2} \mathrm{C}\)-bus via output bit YC.

\section*{CVBS output}

In the standard operating mode with the \(1^{2} \mathrm{C}\)-bus address 8 A , a CVBS output signal is available on the address pin, which represents either the CVBS input signal or the Y/C input signal, added into a CVBS signal

\section*{RGB colour matrix}

WARNING: The voltage on the Uin pin must never exceed 5.5 V . If it does the IC enters a test mode.

The TDA9141 has a colour matrix to convert RGB input signals into YUV signals. A fast switch, controlled by the signal on pin \(F\) and enabled by the \(I^{2} \mathrm{C}\)-bus via EFS (enable fast switch), can select between these YUV signals and the YUV signals of the decoder. The \(Y\) signal is internally connected to the switch. The -(\(R-Y\)) and \(-(B-Y)\) output signals of the decoder have to first be delayed in external baseband chrominance delay lines. The outputs of the delay lines must be connected to the UV input pins. If the RGB signals are not synchronous with the selected decoder input signal, clamping of the RGB input signals is possible by \(1^{2} \mathrm{C}\)-bus selection of STM (search tuning mode), EFS and by feeding an external clamping signal to the CLP pin.
Also in search tuning mode the VA output will be in a high impedance OFF-state.

\section*{Standard identification}

The standards which the TDA9141 can decode are dependent on the choice of external crystals. If a 4.4 MHz and a 3.6 MHz crystal are used then SECAM, PAL 4.4/3.6 and NTSC 4.4/3.6 can be decoded. If two 3.6 MHz crystals are used then only PAL 3.6 and NTSC 3.6 can be decoded. Which 3.6 MHz standards can be decoded is dependent on the exact frequencies of the 3.6 MHz crystals. In an application where not all standards are required only one crystal is sufficient (in this instance the crystal must be connected to the reference crystal input (pin 30)). If a 4.4 MHz crystal is used it must always be connected to pin 30 . Both crystals are used to provide a reference for the filters and the horizontal PLL, however, only the reference crystal is used to provide a reference for the SECAM
demodulator.
To enable the calibrating circuits to be adjusted exactly two bits from \(\mathrm{I}^{2} \mathrm{C}\)-bus subaddress 00 are used to indicate which crystals are connected to the IC.

The standard identification circuit is a digital circuit without external components; the search loop is illustrated in Fig. 3.

The decoder (via the \(I^{2} \mathrm{C}\)-bus) can be forced to decode either SECAM or PAL/NTSC (but not PAL or NTSC). Crystal selection can also be forced. Information concerning which standard and which crystal have been selected and whether the colour killer is ON or OFF is provided by the read out. Using the forced-mode does not affect the search loop, it does, however, prevent the decoder from reaching or staying in an unwanted state. The identification circuit skips impossible standards (e.g. SECAM when no 4.4 MHz crystal is fitted) and illegal standards (e.g. is forced mode). To reduce the risk of wrong identification PAL has priority over SECAM (only line identification is used for SECAM).

\section*{Integrated filters}

All filters, including the luminance delay line, are an integral part of the IC. The filters are gyrator-capacitor type filters. The resonant frequency of the filters is controlled by a circuit that uses the active crystal to tune the SECAM Cloche filter during the vertical flyback time. The remaining filters and the luminance delay line are matched to this filter. The filters can be switched to either 4.43 MHz , 4.28 MHz or 3.58 MHz irrespective of the frequency of the active crystal. The switching is controlled by the identification circuit. In YC mode the chrominance notch filter is bypassed, to preserve full
signal bandwidth.
For a CVBS signal the chrominance notch filter can be bypassed by \({ }^{2} \mathrm{C}\)-bus selection of TB (trap bypass).
The luminance delay line delivers the \(Y\) signal to the output 60 ns after the \(-(R-Y)\) and \(-(B-Y)\) signals have arrived at their outputs. This compensates for the delay of the external chrominance delay lines.

\section*{Colour decoder}

The PALNTSC demodulator employs an oscillator that can operate with either crystal (3.6 or 4.4 MHz). If the \(\mathrm{I}^{2} \mathrm{C}\)-bus indicates that only one crystal is connected it will always connect to the crystal on the reference crystal input (pin 30).
The Hue signal, which is adjustable via the \(I^{2} \mathrm{C}\)-bus, is gated during the burst for NTSC signals.

The SECAM demodulator is an auto-calibrating PLL demodulator which has two references. The reference crystal, to force the PLL to the desired free-running frequency and the bandgap reference, to obtain the correct absolute value of the output signal. The VCO of the PLL is calibrated during each vertical blanking period, when the IC is in search mode or SECAM mode. If the reference crystal is not 4.4 MHz the decoder will not produce the correct SECAM signals.

The frequency of the active crystal is fed to the Fscomb output, which can be connected to an external comb filter IC. The DC value on this pin contains the comb enable information. Comb enable is true when bus bit ECMB is HIGH. If ECMB is LOW, the subcarrier frequency is suppressed. The external comb filter can force the DC value of Fscomb LOW, as pin Fscomb also acts as input pin. In this event the subcarrier frequency
is still present. If the DC value of Fscomb is HIGH, the input switch is always forced in Y/C mode, indicated by bus bit YC.

\section*{Sync processor (\(\varphi 1\) loop)}

The main part of the sync circuit is a \(432 \times \mathrm{f}_{\mathrm{H}}(6.75 \mathrm{MHz})\) oscillator the frequency of which is divided by 432 to lock the Phase 1 loop to the incoming signal. The time constant of the loop can be forced by the \(1^{2} \mathrm{C}\)-bus (fast or slow). If required the IC can select the time constant, depending on the noise content of the input signal and whether the loop is phase-locked or not (medium or slow). The free-running frequency of the oscillator is determined by a digital control circuit that is locked to the active crystal.
When a power-on-reset pulse is detected the frequency of the oscillator is switched to a frequency greater than 6.75 MHz to protect the horizontal output transistor. The oscillator frequency is reset to 6.75 MHz when the crystal indication bits have been loaded into the IC. To ensure that this procedure does not fail it is absolutely necessary to send subaddress 00 before subaddress 01 . Subaddress 00 contains the crystal indication bits and when subaddress 01 is received the line oscillator calibration will be initiated (for the start-up procedure after power-on reset detection see the \(\mathrm{I}^{2} \mathrm{C}\)-bus protocol. The calibration is terminated when the oscillator frequency reaches 6.75 MHz . The oscillator is again calibrated when an out-of-lock condition with the input signal is detected by the coincidence detector. Again the calibration will be terminated when the oscillator frequency reaches 6.75 MHz .

The Phase 1 loop can be opened using the \(I^{2} \mathrm{C}\)-bus. This is to facilitate

On Screen Display (OSD) information. If there is no input signal or a very noisy input signal the phase 1 loop can be opened to provide a stable line frequency and thus a stable picture.

The sync part also delivers a two-level sandcastle signal, which provides a combined horizontal and vertical blanking signal and a clamping pulse for the display section of the TV.

\section*{Vertical divider system}

The vertical divider system has a fully integrated vertical sync separator. The divider can accommodate both 50 and 60 Hz systems; it can either locate the field frequency automatically or it can be forced to the desired system via the \({ }^{2}\) ²-bus. A block diagram of the vertical divider system is illustrated in Fig.4. The divider system operates at twice the horizontal line frequency. The line counter receives enable pulses at this line frequency, thereby counting two pulses per line. A state diagram of the controller is illustrated in Fig.5. Because it is symmetrical only the right hand part will be described.

Depending on the previously found field frequency, the controller will be in one of the COUNT states. When the line counter has counted 488 pulses (i.e. 244 lines of the video input signal) the controller will move to the next state depending on the output of the norm counter. This can be either NORM, NEAR_NORM or NO_NORM depending on the position of the vertical sync pulse in the previous fields. When the controller is in the NORM state it generates the vertical sync pulse (VSP) automatically and then, when the line counter is at \(\mathrm{LC}=626\), moves to the WAIT state. In this condition it waits for the next pulse

\section*{PAL/NTSC/SECAM decoder/sync processor}
of the double line frequency signal and then moves to the COUNT state of the current field frequency. When the controller returns to the COUNT state the line counter will be reset half a line after the start of the vertical sync pulse of the video input signal.
When the controller is in the NEAR_NORM state it will move to the COUNT state if it detects the vertical sync pulse within the NEAR_NORM window (i.e. 622 < LC < 628). If no vertical sync pulse is detected, the controller will move back to the COUNT state when the line counter reaches \(L C=628\). The line counter will then be reset.
When the controller is in the NO_NORM state it will move to the COUNT state when it detects a vertical sync pulse and reset the line counter. If a vertical sync pulse is not detected before LC = 722 (if the Phase 1 loop is locked in forced mode) it will move to the COUNT
state and reset the line counter. If the Phase 1 loop is not locked the controller will move back to the COUNT state when LC \(=628\). The forced mode option keeps the controller in either the left-hand side \((60 \mathrm{~Hz}\)) or the right-hand side \((50 \mathrm{~Hz}\)) of the state diagram.

Figure 6 illustrates the state diagram of the norm counter which is an up/down counter that counts up if it finds a vertical sync pulse within the selected window. In the NEAR_NORM and NORM states the first correct vertical sync pulse after one or more incorrect vertical sync pulses is processed as an incorrect pulse. This procedure prevents the system from staying in the NEAR_NORM or NORM state if the vertical sync pulse is correct in the first field and incorrect in the second field. If no vertical sync pulse is found in the selected window this will always result in a down pulse for the norm counter.

\section*{Output port and input/output port}

Two stand-alone ports are available for external use. These ports are \({ }^{2} \mathrm{C}\)-bus controiled, the output port by bus bit OPB and the input/output port by bus bit OPA. Bus bit OPA is an open-drain output, to enable input port functioning. The pin status is read out by bus via output bit IP.

\section*{Sandcastle}

Figure 7 illustrates the timing of the acquisition sandcastle (ASC) and the \(\mathrm{V}_{\mathrm{A}}\) pulse with respect to the input signal. The sandcastle signal is in accordance with the 2 -level 5 V sandcastle format. An external vertical guard current can overrule the sink current to enable blanking purposes.

Fig. 3 Search loop of the identification circuit.

Fig. 4 Block diagram of the vertical divider system.

Fig. 5 State diagram of the vertical divider system.

Fig. 6 State diagram of the norm counter.

Fig. 7 Acquisition sandcastle signal and \(\mathrm{V}_{\mathrm{A}}\) pulse timing diagram.

\section*{PAL/NTSC/SECAM} decoder/sync processor

Table 1 Slave address (8A).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline A6 & A5 & A4 & A3 & A2 & A1 & A0 & R \(\bar{W}\) \\
\hline 1 & 0 & 0 & 0 & 1 & \(X\) & 1 & \(X\) \\
\hline
\end{tabular}

Table 2 Inputs.
\begin{tabular}{|c|l|l|l|l|l|l|l|l|}
\hline SUBADDRESS & MSB & \multicolumn{5}{|c|}{} & LSB \\
\hline 00 & INA & INB & TB & ECMB & FOA & FOB & XA & XB \\
\hline 01 & FORF & FORS & OPA & OPB & POC & FM & SAF & FRQF \\
\hline 02 & EFS & STM & HU5 & HU4 & HU3 & HU2 & HU1 & HU0 \\
\hline 03 & LCA & - & - & - & - & - & - & - \\
\hline
\end{tabular}

Table 3 Outputs.
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline ADDRESS & POR & FSI & YC & SL & IP & SAK & SBK & FRQ \\
\hline
\end{tabular}

\section*{\({ }^{12} \mathrm{C}\)-bus protocol}

If the address input is connected to the positive supply the address will change from 8 A to 8 E .
Valid subaddresses \(=00\) to OF
Auto-increment mode available for subaddresses.
Start-up procedure: read the status byte until POR = 0 ; send subaddress 00 with the crystal indicator bits (XA and XB) indicating that only one crystal is connected to the IC; wait for 250 ms ; send subaddress 01 ; wait for at least 100 ms ; set XA, XB to the actual crystal configuration.
Each time before the data in the IC is refreshed, the staus byte must be read. If POR \(=1\), then the above procedure must be carried out to restart the IC.
Failure to stick to the above procedure may result in an incorrect line frequency after power-up or a power-dip.

\section*{INPUT SIGNALS}

Table 4 Source select.
\begin{tabular}{|c|c|l|}
\hline INA & INB & \multicolumn{1}{c|}{ SOURCE } \\
\hline 0 & 0 & CVBS \\
\hline 0 & 1 & YC \\
\hline 1 & - & auto CVBSNC \\
\hline
\end{tabular}

Table 5 Trap bypass.
\begin{tabular}{|c|l|}
\hline TB & \multicolumn{1}{|c|}{ CONDITION } \\
\hline 0 & trap not bypassed \\
\hline 1 & trap bypassed \\
\hline
\end{tabular}

Table 6 Comb filter enable.
\begin{tabular}{|c|l|}
\hline ECMB & CONDITION \\
\hline 0 & comb filter disabled \\
\hline 1 & comb filter enabled \\
\hline
\end{tabular}

Table 7 Phase 1 time constant.
\begin{tabular}{|c|c|l|}
\hline FOA & FOB & \multicolumn{1}{c|}{ MODE } \\
\hline 0 & 0 & auto \\
\hline 0 & 1 & slow \\
\hline 1 & - & fast \\
\hline
\end{tabular}

Table 8 Crystal indication.
\begin{tabular}{|c|c|l|}
\hline XA & XB & \multicolumn{1}{|c|}{ CRYSTAL } \\
\hline 0 & 0 & \(2 \times 3.6 \mathrm{MHz}\) \\
\hline 0 & 1 & \(1 \times 3.6 \mathrm{MHz}\) \\
\hline 1 & 0 & \(1 \times 4.4 \mathrm{MHz}\) \\
\hline 1 & 1 & 3.6 and 4.4 MHz \\
\hline
\end{tabular}

Table 9 Forced field frequency.
\begin{tabular}{|c|c|l|}
\hline FORF & FORS & \multicolumn{1}{|c|}{ FIELD FREQUENCY } \\
\hline 0 & 0 & auto; 60 Hz if no lock \\
\hline 0 & 1 & 60 Hz \\
\hline 1 & 0 & 50 Hz \\
\hline 1 & 1 & auto; 50 Hz if no lock \\
\hline
\end{tabular}

Table 10 Output value I/O port.
\begin{tabular}{|c|l|}
\hline OPA & \multicolumn{1}{c|}{ CONDITION } \\
\hline 0 & LOW \\
\hline 1 & HIGH \\
\hline
\end{tabular}

Table 11 Output value O port.
\begin{tabular}{|c|l|}
\hline OPB & \multicolumn{1}{c|}{ CONDITION } \\
\hline 0 & LOW \\
\hline 1 & HIGH \\
\hline
\end{tabular}

Table 12 Phase 1 loop control.
\begin{tabular}{|c|l|}
\hline POC & \multicolumn{1}{|c|}{ CONDITION } \\
\hline 0 & phase one loop closed \\
\hline 1 & phase one loop open \\
\hline
\end{tabular}

Table 13 Forced standard.
\begin{tabular}{|c|c|c|l|}
\hline FM & SAF & FRQF & \multicolumn{1}{|c|}{ STANDARD } \\
\hline 0 & - & - & auto search \\
\hline 1 & 0 & 0 & PAL/NTSC second crystal \\
\hline 1 & 0 & 1 & PAL/NTSC reference crystal \\
\hline 1 & 1 & 0 & illegal \\
\hline 1 & 1 & 1 & SECAM reference crystal \\
\hline
\end{tabular}

\section*{Note to Table 13}

If \(X A\) and \(X B\) indicate that only one crystal is connected to the IC and FM and FRQF force it to use the second crystal the colour will be switched off.

Table 14 Fast switch enable.
\begin{tabular}{|c|l|}
\hline EFS & \multicolumn{1}{|c|}{ CONDITION } \\
\hline 0 & fast switch disabled \\
\hline 1 & fast switch enabled \\
\hline
\end{tabular}

Table 15 Search tuning mode.
\begin{tabular}{|c|l|}
\hline STM & \multicolumn{1}{|c|}{ CONDITION } \\
\hline 0 & search tuning mode off \\
\hline 1 & search tuning mode on \\
\hline
\end{tabular}

Table 16 Hue.
\begin{tabular}{|l|r|l|}
\hline \multicolumn{1}{|c|}{ FUNCTION } & ADDRESS & DIGITAL NUMBER \\
\hline hue & HU5 to HUO & \begin{tabular}{l}
NOOOOO0 \(=-45^{\circ}\) \\
\(111111=+45^{\circ}\)
\end{tabular} \\
\hline
\end{tabular}

Table 17 Line-locked clock active.
\begin{tabular}{|c|l|}
\hline LCA & \multicolumn{1}{|c|}{ CONDITION } \\
\hline 0 & OPB/CLP mode \\
\hline 1 & LLC/HA mode \\
\hline
\end{tabular}

\section*{OUTPUT SIGNALS}

Table 18 Power-on reset.
\begin{tabular}{|c|l|}
\hline POR & \multicolumn{1}{|c|}{ CONDITION } \\
\hline 0 & normal mode \\
\hline 1 & power-down mode \\
\hline
\end{tabular}

Table 19 Field frequency indication.
\begin{tabular}{|c|l|}
\hline FSI & \multicolumn{1}{c|}{ CONDITION } \\
\hline 0 & 50 Hz \\
\hline 1 & 60 Hz \\
\hline
\end{tabular}

Table 20 Input switch mode.
\begin{tabular}{|c|l|}
\hline YC & \multicolumn{1}{|c|}{ CONDITION } \\
\hline 0 & CVBS mode \\
\hline 1 & YC mode \\
\hline
\end{tabular}

Table 21 Phase 1 lock indication.
\begin{tabular}{|c|l|}
\hline SL & \multicolumn{1}{|c|}{ CONDITION } \\
\hline 0 & not locked \\
\hline 1 & locked \\
\hline
\end{tabular}

Table 22 Input value I/O port.
\begin{tabular}{|c|ll|}
\hline IP & \multicolumn{1}{c|}{ CONDITION } \\
\hline 0 & LOW & \\
\hline 1 & HIGH & \\
\hline
\end{tabular}

Table 23 Standard read-out.
\begin{tabular}{|c|c|c|l|}
\hline SAK & SBK & FRQ & \multicolumn{1}{|c|}{ STANDARD } \\
\hline 0 & 0 & 0 & PAL second crystal \\
\hline 0 & 0 & 1 & PAL reference crystal \\
\hline 0 & 1 & 0 & NTSC second crystal \\
\hline 0 & 1 & 1 & NTSC reference crystal \\
\hline 1 & 0 & 0 & illegal forced mode \\
\hline 1 & 0 & 1 & SECAM reference crystal \\
\hline 1 & 1 & - & colour off \\
\hline
\end{tabular}

\section*{PAL/NTSC/SECAM decoder/sync processor}

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum Rating System. (IEC134)
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\mathrm{cc}}\) & positive supply voltage & & - & 8.8 & \(V\) \\
\hline \(\mathrm{I}_{\mathrm{cc}}\) & supply current & & - & 60 & mA \\
\hline \(\mathrm{P}_{\text {bt }}\) & total power dissipation & & - & 530 & mW \\
\hline \(\mathrm{T}_{\text {sg }}\) & storage temperature & & -55 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature & & -10 & +65 & \({ }^{\circ} \mathrm{C}\) \\
\hline ESD & \begin{tabular}{l}
electrostatic discharge (on all pins) \\
Human body model \\
Machine model
\end{tabular} & note 1 note 2 & \[
\begin{array}{|l}
-2000 \\
-200
\end{array}
\] & \[
\begin{aligned}
& +2000 \\
& +200
\end{aligned}
\] & \[
\begin{aligned}
& v \\
& v
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Notes to the limiting values}
1. Equivalent to discharging a 100 pF capacitor via a \(1.5 \mathrm{k} \Omega\) series resistor.
2. Equivalent to discharging a 200 pF capacitor via a \(0 \Omega\) series resistor.

THERMAL RESISTANCE
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PARAMETER & THERMAL RESISTANCE \\
\hline \(\mathrm{R}_{\text {tila }}\) & from junction to ambient in free air & 48 KW \\
\hline
\end{tabular}

CHARACTERISTICS
\(\mathrm{V}_{\mathrm{cC}}=8 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\); unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Supply} \\
\hline \(\mathrm{V}_{\text {cc }}\) & positive supply voltage & & 7.2 & 8.0 & 8.8 & V \\
\hline \(\mathrm{I}_{\mathrm{cc}}\) & supply current & & - & 45 & - & mA \\
\hline \(\mathrm{P}_{\text {itot }}\) & total power dissipation & & - & 360 & - & mW \\
\hline \multicolumn{7}{|l|}{Input switch} \\
\hline \multicolumn{7}{|l|}{Y/CVBS InPut (PIN 26)} \\
\hline \(\mathrm{V}_{2(\text { (p-p) }}\) & input voltage (peak-to-peak value) & top sync - white & - & 1.0 & 1.43 & V \\
\hline \(\mathrm{Z}_{1}\) & input impedance & & 60 & - & - & k \(\Omega\) \\
\hline \multicolumn{7}{|l|}{C INPUT (PIN 25)} \\
\hline \(\mathrm{V}_{2 \text { 2(p-p) }}\) & input burst voltage (peak-to-peak value) & & - & 0.3 & 0.43 & V \\
\hline \(\mathrm{z}_{1}\) & input impedance & & 60 & - & - & \(\mathrm{k} \Omega\) \\
\hline \multicolumn{7}{|l|}{CVBS OUTPUT (PIN 22) ONLY ADDRESS 8A} \\
\hline \(\mathrm{V}_{22(0 \cdot p)}\) & output voltage (peak-to-peak value) & top sync - white & - & 1.0 & - & V \\
\hline \(\mathrm{z}_{0}\) & output impedance & & - & - & 500 & \(\Omega\) \\
\hline \(\mathrm{V}_{\text {st }}\) & top sync voltage level & & - & 2.8 & - & V \\
\hline \multicolumn{7}{|l|}{Bias generator (pin 8)} \\
\hline \(\mathrm{V}_{8}\) & digital supply voltage & & - & 5.0 & - & V \\
\hline \multicolumn{7}{|l|}{Subcarrier regeneration} \\
\hline \multicolumn{7}{|l|}{General} \\
\hline CR & ```
catching range
 reference crystal 4.4 MHz
 reference crystal 3.6 MHz
 second crystal 3.6 MHz
``` & note 1 & \[
\begin{aligned}
& \pm 400 \\
& \text { tbf } \\
& \pm 300
\end{aligned}
\] & - & - & \[
\begin{aligned}
& \mathrm{Hz} \\
& \mathrm{~Hz} \\
& \mathrm{~Hz}
\end{aligned}
\] \\
\hline \(\varphi\) & phase shift for 400 Hz deviation for 300 Hz deviation & \[
\begin{aligned}
& 4.4 \mathrm{MHz} \\
& \text { 3.6 MHz }
\end{aligned}
\] & & - & \[
\begin{aligned}
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{array}{|l|}
\mathrm{deg} \\
\mathrm{deg} \\
\hline
\end{array}
\] \\
\hline TC & temperature coefficient of oscillator & & - & tbf & - & Hz/K \\
\hline \(\mathrm{Z}_{1}\) & input impedance reference crystal input second crystal input & & - & \[
\begin{array}{|l}
1.0 \\
1.5 \\
\hline
\end{array}
\] & & \[
\begin{array}{|l}
\hline \mathrm{k} \Omega \\
\mathrm{k} \Omega \\
\hline
\end{array}
\] \\
\hline \(\mathrm{V}_{\text {dep }}\) & supply voltage dependency & & - & tbf & - & V \\
\hline \multicolumn{7}{|l|}{FSCOMB OUTPUT (PIN 23)} \\
\hline \(\mathrm{V}_{\text {sub( }}^{\text {(p) }}\) ) & subcarrier output amplitude (peak-to-peak value) & \(\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\) & 150 & 200 & 300 & mV \\
\hline \(V_{\text {cen }}\) & comb enable voltage level & & 4.0 & 4.2 & - & V \\
\hline \(V_{\text {cdis }}\) & comb disable voltage level & & - & 0.8 & 1.4 & V \\
\hline
\end{tabular}

\section*{PAL/NTSC/SECAM}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(\mathrm{I}_{\text {sink }}\) & minimum sink current to force output to comb disable level & & 0.4 & - & 2.0 & mA \\
\hline \(\mathrm{R}_{\mathrm{GND}}\) & value of grounded resistor to force output to comb disable level & & 0.4 & - & 2.0 & k \(\Omega\) \\
\hline \multicolumn{7}{|l|}{ACC} \\
\hline & ACC control range & & -20 & - & +5 & dB \\
\hline & change of \(-(R-Y)\) and \(-(B-Y)\) signals over ACC range & & - & - & 1 & dB \\
\hline \(\cdots\) & colour killer threshold PAL/NTSC SECAM & - & & \[
\begin{aligned}
& -25 \\
& -23
\end{aligned}
\] & - & \[
\begin{aligned}
& d B \\
& d B
\end{aligned}
\] \\
\hline & kill - unkill hysteresis & & - & 3 & - & dB \\
\hline
\end{tabular}

Demodulators -(R-Y) and -(B-Y) outputs (pins 1 and 2)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline & ratio of \(-(\mathrm{R}-\mathrm{Y})\) and \(-(\mathrm{B}-\mathrm{Y})\) signals & standard colour bar & 1.20 & 1.27 & 1.34 & \\
\hline TC & \begin{tabular}{l} 
temperature coefficient of \(-(\mathrm{R}-\mathrm{Y})\) and \\
\(-(\mathrm{B}-\mathrm{Y})\) amplitude
\end{tabular} & & - & tbf & - & \(\mathrm{Hz} / \mathrm{K}\) \\
\hline & \begin{tabular}{l} 
spread of \(-(\mathrm{R}-\mathrm{Y})\) and \(-(\mathrm{B}-\mathrm{Y})\) ratio \\
between standards
\end{tabular} & & -1 & - & +1 & dB \\
\hline \(\mathrm{~V}_{1}\) & output level of \(-(\mathrm{R}-\mathrm{Y})\) during blanking & & - & 2.0 & - & V \\
\hline \(\mathrm{V}_{2}\) & output level of \(-(\mathrm{B}-\mathrm{Y})\) during blanking & & - & 2.0 & - & V \\
\hline B & -3 dB bandwidth & & - & 1 & - & MHz \\
\hline \(\mathrm{Z}_{0}\) & output impedance & & - & - & 500 & \(\Omega\) \\
\hline \(\mathrm{~V}_{\text {dep }}\) & supply voltage dependency & & - & tbf & - & V \\
\hline
\end{tabular}

PALNTSC DEMODULATOR
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{V}_{1(p-p)}\) & \(-(\mathrm{R}-\mathrm{Y})\) output voltage (peak-to-peak value) & standard colour bar & 470 & 525 & 585 & mV \\
\hline \(\mathrm{V}_{2(p-\mathrm{p})}\) & \(-(\mathrm{B}-\mathrm{Y})\) output voltage (peak-to-peak value) & standard colour bar & 595 & 665 & 740 & mV \\
\hline\(\alpha\) & crosstalk between -(R-Y) and -(B-Y) & & - & tbf & - & dB \\
\hline \(\mathrm{V}_{1,2(p-p)}\) & 8.8 MHz residue (peak-to-peak value) & both outputs & - & - & 15 & mV \\
\hline \(\mathrm{V}_{1.2(p-\mathrm{p})}\) & 7.2 MHz residue (peak-to-peak value) & both outputs & - & - & 20 & mV \\
\hline
\end{tabular}

PAL demodulator
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathrm{V}_{\mathrm{R}(\mathrm{p}-\mathrm{p})}\) & \(\mathrm{H} / 2\) ripple (peak-to-peak value) & & - & - & 50 & mV \\
\hline \(\mathrm{S} / \mathrm{N}\) & signal-to-noise ratio & & 46 & - & - & dB \\
\hline
\end{tabular}

\section*{NTSC DEMODULATOR}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\varphi\) & hue phase shift & & - & \(\pm 45\) & - & deg \\
\hline \multicolumn{7}{|l|}{SECAM DEMODULATOR} \\
\hline \(\mathrm{V}_{1(\mathrm{p}-\mathrm{p})}\) & -(R-Y) output voltage (peak-to-peak value) & standard colour bar & 0.94 & 1.05 & 1.17 & V \\
\hline \(\mathrm{V}_{2(p-\mathrm{P})}\) & -(B-Y) output voltage (peak-to-peak value) & standard colour bar & 1.19 & 1.33 & 1.48 & V \\
\hline \(\mathrm{f}_{\text {cs }}\) & black level offset & & - & - & 7 & kHz \\
\hline S/N & signal-to-noise ratio & & - & 43 & - & dB \\
\hline
\end{tabular}

\section*{PAL/NTSC/SECAM decoder/sync processor}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & \multicolumn{1}{|c|}{ PARAMETER } & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \(\mathbf{V}_{\text {res(p-p) }}\) & \begin{tabular}{l} 
7.8 to 9.4 MHz residue \\
(peak-to-peak value)
\end{tabular} & & - & - & 30 & mV \\
\hline \(\mathrm{f}_{\text {pole }}\) & pole frequency of deemphasis & & & 77 & 85 & 93 \\
\hline & ratio of pole and zero frequency & & - & 3 & - & \\
\hline \(\mathrm{V}_{\text {cal }}\) & calibration voltage & & 3 & 4 & 5 & V \\
\hline NL & non linearity & & - & - & 3 & \(\%\) \\
\hline
\end{tabular}

Filters
Tuning
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{\text {tune }}\) & tuning voltage & & 1.5 & 3.0 & 6.0 & V \\
\hline
\end{tabular}

Luminance delay
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(t_{d}\) & delay time PAL/NTSC SECAM B/W & \(\cdots\) &  & \[
\begin{aligned}
& 480 \\
& 480 \\
& 220
\end{aligned}
\] &  & \begin{tabular}{l}
ns \\
ns ns
\end{tabular} \\
\hline \multicolumn{7}{|l|}{Chrominance trap} \\
\hline fo & notch frequency & \begin{tabular}{l}
\[
\begin{aligned}
& \mathrm{f}_{\mathrm{SC}}=3.6 \mathrm{MHz} \\
& \mathrm{f}_{\mathrm{SC}}=4.4 \mathrm{MHz}
\end{aligned}
\] \\
SECAM \\
YC mode; not active
\end{tabular} & \[
\begin{aligned}
& 3.53 \\
& 4.37 \\
& 4.23
\end{aligned}
\] & \[
\begin{aligned}
& 3.58 \\
& 4.43 \\
& 4.29
\end{aligned}
\] & \[
\begin{aligned}
& 3.63 \\
& 4.49 \\
& 4.35
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{MHz} \\
& \mathrm{MHz} \\
& \mathrm{MHz}
\end{aligned}
\] \\
\hline B & bandwidth at -3 dB & \[
\begin{aligned}
& \mathrm{f}_{\mathrm{sc}}=3.6 \mathrm{MHz} \\
& \mathrm{f}_{\mathrm{sc}}=4.4 \mathrm{MHz} \\
& \text { SECAM }
\end{aligned}
\] &  & \[
\begin{array}{|l}
2.5 \\
3.1 \\
3.0
\end{array}
\] & - & \[
\begin{aligned}
& \mathrm{MHz} \\
& \mathrm{MHz} \\
& \mathrm{MHz}
\end{aligned}
\] \\
\hline SUPP & subcarrier suppression & & 26 & - & - & dB \\
\hline
\end{tabular}

Chrominance bandpass
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathrm{f}_{\text {res }}\) & resonant frequency & \[
\begin{aligned}
& \mathrm{f}_{\mathrm{sC}}=3.6 \mathrm{MHz} \\
& \mathrm{f}_{\mathrm{SC}}=4.4 \mathrm{MHz}
\end{aligned}
\] & - & \[
\begin{aligned}
& 3.58 \\
& 4.43
\end{aligned}
\] & - & \begin{tabular}{l}
MHz \\
MHz
\end{tabular} \\
\hline B & bandwidth at -3 dB & \[
\begin{aligned}
& \mathrm{f}_{\mathrm{SC}}=3.6 \mathrm{MHz} \\
& \mathrm{f}_{\mathrm{SC}}=4.4 \mathrm{MHz}
\end{aligned}
\] & - & \[
\begin{aligned}
& 1.4 \\
& 1.7
\end{aligned}
\] & - & \[
\begin{aligned}
& \mathrm{MHz} \\
& \mathrm{MHz}
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Cloche filter} \\
\hline \(\mathrm{f}_{\text {res }}\) & resonant frequency & SECAM & 4.26 & 4.29 & 4.31 & MHz \\
\hline B & bandwidth at -3 dB & SECAM & 241 & 268 & 295 & kHz \\
\hline
\end{tabular}

\section*{PAL/NTSC/SECAM} decoder/sync processor
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Sync input} \\
\hline \multicolumn{7}{|l|}{Video input} \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{26}\)} & sync pulse amplitude & Y/CVBS input & 50 & 300 & 600 & mV \\
\hline & slicing level & & - & 50 & - & \% \\
\hline \(t_{d}\) & delay of sync pulse due to internal filter & & 0.2 & 0.3 & 0.4 & \(\mu \mathrm{s}\) \\
\hline S/N & noise detector threshold level & & - & 20 & - & dB \\
\hline H & hysteresis & & - & 3 & - & dB \\
\hline \(t\) & delay between video signal and internally separated vertical sync pulse & . & 12 & 18.5 & 27 & \(\mu \mathrm{S}\) \\
\hline \multicolumn{7}{|l|}{Horizontal section} \\
\hline \multicolumn{7}{|l|}{CLP OUTPUT (OPB/CLP MODE); \(\mathrm{H}_{\text {A }}\) OUTPUT (LLC/HA MODE)} \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & HIGH level output voltage & \(\cdots\) & 4.0 & 5.0 & 5.5 & V \\
\hline \(\mathrm{V}_{\mathrm{O}}\) & LOW level output voltage & \(\mathrm{I}_{\text {sink }}=2 \mathrm{~mA}\) & - & 0.2 & 0.4 & V \\
\hline \(\mathrm{I}_{\text {sink }}\) & sink current & . & 2 & - & - & mA \\
\hline \(\mathrm{I}_{\text {source }}\) & source current & & 2 & - & - & mA \\
\hline \(t_{w}\) & \(\mathrm{H}_{\text {A }}\) pulse width (32 LLC pulses) & & - & 4.7 & - & \(\mu \mathrm{s}\) \\
\hline \(t_{\text {d }}\) & delay between middle of horizontal sync pulse and middle of \(\mathrm{H}_{\mathrm{A}}\) & note 2 & 0.3 & 0.45 & 0.6 & \(\mu \mathrm{s}\) \\
\hline \(t_{\text {d }}\) & delay between negative edge LLC pulse and positive edge \(H_{A}\) pulse & \(C_{L}=15 \mathrm{pF}\) & 10 & 20 & 40 & ns \\
\hline \(t_{\text {w }}\) & CLP pulse width & 21 LLC pulses & - & 3.1 & - & \(\mu \mathrm{s}\) \\
\hline \(t_{\text {d }}\) & delay between middle of horizontal sync pulse and start of CLP pulse & note 2 & 3.5 & 3.7 & 3.9 & \(\mu \mathrm{s}\) \\
\hline \multicolumn{7}{|l|}{FIRST LOOP} \\
\hline \(\Delta f\) & frequency deviation when not locked & & - & - & 1.5 & \% \\
\hline SVRR & supply voltage ripple rejection & & - & tbf & - & V \\
\hline TC & temperature coefficient & & - & tbf & - & \(\mathrm{Hz} /{ }^{\circ} \mathrm{C}\) \\
\hline \(t_{\text {CR }}\) & catching range & & \(\pm 625\) & - & - & Hz \\
\hline \(\mathrm{f}_{\mathrm{HR}}\) & holding range & & - & - & \(\pm 1.4\) & kHz \\
\hline \(\phi\) & static phase shift & & - & - & 0.1 & \(\mu \mathrm{s} / \mathrm{kHz}\) \\
\hline \multicolumn{7}{|l|}{LLC OUTPUT (LLC/H \({ }_{\text {A M M }}\) ME)} \\
\hline \(f_{0}\) & output frequency
\[
\begin{aligned}
& 432 f_{\mathrm{H}} \\
& 432 f_{\mathrm{H}}
\end{aligned}
\] & 50 Hz standard 60 Hz standard & - & \[
\begin{aligned}
& 6.75 \\
& 6.80
\end{aligned}
\] & \[
-
\] & \[
\begin{aligned}
& \mathrm{MHz} \\
& \mathrm{MHz}
\end{aligned}
\] \\
\hline \(V_{0(p-p)}\) & output amplitude (peak-to-peak vaiue) & \(\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\) & 0.25 & - & - & V \\
\hline \(\mathrm{V}_{0}\) & DC output voltage level & & - & 2.5 & - & V \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Vertical section} \\
\hline \multicolumn{7}{|l|}{Vertical oscillator} \\
\hline \(\mathrm{ffr}_{\mathrm{fr}}\) & free running frequency & \begin{tabular}{l}
\[
\text { FORF = } 1
\] \\
divider ratio 628 \\
FORF \(=0\); \\
divider ratio 528
\end{tabular} &  & \[
\begin{aligned}
& 50 \\
& 60
\end{aligned}
\] &  & \[
\mathrm{Hz}
\]
\[
\mathrm{Hz}
\] \\
\hline \(\mathrm{f}_{\mathrm{LR}}\) & frequency locking range & & 43 & - & 64 & Hz \\
\hline LR & divider locking range & & 488 & 625 & 722 & \\
\hline \multicolumn{7}{|l|}{\(V_{A}\) output} \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & HIGH level output voltage & & 4.0 & 5.0 & 5.5 & V \\
\hline \(\mathrm{V}_{\mathrm{O}}\) & LOW level output voltage & & - & 0.2 & 0.4 & V \\
\hline \(\mathrm{I}_{\text {sink }}\) & sink current & & 2 & - & - & mA \\
\hline \(\mathrm{I}_{\text {source }}\) & source current & & 2 & - & - & mA \\
\hline \(t_{W}\) & \(\mathrm{V}_{\text {A }}\) pulse width & 50 Hz standard 60 Hz standard & \[
\left\lvert\, \begin{aligned}
& - \\
& -
\end{aligned}\right.
\] & \[
\begin{aligned}
& 160 \\
& 192
\end{aligned}
\] & - & \[
\begin{aligned}
& \mu \mathrm{s} \\
& \mu \mathrm{~s}
\end{aligned}
\] \\
\hline \(t_{d}\) & delay between start of vertical sync pulse and positive edge of \(\mathrm{V}_{\mathrm{A}}\) pulse & & - & 32 & - & \(\mu s\) \\
\hline \(Z_{0}\) & output impedance & STM = 1 & 3 & - & - & \(\mathrm{M} \Omega\) \\
\hline
\end{tabular}

Sandcastle output (pin 10)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{10}\) & zero level output voltage & & 0 & 0.5 & 1.0 & V \\
\hline\(I_{\text {sink }}\) & sink current & & 0.5 & - & - & mA \\
\hline
\end{tabular}

Horizontal and vertical blanking
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{b}\) & blanking voltage level & & 2.0 & 2.5 & 3.0 & V \\
\hline \(\mathrm{I}_{\text {source }}\) & Source current & & 0.5 & - & - & mA \\
\hline \(\mathrm{I}_{\text {ext }}\) & \begin{tabular}{l} 
external current required to force the \\
output to the blanking level
\end{tabular} & & 1.0 & - & 3.0 & mA \\
\hline \(\mathrm{t}_{\mathrm{w}}\) & horizontal blanking pulse width & 69 LLC pulses & - & 10.2 & - & \(\mu \mathrm{s}\) \\
\hline \(\mathrm{t}_{\mathrm{d}}\) & \begin{tabular}{l} 
delay between start of horizontal blanking \\
and start of clamping pulse
\end{tabular} & 45 LLC pulses & - & 6.7 & - & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

\section*{Clamping pulse}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(V_{\text {clamp }}\) & clamping voltage level & & 4.0 & 4.5 & 5.0 & V \\
\hline \(\mathrm{I}_{\text {source }}\) & source current & & 0.5 & - & - & mA \\
\hline \(\mathrm{t}_{\mathrm{w}}\) & pulse width & 21 LLC pulses & - & 3.1 & - & \(\mu \mathrm{s}\) \\
\hline \(\mathrm{t}_{\mathrm{d}}\) & \begin{tabular}{l} 
delay between middle sync of input and \\
start of clamping pulse
\end{tabular} & note 2 & 3.5 & 3.7 & 3.9 & \(\mu \mathrm{~s}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline
\end{tabular}

\section*{Colour matrix}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Gv & gain
from \(R\) to \(Y\)
from \(G\) to \(Y\)
from \(B\) to \(Y\)
from \(R\) to \(U_{\text {out }}\)
from \(G\) to \(U_{\text {out }}\)
from \(B\) to \(U_{\text {out }}\)
from \(R\) to \(V_{\text {out }}\)
from \(G\) to \(V_{\text {out }}\)
from \(B\) to \(V_{\text {out }}\) &  &  & \[
\begin{aligned}
& 0.43 \\
& 0.84 \\
& 0.16 \\
& 0.43 \\
& 0.84 \\
& 1.27 \\
& 1.00 \\
& 0.84 \\
& 0.16
\end{aligned}
\] &  & \\
\hline \multicolumn{7}{|l|}{Output and input/output port} \\
\hline \multicolumn{7}{|l|}{O PORT (OPB/CLP MODE)} \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & HIGH level output voltage & & 4.0 & 5.0 & 5.5 & V \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & LOW level output voltage & & - & 0.2 & 0.4 & V \\
\hline \(\mathrm{I}_{\text {sink }}\) & sink current & & 100 & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\text {source }}\) & source current & & 100 & - & - & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{I/O PORT (OPB/CLP MODE)} \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & HIGH level output voltage & & - & - & \(\mathrm{V}_{\text {SUP }}\) & V \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & LOW level output voltage & & - & 0.2 & 0.4 & V \\
\hline \(\mathrm{I}_{\text {sink }}\) & sink current & & 2 & - & - & mA \\
\hline \(\mathrm{V}_{\text {H }}\) & HIGH level input voltage & & 2.0 & - & - & V \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & - & - & 0.6 & V \\
\hline
\end{tabular}

YUV switches (note 3)
RGB InPuts (NOTE 3)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(V_{\text {lppp }}\) & input voltage (peak-to-peak value) & note 4 & - & 0.7 & 1.0 & V \\
\hline \(\mathrm{Z}_{1}\) & input impedance & & 3 & - & - & \(\mathrm{M} \Omega\) \\
\hline \multicolumn{7}{|l|}{UV inputs (note 3)} \\
\hline \(\mathrm{V}_{\text {I(p-p) }}\) & U input voltage (peak-to-peak value) & note 3 & - & 1.33 & 1.90 & V \\
\hline \(\mathrm{V}_{1(p-p)}\) & \(V\) input voltage (peak-to-peak value) & & - & 1.05 & 1.50 & V \\
\hline \(Z_{1}\) & input impedance (both inputs) & & 3 & - & - & \(\mathrm{M} \Omega\) \\
\hline \multicolumn{7}{|l|}{Y OUTPUT} \\
\hline \(V_{o(p-p)}\) & U output voltage (peak-to-peak value) & note 4; top sync-to-white & - & 1.43 & - & V \\
\hline \(\mathrm{Z}_{0}\) & output impedance & & - & - & 250 & \(\Omega\) \\
\hline \(V_{0}\) & DC output voltage level & top sync & - & 2.5 & - & V \\
\hline S/N & signal-to-noise ratio & & - & tbf & - & dB \\
\hline
\end{tabular}

\section*{PAL/NTSC/SECAM decoder/sync processor}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{YUV switches (note 3)} \\
\hline \multicolumn{7}{|l|}{RGB inputs (note 3)} \\
\hline \(V_{\text {( }(\mathrm{p}-\mathrm{p})}\) & input voltage (peak-to-peak value) & note 4 & - & 0.7 & 1.0 & V \\
\hline \(\mathrm{Z}_{1}\) & input impedance & & 3 & - & - & \(\mathrm{M} \Omega\) \\
\hline \multicolumn{7}{|l|}{UV InPuts (note 3)} \\
\hline \(V_{\text {(p-p) }}\) & U input voltage (peak-to-peak value) & note 3 & - & 1.33 & 1.90 & V \\
\hline \(V_{1(p-p)}\) & \(V\) input voltage (peak-to-peak value) & & - & 1.05 & 1.50 & V \\
\hline \(\mathrm{Z}_{1}\) & input impedance (both inputs) & & 3 & - & - & \(\mathrm{M} \Omega\) \\
\hline \multicolumn{7}{|l|}{Y output} \\
\hline \(V_{O(p-p)}\) & U output voltage (peak-to-peak value) & note 4; top sync-to-white & - & 1.43 & - & V \\
\hline \(\mathrm{Z}_{0}\) & output impedance & & - & -. & 250 & \(\Omega\) \\
\hline \(V_{0}\) & DC output voltage level & top sync & - & 2.5 & - & V \\
\hline S/N & signal-to-noise ratio & & - & tbf & - & dB \\
\hline \multicolumn{7}{|l|}{UV OUTPUTS (NOTE 3)} \\
\hline \(V_{\text {Oppp }}\) & U output voltage (peak-to-peak value) & & - & 1.33 & 1.90 & V \\
\hline \(\mathrm{V}_{\text {O(p-p) }}\) & V output voltage (peak-to-peak value) & & - & 1.05 & 1.50 & V \\
\hline \(Z_{0}\) & output impedance (both outputs) & & - & - & 250 & \(\Omega\) \\
\hline \(\mathrm{V}_{0}\) & DC output voltage level & & - & 2.7 & - & V \\
\hline \multicolumn{7}{|l|}{General} \\
\hline \(\mathrm{V}_{\text {diff }}\) & difference between black levels of YUV outputs in RGB mode and YUV mode & sync locked & - & - & 10 & mV \\
\hline NL & non-linearity & any input to any output & - & - & 5 & \% \\
\hline B & bandwidth & any input to any output & - & 7 & - & MHz \\
\hline CT & crosstalk between RGB and \(U V_{\text {in }}\) signals on \(U V_{\text {out }}\) & \(\mathrm{f}=0\) to 5 MHz & - & - & -50 & dB \\
\hline \multicolumn{7}{|l|}{FAST SWITCH SELECT INPUT (PIN 18)} \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & HIGH level input voltage & RGB switched on & 0.9 & - & 3.0 & V \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & UV switched on & 0 & - & 0.5 & V \\
\hline G & \begin{tabular}{l}
gain \\
from \(U_{\text {in }}\) to \(U_{\text {out }}\) from \(V_{\text {in }}\) to \(V_{\text {out }}\)
\end{tabular} & & - & \[
\left[\begin{array}{l}
1 \\
1
\end{array}\right.
\] & & \(\cdots\) \\
\hline \(t_{d}\) & switching delay & between pin 18 and YUV & - & - & 20 & ns \\
\hline
\end{tabular}

\section*{PAL/NTSC/SECAM} decoder/sync processor
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{InPut Clamp (PIN 17)} \\
\hline \(\mathrm{V}_{\mathrm{HH}}\) & HIGH level input voltage & clamping & 2.4 & - & 5.5 & V. \\
\hline \(\mathrm{V}_{\mathrm{LL}}\) & LOW level input voltage & no clamping & 0 & - & 0.6 & V \\
\hline \(t_{w}\) & clamping pulse width & & 1.8 & 3.5 & - & \(\mu \mathrm{s}\) \\
\hline \(V_{\text {os }}\) & clamping offset voltage on UV outputs & & - & - & 10 & mV \\
\hline \(\mathrm{Z}_{1}\) & input impedance & STM \(=1\) & 3 & - & - & \(\mathrm{M} \Omega\) \\
\hline
\end{tabular}

\section*{Notes to the characteristics}
1. All oscillator specifications are measured with the Philips crystal series \(4322143 / 144\). If the spurious response of the reference crystal is less than -3 dB with respect to the fundamental frequency for a damping resistance of \(1 \mathrm{k} \Omega\), oscillation at the fundamental frequenct is guaranteed. The spurious response of the second crystal must be less than -3 dB with respect to the fundamental frequency for a damping resistance of \(1.5 \mathrm{k} \Omega\).
The catching and detuning range are measured for nominal crystal parameters. These are:
load resonance frequency \(f_{0}\left(C_{L}=20 \mathrm{pF}\right)=4.433619 \mathrm{MHz}\), (second crystal: 3.579545 MHz )
motional capacitance \(\mathrm{C}_{\mathrm{M}}=20.6 \mathrm{fF}\), (second crystal: 14.7 fF )
parallel capacitance \(\mathrm{C}_{0}=5.5 \mathrm{pF}\), (second crystal: 4.5 pF ).
The actual load capacitance in the application should be \(C_{L}=18 \mathrm{pF}\) to account for parasitic capacitances on and off chip.
2. This delay is caused by the low pass filter at the sync separator input.
3. The output signals of the demodulator are called \(-(R-Y)\) and \(-(B-Y)\). The colour difference input and output signals of the YUV switch are called UV signals. However, these signals do not have the amplitude correction factor of real UV signals. They are called UV signals and not \(-(R-Y)\) and \(-(B-Y)\) to prevent confusion between the colour difference signals of the demodulator and the colour difference signals of the YUV switch.
4. This value refers to signals including a sync pulse. For \(Y\) signals composed ot the RGB inputs this output voltage is \(30 \%\) lower, as there is no sync pulse on such signals.

\section*{QUALITY SPECIFICATION}

Quality level in accordance with URV 4-2-59/601.

\section*{TEST AND APPLICATION INFORMATION}


Fig. 8 Application diagram.

\section*{Notes to figure 8}
1. Pins 28 and 32 are sensitive to leakage current.
2. The analog and digital ground currents should be completely separated.
3. The decoupling capacitor connected between pins 8 and 9 must be placed as close to the \(I C\) as possible.

\section*{FEATURES}
- 8-bit resolution
- Sampling rate up to 50 MHz
- Extended temperature range ( -40 to \(+85^{\circ} \mathrm{C}\) )
- High signal-to-noise ratio over a large analog input frequency range ( 7.4 effective bits at 4.43 MHz full-scale input and at \(\mathrm{f}_{\mathrm{clk}}=50 \mathrm{MHz}\) )
- Binary 3-state TTL outputs
- Overflow/underflow 3-state TTL output
- TTL compatible digital inputs
- Low-level AC clock input signal allowed
- Stable internal reference voltage regulator included
- Power dissipation only 380 mW (typical)
- Low analog input capacitance, no buffer amplifier required
- No sample-and-hold circuit required.

\section*{APPLICATIONS}
- General purpose high-speed analog-to-digital conversion for extended temperature applications
- Automotive
- RF, satellite and GPS (Global Positioning System)
- Medical
- General industrial
- Digital video (VCR, TV and satellite).

\section*{GENERAL DESCRIPTION}

The TDF8704T is an 8-bit high-speed analog-to-digital converter (ADC) for general industrial applications. It converts the analog input signal into 8 -bit binary-coded digital words at a maximum sampling rate of 50 MHz . All digital inputs and outputs are TTL compatible, although a low-level AC clock input signal is allowed.

QUICK REFERENCE DATA
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ SYMBOL } & \multicolumn{1}{|c|}{ PARAMETER } & \multicolumn{1}{c|}{ CONDITIONS } & \multicolumn{1}{c|}{ MIN. } & \multicolumn{1}{c|}{ TYP. } & \multicolumn{1}{c|}{ MAX. } & \multicolumn{1}{c|}{ UNIT } \\
\hline\(V_{\text {CCA }}\) & analog supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline\(V_{\text {CCD }}\) & digital supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline\(V_{\text {CCO }}\) & output stages supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline\(I_{\text {CCA }}\) & analog supply current & & - & 37 & 46 & mA \\
\hline\(I_{\text {CCD }}\) & digital supply current & & - & 23 & 35 & mA \\
\hline\(I_{\text {CCO }}\) & output stages supply current & & - & 16 & 21 & mA \\
\hline ILE & DC integral linear error & & - & \(\pm 0.4\) & \(\pm 1\) & LSB \\
\hline DLE & DC differential linearity error & & - & \(\pm 0.2\) & \(\pm 0.5\) & LSB \\
\hline AILE & AC integral linearity error & note 1 & - & - & \(\pm 2\) & LSB \\
\hline\(f_{\text {CIk(max) }}\) & maximum clock frequency & & 50 & - & - & MHz \\
\hline\(P_{\text {tot }}\) & total power dissipation & & - & 380 & 535 & mW \\
\hline
\end{tabular}

\section*{Note}
1. Full-scale sine wave ( \(\left.\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz} ; \mathrm{f}_{\mathrm{clk}}=50 \mathrm{MHz}\right)\).

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ TYPE NUMBER } & \multicolumn{4}{|c|}{ PACKAGE } & \multirow{2}{*}{\begin{tabular}{c} 
SAMPLING \\
FREQUENCY
\end{tabular}} \\
\cline { 2 - 5 } & PINS & PIN POSITION & MATERIAL & CODE & SOM \\
\hline TDF8704T/2 & 24 & SO24L & plastic & SOT137-1 & 20 MHz \\
\hline TDF8704T/4 & 24 & SO24L & plastic & SOT137-1 & 40 MHz \\
\hline TDF8704T/5 & 24 & SO24L & plastic & SOT137-1 & 50 MHz \\
\hline
\end{tabular}

8-bit high-speed analog-to-digital converter

\section*{BLOCK DIAGRAM}


Fig. 1 Block diagram.

\section*{8 -bit high-speed analog-to-digital converter}

TDF8704

\section*{PINNING}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PIN & DESCRIPTION \\
\hline D1 & 1 & data output; bit 1 \\
\hline D0 & 2 & data output; bit 0 (LSB) \\
\hline n.c. & 3 & not connected \\
\hline \(V_{R B}\) & 4 & reference voltage BOTTOM (decoupling) \\
\hline DEC & 5 & decoupling input (internal stabilization loop decoupling) \\
\hline AGND & 6 & analog ground \\
\hline \(V_{\text {cca }}\) & 7 & analog supply voltage (+5 V) \\
\hline \(V_{1}\) & 8 & analog input voltage \\
\hline \(\mathrm{V}_{\text {RT }}\) & 9 & reference voltage TOP (decoupling) \\
\hline n.c. & 10 & not connected \\
\hline O/UF & 11 & overflow/underflow data output \\
\hline D7 & 12 & data output; bit 7 (MSB) \\
\hline D6 & 13 & data output; bit 6 \\
\hline D5 & 14 & data output; bit 5 \\
\hline D4 & 15 & data output; bit 4 \\
\hline CLK & 16 & clock input \\
\hline DGND & 17 & digital ground \\
\hline \(V_{\text {CCD }}\) & 18 & digital supply voltage (+5 V) \\
\hline \(\mathrm{V}_{\text {CCO1 }}\) & 19 & supply voltage for output stages 1
\[
(+5 \mathrm{~V})
\] \\
\hline OGND & 20 & output ground \\
\hline VCCO2 & 21 & supply voltage for output stages 2
\[
(+5 \mathrm{~V})
\] \\
\hline \(\overline{C E}\) & 22 & chip enable input (TTL level input, active LOW) \\
\hline D3 & 23 & data output; bit 3 \\
\hline D2 & 24 & data output; bit 2 \\
\hline
\end{tabular}


Fig. 2 Pin configuration.

8-bit high-speed analog-to-digital converter

\section*{LIMITING VALUES}

In accordance with the Absolute Maximum Rating System (IEC134).
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & MAX. & UNIT \\
\hline \(\mathrm{V}_{\text {CCA }}\) & analog supply voltage & & -0.3 & +7.0 & V \\
\hline \(V_{\text {CCD }}\) & digital supply voltage & & -0.3 & +7.0 & V \\
\hline \(V_{\text {cco }}\) & output stages supply voltage & & -0.3 & +7.0 & V \\
\hline \(\Delta V_{C C}\) & supply voltage differences between \(V_{C C A}\) and \(V_{C C D}\) & & -1.0 & +1.0 & V \\
\hline \(\Delta V_{\text {cc }}\) & supply voltage differences between \(V_{C C O}\) and \(V_{C C D}\) & & -1.0 & +1.0 & V \\
\hline \(\Delta \mathrm{V}_{\mathrm{CC}}\) & supply voltage differences between \(\mathrm{V}_{\text {CCA }}\) and \(\mathrm{V}_{\text {CCO }}\) & & -1.0 & +1.0 & V \\
\hline \(V_{1}\) & input voltage & referenced to AGND & -0.3 & +7.0 & V \\
\hline \(\mathrm{V}_{\text {clk(p-p) }}\) & AC input voltage for switching (peak-to-peak value) & referenced to DGND & - & \(\mathrm{V}_{\text {CCD }}\) & V \\
\hline lo & output current & & - & 10 & mA \\
\hline \(\mathrm{T}_{\text {stg }}\) & storage temperature & & -55 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {amb }}\) & operating ambient temperature & & -40 & +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\mathrm{i}}\) & junction temperature & & - & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{HANDLING}

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

\section*{THERMAL CHARACTERISTICS}
\begin{tabular}{|l|l|c|c|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & VALUE & UNTT \\
\hline \(\mathrm{R}_{\text {th j j-a }}\) & thermal resistance from junction to ambient in free air & 75 & KW \\
\hline
\end{tabular}

\section*{CHARACTERISTICS (see Tables 1 and 2)}
\(\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{7}\) to \(\mathrm{V}_{6}=4.75\) to \(5.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{CCD}}=\mathrm{V}_{18}\) to \(\mathrm{V}_{17}=4.75\) to \(5.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{CCO}}=\mathrm{V}_{19}\) and \(\mathrm{V}_{21}\) to \(\mathrm{V}_{20}=4.75\) to 5.25 V ; AGND and DGND shorted together; \(V_{C C A}\) to \(V_{C C D}=-0.25\) to \(+0.25 \mathrm{~V} ; V_{C C O}\) to \(V_{C C D}=-0.25\) to +0.25 V ; \(\mathrm{V}_{\text {CCA }}\) to \(\mathrm{V}_{\mathrm{CCD}}=-0.25\) to \(+0.25 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40\) to \(+85^{\circ} \mathrm{C}\); typical readings taken at \(\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCD}}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\); unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX & UNIT \\
\hline \multicolumn{7}{|l|}{Supply} \\
\hline \(V_{\text {cca }}\) & analog supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline \(V_{\text {CCD }}\) & digital supply voltage & & 4.75 & 5.0 & 5.25 & V \\
\hline \(V_{\text {cco }}\) & output stages supply voltage & & 4.75 & 5.0 & 5.25 & \(V\) \\
\hline ICCA & analog supply current & & - & 37 & 46 & mA \\
\hline lCCD & digital supply current & & - & 23 & 35 & mA \\
\hline Icco & output stages supply current & all outputs LOW & - & 16 & 21 & mA \\
\hline \multicolumn{7}{|l|}{Inputs} \\
\hline \multicolumn{7}{|l|}{Clock input CLK (REFERENCED to DGND)} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & HIGH level input voltage & & 2.0 & - & \(\mathrm{V}_{\text {CCD }}\) & V \\
\hline \(\mathrm{I}_{\text {IL }}\) & LOW level input current & \(\mathrm{V}_{\text {clk }}=0.4 \mathrm{~V}\) & -400 & - & - & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{IH}}\)} & \multirow[t]{2}{*}{HIGH level input current} & \(\mathrm{V}_{\text {clk }}=2.7 \mathrm{~V}\) & - & - & 100 & \(\mu \mathrm{A}\) \\
\hline & & \(\mathrm{V}_{\text {clk }}=\mathrm{V}_{\mathrm{CCD}}\) & - & - & 300 & \(\mu \mathrm{A}\) \\
\hline \(Z_{1}\) & input impedance & \(\mathrm{f}_{\mathrm{clk}}=50 \mathrm{MHz}\) & - & 2 & - & k \(\Omega\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & \(\mathrm{f}_{\text {clk }}=50 \mathrm{MHz}\) & - & 4.5 & - & pF \\
\hline \multicolumn{7}{|l|}{V1 (analog input voltage referenced to AGdN; SEE figs 3 and 4 And table 1)} \\
\hline \(V_{\text {(B) }}\) & input voltage (BOTTOM) & & 1.21 & 1.25 & 1.29 & V \\
\hline \(V_{1(0)}\) & input voltage & output code \(=0\) & 1.42 & 1.48 & 1.51 & V \\
\hline \(\mathrm{V}_{\text {os(B) }}\) & offset voltage (BOTTOM) & \(\mathrm{V}_{1(0)}\) to \(\mathrm{V}_{1(\mathrm{~B})}\) & 210 & 225 & 240 & V \\
\hline \(V_{1(1)}\) & input voltage (TOP) & & 3.37 & 3.46 & 3.58 & V \\
\hline \(V_{1(255)}\) & input voltage & output code \(=255\) & 3.14 & 3.22 & 3.30 & V \\
\hline \(\mathrm{V}_{\text {os( }}\) ( \()\) & offset voltage (TOP) & \(\mathrm{V}_{1(1)}\) to \(\mathrm{V}_{1(255)}\) & 225 & 240 & 255 & V \\
\hline \(V_{\text {I( } p-p)}\) & input voltage amplitude (peak-to-peak value) & & 1.69 & 1.74 & 1.79 & V \\
\hline \(\mathrm{I}_{1}\) & load current on \(\mathrm{V}_{\mathrm{RT}}\) and \(\mathrm{V}_{\mathrm{RB}}\) & & -300 & - & +300 & \(\mu \mathrm{A}\) \\
\hline \(I_{\text {IL }}\) & LOW level input current & \(\mathrm{V}_{1}=1.25 \mathrm{~V}\) & - & 0 & - & \(\mu \mathrm{A}\) \\
\hline IIH & HIGH level input current & \(V_{1}=3.46 \mathrm{~V}\) & 40 & 150 & 400 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{Z}_{1}\) & input impedance & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & - & 10 & - & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{C}_{1}\) & input capacitance & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & - & 14 & - & pF \\
\hline
\end{tabular}

\section*{8 -bit high-speed analog-to-digital converter}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Input \(\overline{\mathrm{CE}}\) (REFERENCED to DGND) SEe table 2} \\
\hline \(\mathrm{V}_{\text {IL }}\) & LOW level input voltage & . & 0 & - & 0.8 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & HIGH level input voltage & & 2.0 & - & \(\mathrm{V}_{\text {CCD }}\) & V \\
\hline \(\mathrm{I}_{\text {IL }}\) & LOW level input current & \(\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}\) & -400 & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{H}}\) & HIGH level input current & \(\mathrm{V}_{\text {IH }}=2.7 \mathrm{~V}\) & - & - & 20 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{Reference resistance} \\
\hline \(\mathrm{R}_{\text {ref }}\) & reference resistance & \(\mathrm{V}_{\mathrm{RT}}\) to \(\mathrm{V}_{\mathrm{RB}}\) & - & 200 & - & \(\Omega\) \\
\hline \multicolumn{7}{|l|}{Outputs} \\
\hline \multicolumn{7}{|l|}{DIGITAL OUTPUTS D7 TO D0 (REFERENCED To DGND)} \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\text {OL }}\)} & \multirow[t]{2}{*}{LOW level output voltage} & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{o}}=1 \mathrm{~mA} ; \\
& \mathrm{T}_{\mathrm{amb}}=0 \text { to }+85^{\circ} \mathrm{C}
\end{aligned}
\] & 0 & - & 0.4 & V \\
\hline & & \[
\begin{aligned}
& \mathrm{l}_{\mathrm{O}}=1 \mathrm{~mA} ; \\
& \mathrm{T}_{\mathrm{amb}}=0 \text { to }-40^{\circ} \mathrm{C}
\end{aligned}
\] & - & - & 0.6 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & HIGH level output voltage & \(\mathrm{l}_{0}=-0.4 \mathrm{~mA}\) & 2.7 & - & \(\mathrm{V}_{\text {CCD }}\) & V \\
\hline loz & output current in 3-state mode & \(0.4 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CCD}}\) & -20 & - & +20 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{Switching characteristics} \\
\hline \multicolumn{7}{|l|}{Clock input CLK (note 1; see Fig.5)} \\
\hline \(\mathrm{f}_{\mathrm{IIK}(\text { max })}\) & \begin{tabular}{l}
maximum clock frequency \\
TDF8704T/2 \\
TDF8704T/4 \\
TDF8704T/5
\end{tabular} & & \[
\begin{array}{|l}
20 \\
40 \\
50 \\
\hline
\end{array}
\] & - & - & \[
\begin{aligned}
& \mathrm{MHz} \\
& \mathrm{MHz} \\
& \mathrm{MHz}
\end{aligned}
\] \\
\hline \(\mathrm{t}_{\mathrm{CPH}}\) & clock pulse width HIGH & & 7 & - & - & ns \\
\hline \(\mathrm{t}_{\mathrm{CPL}}\) & clock pulse width LOW & \(\cdots\) & 7 & - & - & ns \\
\hline \multicolumn{7}{|l|}{Analog signal processing} \\
\hline \multicolumn{7}{|l|}{LINEARITY} \\
\hline ILE & DC integral linearity error & & - & \(\pm 0.4\) & \(\pm 1.0\) & LSB \\
\hline DLE & DC differential linearity error & & - & \(\pm 0.2\) & \(\pm 0.5\) & LSB \\
\hline AILE & AC integral linearity error & note 2 & - & - & \(\pm 2.0\) & LSB \\
\hline \multicolumn{7}{|l|}{BANDWIDTH ( \(\mathrm{f}_{\mathrm{clk}}=40 \mathrm{MHZ}\) )} \\
\hline \multirow[t]{2}{*}{B} & \multirow[t]{2}{*}{-0.5 dB analog bandwidth (note 3)} & full-scale sine wave & - & 12 & - & MHz \\
\hline & & 75\% full-scale sine wave & - & 16 : & - & MHz \\
\hline \(\mathrm{t}_{\text {STLH }}\) & analog input settling time LOW-to-HIGH & full-scale square wave; Fig.8; note 4 & - & 2.5 & 3.5 & ns \\
\hline \(\mathrm{t}_{\text {STHL }}\) & analog input settling time HIGH-to-LOW & full-scale square wave; Fig.8; note 4 & - & 3.0 & 4.0 & ns \\
\hline
\end{tabular}

\section*{8-bit high-speed analog-to-digital converter}

TDF8704
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{HARMONICS ( \(\mathrm{f}_{\mathrm{clk}}=40 \mathrm{MHz}\) )} \\
\hline \(\mathrm{h}_{1}\) & fundamental harmonics (full scale) & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & - & - & 0 & dB \\
\hline hall & harmonics (full scale); all components second harmonics third harmonics & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & - & \[
\left\lvert\, \begin{aligned}
& -64 \\
& -58
\end{aligned}\right.
\] & -60
-55 & \[
\begin{aligned}
& \mathrm{dB} \\
& \mathrm{~dB}
\end{aligned}
\] \\
\hline THD & total harmonic distortion & \(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & - & -56 & - & dB \\
\hline \multicolumn{7}{|l|}{SIGNAL-TO-NOISE RATIO} \\
\hline S/N & signal-to-noise ratio & without harmonics; \(f_{\text {clk }}=40 \mathrm{MHz} ;\)
\(\mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) & 46 & 48 & - & dB \\
\hline \multicolumn{7}{|l|}{Effective bits; Note 5; SEe figs 9, 10 AND 11} \\
\hline \multirow[t]{3}{*}{EB} & effective bits TDF8704T/2 & \[
\begin{aligned}
\mathrm{f}_{\mathrm{clk}} & =20 \mathrm{MHz} \\
\mathrm{f}_{\mathrm{i}} & =1.25 \mathrm{MHz} \\
\mathrm{f}_{\mathrm{i}} & =4.43 \mathrm{MHz}
\end{aligned}
\] &  & \[
\begin{aligned}
& 7.8 \\
& 7.6
\end{aligned}
\] & - & \begin{tabular}{l}
bits \\
bits
\end{tabular} \\
\hline & effective bits TDF8704T/4 & \[
\begin{aligned}
f_{\text {clk }} & =40 \mathrm{MHz} \\
f_{i} & =4.43 \mathrm{MHz} \\
f_{i} & =7.5 \mathrm{MHz} \\
f_{i} & =10 \mathrm{MHz}
\end{aligned}
\] &  & \[
\begin{array}{|l}
7.5 \\
7.3 \\
7.0
\end{array}
\] & -
-
-
- & \begin{tabular}{l}
bits \\
bits \\
bits
\end{tabular} \\
\hline & effective bits TDF8704T/5 & \[
\begin{aligned}
f_{\text {clk }} & =50 \mathrm{MHz} \\
f_{i} & =4.43 \mathrm{MHz} \\
f_{i} & =7.5 \mathrm{MHz} \\
f_{i} & =10 \mathrm{MHz}
\end{aligned}
\] &  & \[
\begin{array}{|l|}
7.4 \\
7.2 \\
6.9
\end{array}
\] & - & \begin{tabular}{l}
bits \\
bits \\
bits
\end{tabular} \\
\hline \multicolumn{7}{|l|}{TWO-TONE (NOTE 6)} \\
\hline TTIR & two-tone intermodulation rejection & \(\mathrm{f}_{\text {clk }}=40 \mathrm{MHz}\) & - & -56 & - & dB \\
\hline \multicolumn{7}{|l|}{Bit error rate} \\
\hline BER & bit error rate & \[
\begin{aligned}
& \mathrm{f}_{\text {clk }}=40 \mathrm{MHz} ; \\
& \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz} ; \\
& \mathrm{V}_{\mathrm{I}}= \pm 16 \mathrm{LSB} \text { at code } 128 \\
& \hline
\end{aligned}
\] & - & \(10^{-11}\) & - & times/ samples \\
\hline \multicolumn{7}{|l|}{Differential gain (note 7)} \\
\hline \(\mathrm{G}_{\text {diff }}\) & differential gain & \[
\begin{aligned}
& \mathrm{f}_{\mathrm{clk}}=20 \mathrm{MHz} ; \\
& \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}
\end{aligned}
\] & - & 0.6 & - & \% \\
\hline \multicolumn{7}{|l|}{DIFFERENTIAL PHASE (NOTE 7)} \\
\hline \(\varphi_{\text {diff }}\) & differential phase & \[
\begin{aligned}
& \mathrm{f}_{\mathrm{clk}}=40 \mathrm{MHz} ; \\
& \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}
\end{aligned}
\] & - & 0.8 & - & deg \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline \multicolumn{7}{|l|}{Timing (note 8; see Figs 5 and 7; \(\mathrm{f}_{\text {clk }}=50 \mathrm{MHz}\) )} \\
\hline \(\mathrm{t}_{\mathrm{ds}}\) & sampling delay time & & - & - & 2 & ns \\
\hline \(t_{\text {h }}\) & output hold time & & 5 & - & - & ns \\
\hline \(\mathrm{t}_{\text {d }}\) & output delay time & & - & 12 & 15 & ns \\
\hline \multicolumn{7}{|l|}{3-state output delay times (see Figs 6 and 7)} \\
\hline \(\mathrm{t}_{\mathrm{dZH}}\) & enable HIGH & & - & 6 & 10 & ns \\
\hline \(t_{\text {dZL }}\) & enable LOW & & - & 12 & 16 & ns \\
\hline \(\mathrm{t}_{\mathrm{dH} \mathrm{Z}}\) & disable HIGH & & - & 50 & 54 & ns \\
\hline \(\mathrm{t}_{\text {dLZ }}\) & disable LOW & & - & 10 & 14 & ns \\
\hline
\end{tabular}

\section*{Notes}
1. In addition to a good layout of the digital and analog ground, it is recommended that the rise and fall times of the clock must be less than 1 ns .
2. Full-scale sine wave ( \(f_{i}=4.43 \mathrm{MHz} ; \mathrm{f}_{\text {clk }}=50 \mathrm{MHz}\) ).
3. Determined by beat frequency method on a reconstructed sine wave signal for no missing codes and no glitches.
4. The analog input settling time is the minimum time required for the input signal to be stabilized after a sharp full-scale input (square-wave signal) in order to sample the signal and obtain correct output data.
5. Effective bits are obtained via a Fast Fourier Transform (FFT) treatment taking 4K acquisition points per period. The calculation takes into account all harmonics and noise up to half of the clock frequency (NYQUIST frequency). Conversion to signal-to-noise ratio: \(\mathrm{S} / \mathrm{N}=\mathrm{EB} \times 6.02+1.76 \mathrm{~dB}\).
6. Intermodulation measured relative to either tone with analog input frequencies of 4.43 MHz and 4.53 MHz . The two input signals have the same amplitude and the total amplitude of both signals provides full scale to the converter.
7. Measurement taken using video analyser VM700A.
8. Output data acquisition: the output data is available after the maximum delay time of \(t_{d}\).


Fig. 3 Influence of \(T_{\text {amb }}\) on \(V_{I(1)}\) and \(V_{I(B)}\) under 5 V supply.


Fig. 4 Influence of supply voltage on \(V_{I(T)}\) and \(V_{\text {l(B) }}\) under \(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\).

\section*{8-bit high-speed analog-to-digital converter}

Table 1 Output coding and input voltage (typical values; referenced to AGND).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{STEP} & \multirow[b]{2}{*}{\(V_{1(p-p)}\)} & \multirow{2}{*}{O/UF} & \multicolumn{8}{|c|}{BINARY OUTPUT BITS} \\
\hline & & & D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\hline Underflow & \(<1.48\) & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 1.48 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline . & . & . & . & & . & . & . & . & . & . \\
\hline . & . & . & . & . & . & . & . & . & . & . \\
\hline 254 & . & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 255 & 3.46 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline Overfiow & \(>3.46\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

Table 2 Mode selection.
\begin{tabular}{|c|l|l|}
\hline\(\overline{\mathbf{C E}}\) & \multicolumn{1}{|c|}{ D7 TO DO } & \multicolumn{1}{c|}{ O/UF } \\
\hline 1 & high impedance & high impedance \\
\hline 0 & active; binary & active \\
\hline
\end{tabular}


Fig. 5 Timing diagram for data output.

\(f_{C E}=100 \mathrm{kHz}\).

Fig. 6 Timing diagram and test conditions of 3 -state output delay time.


Fig. 7 Load circuit for timing measurement.


Fig. 8 Analog input settling-time diagram.


Effective bits: 7.89; THD \(=-61.05 \mathrm{~dB}\).
Harmonic levels \((\mathrm{dB}): 2 \mathrm{nd}=-84.07 ; 3 \mathrm{rd}=-62.50 ; 4\) th \(=-92.01 ; 5 \mathrm{th}=-66.56 ; 6\) th \(=-101.15\)
Fig. 9 Fast Fourier Transform ( \(\mathrm{f}_{\mathrm{clk}}=20 \mathrm{MHz} ; \mathrm{f}_{\mathrm{i}}=1.25 \mathrm{MHz}\) ).


Effective bits: 7.61; THD \(=-57.11 \mathrm{~dB}\).
Harmonic levels \((\mathrm{dB})\) : \(2 \mathrm{nd}=-68.53 ; 3 \mathrm{rd}=-58.36 ; 4 \mathrm{th}=-74.89 ; 5\) th \(=-65.37 ; 6\) th \(=-76.08\).
Fig.10 Fast Fourier Transform ( \(\mathrm{f}_{\mathrm{clk}}=40 \mathrm{MHz} ; \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}\) ).


Effective bits: 6.91; THD = -46.13 dB.
Harmonic levels \((\mathrm{dB}): 2 \mathrm{nd}=-59.66 ; 3 \mathrm{rd}=-46.67 ; 4\) th \(=-70.80 ; 5\) th \(=-57.96 ; 6\) th \(=-72.16\).
Fig.11. Fast Fourier Transform ( \(\mathrm{f}_{\mathrm{clk}}=50 \mathrm{MHz} ; \mathrm{f}_{\mathrm{i}}=10 \mathrm{MHz}\) ).

8-bit high-speed analog-to-digital converter

\section*{INTERNAL PIN CONFIGURATIONS}


Fig. 12 TTL data and overflow/underflow outputs.


Fig. 13 Analog inputs.


Fig. 14 CE (3-state) input.


Fig. \(15 \mathrm{~V}_{\mathrm{RB}}, \mathrm{V}_{\mathrm{RT}}\) and DEC.


Fig. 16 CLK input.

\section*{APPLICATION INFORMATION}


The analog and digital supplies should be separated and decoupled.
(1) \(V_{R B}\) and \(V_{R T}\) are decoupling pins for the internal reference ladder; do not draw current from these pins in order to achieve good linearity.
(2) Pins 3 and 10 should be connected to DGND in order to prevent noise influence.

Fig. 17 Application diagram.

\section*{Section 4}

Package Outlines
CONTENTS
SOT38-1 Plastic dual in-line package; 16 leads ( 300 mil) ..... 4-3
SOT96A 8-Pin Plastic SOL (Small Outline Large) Dual In-Line (D/T) Package ..... 4-4
SOT101 24-Pin Plastic Dual In-Line (N/P) Package with Internal Heatspreader ..... 4-5
SOT102 18-Pin Plastic Dual In-Line (N/P) Package with Internal Heatspreader ..... 4-6
SOT109A 16-Pin Plastic SO (Small Outline) Dual In-Line (D/T) Package ..... 4-7
SOT117-1 Plastic dual in-line package; 28 leads ( 600 mil) with internal heat spreader ..... 4-8
SOT129 40-Pin Plastic Dual In-Line (N/P) Package ..... 4-9
SOT136-1 Plastic small outline package; 28 leads; large body ..... 4-10
SOT137-1 Plastic small outline package; 24 leads; large body ..... 4-11
SOT146EF4 20-Lead Dual In-Line; Plastic ..... 4-12
SOT158A \(\quad 40-\) Pin Plastic VSO (Very Small Outline) Dual In-Line (D/T) Package ..... 4-13
SOT162-1 Plastic small outline package; 16 leads; large body ..... 4-14
SOT163AG7 20-Lead Mini-pack; Plastic ..... 4-15
SOT187 44-Pin Plastic Leaded Chip Carrier; Pocket Version (A) Package ..... 4-16
SOT188AA \(\quad 68-\) Pin Plastic Leaded Chip Carrier; Pocket Version (A) Package ..... 4-17
SOT189CG 84-Pin Plastic Leaded Chip Carrier (A) Package ..... 4-18
SOT225 160-Pin Plastic Quad Flat Pack (H) Package ..... 4-19
SOT232 32-Pin Plastic Shrink Dual In-Line (N/P) Package ..... 4-21
SOT234AG 24-Lead Plastic Shrink Dual In-Line Package ..... 4-22
SOT247-1 52-Pin Shrink Dual In-Line Package; Plastic ..... 4-23
SOT261-2 Plastic leaded chip carrier, 28 leads ..... 4-24
SOT287-1 Plastic small outline package; 32 leads; large body ..... 4-25
SOT307-2 44-Pin Plastic Quad Flat Pack (B) Package ..... 4-26
SOT313-2 Plastic thin quad flat package; 48 leads; \(7 \times 7 \times 1.4 \mathrm{~mm}\) ..... 4-27
SOT317 100-Pin Plastic Quad Flat Pack (B) Package ..... 4-28
SOT318 80-Pin Plastic Quad Flat Pack (B) Package ..... 4-29
SOT340-1 Plastic shrink small outline package; 24 leads; medium body ..... 4-30
SOT349 120-Pin Plastic Quad Flat Pack (B) Package ..... 4-31

\section*{Package outlines}

\section*{SOT38-1 PLASTIC DUAL IN-LINE PACKAGE; 16 LEADS (300 MIL)}


\section*{Package outlines}

\section*{SOT96A 8-PIN PLASTIC SOL (SMALL OUTLINE LARGE) DUAL IN-LINE (D/T) PACKAGE}


\section*{Package outlines}


\section*{Package outlines}

SOT102 18-PIN PLASTIC DUAL IN-LINE (N/P) PACKAGE WITH INTERNAL HEATSPREADER


\section*{Package outlines}

\section*{SOT109A 16-PIN PLASTIC SO (SMALL OUTLINE) DUAL IN-LINE (D/T) PACKAGE}


\section*{Package outlines}

\section*{SOT117-1 PLASTIC DUAL IN-LINE PACKAGE; 28 LEADS (600 MIL) WITH INTERNAL HEAT SPREADER}


Dimensions in \(\mathbf{m m}\).

\section*{Package outlines}


\section*{Package outlines}

\section*{SOT136-1 PLASTIC SMALL OUTLINE PACKAGE; 28 LEADS; LARGE BODY}


\section*{Package outlines}

\section*{SOT137-1 PLASTIC SMALL OUTLINE PACKAGE; 24 LEADS; LARGE BODY}


Dimensions in mm.

\section*{Package outlines}

\section*{SOT146EF4 20-LEAD DUAL IN-LINE; PLASTIC}


\section*{Dimensions in mm}

\section*{Package outlines}

\section*{SOT158A 40-PIN PLASTIC VSO (VERY SMALL OUTLINE) DUAL IN-LINE (D/T) PACKAGE}


Dimensions in mm

\section*{Package outlines}

SOT162-1 PLASTIC SMALL OUTLINE PACKAGE; 16 LEADS; LARGE BODY


\section*{Package outlines}

\section*{SOT163AG7 20-LEAD MINI-PACK; PLASTIC}


\section*{Package outlines}

\section*{SOT187 44-PIN PLASTIC LEADED CHIP CARRIER; POCKET VERSION (A) PACKAGE}


Dimensions in mm
\(\bigoplus\) Positional accuracy.
(M) Maximum Material Condition.
(1) Centre-lines of all leads are within \(\pm 0.127 \mathrm{~mm}\) of the nominal position shown; in the worst case, the spacing between any two leads may may deviate from nominal by \(\pm 0.18 \mathrm{~mm}\).

\section*{Package outlines}

SOT188AA 68-PIN PLASTIC LEADED CHIP CARRIER; POCKET VERSION (A) PACKAGE


Dimensions in mm

\section*{Package outlines}

\section*{SOT189CG 84-PIN PLASTIC LEADED CHIP CARRIER (A) PACKAGE}


\section*{Package outlines}



\section*{Package outlines}

\section*{SOT232} 32-PIN PLASTIC SHRINK DUAL IN-LINE (N/P) PACKAGE


от232

\section*{Package outlines}

\section*{SOT234AG 24-LEAD PLASTIC SHRINK DUAL IN-LINE PACKAGE}


Dimensions in mm .

\section*{Package outlines}

SOT247-1 52-PIN SHRINK DUAL IN-LINE PACKAGE; PLASTIC


\section*{Package outlines}


Dimensions in mm.

\section*{Package outlines}

\section*{SOT287-1 PLASTIC SMALL OUTLINE PACKAGE; 32 LEADS; LARGE BODY}


\section*{Package outlines}

\section*{SOT307-2 44-PIN PLASTIC QUAD FLAT PACK (B) PACKAGE}


Dimensions in mm.


\section*{Package outlines}

\section*{SOT313-2 PLASTIC THIN QUAD FLAT PACKAGE; 48 LEADS; \(7 \times 7 \times 1.4 \mathrm{~mm}\)}


Package outlines


\section*{Package outlines}

SOT318
80-PIN PLASTIC QUAD FLAT PACK (B) PACKAGE


\section*{Package outlines}

SOT340-1 PLASTIC SHRINK SMALL OUTLINE PACKAGE; 24 LEADS; MEDIUM BODY


Package outlines


\section*{Sales Offices, Representatives}
\& Distributors

\title{
North American Sales Offices, Representatives and Distributors
}

\section*{PHILIPS}

SEMICONDUCTORS
811 East Arques Avenue
P.O. Box 3409

Sunnyvale, CA 94088-3409

\section*{ALABAMA}

Huntsville
Philips Semiconductors
Phone: (205) 464-0111
(205) 464-9101

Elcom, Inc.
Phone: (205) 830-4001

\section*{ARIZONA}

Scottsdale
Thom Luke Sales, Inc.
Phone: (602) 451-5400
Tempe
Philips Semiconductors
Phone: (602) 820-2225

\section*{CALIFORNIA}

Calabasas
Philips Semiconductors
Phone: (818) 880-6304
Irvine
Philips Semiconductors
Phone: (714) 453-0770
Loomis
B.A.E. Sales, Inc.

Phone: (916) 652-6777
San Diego
Philips Semiconductors
Phone: (619) 560-0242
San Jose
B.A.E. Sales, Inc.

Phone: (408) 452-8133
Sunnyvale
Philips Semiconductors
Phone: (408) 991-3737

\section*{COLORADO}

Englewood
Philips Semiconductors
Phone: (303) 792-9011
Thom Luke Sales, Inc.
Phone: (303) 649-9717

\section*{CONNECTICUT}

Wallingford
JEBCO
Phone: (203) 265-1318
FLORIDA
Oviedo
Conley and Assoc., Inc.
Phone: (407) 365-3283

\section*{GEORGIA}

Norcross
Elcom, Inc.
Phone: (404) 447-8200

\section*{ILLINOIS}

Hoffman Estates
Micro-Tex, Inc.
Phone: (708) 765-3000
ttasca
Philips Semiconductors
Phone: (708) 250-0050
INDIANA
Indianapolis
Mohrfield Marketing, Inc.
Phone: (317) 546-6969

Kokomo
Philips Semiconductors
Phone: (317) 459-5355

\section*{KENTUCKY}

Lexington
Mohrfield Marketing, Inc.
Phone: (606) 223-5243

\section*{MARYLAND}

Columbia
Third Wave Solutions, Inc.
Phone: (410) 290-5990
MASSACHUSETTS
Chelmsford
JEBCO
Phone: (508) 256-5800
Westiord
Philips Semiconductors
Phone: (508) 692-6211

\section*{MICHIGAN}

Monroe
S-J Associates
Phone: (313) 242-0450
Novi
Philips Semiconductors
Phone: (313) 347-1700

\section*{MINNESOTA}

Bloomington
High Technology Sales
Phone: (612) 844-9933
MISSOURI
Bridgeton
Centech, Inc.
Phone: (314) 291-4230

\section*{Raytown}

Centech, Inc.
Phone: (816) 358-8100
NEW JERSEY
Toms River
Philips Semiconductors
Phone: (908) 505-1200
NEW YORK
Ithaca
Bob Dean, Inc.
Phone: (607) 257-1111
Rockville Centre
S-J Associates
Phone: (516) 536-4242
Wappingers Falls
Philips Semiconductors
Phone: (914) 297-4074
Bob Dean, Inc.
Phone: (914) 297-6406
NORTH CAROLINA
Charlotte
Elcom, Inc.
Phone: (704) 543-1229
Greensboro
Elcom, Inc.
Phone: (919) 273-8887

\section*{Matthews}

Elcom, Inc.
Phone: (704) 847-4323

\section*{OHIO}

Chardon
S-J Associates, Inc.
Phone: (216) 285-7771

Columbus
S-J Associates, Inc.
Phone: (614) 885-6700
Kettering
S-J Associates, Inc.
Phone: (513) 298-7322
Parma
S-J Associates, Inc.
Phone: (216) 888-7004
Toledo
S-J Associates, Inc.
Phone: (313) 242-0450
West Carrollton
S-J Associates, Inc.
Phone: (513) 438-1700

\section*{OREGON}

Beaverton
Philips Semiconductors
Phone: (503) 627-0110
Western Technical Sales
Phone: (503) 644-8860

\section*{PENNSYLVANIA}

Erie
S-J Associates, Inc.
Phone: (216) 888-7004
Hatboro
Delta Technical Sales, Inc.
Phone: (215) 957-0600
Pittsburgh
S-J Associates, Inc.
Phone: (216) 888-7004
Plymouth Meeting
Philips Semiconductors
Phone: (215) 825-4404

\section*{SOUTH CAROLINA}

Greenville
Elcom, Inc.
Phone: (803) 370-9119

\section*{TENNESSEE}

Dandridge
Philips Semiconductors
Phone: (615) 397-5053

\section*{TEXAS}

Austin
Philips Semiconductors
Phone: (512) 339-9945
Austin
Synergistic Sales, Inc.
Phone: (512) 346-2122
Houston
Synergistic Sales, Inc.
Phone: (713) 937-1990
Richardson
Philips Semiconductors
Phone: (214) 644-1610
Richardson
Synergistic Sales, Inc.
Phone: (214) 644-3500

\section*{UTAH}

Salt Lake City
Electrodyne
Phone: (801) 264-8050

\section*{WASHINGTON}

Bellevue
Western Technical Sales
Phone: (206) 641-3900
Spokane
Western Technical Sales
Phone: (509) 922-7600
WISCONSIN
Waukesha
Micro-Tex, Inc.
Phone: (414) 542-5352
CANADA
PHILIPS
SEMICONDUCTORS
CANADA, LTD.
Calgary, Alberta
Tech-Trek, Ltd.
Phone: (403) 241-1719
Kanata, Ontario
Philips Semiconductors
Phone: (613) 599-8720
Tech-Trek, Ltd.
Phone: (613) 599-8787
Mississauga, Ontario
Tech-Trek, Ltd.
Phone: (416) 238-0366
Richmond, B.C.
Tech-Trek, Ltd.
Phone: (604) 276-8735
Scarborough, Ontario Philips Semiconductors/ Components, Ltd.
(416) 292-5161

Ville St. Laurent, Quebec Tech-Trek, Ltd.
Phone: (514) 337-7540
MEXICO
Anzures Section
Philips Components
Phone: (800) 234-7381
El Paso, TX
Philips Components
Phone: (915) 775-4020

\section*{PUERTO RICO}

Caguas
Mectron Group
Phone: (809) 746-3522

\section*{DISTRIBUTORS}

Contact one of our
local distributors:
Anthem Electronics
Arrow/Schweber Electronics
Future Electronics (Canada only)
Gerber Electronics
Hamilton Hallmark'
Allied Electronics
Marshall Industries
Newark Electronics
Richardson Electronics
Wyle Laboratories, EMG

\section*{DATA HANDBOOK SYSTEM}

Philips Semiconductors data handbooks contain all pertinent data available at the time of publication and each is revised and reissued regularly.
Loose data sheets are sent to subscribers to keep them up-to-date on additions or alterations made during the lifetime of a data handbook.

Catalogs are available for selected product ranges (some catalogs are also on floppy discs).

Our data handbook titles are listed here.

\section*{Integrated Circuits}
Book Titl

1C01 Semiconductors for Radio and Audio Systems
IC02 Semiconductors for Television and Video Systems
IC03 Semiconductors for Telecom Systems
1C04 CMOS HE4000B Logic Family
IC05 Advanced Low-power Schottky (ALS) Logic Series
IC06 High-speed CMOS Logic Family
IC08 100K ECL Logic Families
IC10 Memories
IC11 General-purpose/Linear ICs
IC12 Display Drivers and Microcontroller Peripherals (planned)
IC13 Programmable Logic Devices (PLD)
IC14 8048-based 8-bit Microcontrollers
IC15 FAST TTL Logic Series
IC16 ICs for Clocks and Watches
IC18 Semiconductors for In-car Electronics and General Industrial Applications (planned)
IC17 RF/Wireless Communications
IC19 Semiconductors for Datacom: LANs, UARTs, Multi-protocol Controllers and Fibre Optics
IC20 80C51-based 8-bit Microcontrollers
IC21 68000-based 16-bit Microcontrollers (planned)
IC22 ICs for Multi-media Systems (planned)
IC23 QUBiC Advanced BiCMOS Bus Interface Logic ABT, MULTIBYTE \({ }^{\text {TM }}\)

IC24 Low Voltage CMOS \& BiCMOS Logic

\section*{Discrete Semiconductors}

\section*{Book Title}

SC01 Diodes
SC02 Power Diodes
SC03 Thyristors and Triacs
SC04 Small-signal Transistors
SC05 Low-frequency Power Transistors and Hybrid IC Power Modules

SC06 High-voltage and Switching NPN Power Transistors
SC07
Small-signal Field-effect Transistors
SC08a RF Power Bipolar Transistors
SC08b RF Power MOS Transistors
SC09 RF Power Modules
SC10 Surface Mounted Semiconductors
SC13 Power MOS Transistors including TOPFETs and IGBTs
SC14 RF Wideband Transistors, Video Transistors and Modules
SC15 Microwave Transistors
SC16 Wideband Hybrid IC Modules
SC17 Semiconductor Sensors
Professional Components
PC01 High-power Klystrons and Accessories
PC06 Circulators and Isolators

\section*{MORE INFORMATION FROM PHILIPS SEMICONDUCTORS?}

For more information about Philips Semiconductors data handbooks, catalogs and subscriptions contact your nearest Philips Semiconductors national organization, select from the address list on the back cover of this handbook. Product specialists are at your service and inquiries are answered promptly.

\section*{OVERVIEW OF PHILIPS COMPONENTS DATA HANDBOOKS}

Our sister product division, Philips Components, also has a comprehensive data handbook system to support their products. Their data handbook titles are listed here.

\section*{Display Components}

Book Title
DC01 Colour Display Components Colour TV Picture Tubes and Assemblies Colour Monitor Tube Assemblies

DC02 Monochrome Monitor Tubes and Deflection Units
DC03 Television Tuners, Coaxial Aerial Input Assemblies
DC05 Flyback Transformers, Mains Transformers and General-purpose FXC Assemblies

\section*{Magnetic Products}

MA01 Soft Ferrites
MA03 Piezoelectric Ceramics Specialty Ferrites

MA04 Dry-reed Switches

\section*{Passive Components}

PA01 Electrolytic Capacitors
PA02 Varistors, Thermistors and Sensors
PA03 Potentiometers and Switches
PA04 Variable Capacitors
PA05 Film Capacitors
PA06 Ceramic Capacitors
PA07 Quartz Crystals for Special and Industrial Applications
PA08 Fixed Resistors
PA10 Quartz Crystals for Automotive and Standard Applications
PA11 Quartz Oscillators

\section*{Professional Components}

PC04 Photo Multipliers
PC05 Plumbicon Camera Tubes and Accessories
PC07 Vidicon and Newvicon Camera Tubes and Deflection Units
PC08 Image Intensifiers
PC12 Electron Multipliers

\section*{MORE INFORMATION FROM PHILIPS COMPONENTS?}

For more information contact your nearest Philips Components national organizaiton shown in the following list.

Argentina: BUENOS AIRES, Tel. (541) 786 7633, Fax . (541) 7869367.
Australia: NORTH RYDE, Tel. (02) 8054455 , Fax. (02) 8054466.
Austria: WIEN, Tel. (01) 60 101-1236, Fax. (01) 60 101-1211.
Belgium: EINDHOVEN, The Netherlands,
Tel. (31)40 783 749, Fax. (31)40 788399.
Brazil: SÃO PAULO, Tel. (011) 829-1166, Fax (011) 829-1849.
Canada: INTEGRATED CIRCUITS: Tel. (800) 234-7381, Fax. (708) 296-8556
DISCRETE SEMICONDUCTORS: SCARBOROUGH
Tel. (0416) 292-5161 ext. 2336, Fax. (0416) 292-4477
Chile: SANTIAGO, Tel. (02) 773 816, Fax. (02) 7776730.
Columbia: BOGOTA, Tel. (571)217 4609, Fax (01) 2174549.
Denmark: COPENHAGEN, Tel. (032) 88 2636, Fax. (031) 571949.
Finland: ESPOO, Tel. (9)0 50261, Fax. (9)0 520971.
France: SURESNES, Tel. (01)4099 6161, Fax, (01)4099 6427.
Germany: HAMBURG, Tel. (040) 3296-0, Fax. (040) 3296213.
Greece: TAVROS, Tel. (01) 4894 339/4894 911, Fax. (01) 4814240.
Hong Kong: KWAI CHUNG, Tel. (0)42 45 121, Fax. (0) 4806960.
India: BOMBAY, Tel. (022) 4938541 , Fax. (022) 4938722.
Indonesia: JAKARTA, Tel. (021) 5201 122, Fax. (021) 5205189.
Ireland: DUBLIN, Tel. (01) 640 000, Fax. (01) 640200.
Italy: MILANO, Tel. (02) 6752.1 , Fax. (02) 6752.3350.
Japan: TOKYO, Tel. (03) 3740 5101, Fax. (03) 37400570.
Korea (Republic off): SEOUL, SEOUL, Tel. (02) 794-5011, Fax. (02) 798-8022.
Malaysia: SELANGOR, Tel. (03) 757 5511, Fax. (03) 7574880.
Mexico: EL PASO, TX 79905, Tel. 9-5(800) 234-7381, Fax. (708) 296-8556
Netherlands: EINDHOVEN, Tel. (040) 783749 , Fax. (040)78 8399.
New Zealand: AUKLAND, Tel. (09) 849-4160, Fax. (09) 849-7811.
Norway: OSLO, Tel. (22) 74 8000, \(\operatorname{Fax}(22) 748341\).
Pakistan: KARACHI, Tel. (021) 577 039, Fax. (021) 5691832.
Philippines: MANILA, Tel. (02) 8100161 , Fax. (02) 8173474.
Portugal: LISBOA, Tel. (01) 683 121, Fax. (01) 658013.
Singapore: SINGAPORE, Tel. (65) 350 2000, Fax. (65) 2516500.
South Africa: JOHANNESBURG, Tel. (011) 470-5433, Fax. (011) 470-5494.
Spain: BARCELONA, Tel. (03) 3016312 , Fax. (03) 3014243.
Sweden: STOCKHOLM, Tel. (0)8-632 2000, Fax. (0)8-632 2745.
Switzerland: ZÜRICH, Tel. (01) 488 2211, Fax. (01) 4817730.
Taiwan: TAIPEI, Tel. (2) 3887666 , Fax. (2) 3824382.
Thailand: BANGKOK, Tel. (2) \(399-3280\) to 9 , (2)398-2083, Fax. (2)398-2080.
Turkey: ISTANBUL, Tel. (0212) 279 2770, Fax. (0212) 2693094.
United Kingdom: LONDON, Tel. (071) 436 4144, Fax. (071) 3230342.
United States: INTEGRATED CIRCUITS: SUNNYVALE, CA
Tel. (800) 234-7381, Fax. (708) 296-8556
DISCRETE SEMICONDUCTORS: RIVIERA BEACH, FL
Tel. (800) 447-3762 and (407)881-3200, Fax. (407) 881-3300
Uruguay: MONTEVIDEO, Tel. (02) 70-4044, Fax (02) 920601.
For all other countries apply to: Philips Components.
Marketing Communications, Building BAF-1,
P.O. Box 218,5600 MD, EINDHOVEN, The Netherlands

Telex 35000 phtcnl, Fax. \(+31-40-724825\).

\section*{Philips Semiconductors - a worldwide company}

Argentina: IEROD, Av. Juramento 1992-14.b (1428) BUENOS AIRES, Tel. (541) 786 7633, Fax . (541) 7869367
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. (02) 8054455 , Fax. (02) 8054466
Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213, Tel. (01) 60 101-1236, Fax. (01) 60 101-1211
Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands, Tel. (31)40 783749 , Fax. (31)40 788399
Brazil: Rua do Rocio 220-5th Floor, Suite 51 CEP: 04552-903 SÃO PAULO-SP, Brazil P.O. Box 7383-(01064-970), Tel. (011) 821-2333, Fax (011) 829-1849
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS: Tel. (800) 234-7381, Fax. (708) 296-8556
Chile: Av. Santa Maria 0760, SANTIAG0, Tel. (02) 773 816, Fax. (02) 7776730
Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17, 77621 BOGOTA, Tel. (571)249 7624/(571)2174609, Fax. (571)217 4549
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. (032) 88 2636, Fax. (031) 571949
। Finland: Sinikalliontie 3, FIN-02630 ESPOD, Tel. (9)0 50261, Fax. (9)0 520971
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. (01)4099 6161, Fax. (01)4099 6427
Germany: PHILIPS COMPONENTS UB der Philips G.m.b.H., P.O. Box 1063 23, 20043 HAMBURG, Tel. (040) 3296-0, Fax. (040) 3296213
Greece: No. 15, 25th March Street, GR 17778 TAVROS, Tel. (01) 4894 339/4894 911, Fax. (01) 4814240
Hong Kong: PHILIPS HONG KONG Ltd., Components Div., 6/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, N.T., Tel. (852)424 5121, Fax. (852)428 6729
India: Philips INDIA Ltd., Components Dept., Shivsagar Estate, A Block, Dr. Annie Besant Rd., Worli, BOMBAY 400 018, Tel. (022)4938 541, Fax. (022)4938 722
Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4, P.O. Box 4252, JAKARTA 12950 Tel. (021)5201 122, Fax. (021)5205 189
Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. (01)640 000, Fax. (01)640 200
Italy: PHILIPS COMPONENTS S.r.I., Viale F. Testi, 327, 20162 MILANO, Tel. (02)6752.3302, Fax. (02)6752.3300
: Japan: Philips Bldg. 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. (03)3740 5028, Fax. (03) 37400580
Korea (Republic of): Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. (02)794-5011, Fax. (02)798-8022
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880
Mexico: Philips Components, 5900 Gateway East, Suite 200, EL PASO, TX 79905, Tel. 9-5 (800)234-7381, Fax. (708)296-8556
Netherlands: Postbus 90050,5600 PB EINDHOVEN, Bldg. VB Tel. (040)783749, Fax. (040)788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tol. (09)849-4160, Fax. (09)849-7811
Norway: Box 1, Manglerud 0612, OSLO, Tel. (022)74 8000, Fax (022)74 8341

Pakistan: Philips Electrical Industries of Pakistan Ltd., Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton, KARACHI 75600, Tel. (021)587 4641-49, Fax. (021)577035/5874546
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. (02)810 0161, Fax. (02)817 3474
Portugal: PHILIPS PORTUGUESA, S.A.,
Rua dr. AntÓnio Loureiro Borges 5, Arquiparque - Miraflores, Apartado 300, 2795 LINDA-A-VELHA, Tel. (01)14163160/4163333, Fax. (01) 14163174/4163366
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. (65)350 2000, Fax. (65)251 6500
South Africa: S.A. PHILIPS Pty Ltd., Components Division, 195-215 Main Road, Martindale, 2092 JOHANNESBURG, P.O. Box 7430, Johannesburg 2000, Tel. (011)470-5911, Fax. (011)470-5494
Spain: Balmes 22, 08007 BARCELONA, Tel. (03)301 6312, Fax. (03)3014243
Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM, Tel. (0)8-632 2000, Fax. (0)8-632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. (01)488 2211, Fax. (01)481 7730
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West Road, Sec. 1. Taipeh, Taiwan ROC, P.0. Box 22978, TAIPEI 100, Tel. (02)3887666, Fax. (02)382 4382
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Thailand Tel. (662)398-0141, Fax. (662)398-3319
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. (0212)279 2770, Fax. (0212)269 3094
United Kingdom: Philips Semiconductors Limited, P.O. Box 65, Philips House, Torrington Place, LONDON WC1E 7HD, Tel. (071)436 4144, Fax. (071)323 0342
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. (800)234-7381, Fax. (708)296-8556
Uruguay: Coronel Mora 433, MONTEVIDEO, Tel. (02)70-4044, Fax (02) 920601

For all other countries apply to: Philips Semiconductors, International Marketing and Sales, Building BE-p,
P.O. Box 218,5600 MD EINDHOVEN, The Netherlands,

Telex 35000 phtenl, Fax \(+31-40-724825\)
SCD32 © Chilips Electronics N.V. 1994
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or industrial or intellectual property rights.

\footnotetext{
Printed in the USA
4140Q/32.5M/CR4/pp1400
Document order number USA:
Date of release: June 1994 98-1900-000-04
}
```


[^0]: - multiplex formats are specified for sampling ratios of 4:1:1 and 4:2:2

[^1]: 4) The colour difference signals in the D2MAC multiplex are scaled to unity amplitude at 77% of their maximum value. As a consequence the scale factors for B-Y and R-Y are $1 /\left(0.77^{* 1} 1.772\right)=0.733$ and $1 /\left(0.77^{* 1.402)=0.927 ~ r e s p e c t i v e l y . ~}\right.$
[^2]: * Main digital television terms used in the Recommendation are defined in Report 629.

[^3]: Video capture card (24/16-bit) with display filter

[^4]: preoq ошәр IOd Ot Oəp! \wedge

[^5]: Digital video evaluation module

[^6]: * Reserved; Program as 00 H only.

[^7]: Desktop video demo board

 ## 96／ち6トLへㄱ

[^8]: Desktop video demo board

[^9]: Desktop video demo board

[^10]: * Horizontal blanking pulse width for NTSC2 can be 11.12μ s maximum

